

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

IMPROVING CACHE BEHAVIOR IN

CMP ARCHITECTURES THROUGH

CACHE PARTITIONING TECHNIQUES

Miquel Moretó Planas

Barcelona, 2009

A thesis submitted in fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC

Doctor Europeus Mention

Department of Computer Architecture

Technical University of Catalonia

ACTA DE QUALIFICACIÓ DE LA TESI DOCTORAL

Reunit el tribunal integrat pels sota signants per jutjar la tesi doctoral:

Títol de la tesi: ...

Autor de la tesi: ..

Acorda atorgar la qualificació de:

No apte

Aprovat

Notable

Excel·lent

Excel·lent Cum Laude

Barcelona, …………… de/d’….................…………….. de….

El President El Secretari

... ..
 (nom i cognoms) (nom i cognoms)

El vocal El vocal El vocal

...
(nom i cognoms) (nom i cognoms) (nom i cognoms)

IMPROVING CACHE BEHAVIOR IN

CMP ARCHITECTURES THROUGH

CACHE PARTITIONING TECHNIQUES

Miquel Moretó Planas

Barcelona, 2009

ADVISORS: Francisco J. Cazorla Almeida
Barcelona Supercomputing Center

Mateo Valero Cortés
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center

COLLABORATORS: Alex Ramirez Bellido
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center
Rizos Sakellariou

University of Manchester

A thesis submitted in fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC
Doctor Europeus Mention

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

A la meva família

Abstract

In the last few years, chip multiprocessors (CMP) have become widely used in academia

and industry in order to increase aggregate system performance. CMPs reduce design

costs and average power consumption by promoting design re-use and simpler processor

cores, while at the same time increasing hardware resource utilization.

However, new architectures also have to face the challenge of making better use of

shared resources. A key shared resource in CMP architectures is the cache hierarchy, as it

is one of the resources that has the most impact on the final performance of the application.

In CMP architectures, last levels of cache (LLC) shared on-chip have become popular, as

they allow increased utilization of the cache (and consequently, aggregate performance)

and, additionally, they simplify the coherence protocol.

Some applications present low re-use of their data and pollute caches with data streams

(such as multimedia, communications or streaming applications), or have many compul-

sory misses that cannot be solved by assigning more cache space to the application. Tra-

ditional eviction policies, such as Least Recently Used (LRU), pseudo LRU, or random,

are demand-driven, that is, they tend to give more space to the application that has more

accesses and misses to the cache hierarchy. As a result, some threads suffer a severe

degradation in performance when running together with threads of those types in a CMP

architecture with a shared cache.

In this thesis, we analyze in detail cache-sharing effects in a CMP architecture, and

we argue for the use of enhanced mechanisms that are aware of these effects. We propose

architectural changes in order to allow CMP architectures to better manage shared caches.

In addition, we describe our efforts to significantly improve the performance of individual

applications running on a CMP, providing quality of service (QoS) to applications in these

architectures. We also propose new mechanisms to balance parallel applications in CMP

architectures and describe the challenges that future CMP architectures with hundreds of

cores will have to face in the near future.

i

Abstract

ii

Acknowledgments

Aquest projecte suposa el final d’un llarg camí que vaig començar ara fa una mica més de

quatre anys. Durant aquest temps, molta gent ha estat al meu costat ajudant-me a formar-

me i a ser millor persona. Família, amics, companys i professors, a tots ells els hi agraeixo

aquest esforç.

En primer lloc, vull destacar per sobre de tot el paper de la meva família. Els meus

pares, la meva germana i la Isabel sempre han estat en tot moment un exemple d’amor i

sacrifici envers la meva persona. Sense ells, això no hagués estat possible.

Molt especialment, volia mencionar als meus directors de tesi, Francisco J. Cazorla

i Mateo Valero, que han tingut un paper crucial en la seva elaboració. Els seus consells

i ajuda sempre que els necessitava m’han demostrat la seva gran vàlua com a persones i

científics. També vull donar les gràcies a dues persones que han participat molt activament

en la realització d’aquesta tesi, n’Alex Ramirez i en Rizos Sakellariou. Finalment, també

voldria agrair l’ajuda de Jim Smith i Kyle Nesbit de la Universitat de Wisconsin per

ajudar-me en l’elaboració del darrer capítol d’aquesta tesi.

M’agradaria donar les gràcies en especial als meus companys de llargs dinars i cafès:

Oriol, Xevi, Alex i Felipe. Moltes discussions (sempre amigables) durant aquests anys

que ens han ajudat a desconnectar i a fer-nos més duguedores les incerteses del doctorat.

També voldria destacar a la gent del departament d’Arquitectura de Computadors de

la Universitat Politècnica de Catalunya i del Barcelona Supercomputing Center. Inten-

taré fer una llista amb tots ells, però segur que me n’oblido d’algú: Tana, Indu, Manoj,

Shrikanth, Govind, Carlos V., Isaac G., Carmelo A., Montse F., Marc C., Beatriz, Kamil,

Carlos B., Jose Carlos R., Eduard Q.,... No puc oblidar la gent d’administració del depar-

tament, la universitat i el BSC, ja que sense ells no hauria pogut sobreviure als complexos

procediments per acabar sent doctor.

También quiero agradecer a Ramón Beivide, Carmen Martínez y Enrique Vallejo, del

grupo de Arquitectura y Tecnología de Computadores de la Universidad de Cantabria,

iii

Acknowledgments

por ayudarme en muchos momentos del doctorado y por distraerme con otros temas de

investigación cuando tenía un rato libre.

I should not forget to thank the people at IBM T.J. Watson who, together with my

advisors, helped and guided me during a very decisive part of this research. Special, but

not exclusive, thanks go to the team with whom I worked most closely: Alper Buyukto-

sunoglu, Roberto Gioiosa, Chen-Yong Cher, Pradip Bose and Jaime Moreno. I also want

to thank all my other colleagues in the research center, specially Shuguang, Rafael, M.

Angeles, Salman and Daniele. Finally, I should also mention that I have made use of a

picture of the IBM Power6 chip as the cover art for the print edition of this thesis.

I also want to thank the people at the University of Edinburgh, Mike O’Boyle, Tim

Jones, Salman, Chronis, Georgios, Sofia and Nikolas, for an excellent summer which

provided me with a broader view of this field, for their technical expertise, and for their

friendship.

I finalment, els agraïments oficials: This work has been partially supported by the

Ministry of Education and Science of Spain under contracts TIN2004-07739, TIN2007-

60625 and grant AP-2005-3318, and by the Ministry of Universities, Research and Infor-

mation Society (DURSI) of the Catalan Government and the European Social Fund (grant

2006-FI-00838). The author would also like to thank the support of the HiPEAC Euro-

pean Network of Excellence and the SARC European Project (Contract number 27648).

iv

Contents

Abstract i

Acknowledgments iii

Index viii

1 Introduction 1
1.1 Thesis Objectives and Contributions . 5

1.1.1 Weighted Dynamic Cache Partitioning Algorithm 6

1.1.2 Obtention of IPC Estimations 7

1.1.3 Use of IPC Estimations to Guide Resource Assignments 7

1.1.4 Resource Management in Future Manycore Architectures 8

1.2 Thesis Structure . 8

2 Platform, Tools and Benchmarks 11
2.1 Introduction . 11

2.2 MPSim Simulator . 12

2.3 Benchmarks . 14

2.3.1 Simulation Time Reduction . 15

2.3.2 Simulation Methodology . 17

2.4 Workload Classification . 18

2.4.1 Performance Metrics . 22

3 Dynamic Cache Partitioning Algorithms 23
3.1 Introduction . 23

3.2 Modified Replacement Logic . 24

3.3 Monitoring Logic . 25

v

CONTENTS

3.4 Partitioning Logic . 27

3.5 Cache Partitioning Decision . 28

3.5.1 Generating All Possible Combinations 29

3.5.2 Marginal Gains Algorithm . 29

3.5.3 Look Ahead Algorithm . 30

3.5.4 Marginal Gains in Reverse Order Algorithm 31

3.5.5 EvalAll Dynamic Programming Solution 31

3.5.6 Overhead and Performance Comparison 33

3.6 Other Cache Partitioning Algorithms . 35

4 MLP-aware Dynamic Cache Partitioning Algorithm 37
4.1 Introduction . 37

4.2 MLP-Aware Dynamic Cache Partitioning 39

4.2.1 MLP-Aware Stack Distance Histogram 41

4.2.2 Obtaining Stack Distance Histograms 45

4.2.3 Putting It All Together . 46

4.2.4 Case Study: galgel and gzip 47

4.3 Evaluation Results . 48

4.3.1 Performance Results . 48

4.3.2 Design Parameters Analysis . 50

4.3.3 Hardware Cost . 51

4.3.4 Scalable Algorithms to Decide Cache Partitions 52

4.4 Summary . 53

5 Online Prediction of Applications Cache Utility 55
5.1 Introduction . 56

5.2 Basis of IPC Curves Prediction . 57

5.2.1 Superscalar Processors Analytical Modeling 58

5.3 Prediction of IPC Curves . 59

5.3.1 OPACU Methodology . 59

5.3.2 Modified Memory Model . 60

5.4 Evaluation Results . 61

5.4.1 Accuracy Results . 62

5.4.2 Sensitivity Analysis . 65

5.5 Hardware Implementation . 68

vi

CONTENTS

5.6 Related Work . 72

5.7 Summary . 73

6 FlexDCP: a QoS framework for CMP architectures 75
6.1 Introduction . 76

6.2 FlexDCP QoS Framework . 80

6.2.1 Direct Vs Indirect Performance Metrics 82

6.2.2 Case Study: swim and vpr . 84

6.2.3 Granularity of Cache Quota Decisions 85

6.2.4 Scalability of FlexDCP . 88

6.3 Evaluation Results . 89

6.3.1 Ensuring an Individual Quality of Service 89

6.3.2 Ensuring a Global Quality of Service 92

6.3.3 Putting it all together . 95

6.4 Comparison of Different QoS Frameworks 96

6.5 Summary . 97

7 Load Balancing Using Dynamic Cache Allocation 99
7.1 Introduction . 100

7.2 Motivation . 102

7.3 Dynamic Load Balancing Through Cache Allocation 106

7.3.1 Iterative Method: Load Imbalance Minimization 106

7.3.2 Single-step Method: Execution Time Minimization 108

7.3.3 Comparison of the Algorithms 110

7.4 Analysis of the Load Imbalance Problem 112

7.5 Experimental Environment . 116

7.6 Performance Characterization with Synthetic Workloads 117

7.6.1 Load Imbalance due to Different L2 Cache Behavior 118

7.6.2 Load Imbalance due to a Different Instruction Count 120

7.6.3 Granularity Analysis of the Load Balancing Mechanism 122

7.6.4 Conclusions . 124

7.7 Performance Evaluation with a Parallel HPC Application 125

7.7.1 Extracting a Representative Trace from a Parallel HPC Application 125

7.7.2 Case Study with a Real HPC Application: wrf 127

7.8 Summary . 129

vii

CONTENTS

8 Multicore Resource Management in the Manycore Era 131
8.1 Introduction . 131

8.2 Virtual Private Machines . 133

8.2.1 Spatial Component . 134

8.2.2 Temporal Component . 135

8.2.3 Minimum and Maximum VPMs 135

8.3 Policies . 136

8.3.1 Application-level Policies . 137

8.3.2 System Policies . 140

8.4 Mechanisms . 142

8.4.1 VPM Scheduler . 143

8.4.2 Partitioning Mechanisms . 144

8.4.3 Feedback Mechanisms . 144

8.5 Summary . 145

9 Conclusions 147
9.1 Goals, Contributions and Main Conclusions 147

9.2 Future Work . 149

9.3 Publications . 150

9.3.1 Accepted Publications . 150

9.3.2 Submitted Articles for Publication 151

9.3.3 Other Publications . 151

Bibliography 155

List of Figures 165

List of Tables 169

Glossary 171

viii

Chapter 1
Introduction

The evolution of microprocessor design in the last few decades has changed significantly,

moving from simple in-order single core architectures to superscalar and vector architec-

tures in order to better extract the maximum available instruction level parallelism (ILP).

Executing several instructions from the same thread in parallel allows for a significant

improvement in the performance of applications. However, there is only a limited amount

of parallelism available in each thread, because of data and control dependences. Further-

more, due to power and chip latencies constraints, designing a high performance, single,

monolithic processor has become very complex. These limitations have given rise to the

use of thread level parallelism (TLP) as a common strategy for improving processor per-

formance. Multithreaded processors allow for the execution of different threads at the

same time, sharing some hardware resources. There are several flavors of multithreaded

processors that exploit the TLP, such as chip multiprocessors (CMP) [45], coarse grain

multithreading (CGMT) [2, 107], fine grain multithreading (FGMT) [44, 102], simulta-

neous multithreading (SMT) [98, 110], and combinations of them [51, 63, 101, 111].

To improve cost and power efficiency, the computer industry has adopted multithreaded

processors. In particular, CMP architectures have become the most common design deci-

sion (combined sometimes with multithreaded cores). Firstly, CMPs reduce design costs

and average power consumption by promoting design re-use and simpler processor cores.

For example, it is less complex to design a chip with many small, simple cores than a chip

with fewer, larger, monolithic cores. Furthermore, simpler cores have less power-hungry

hardware structures. Secondly, CMPs reduce costs by improving hardware resource uti-

lization. On a multicore chip, co-scheduled threads can share costly microarchitecture

resources that would otherwise be underutilized (for example, off-chip bandwidth and

power resources). Higher resource utilization improves aggregate performance and en-

ables lower cost design alternatives (for example, smaller design area or less exotic battery

1

technology).

One of the hardware resources that impacts most on the performance of an application

is the cache hierarchy. Caches store data recently used by the applications in order to take

advantage of the temporal and spatial locality of the applications. Caches provide fast

access to data, improving the performance of applications. Caches with low latencies

have to be small, which prompts the design of a cache hierarchy organized in several

levels of cache.

In CMPs, the cache hierarchy is normally organized in a first level (L1) of instruction

and data caches private to each core. The last level cache (LLC) is normally shared among

different cores in the processor (either L2, L3 or both). Shared caches increase resource

utilization and system performance. Large caches improve performance and efficiency by

increasing the probability that each application can access data from a closer level of the

cache hierarchy. Furthermore, they allow an application to make use of the entire cache

if needed.

A second advantage of having a shared cache in a CMP design has to do with the

cache coherency. In parallel applications, different threads share the same data and keep

a local copy of this data in their cache. With multiple processors, it is possible for one

processor to change the data, leaving another processor’s cache with outdated data. The

cache coherency protocol monitors any changes made to data and ensures that all proces-

sor caches have the most recent data. When the parallel application executes on the same

physical chip, the cache coherency circuitry can operate at the speed of on-chip commu-

nications, rather than having to use the much slower communication between chips, as is

required with processors on separate chips [3]. These coherence protocols are simpler to

design with a unified and shared level of cache on-chip.

Due to the advantages that multicore architectures offer, chip vendors use CMP archi-

tectures in current high performance, network, real-time and embedded systems. Several

of these commercial processors have a level of the cache hierarchy shared by different

cores. For example, the IBM Power5 [101] has a 10-way 1.875MB L2 cache shared by

two cores, each one two-way SMT. The Sun UltraSPARC T2 has a 16-way 4MB L2 cache

shared by 8 cores, each one up to 8-way FGMT [111]. Other processors like the Intel Core

2 family also share a level of the cache hierarchy among cores (the L2 cache) [34], with

up to a 12MB 24-way L2 cache [51]. In contrast, the AMD K10 family has a private L2

cache per core and a shared L3 cache [6], with up to a 6MB 64-way L3 cache [5]. The

same cache hierarchy design has been chosen for the Intel Xeon 7100 processor, with a

2

CHAPTER 1. INTRODUCTION

shared on-chip 16-way 16MB L3 cache [25].

As the long-term trend of increasing integration continues, the number of cores per

chip is also predicted to increase with each successive technology generation. Some sig-

nificant studies have shown that processors with hundreds of cores per chip will appear in

the market in the next few years [50]. The manycore era has already begun [9].

Although this era provides many opportunities, it also presents many challenges. In

particular, higher hardware resource sharing among concurrently executing threads can

cause individual thread performance to become unpredictable and can lead to violations

of the individual applications’ performance requirements [23, 83]. Current resource man-

agement mechanisms and policies are no longer adequate for future multicore systems, as

they are not aware of these resource-sharing effects.

In general, applications make very different uses of the cache hierarchy, depending on

their data re-use and access patterns. Some multimedia, communications or streaming ap-

plications pollute caches with data streams, or have many compulsory misses that cannot

be solved by assigning more cache space to them. When running multiple applications

in a CMP architecture with a shared cache, undesired situations can occur where a subset

of the applications monopolizes the shared cache, degrading the performance of the other

ones. And even worse, the operating system (OS) has no way to enforce a Quality of

Service (QoS) to applications.

Figure 1.1: Total execution time of swim in different workloads running on an Intel Xeon
Quad-Core processor with a shared L2 cache

To illustrate this phenomenon, Figure 1.1 shows the total execution time of the swim

SPEC CPU 2000 benchmark [105] when it is executed in different workloads. For this

3

experiment, we use an Intel Xeon 2.5 GHz Quad-Core processor1, which has four cores

in the chip. The OS running in the machine is Linux 2.6.18. During the experiments, we

move all the OS activity to the first core, leaving the other cores as isolated as possible

from OS activity.

When swim runs alone in the system, it completes its execution in 117 seconds. Next,

we execute swim with several workloads of two, three and four benchmarks (as shown

by the x-axis in Figure 1.1). In these experiments, each benchmark is assigned to a dif-

ferent core. Consequently, the CPUs are not time shared between different applications

since the number of running processes is equal or less than the number of virtual CPUs

(cores) in the system. Figure 1.1 shows a variation of up to 2x in the execution time of

swim, depending on the workload in which it runs. This means that the performance

of a process running on a CMP with a shared cache may be different, depending on the

cache necessities of the other processes running on the same chip at the same time. From

the user point of view this is an undesirable situation, as the same application with the

same input set is executed in a different amount of time depending on the processes it is

co-scheduled with.

Figure 1.2: Performance and MPKI variability of ammp in different workloads running in
a 4-core CMP environment with a shared L2 cache using LRU as eviction policy

Next, we performed a similar experiment using a cycle-accurate microarchitecture

simulator (a complete description of the simulation environment is given in Chapter 2).

This experiment models a four core architecture with private instruction and data caches

and a shared L2 cache. We also use SPEC CPU 2000 benchmarks in this experiment.
1Though we believe the general trends drawn from Figure 1.1 apply to all current CMPs with a shared

cache

4

CHAPTER 1. INTRODUCTION

Figure 1.2 shows the IPC (instructions per cycle) of ammp when mixed with different

workloads in a CMP architecture using Least Recently Used (LRU) as eviction policy.

The processor configuration remains constant in this experiments. We vary the number

of active cores from one to four and label the x-axis with the applications that form the

workload (together with ammp). Depending on the co-scheduled applications, the per-

formance of ammp varies significantly (from 1.27 to 0.52 instructions per cycle) due to

negative interferences with other applications. Note that these interferences do not only

depend on the number of co-scheduled applications, as mcf degrades the performance of

ammp more than gcc, mesa and facerec together. Figure 1.2 also shows the number

of misses per thousand (kilo) instructions (MPKI). The number of misses of ammp in-

creases when more cache hungry applications are competing for the shared cache, which

matches the behavior of ammp’s IPC. Consequently, if we do not control the usage of the

shared caches adequately, we can obtain noticeable performance variability.

When no direct control over shared resources is exercised (the last level cache in this

case), it is possible that a particular thread allocates most of the shared resources, causing

a degradation in other threads performance. As a consequence, high resource sharing and

resource utilization can cause systems to become unstable and violate individual applica-

tions’ requirements. If we want to provide a Quality of Service (QoS) to applications, we

need to enhance the control over shared resources and enrich the collaboration between

the OS and the architecture.

1.1 Thesis Objectives and Contributions

In this section we provide a brief description of the topic we deal with in this thesis. We

present the problems we are trying to solve, the approach we take to solve them, and the

contributions of our work.

The main goal of this thesis is to propose software and hardware mechanisms to im-

prove cache sharing in CMP architectures. Given the importance of shared caches in CMP

processors, we target an enhanced utilization of this shared resource by all the executing

applications.

In order to reach this goal, we start by better understanding the cache sharing effects

on a CMP architecture. Acquiring this insight into the architecture is fundamental to the

task of designing better processors in the future. Furthermore, this knowledge is a key

element in developing models that allow for accurate prediction of the performance of an

5

1.1. THESIS OBJECTIVES AND CONTRIBUTIONS

application in CMP architectures. These models should be very fast and useful, allowing

designers to quickly explore the design space of a processor, to detect interesting design

points and, consequently, to reduce simulation time.

Next, we propose hardware and software solutions to improve aggregate system per-

formance in terms of metrics such us throughput or fairness. We also aim to provide a

quality of service to applications running in a CMP architecture. The concept of QoS

changes depending on the target scenario, which motivates the use of a flexible frame-

work that can adapt to these different scenarios. In the case of parallel applications, we

aim to reduce execution time by load balancing the different threads of the application.

Finally, we envision the resource allocation in the future manycore era with thousands

of cores per chip. With the acquired experience in this thesis, we analyze the major chal-

lenges that future CMP architectures will have to face when dealing with shared resources,

and propose a general framework to manage these resources.

1.1.1 Weighted Dynamic Cache Partitioning Algorithm

Previous work has suggested that the performance of shared caches can be improved by

using static and dynamic cache partitioning algorithms. These mechanisms monitor the

shared cache accesses and decide a partition in order to maximize throughput [29, 90, 99,

108] or fairness [58]. Basically, the dynamic proposals split the execution of workloads

into intervals of fixed duration. Based on the data collected in the current and previous

intervals, they predict a metric related to performance (for example, number of misses

per application, miss rates, data re-use, etc.) for each possible cache partition at a way

granularity. Then, they use the cache partition that optimizes this metric for the next

interval (for example, the partition that minimizes the total number of cache misses).

This process is repeated until the workload finishes executing.

These dynamic cache partitioning (DCP) algorithms mainly work with the number of

misses caused by each thread, and they treat all misses equally. However, cache misses

in out-of-order architectures cause different impacts on performance, depending on their

distribution [55]. Clustered misses share their miss penalty as they can be served in paral-

lel, while isolated misses have a greater impact on performance since the memory latency

is not shared with other misses. We take this fact into account and propose a new DCP

algorithm that considers misses differently depending on how clustered they are.

6

CHAPTER 1. INTRODUCTION

1.1.2 Obtention of IPC Estimations

Driving cache partition decisions with indirect indicators of performance such as misses,

weighted misses or data re-use may lead to suboptimal cache partitions. For that reason,

we propose using direct estimations of performance to decide between different configu-

rations of the cache. To that end, we introduce a dedicated hardware in the architecture,

OPACU, which monitors the cache accesses, their clustering level, and some statistics of

the pipeline in order to obtain accurate predictions of the performance of an application

at run-time, when running with different cache assignments.

1.1.3 Use of IPC Estimations to Guide Resource Assignments

One of the main contributions of this thesis is the use of direct estimations of performance

when dynamically assigning cache resources to each application. This novel approach has

the following advantages:

• Predicting the performance of applications for all possible configurations offers the

possibility of using different metrics when deciding the optimal partition. Thus, we

can use our methodology to maximize throughput, fairness, or to ensure a Quality

of Service (QoS). The use of direct estimations of performance leads to a more

flexible dynamic resource management than previous proposals.

• The use of direct estimations of performance makes it possible to build a run-time

mechanism to dynamically partition shared resources with more accurate decisions.

Our experiments consistently obtain performance benefits over previous proposals

when optimizing different metrics.

• Using performance predictions, we allow the OS to run jobs at a certain percent-

age of their maximum speed, regardless of the workload in which these jobs are

executed. With this novel approach, we ensure predictable performance for critical

applications in CMP scenarios.

• Finally, performance predictions can be used to balance parallel application through

cache allocation in a CMP scenario. The mechanism detects applications sensitive

to cache allocation and reduces imbalance by assigning more cache space to the

slowest threads. This mechanism helps to reduce the long and expensive optimiza-

tion time of large-scale parallel applications.

7

1.2. THESIS STRUCTURE

1.1.4 Resource Management in Future Manycore Architectures

Current resource management mechanisms and policies are inadequate for future mul-

ticore systems, since the OS is not aware of the interaction between different concur-

rently running threads. These inadequacies can be met by an enriched hardware/software

interface, which would allow software policies to explicitly manage microarchitecture

resources. This new interface would allow improved system performance and would

provide QoS to applications. We review some basic system design principles that are

essential to build well-structured scalable systems. Next, we present our vision of future

multicore system architecture and discuss how the envisioned system architecture can

efficiently satisfy the diverse demands of future manycore systems.

1.2 Thesis Structure

Figure 1.3 shows an overview of this thesis, from the problem we observed, to the different

solutions we proposed, leading to new problems or observations, which in turn opened up

the possibility for new proposals.

Figure 1.3: Thesis structure (DCP stands for Dynamic Cache Partitioning)

The structure of this dissertation is as follows:

• Chapter 1 presents the research field and problem matters, along with the objectives

of this research. It also presents the contributions of this research and the structure

of the thesis.

• Chapter 2 presents our simulation environment. The reference platform for this

work is presented, as well as the benchmarks and tools used in this thesis.

8

CHAPTER 1. INTRODUCTION

• Chapter 3 describes the background to this thesis and previous cache partitioning

schemes.

• Chapter 4 describes a new dynamic cache partitioning algorithm which considers

the memory-level parallelism (MLP) of each access to the shared cache when de-

ciding new cache partitions.

• Chapter 5 introduces a dedicated hardware that predicts the performance of an ap-

plication when the cache space assigned to it changes. The accuracy of this mech-

anism is evaluated with extensive simulations.

• Chapter 6 shows that IPC predictions are the adequate metric to guide cache parti-

tion decisions. With these estimations, different performance metrics can be opti-

mized, such as throughput, fairness or individual QoS.

• Chapter 7 evaluates the utility of using cache partitioning techniques to balance

parallel applications.

• Chapter 8 introduces a generic framework for future manycore architectures. This

framework has to deal with the challenge of sharing microarchitecture resources

among many cores with a continuously increasing performance.

• Chapter 9 concludes this dissertation by commenting on the most important con-

tributions of this thesis, providing a brief summary of future work, and listing the

main publications related to this thesis.

9

1.2. THESIS STRUCTURE

10

Chapter 2

Platform, Tools and Benchmarks

2.1 Introduction

Computer system design is a time-consuming process and simulation is an essential tool

to drive the design of new systems. Simulation tools have been widely used to verify,

analyze and improve computer systems. Simulation is used at different levels of detail,

from circuit to system level, depending on the particular target system that we wish to

study. The trade-off between simulation speed and accuracy is always present in these

studies. Ideally, we would like to have very accurate results with very low simulation

time.

Functional simulators emulate the behavior of the target system, including the oper-

ating system (OS) and the different devices of the system (memory, network interfaces,

disks, etc.). These simulators allow designers to verify the correctness of systems and to

develop software before the system has been built, but the real performance of the sys-

tem cannot be estimated with them. Some examples are SimOS [94], QEMU [16] or

SimNow [15].

Specialized simulation aims to discover the behavior in isolation of a particular part

of the processor, such as the branch predictor or the cache. Microarchitecture simulators

model in detail the architecture of the processor and can estimate the performance of an

application with different processor configurations. Simplescalar [10], SMTSim [110]

and Turandot [79] are examples of this kind of simulators. However, these simulators

normally do not model the interaction between the architecture and the OS and other

system devices.

Full system simulators include the features of functional and microarchitecture sim-

ulators at the cost of simulation time. Some examples are Simics [69] and COTSon [7].

11

2.2. MPSIM SIMULATOR

Simulating a single processor with these simulators is time-consuming, which makes it

unaffordable to evaluate systems where thousands of processors are involved. To solve

this problem, sampling techniques and extremely simple processor models have to be

used [7].

A different approach consists of using analytical models to predict the performance

of a processor, or of part of it. Analytical models are fast and, more importantly, give an

insight into what is really happening in the processor. Some interesting approaches have

been tried [55], but, until now, there is no complete solution.

Given that in this research we evaluate the performance of a CMP architecture with

different workloads and configurations, the most appropriate decision is to choose a cycle-

level microarchitecture simulator. There are different flavors of microarchitecture simula-

tors: execution and trace-driven simulators. The execution-driven approach allows higher

simulation accuracy, since, for example, the simulator fetches and simulates instructions

from the wrong path after a branch has been mispredicted by the timing simulation. In

contrast, trace-driven simulators simulate a trace recorded in a previous execution of the

application. This approach leads to more efficient simulators with less accuracy than the

execution-driven approach.

In our experiments we decided to use a trace-driven simulator. In order to benefit from

the trace-driven simulator’s reduced computational cost, without severely compromising

the accuracy of the results obtained, the simulation tool was adapted accordingly. Thus,

the simulator allows us to simulate the impact of wrong path instructions, using a separate

basic block dictionary that contains the information of all static instructions.

2.2 MPSim Simulator

To evaluate the performance of the different mechanisms shown in this thesis, we use

a trace-driven simulator derived from SMTSim [110] that supports CMP and SMT ar-

chitectures. The simulator consists of our own trace driven front-end and an improved

version of SMTSim’s back-end. This simulator has been developed at UPC [1] and is

called MPSim (Multiple Purpose Simulator).

In our baseline configuration, shown in Figure 2.1, the instruction fetch policy de-

termines which of the available threads instructions are fetched from. Next, instructions

are decoded and renamed in order to track data dependences. When an instruction is re-

named, it is allocated an entry in the issue queues until all its operands are ready. Each

12

CHAPTER 2. PLATFORM, TOOLS AND BENCHMARKS

Figure 2.1: Blocks diagram of our baseline architecture

instruction also allocates one entry in the reorder buffer (ROB) and a physical register,

if required. ROB entries are assigned in program order. When an instruction has all its

operands ready, it is issued: it reads its operands, executes, writes its results, and finally

commits. MPSim allows us to execute wrong path instructions by using a separate basic

block dictionary that contains all static instructions.

The data and the instruction caches are accessed with physical addresses. The data

cache uses write back as write hit policy and write allocate as write miss policy. Caches

are tagged with the identifier of threads so that threads do not share data and/or instruc-

tions.

Figure 2.2: Pipeline stages in our baseline architecture

The pipeline of our baseline architecture is composed of nine stages as shown in Fig-

ure 2.2. In our experiments, the decode stage takes up to four cycles and, in this way, the

13

2.3. BENCHMARKS

final number of stages in our pipeline is twelve.

The default processor setup we used is summarized in Table 2.1. In a CMP configu-

ration, we have several copies of the default processor setup sharing the L2 cache, which

is the shared last level cache (LLC) on-chip.

Table 2.1: MPSim baseline processor configuration
Processor Configuration
Pipeline depth 12 stages
Fetch/Issue/Commit Width 8
Queues Entries 32 int, 32 fp, 32 ld/st
Execution Units 6 int, 3 fp, 4 ld/st
Physical Registers 256
(shared) ROB size 256 entries
Branch Prediction Configuration
Branch Predictor 16K entries gshare
Branch Target Buffer 256-entry, 4-way associative
RAS 256 entries
Memory Configuration
Icache Dcache 16 Kbytes, 4-way, 8-bank,

64-byte lines, 1 cycle access
L2 cache 1 Mbyte, 16-way, 16-bank,

64-byte lines, 15 cycle access
Main memory latency 300 cycles
TLB miss penalty 300 cycles

2.3 Benchmarks

In the experiments performed during this research, we used the SPEC CPU 2000 bench-

mark suite [105] to evaluate our proposals1. This benchmark suite is released by the Stan-

dard Performance Evaluation Corp. (SPEC), and is a worldwide standard for measuring

and comparing computer performance across different hardware platforms.

SPEC CPU 2000 comprises two suites of benchmarks: SPEC CPU INT 2000 for

compute-intensive integer performance and SPEC CPU FP 2000 for compute-intensive

floating point performance. SPEC CPU 2000 benchmarks are selected from existing

applications, representing high performance computing applications that stress the ar-

chitecture of the processor. Benchmark source codes run in different platforms so that

performance comparisons can be made between different systems.

1By the year 2005, when this thesis started, the most referenced benchmarks in general-purpose com-
puter architecture papers came from this benchmark suite. Due to the analysis of the applications involved,
we did not migrate to the next release at the end of 2006.

14

CHAPTER 2. PLATFORM, TOOLS AND BENCHMARKS

Table 2.2: SPEC CPU INT 2000 benchmarks description and simulation starting point
using the SimPoint methodology [100]

Benchmark Description Input Language Fast forward
(Millions of
instructions)

164.gzip Data compression utility graphic C 68.100
175.vpr FPGA circuit placement and routing place C 2.100
176.gcc C compiler 166.i C 14.000
181.mcf Minimum cost network flow solver inp.in C 43.500
186.crafty Chess program crafty.in C 74.700
191.parser Natural language processing ref.in C 83.100
252.eon Ray tracing cook C++ 57.600
253.perlbmk Perl splitmail.535 C 45.300
254.gap Computational group theory ref.in C 79.800
255.vortex Object Oriented Database lendian1.raw C 58.200
256.bzip2 Data compression utility inp.program C 13.500
300.twolf Place and route simulator ref C 324.300

Each program is compiled with the -O2 -non_shared options using DEC Alpha AXP-

21264 C/C++ compiler and executed using the reference input set. Fortran programs are

compiled with the DIGITAL Fortran 90/Fortran 77 compilers. The fast forwards applied

to each application, in order to obtain the traces, are shown in Tables 2.2 and 2.3. Next,

we list the 26 benchmarks that are included in the SPEC CPU 2000 benchmark suite and

that we use in this thesis:

• SPEC CPU INT 2000: gzip, vpr, gcc, mcf, crafty, parser, eon, perlbmk, gap, vor-

tex, bzip2 and twolf.

• SPEC CPU FP 2000: wupwise, swim, mgrid, applu, mesa, galgel, art, equake,

facerec, ammp, lucas, fma3d, sixtrack and apsi.

2.3.1 Simulation Time Reduction

During the research covered by this thesis a huge number of experiments were performed.

Each of these experiments involved hundreds or thousands of simulations, each one com-

prising several hundred million simulated instructions. As a consequence, it was critical

to reduce the computational cost constraints of these experiments.

Thus, reducing simulation time is an important issue that can significantly reduce a

design budget. With the objective of reducing simulation time without losing accuracy,

15

2.3. BENCHMARKS

Table 2.3: SPEC CPU FP 2000 benchmarks description and simulation starting point
using the SimPoint methodology [100]

Benchmark Description Input Language Fast forward
(Millions of
instructions)

168.wupwise Quantum chromodynamics wupwise.in Fortran77 263.100
171.swim Shallow water modeling swim.in Fortran77 47.100
172.mgrid Multi-grid solver in mgrid.in Fortran77 187.800

3D potential field
173.applu Parabolic/elliptic applu.in Fortran77 10.200

partial differential
equations

177.mesa 3D Graphics library frames100 + msea.in C 294.600
178.galgel Fluid dynamics: analysis galgel.in Fortran90 175.800

of oscillatory instability
179.art Neural network simulation; -scanfile c756hel.in C 13.200

adaptive resonance theory -trainfile1 a10.img
-trainfile2 hc.img
-stride 2 -startx 110
-starty 200 -endx 160
-endy 240 -objects 10

183.equake Finite element simulation; inp.in C 27.000
earthquake modeling

187.facerec Image processing facerec.in Fortran90
188.ammp Computer vision: ammp.in C 13.200

recognizes faces
189.lucas Computational chemistry lucas2.in Fortran90 30.000
191.fma3d Finite element crash simulation fma3d.in Fortran90 10.500
200.sixtrack Particle accelerator model sixtrack.in Fortran77 173.500
301.apsi Solves problems regarding apsi.in Fortran77 192.600

temperature, wind, velocity
and distribution of pollutants

some interesting proposals have appeared in the last few years. First, sampled simulation

consists in choosing the most representative segment of the entire program trace to simu-

late. The selection of this portion of the program is not easy and many efforts have been

made to find a successful solution [22, 100, 114]. Another option is statistical simulation,

which consists of creating a synthetic trace from program and architecture statistics that

is simulated in a full simulator [37]. Finally, an interesting idea is to reduce the size of

the inputs of a program in order to reduce the simulation time [59].

Sampled simulation has been implemented in different ways, basically selecting one

or multiple portions of a program execution trace. Selecting these representative samples

is an important issue [100, 114]. Random samples appear to be inadequate, while just

choosing the beginning of a program could be incorrect due to initialization code. How-

16

CHAPTER 2. PLATFORM, TOOLS AND BENCHMARKS

ever, we know that a program execution consists of many different phases, where statistics

such as cache or branch misses significantly change among them. Thus, a sampled trace

should represent major program phases.

This idea drives the SimPoint methodology [100]. Sherwood et al. [100] explain how

to detect a program’s phases by using the Basic Block Vector (BBV) which counts how

many times each basic block appears. Two phases are considered the same if Mannheim’s

distance between their BBVs is small. At the beginning, the execution of the program

is split into a set of intervals of fixed size (10 million instructions). Using clustering

algorithms, such as random linear projection or k-means, the samples are joined. The

first algorithm is used to reduce the dimension of the BBV and, in that way, accelerate

the k-means algorithm. This last algorithm is run for values of k between 1 and M (M

is the maximum number of phases to use) and the intervals are grouped into phases.

Using the Bayesian Information Criterion (BIC), which measures the goodness of fit of a

clustering within a dataset, the smallest value of k with a minimum BIC score is chosen.

SimPoint choses the representative of each phase that is closest to its centroid. Finally,

these representatives are accurately simulated and the results are weighted by the size of

each phase.

In the experiments performed in this thesis, we made use of sampled simulation tech-

niques in order to reduce simulation time without losing accuracy. In particular, we col-

lected traces of the most representative 300 million instruction segment of each program,

following the SimPoint methodology [100], as this methodology is widely accepted in the

literature.

2.3.2 Simulation Methodology

Working with several traces at a time involves an important decision, namely, to determine

when a simulation finishes. A simulation methodology precisely defines when the mea-

surements of a given workload execution are taken. In a single-threaded processor, the

simulator runs the full trace until completion. However, it is not so easy in a multithreaded

processor simulator to run a workload composed of several traces. Each benchmark in a

workload can execute at a different speed due to the different features of each program, as

well as the availability of the shared resources. Therefore, they do not have to necessarily

complete execution at the same time.

Common simulation methodologies such as first (simulation ends when the first thread

finished executing), last (simulation ends when all threads have finished executing), and

17

2.4. WORKLOAD CLASSIFICATION

fixed instructions or cycles (simulation ends after a fixed number of executed instructions

or cycles has been reached) cannot ensure that the trace of every benchmark is fully exe-

cuted, and thus, it is not possible to assure that the measurements are representative of the

whole program behavior.

In this thesis we use the FAME simulation methodology [112, 113]. It has been shown

that this methodology provides more accurate measurements than previous methodolo-

gies when simulating multithreaded workloads. This evaluation methodology measures

the performance of multithreaded processors by re-executing all the benchmarks in a mul-

tithreaded workload until all of them are fairly represented in the final IPC taken from the

workload. The number of times that a benchmark is re-executed depends on the evolution

of the IPC during its execution and a Maximum Allowable IPC Variance (MAIV) that is

chosen by the user. In our simulations, a MAIV value of 5% is chosen. Tables 2.4(a) and

(b) show the number of repetitions per benchmark with the desired MAIV value.

Table 2.4: Number of repetitions required for each SPEC CPU 2000 benchmark in our
baseline configuration for a 5% MAIV value

(a) SPEC CPU INT 2000. (b) SPEC CPU FP 2000.

Benchmark Repetitions
gzip 2
vpr 1
gcc 7
mcf 1

crafty 1
parser 5
eon 1

perlbmk 4
gap 8

vortex 1
bzip2 2
twolf 1

Benchmark Repetitions
wupwise 1

swim 2
mgrid 2
applu 1
mesa 1
galgel 7

art 1
equake 1
facerec 3
ammp 1
lucas 1

fma3d 1
sixtrack 1

apsi 6

2.4 Workload Classification

In order to better understand the behavior of different partitioning techniques, it is con-

venient to classify workloads in different groups so that results are consistent inside each

18

CHAPTER 2. PLATFORM, TOOLS AND BENCHMARKS

group. With that purpose we introduce the following two metrics.

Metric 1. The wP%(B) metric measures the number of ways needed by a benchmark

B to obtain at least a given percentage P% of its maximum IPC (when it uses all L2 ways).

The intuition behind this metric is to classify benchmarks depending on their cache

utilization. Using P = 90% we can classify benchmarks into three groups: Low utility

(L), Small working set or saturated utility (S), and High utility (H). In a 16- and 32-way

associative cache, L benchmarks have 1 ≤ w90% ≤ K
8

where K is the L2 associativity

(K = 16 or K = 32). L benchmarks are not affected by L2 cache space because nearly

all L2 accesses are misses. This situation can occur when the application has a working

set that does not fit in the L2 cache or when it has low re-use of the data stored in the L2

cache. S benchmarks have K
8
< w90% ≤ K

2
and just need some ways to have maximum

throughput as they fit in the L2 cache. Finally, H benchmarks have w90% > K
2

and always

improve IPC as the number of ways given to them is increased. Clear representatives of

these three groups are applu (L), gzip (S) and ammp (H) in Figure 2.3. Table 2.5 gives

the values of w90% for all SPEC CPU 2000 benchmarks.

Figure 2.3: IPC curve as we vary the number of assigned ways to applu (L), gzip (S),
and ammp (H) in a 1MB 16-way L2 cache

It is interesting to note that, on average, SPEC CPU 2000 benchmarks need 6.11 ways

to attain 90% of their peak IPC (in our baseline configuration). This means that, ideally,

61.8% of the 16 ways in the L2 can be turned off with just a 10% IPC degradation. This

result is a good motivation for dynamic power and cache partitioning mechanisms.

Next, we list the benchmarks that belong to each group.

• L: applu, bzip2, equake, gap, lucas, mcf, mesa, sixtrack, swim and wupwise.

19

2.4. WORKLOAD CLASSIFICATION

Table 2.5: For all SPEC CPU 2000 benchmarks, we give the metrics w90% and APTC
needed to classify workloads together with their IPC for a 1MB 16-way L2 cache config-
uration

Bench w90% APTC IPC Bench w90% APTC IPC Bench w90% APTC IPC
ammp 14 23.63 1.27 applu 1 16.83 1.03 apsi 10 21.14 2.17
art 10 46.04 0.52 bzip2 1 1.18 2.62 crafty 4 7.66 1.71
eon 3 7.09 2.31 equake 1 18.6 0.27 facerec 11 10.96 1.16
fma3d 9 15.1 0.11 galgel 15 18.9 1.14 gap 1 2.68 0.96
gcc 3 6.97 1.64 gzip 4 21.5 2.20 lucas 1 7.60 0.35
mcf 1 9.12 0.06 mesa 2 3.98 3.04 mgrid 11 9.52 0.71
parser 11 9.09 0.89 perl 5 3.82 2.68 sixtrack 1 1.34 2.02
swim 1 28.0 0.40 twolf 15 12.0 0.81 vortex 7 9.65 1.35
vpr 14 11.9 0.97 wupw 1 5.99 1.32

• S: crafty, eon, gcc, gzip, perlbmk and vortex.

• H: ammp, apsi, art, facerec, fma3d, galgel, mgrid, parser, twolf and vpr.

Metric 2. The wLRU(thi) metric measures the number of ways given by LRU to

each thread thi in a workload composed of N threads. This can be done simulating all

benchmarks alone and using the frequency of L2 accesses for each thread [24]. We denote

the number of L2 Accesses in a Period of one Thousand Cycles for thread i as APTCi.

Table 2.5 lists these values for each benchmark in the SPEC CPU 2000 suite.

wLRU(thi) =
APTCi∑N
j=1APTCj

· Associativity

For example, in a 16-way cache shared by four cores running four applications with

APTC0 = 2, APTC1 = 4, APTC2 = 10, and APTC3 = 16, we have that LRU

will assign to each thread the following number of ways: wLRU(th0) = 2
32
· 16 = 1,

wLRU(th1) = 2, wLRU(th2) = 5, and wLRU(th3) = 8.

Next, we use these two metrics to classify workloads with two or more benchmarks.

This classification is the first contribution of the thesis and allows better understanding

the behavior of cache partitioning techniques in a CMP architecture [76].

Case 1. When w90%(thi) ≤ wLRU(thi) for all threads. In this situation LRU attains

90% of each benchmark performance. Thus, it is intuitive that in this situation there is

very little room for improvement.

Case 2. When two threads A and B exist, such that w90%(thA) > wLRU(thA) and

w90%(thB) < wLRU(thB). In this situation, LRU harms the performance of thread A,

20

CHAPTER 2. PLATFORM, TOOLS AND BENCHMARKS

because it gives more ways than necessary to thread B. Thus, in this situation, LRU

is assigning some shared resources to a thread that does not need them, while the other

thread could benefit from these resources.

Case 3. Finally, the third case happens when w90%(thi) > wLRU(thi) for all threads.

In this situation, the L2 cache configuration is not big enough to assure that all benchmarks

will have at least 90% of their peak performance. In [76] it was observed that pairings

belonging to this group showed worse results when the value of |w90%(th1)−w90%(th2)|
grows. In this case, we have a thread that requires much less L2 cache space than the

other to attain 90% of its peak IPC. LRU treats threads equally and manages to satisfy

the less demanding thread necessities. In the case of previous partitioning algorithms [29,

58, 90, 99, 108], they assume that all misses are equally important for throughput and

tend to give more space to the thread with higher L2 cache necessity, while harming the

less demanding threads. This is a problem caused by these algorithm. In the following

chapters we will show different partitioning policies that overcome this problem.

Table 2.6: Workloads belonging to each case for a 1MB 16-way and a 2MB 32-way
shared L2 cache

1MB 16-way 2MB 32-way
#cores

2
4
6
8

Case 1 Case 2 Case 3
155 (48%) 135 (41%) 35 (11%)
624 (4%) 12785 (86%) 1541 (10%)

306 (0.1%) 219790 (95%) 10134 (5%)
19 (0%) 1538538 (98%) 23718 (2%)

Case 1 Case 2 Case 3
159 (49%) 146 (45%) 20 (6.2%)
286 (1.9%) 12914 (86%) 1750 (12%)
57 (0.02%) 212384 (92%) 17789 (7.7%)

1 (0%) 1496215 (96%) 66059 (4.2%)

Table 2.6 shows the total number of workloads that belong to each case for different

configurations. We generate all possible combinations without repeating benchmarks.

The order of benchmarks is not important. In the case of a 1MB 16-way L2 cache, we

note that Case 2 becomes the dominant case as the number of cores increases. The same

trend is observed for L2 caches with larger associativity. In Table 2.6 we can also see

the total number of workloads that belong to each case as the number of cores increases

for a 32-way 2MB L2 cache. Note that with different L2 cache configurations, the value

of w90% and APTCi will change for each benchmark. An important conclusion from

Table 2.6 is that as we increase the number of cores, there are more combinations that

belong to the second case, which is the one with more improvement possibilities.

To evaluate our proposals, we randomly generate 16 workloads belonging to each

group for four different configurations2. We denote these configurations 2C (2 cores and

1MB 16-way L2), 4C-1 (4 cores and 1MB 16-way L2), 4C-2 (4 cores and 2MB 32-way

2Thus, we composed a total of 48 workloads for each different configuration

21

2.4. WORKLOAD CLASSIFICATION

L2) and 8C-2 (8 cores and 2MB 32-way L2). We also use a 2MB 32-way L2 cache as

future CMP architectures will continue scaling L2 size and associativity. For example,

the Intel Core 2 family has up to a 12MB 24-way shared L2 cache [51], while the Sun

UltraSPARC T2 has a 16-way 4MB L2 cache shared by 8 cores [111].

Average improvements do consider the distribution of workloads among the three

groups. We denote this mean weighted mean, as we assign a weight to the speed up of

each case depending on the distribution of workloads from Table 2.6. For example, for

the 2C configuration, we compute the weighted mean improvement as 0.48 · x1 + 0.41 ·
x2 + 0.11 · x3, where xi is the average improvement in Case i.

2.4.1 Performance Metrics

As performance metrics, we use the IPC of an application (computed as the average num-

ber of committed instructions per cycle), and the IPC throughput, which corresponds to

the sum of individual IPCs in a workload with N threads.

IPC Throughput =
N∑
i=1

IPCi (2.1)

We also use the harmonic mean of relative IPCs to measure fairness, which we denote

Hmean. The relative IPC is defined as IPCmultithreaded

IPCalone
, where the IPCmultithreaded is the

IPC of a thread in a given workload in the multithreaded architecture, and the IPCalone
is the IPC of a thread when it runs in isolation in the system. The Hmean is calculated as

shown in Equation 2.2.

Hmean =
N∑N

i=1
IPCi,alone

IPCi,multithreaded

(2.2)

Other authors use the weighted speed up metric, defined in Equation 2.3

Weighted Speed Up =
N∑
i=1

IPCi,multithreaded
IPCi,alone

(2.3)

In this work, we use Hmean instead of weighted speed up because it has been shown

to provide better fairness-throughput balance than weighted speed up [68].

22

Chapter 3

Dynamic Cache Partitioning
Algorithms

3.1 Introduction

Some applications have many compulsory misses that cannot be solved by assigning more

cache space to the application, or they present low re-use of their data and pollute caches

with data streams, such as multimedia, communications or streaming applications. Tra-

ditional eviction policies such as Least Recently Used (LRU), pseudo LRU or random

are demand-driven, that is, they tend to give more space to the application that has more

accesses and misses to the cache hierarchy [24, 87]. As a consequence, some threads can

suffer a severe degradation in performance when running with those type of threads in a

CMP architecture with a shared cache.

Previous work has tried to solve this problem by using static and dynamic partitioning

algorithms that monitor the L2 cache accesses and decide a partition for a fixed amount

of cycles in order to maximize throughput [29, 90, 108] or fairness [58]. Basically, these

dynamic proposals predict the number of misses per application for each possible cache

partition. Then, they use the cache partition that leads to the minimum number of misses

for the next interval. In this chapter, we describe in detail all the different parts involved

in a cache partitioning algorithm.

Figure 3.1 shows the architectural changes required to support a dynamic cache parti-

tioning (DCP) technique in a 2-core CMP with a shared L2 cache. In our baseline CMP

processor setup, each core has a private L1 instruction and data caches, while the unified

L2 cache is shared between the cores. The L2 cache partitioning is enforced by using a

modified replacement logic (MRL). The monitoring logic (ML) tracks the execution of

23

3.2. MODIFIED REPLACEMENT LOGIC

each application and provides the necessary information to the partitioning logic (PL),

which is in charge of deciding cache assignments.

Figure 3.1: Main components of a cache partitioning framework for a 2-core CMP ar-
chitecture with a shared L2 cache: monitoring logic (ML), modified replacement logic
(MRL), and partitioning logic (PL)

The rest of this chapter is structured as follows. Section 3.2 describes the modifi-

cations needed in the replacement policy to allow partitioning a shared cache. Next,

Section 3.3 explains the mechanisms that are necessary in order to obtain information

of each running application. In Section 3.4 we discuss different partitioning algorithms

that will be used as the baseline in subsequent chapters. Next, Section 3.5 describes

different methods of implementing the described cache partitioning algorithms. Finally,

Section 3.6 summarizes other partitioning algorithms which have already been proposed.

3.2 Modified Replacement Logic

Cache partitions at a way granularity can be implemented with column caching [29],

which uses a bit mask to mark reserved ways (or columns) to each thread. This imple-

mentation makes use of a global per thread mask. For correctness, threads can read data

from all ways, but can only evict cache lines from their owned ways. The evicted line will

be the LRU line among its owned ways.

A second possible implementation consists of augmenting the LRU policy with coun-

ters that keep track of the number of lines in a set belonging to each thread [108]. Each

thread has an assigned quota of owned lines per set, which implies that each thread owns

one counter per cache set. On a cache miss, if the thread reaches its quota, the evicted

line is the LRU line among its owned lines. If it does not reach its quota, the evicted line

24

CHAPTER 3. DYNAMIC CACHE PARTITIONING ALGORITHMS

is the LRU line among the lines of other threads. In the case of an L2 hit, the access is

done as usual, which guarantees the correctness of the program execution.

3.3 Monitoring Logic

Mattson et al. [71], in their discussion of storage hierarchies and the Stack Distance His-

togram (SDH), introduce the concept of stack distance in order to study the behavior of

storage hierarchies. Common eviction policies such as LRU have the stack property. Ba-

sically, each set in a cache can be seen as an LRU stack, where lines are sorted by their last

access cycle. In this way, the first line of the LRU stack is the Most Recently Used (MRU)

line, while the last line is the LRU line. The position that a line has in the LRU stack when

it is accessed again is defined as the stack distance of the access. As an example, we can

see in Table 3.1(a) a stream of accesses to the same set with their corresponding stack

distances and in Table 3.1(b) the evolution of the contents in the cache (hits are marked

in bold).

Table 3.1: Stack distance computation. Cache hits are marked in bold
(a) Stream of accesses to a given cache set (b) Cache contents evolution

Reference 1 2 3 4 5 6 7 8
Cache Line A B C C A D B D

Stack Distance - - - 1 3 - 4 2

MRU - A B C C A D B D
- - A B B C A D B
- - - A A B C A A

LRU - - - - - - B C C

For a K-way associative cache with LRU replacement algorithm, we need K + 1

counters to build a SDH, denoted C1, C2, . . . , CK , C>K . On each cache access, only one

of the counters is incremented. If it is a cache access to a line in the ith position in

the LRU stack of the set, Ci is incremented. If it is a cache miss, the line is not found

in the LRU stack and, as a result, we increment the miss counter C>K . SDHs can be

obtained during execution by running the thread alone in the system [29] or by adding

some hardware counters that profile this information [90, 108]. A characteristic of these

histograms is that the number of cache misses for a smaller cache with the same number of

sets can be easily computed. Some authors have used SDHs to improve the management

of main memory and reduce the number of page faults [118]. For example, for a K ′-way

associative cache, whereK ′ < K, the new number of misses can be computed as follows:

misses = C>K +
K∑

i=K′+1

Ci (3.1)

25

3.3. MONITORING LOGIC

As an example, in Table 3.2 we show an SDH for a set with 4 ways. Here, we have

5 cache misses. However, if we reduce the number of ways to 2 (keeping the number of

sets constant), we will experience 20 misses (5 + 5 + 10).

Table 3.2: Stack distance histogram example
Stack Distance 1 2 3 4 >4

Accesses 60 20 10 5 5

Next, Figure 3.2 shows the SDHs of all the SPEC CPU 2000 benchmarks using a heat

map. Each color represents a different number of accesses per thousand cycles (APTC):

darker colors mean higher number of accesses with a given stack distance. Misses are

represented in the column labeled with a stack distance >16, as we are using a 16-way

1MB L2 cache.

Figure 3.2: Stack distance histograms of all SPEC CPU 2000 benchmarks with a 16-way
1MB L2 cache. Darker colors correspond to more accesses per thousand cycles with a
given stack distance

It is interesting to note that some benchmarks like bzip2, lucas or wupwise al-

ways miss in the L2 cache. Others like ammp, galgel, twolf or vpr have accesses

with all possible stack distances (from 1 to 16). In the case of art, there is no access with

stack distance between 1 and 8: the working set begins to fit in the cache when at least 9

ways are assigned to that benchmark. A different situation occurs with mcf and fma3d,

26

CHAPTER 3. DYNAMIC CACHE PARTITIONING ALGORITHMS

as these benchmarks have many accesses with all possible stack distances, but their very

low IPC translates into a low number of accesses per thousand cycles. Finally, eon and

and crafty perfectly fit in the L2 cache if they receive 3 and 4 ways, respectively. There

is a clear correlation between the shape of the SDHs shown in Figure 3.2 and the values

of w90% shown in Table 2.5, which proves that this metric is adequate to represent the

behavior of these benchmarks.

3.4 Partitioning Logic

Using the SDHs of N applications, we can derive the L2 cache partition that minimizes the

total number of misses: this latter number corresponds to the sum of the number of misses

of each thread for the given configuration. The optimal partition in the last period of

time is a suitable candidate to become the future optimal partition. Partitions are decided

periodically after a fixed amount of cycles. In this scenario, partitions are decided at a

way granularity. This mechanism is used in order to minimize the total number of misses

and try to maximize throughput. A first approach proposed a static partitioning of the L2

cache using profiling information [29]. Then, a dynamic approach estimated SDHs with

information inside the cache [108]. Finally, Qureshi et al. [90] presented a suitable and

scalable circuit to measure SDHs using sampling and obtained performance gains with

just 0.2% extra space in the L2 cache. Throughout this manuscript, we will call this last

policy MinMisses.

Figure 3.3: MinMisses dynamic cache partitioning example

Figure 3.3 shows a synthetic example of how MinMisses works. We represent the

SDHs of two applications for a 4-way associativity cache. Thanks to Formula 3.1 we can

27

3.5. CACHE PARTITIONING DECISION

derive the number of misses of each application with a given number of assigned ways.

Finally, we compute the total number of misses for all possible partitions and decide the

optimal one, which consists of assigning 1 way to thread 0 and 3 ways to thread 1 (35

misses for thread 0 and 22 misses for thread 1).

Fair Partitioning. In some situations, MinMisses can lead to unfair partitions that

assign nearly all the resources to one thread while harming the others [58]. For that

reason, Kim et al. [58] propose considering fairness when deciding new partitions. In this

way, instead of minimizing the total number of misses, they try to equalize the statistic

Xi =
missessharedi

missesalonei
of each thread i. They aim to force all threads to have the same increase

in percentage of misses. Partitions are decided periodically using an iterative method. The

thread with largest Xi receives a way from the thread with smallest Xi until all threads

have a similar value of Xi. Throughout this manuscript, we will call this policy Fair.

In the example shown in Figure 3.3, the partition that equalizes the values of the

statistic Xi for all threads consists of assigning 1 way to thread 0 and 3 ways to thread 1.

In this situation, we have X0 =
missesshared0

missesalone0
= 35

15
= 2.33 and X1 = 22

10
= 2.2.

3.5 Cache Partitioning Decision

Cache partitions can be decided statically at the beginning of the execution of the applica-

tion using some offline profiling, or dynamically during the execution of the application.

The frequency of cache partitioning decisions directly impacts the performance improve-

ment obtained by the cache partitioning algorithms. Dynamic mechanisms are more flex-

ible and can adapt to different program phases or changes in the executing workload, but

also require specialized hardware support in the architecture. In the following chapters

we will discuss in detail what the optimal frequency of cache partition decisions for each

proposal is.

Ideally, we would like to decide the optimal cache partition using the stored informa-

tion in the SDHs in just a couple of CPU cycles. Different heuristics have already been

proposed [90, 109] to reduce the time needed to decide the optimal partition for the next

interval of time. Next, we describe these different heuristics that can be used to find the

optimal partition for the algorithms presented in Section 3.4.

28

CHAPTER 3. DYNAMIC CACHE PARTITIONING ALGORITHMS

3.5.1 Generating All Possible Combinations

The simplest algorithm to find the optimal partition for a given cost function consists of

making use of exhaustive search, which evaluates all possible partition and choosing the

one with the best result. In our situation we have K ways to assign to N different cores

so that
∑N−1

i=0 ki = K, where ki is the number of ways assigned to core i and ki ≥ 0 for

any i. This problem has a closed formula that gives the number of combinations:

#combinations =

(
K +N − 1

K

)
=

(K +N − 1)!

K! · (N − 1)!

If we increase the values of K and N , this number explodes, as we have a factorial

number in the numerator. For example, when K = 32 and N = 4, this number is 6, 545,

while for K = 32 and N = 8, this number is 15, 380, 937. Furthermore, we have to

evaluate every combination, which has a non negligible cost. We will call this algorithm

EvalAll. However, if we assume a minimum number of ways minways assigned to each

core, then this formula changes as we have to assign just K − N ·minways ways among

different cores: #combinations =
(
K+N−N ·minways−1

K−N ·minways

)
3.5.2 Marginal Gains Algorithm

Suh et al. [109] make use of a greedy algorithm denoted marginal gains to obtain an

approximation of the optimal partition at low cost. This algorithm is an extension of the

one presented earlier by Stone et al. [106], and is described in Algorithm 1.

Algorithm 1: Marginal gains greedy algorithm [109]
Data: SDH of each application, SDHi[j], 0 ≤ i ≤ N, 0 ≤ j ≤ K

Result: Final cache partition (k1, . . . , kN)

begin
1. Initialize k1 = 0, . . . , kN = 0.

2. while less than K ways have been assigned do
Find the process i with maximum value SDHi[ki].

Assign one extra way to that process: ki = ki + 1.
end

end

This algorithm is shown to be optimal if the involved curves are monotonically de-

creasing convex curves. In the case of stack distance histograms, it is clear that as more

29

3.5. CACHE PARTITIONING DECISION

ways are assigned to a given application, less misses will be obtained (which means that

these curves are monotonically decreasing). However, the assumption of convexity is not

always true.

In order to overcome the problem of having non convex curves, the authors in [109]

propose generating initial partitions randomly and invoking the previous algorithm. The

problem with this solution is that we need to generate a number of random partitions that

grows with the total number of combinations.

3.5.3 Look Ahead Algorithm

Algorithm 2: Look ahead greedy algorithm [90]
Data: SDH of each application, SDHi[j], 0 ≤ i ≤ N, 0 ≤ j ≤ K

Result: Final cache partition (k1, . . . , kN)

begin
1. Initialize k1 = 0, . . . , kN = 0.

2. while less than K ways have been assigned do
foreach application i do

Find the value bi,opt that maximizes MU bi
i,ki

end
Find the process i with maximum value MU

bi,opt

i,ki
.

Assign bi,opt − ki extra way to that process: ki = bi,opt.
end

end

Qureshi et al. [90] note that the basic problem with the marginal gains greedy algo-

rithm presented in the previous section is that it only considers the marginal improvement

of adding just one way to a thread. Thus, it fails to see potentially high gains after the

first way if there is no gain from that first way. For that reason, they propose an algorithm

that also takes into account the gains from far ahead to make better partitioning decisions.

This algorithm, denoted look ahead greedy algorithm, considers the marginal utility for

all possible number of extra ways that the application can receive, and is depicted in Al-

gorithm 2. They define the marginal utility of increasing the number of ways from a to b

to a thread i, denoted MU b
i,a, as:

MU b
i,a =

U b
i,a

b− a
=

∑b
k=a SDHi[k]

b− a

30

CHAPTER 3. DYNAMIC CACHE PARTITIONING ALGORITHMS

3.5.4 Marginal Gains in Reverse Order Algorithm

Our first proposed algorithm is based on the observation that the number of misses of

applications as more cache space is assigned to them normally follows a curve with a knee.

When the working set fits in the cache, we obtain only compulsory misses. Thus, the first

heuristic consists of detecting these knees. With this objective, we initially assign all the

ways to each benchmark and begin to take away the ways that have less utility. Next,

we present this algorithm, denoted marginal gains in reverse order, as it is essentially the

same idea as Algorithm 1, but relieving ways instead of assigning them.

Algorithm 3: Marginal gains in reverse order greedy algorithm
Data: SDH of each application, SDHi[j], 0 ≤ i ≤ N, 0 ≤ j ≤ K

Result: Final cache partition (k1, . . . , kN)

begin
1. Initialize k1 = K, . . . , kN = K.

2. while less than K ways have been assigned do
Find the process i with minimum value SDHi[ki].

Assign one less way to that process: ki = ki − 1.
end

end

3.5.5 EvalAll Dynamic Programming Solution

Finally, we propose a new algorithm based on dynamic programming techniques [32].

This algorithm makes use of the fact that finding the optimal partition for just two cores is

straightforward as we have to check only K possible partitions. Thus, if a given number

of ways are assigned to two cores, the optimal partition will be independent of the parti-

tions in the rest of cores. The idea consists of dividing the demanding threads into two

groups and assigning a portion of the cache to each group (there are K possibilities per

group). Then, each group is subdivided into two groups and this is iterated until we have

to partition the cache between only two cores.

To illustrate Algorithm 4, we next show an example with a 4-way associative cache

shared among four cores. Figure 3.4 shows the misses histograms for the four running

applications. In the first iteration of the algorithm, we generate two new histograms of

misses, misses0 and misses1, with the corresponding number of assigned ways in the

optimal partition. For instance, when assigning 2 ways between the first two cores, both

31

3.5. CACHE PARTITIONING DECISION

Algorithm 4: EvalAll dynamic programming algorithm
Data: SDH of each application, SDHi[j], 0 ≤ i ≤ N, 0 ≤ j ≤ K
Result: Final cache partition (k1, . . . , kN)
begin

1. Build histogram of misses per application, missesi[j],
0 ≤ i ≤ N, 0 ≤ j ≤ K.
2. for (iter = 1; iter < N ; iter = iter · 2) do

for (i = 0; i < N/iter; i+ +) do
Generate the optimal partition between misses histograms misses2·i
and misses2·i+1 with j assigned ways, 0 ≤ j ≤ K.
Store the new misses histogram in missesiter[j] and the cache partition
decision in assigned_waysi[iter][j], 0 ≤ j ≤ K.

end
end
3. The optimal number of misses is stored in misses0[K] and the cache
partition can be reconstructed using vectors assigned_waysi[iter][j],
0 ≤ i ≤ N, 0 ≤ j ≤ K.

end

ways are assigned to core 0, with a total of 60 misses. If we assign 4 ways, the optimal

partition consists of assigning 1 way to core 0 and 3 to core 1, with a total of 40 misses. In

the second iteration of the algorithm, the optimal partition is obtained with a total of 100

misses. Two ways are assigned to each one of the groups of cores (0-1 and 2-3). Then,

checking assigned_ways0[0][2] and assigned_ways1[0][2], we can see that the optimal

partition is (k1, k2, k3, k4) = (2, 0, 2, 0)1.

Figure 3.4: EvalAll dynamic programming algorithm (Algorithm 4) example with four
cores sharing a 4-way associative cache

1In this example, we assume that the minimum number of ways assigned to a core is zero.

32

CHAPTER 3. DYNAMIC CACHE PARTITIONING ALGORITHMS

3.5.6 Overhead and Performance Comparison

In this section, we evaluate the computational cost of the algorithms presented in the

previous sections as well as the final performance obtained.

In the case of the EvalAll algorithm that computes all possible partitions, it has to

evaluate
(
K+N−1

K

)
different combinations. This number explodes as the number of cores

and the associativity grow. In the case of marginal gains (Algorithm 1), we repeat K ·N
evaluations of the number of misses. In the case of look ahead (Algorithm 2), in the worst

case we have to assign one way in each iteration. In such a situation, in every iteration i

we have to compare N · (K − i) marginal utilities, which imply two subtractions and a

division by a small number between 1 and K. Thus, we have to evaluate a total number

of combinations:

Total =
K−1∑
i=0

N · (K − i) = N ·
K∑
j=1

j =
K(K + 1)

2
·N ≈ K2 ·N

2

Next, in the case of marginal gains in reverse order (Algorithm 3), we have to repeat

(N − 1) · K times N evaluations, which gives a total of (N − 1) · K · N ≈ N2 · K
evaluations.

Finally, the implementation of EvalAll with dynamic programming techniques (Al-

gorithm 4) has to build the misses histograms at the beginning, which implies K · N
operations. Then, we repeat in each iteration i, N/2i executions of the main loop. This

means a total ofN/2+N/4+N/8+ . . .+2+1 = N−1 repetitions. In the main loop, we

have to generate the new histogram of misses. For each possible value of j (0 ≤ j ≤ K),

we have to consider j + 1 candidate partitions:
∑K

j=0 j + 1 = (K+1)(K+2)
2

≈ K2

2
. Finally,

we need N · log2N to reconstruct the final cache partition. Putting it all together, we need

K ·N + (N − 1)K
2

2
+N · log2N to find the optimal partition. Table 3.3 summarizes the

computational cost of the different algorithms analyzed so far.

Thus, we can see that the best heuristic in terms of overhead is marginal gains (Algo-

rithm 1). Instead, look ahead algorithm (Algorithm 2) has an overhead for a given asso-

ciativity which is higher than the cost of marginal gains in reverse order (Algorithm 3)

when N ≤ K
2

. In fact, look ahead makes use of divisions when it decides the next cache

assignment, which implies a significant computational cost that the other proposals do

not have. Finally, the implementation of EvalAll using dynamic programming techniques

(Algorithm 4) has slightly more overhead than the previous proposals, but reduces dra-

33

3.5. CACHE PARTITIONING DECISION

Table 3.3: Computational complexity of the different cache partitioning decision algo-
rithms

Algorithm Complexity

EvalAll
(
K+N−1

K

)
Marginal gains K ·N

Look ahead K2·N
2

Marginal gains in reverse order N2 ·K

EvalAll with dynamic programming techniques K ·N + (N − 1)K
2

2
+N · log2N

matically the overhead of the first implementation of EvalAll.

Next, we compare the performance that these different algorithms attain when com-

bined with MinMisses. Figure 3.5 shows the results for a 4-core CMP architecture with

a shared 1MB L2 cache (configuration 4C-1). All algorithms except marginal gains in

reverse order show similar average results. In fact, less than 1% of difference is observed

in the harmonic mean of the IPC throughput. Furthermore, in all situations the median

speed up is 1.

Figure 3.5: Performance comparison between the different algorithms: EvalAll, marginal
gains (MG), look ahead (LA), marginal gains in reverse order (MGRO) and EvalAll with
dynamic programming techniques (EvalAll-DP)

Marginal gains (Algorithm 1) normally shows similar performance to EvalAll, but

when the executed benchmarks have non convex miss curves, then performance drops.

34

CHAPTER 3. DYNAMIC CACHE PARTITIONING ALGORITHMS

In these situations, marginal gains presents a 13.5% maximum performance degradation.

However, this algorithm tends to distribute ways more equally to all the threads. In that

way, some benchmarks that apparently do not need many ways (typically benchmarks

belonging to group S) receive more ways than with EvalAll, which is translated into im-

portant speed ups (reaching a maximum of 28.2%).

In the case of look ahead algorithm (Algorithm 2), we obtain similar results to marginal

gains. In fact, in a 32.4% of the combinations of benchmarks the decisions are exactly the

same. The important difference between these two algorithms is that when benchmarks

have non convex curves, performance losses are reduced, and, as a result, the maximum

performance degradation is now 5.5%.

In the case of marginal gains in reverse order algorithm (Algorithm 3), we obtain

slightly worse results. Problems with some benchmarks are detected (apsi, art, galgel

and mgrid). Theses benchmarks tend to monopolize all the ways as they have many ac-

cesses with stack distance near to the L2 cache associativity. Consequently, we have an

average 3% performance degradation, with a maximum value of 20.2%.

Finally, EvalAll and its implementation with dynamic programming techniques show

the same performance, which is wht for this work we always use the implementation of

EvalAll which makes use of dynamic programming techniques (Algorithm 4). In some

cases, we will use other heuristics with similar performance and computational cost, such

as the marginal gains and look ahead algorithms. In fact, look ahead and EvalAll with

dynamic programming techniques have similar complexity, but the first one makes use

of divisions to compute the marginal utility MU b
i,a while the latter only makes use of

additions. The marginal gains in reverse order algorithm will not be used, as it shows

worse results than the other algorithms.

3.6 Other Cache Partitioning Algorithms

Several papers propose different dynamic cache partitioning (DCP) algorithms in a multi-

threaded scenario. Table 3.4 summarizes these proposals with their most significant char-

acteristics: if it is a dynamic or static mechanism, the target metric to optimize, who is in

charge of deciding the partition, the cache partition decision algorithm and the modified

replacement logic that they make use of.

Settle et al. [99] introduce a DCP similar to MinMisses that decides partitions depend-

ing on the average data re-use of each application. Rafique et al. [92] propose managing

35

3.6. OTHER CACHE PARTITIONING ALGORITHMS

Table 3.4: Different cache partitioning proposals
Paper Partitioning Objective Decision Algorithm Replacement Policy
[29] Static Minimize Misses Programmer − Column Caching
[108] Dynamic Minimize Misses Architecture Marginal gains Augmented LRU
[90] Dynamic Maximize Utility Architecture Look ahead Augmented LRU
[58] Dynamic Fairness Architecture Equalize Xi

1 Augmented LRU
[99] Dynamic Maximize re-use Architecture Re-use Column Caching
[92] Dyn./Static Configurable Operating System Configurable Augmented LRU

shared caches with a hardware cache quota enforcement mechanism and an interface be-

tween the architecture and the OS to let the latter decide quotas. Hsu et al. [48] evaluate

different cache policies in a CMP scenario. They show that none of them is optimal among

all benchmarks and that the best cache policy varies depending on the performance metric

being used. Thus, they propose using a thread-aware cache resource allocation. In fact,

their results reinforce one of the main concerns of this thesis: if we do not consider the

impact of each cache miss in performance, we can decide suboptimal L2 partitions in

terms of throughput or any other IPC-related metric.

Other proposals also partition shared caches with non-uniform cache access time

(NUCA) with a different approach: they differentiate between a fast local or private cache

and remote on-chip caches. These proposals use data migration and replication in differ-

ent local caches in order to reduce access time [14, 26, 30, 115, 117]. Finally, other

previous work tries to determine the behavior of SMT architectures when some shared

resources among threads are statically and equally split. Raash et al. [91] present a study

of the effects of partitioning the reorder buffer (ROB), issue queues and fetch bandwidth.

36

Chapter 4
MLP-aware Dynamic Cache

Partitioning Algorithm

Dynamic partitioning of shared caches has been proposed to improve performance of tra-

ditional eviction policies in modern multithreaded architectures. These existing Dynamic

Cache Partitioning (DCP) algorithms mostly work with the number of misses caused by

each thread and treat all misses equally. However, cache misses have different effects on

performance depending on their distribution. Clustered misses share their miss penalty

because they can be served in parallel, while isolated misses have a greater impact on

performance, as the memory latency is not shared with other misses.

Taking this fact into account, we propose a new DCP algorithm that considers misses

differently, depending on their influence on performance. Our proposal results in im-

provements over traditional eviction policies of up to 63.9% (10.6% on average) and it

also outperforms previous DCP proposals by up to 15.4% (4.1% on average) in a four-

core architecture. Our proposal reaches the same performance as a 50% larger shared

cache. Finally, we present a practical implementation of our proposal that requires less

than 8KB storage.

4.1 Introduction

A common characteristic of previous cache partitioning proposals is that they treat all

cache misses equally. However, in out-of-order architectures cache misses affect per-

formance differently, depending on how clustered they are. An isolated last level cache

(LLC) miss has approximately the same miss penalty as a cluster of misses, since they can

be served in parallel if they all fit in the reorder buffer (ROB) [55], as shown in Figure 4.1.

37

4.1. INTRODUCTION

We have represented an ideal IPC curve which is constant until an L2 miss occurs1. Af-

ter some cycles, commit stops. When the cache line comes from main memory, commit

ramps up to its steady state value. As a consequence, an isolated L2 miss has a higher im-

pact on performance than a miss in a burst of misses, since the memory latency is shared

by all clustered misses.

(a) Isolated L2 miss (b) Clustered L2 misses

Figure 4.1: Cache miss penalty of isolated and clustered L2 misses in an out-of-order
architecture

To clarify this idea, Figure 4.2 shows the average miss penalty of an L2 miss for the

whole SPEC CPU 2000 benchmark suite in our baseline configuration. Results are clas-

sified in groups low utility (L), small working set or saturated utility (S), and high utility

(H). Note that this average miss penalty varies considerably, even inside each group of

benchmarks, ranging from 30 cycles (art) to 294 cycles (bzip2). This figure reinforces

the idea that the clustering level of L2 misses changes for different applications.

Based on this fact, we propose a new DCP algorithm that gives a cost to each L2

access according to its memory-level parallelism (MLP). We detect isolated and clustered

misses and assign a higher cost to isolated misses. Then, our algorithm determines the

partition that minimizes the total cost for all threads, which is used in the next interval.

Our results show that differentiating between clustered and isolated L2 misses leads to

cache partitions with higher performance than previous proposals. The main contributions

of this chapter are the following:

1) A run-time mechanism to dynamically partition shared L2 caches in a CMP sce-

nario that takes into account the MLP of each L2 access. We obtain improvements over

LRU of up to 63.9% (10.6% on average) and over previous proposals by up to 15.4%

(4.1% on average) in a four-core architecture. Our proposal reaches the same perfor-

mance as a 50% larger shared cache.

1We assume a shared L2 cache as the LLC in a chip multiprocessor (CMP) architecture

38

CHAPTER 4. MLP-AWARE DYNAMIC CACHE PARTITIONING
ALGORITHM

Figure 4.2: Average miss penalty of an L2 miss in a 1MB 16-way L2 cache for the whole
SPEC CPU 2000 benchmark suite

2) We present a sampling technique that reduces the hardware cost in terms of storage

to less than 1% of the total L2 cache size with an average throughput degradation of only

0.76% (compared to the throughput obtained without sampling). We also show that the

scalable decision algorithms presented in Section 3.5 give near optimal partitions, 0.59%

close to the optimal decision.

The rest of this chapter is structured as follows. Section 4.2 explains the new mon-

itoring logic and the MLP-aware DCP algorithm. In Section 4.3 we discuss simulation

results. Finally, Section 4.4 summarizes our main findings.

4.2 MLP-Aware Dynamic Cache Partitioning

Chapter 3 describes in detail all the architectural changes that are required to implement

a dynamic cache partitioning algorithm. These algorithms make use of a basic property

of common eviction policies such as LRU, the stack property, which makes it possible

to build Stack Distance Histograms (SDHs). With these histograms, we can predict the

number of misses of the same application in a partitioned L2 cache. In this chapter,

we present a new monitoring logic that estimates the MLP of each application and then

minimizes the total MLP of the applications instead of the number of misses. Qureshi et

al. [89] also propose estimating the MLP of each miss in order to introduce a new eviction

39

4.2. MLP-AWARE DYNAMIC CACHE PARTITIONING

policy for private caches in single-threaded architectures. This policy gives a weight to

each L2 miss according to its MLP when the block is filled from memory. Eviction is

decided using the LRU counters and this weight. This idea was proposed for a different

scenario, where the focus was on single-threaded architectures.

Algorithm 5 shows the necessary steps to dynamically decide cache partitions accord-

ing to the MLP of each L2 access. At the beginning of the execution, we decide an initial

partition of the L2 cache. As we have no prior knowledge of the applications, we evenly

distribute ways among cores. Hence, each core receives K
N

ways of the shared L2 cache,

where K is the associativity of the cache and N the number of cores.

Algorithm 5: MLP-Aware dynamic cache partitioning algorithm.
Step 1: Establish an initial even partition for each core ;
Step 2: Run threads and collect data for the MLP-aware SDHs ;
Step 3: Decide new partition ;
Step 4: Update MLP-aware SDHs ;
Step 5: Go back to Step 2 ;

Next, a measuring period begins, where the total MLP cost of each application is

measured for different cache assignments. The histogram of each thread containing the

total MLP cost for each possible partition is denoted MLP-aware SDH. For a K-way

associative cache, exactlyK+1 registers are needed to store this histogram. For short pe-

riods, dynamic cache partitioning (DCP) algorithms react more quickly to phase changes.

Our results show that, for different periods from 105 to 108 cycles, small performance

variations are obtained, with a peak for a period of 5 million cycles.

At the end of each interval, MLP-aware SDHs are analyzed and a new partition is

decided for the next interval. We assume that running threads will have a similar pattern of

L2 accesses in the next measuring period. Thus, the optimal partition for the last period is

chosen for the following period. Evaluating all possible cache partitions gives the optimal

partition. This evaluation is done concurrently with a dedicated hardware, which sets the

partition for each process in the next period. Having old values of partitions decisions

does not impact correctness of the running applications and does not affect performance,

as deciding new partitions typically takes few thousand cycles and is invoked once every

5 million cycles.

Since characteristics of applications dynamically change, MLP-aware SDHs should

reflect these changes. However, we also wish to maintain some history of the past MLP-

aware SDHs to make new decisions. Thus, after a new partition is decided, we multiply all

40

CHAPTER 4. MLP-AWARE DYNAMIC CACHE PARTITIONING
ALGORITHM

the values of the MLP-aware SDHs times ρ ∈ [0, 1]. Large values of ρ have larger reaction

times to phase changes, while small values of ρ quickly adapt to phase changes but tend

to forget the behavior of the application. Small performance variations are obtained for

different values of ρ ranging from 0 to 1, with a peak for ρ = 0.5. Furthermore, this

value is very convenient as we can use a shifter to update histograms. Next, a new period

of measuring MLP-aware SDHs begins. The key contribution of this chapter is the new

monitoring logic required to obtain MLP-aware SDHs that we explain in the following

subsection.

4.2.1 MLP-Aware Stack Distance Histogram

As previously stated, MinMisses assumes that all L2 accesses are equally important in

terms of performance. However, cache misses have different effects on the performance

of applications, even inside the same application [55, 89]. An isolated L2 data miss has

a miss penalty that can be approximated by the average memory latency. In the case of a

burst of L2 data misses which fit in the ROB, the miss penalty is shared among misses,

since L2 misses can be served in parallel. In the case of L2 instruction misses, they are

serialized as fetch stops. Thus, L2 instruction misses have a constant miss penalty and

MLP.

In this section we present a new monitoring logic that assigns a cost to each L2 access

according to its MLP. In [89] a similar idea was used to modify LRU eviction policy for

single core and single-threaded architectures. In our case, we have a CMP scenario where

the shared L2 cache has a number of reserved ways for each core. At the end of each

period, we decide either to continue with the same partition or to change it. If we decide

to modify the partition, a core i that had wi reserved ways will receive w′i 6= wi ways.

If wi < w′i, the thread receives more ways and, as a consequence, some misses in the

old configuration will become hits. Conversely, if wi > w′i, the thread receives less ways

and some hits in the old configuration will become misses. Thus, we want to have an

estimation of the performance effects when misses are converted into hits and vice versa.

Throughout this chapter, we will call this impact on performance MLP_cost.

With regard to the MLP_cost of L2 misses, in order to compute the MLP_cost of

an L2 miss with stack distance di, we consider the situation shown in Figure 4.3(a). If we

force an L2 configuration that assigns exactlyw′i = di ways to thread iwithw′i > wi, some

of the L2 misses of this thread will become hits, while other will remain being misses,

depending on their stack distance. In order to track the stack distance and MLP_cost of

41

4.2. MLP-AWARE DYNAMIC CACHE PARTITIONING

(a) MLP_cost of an L2 miss

(b) Estimated MLP_cost when an L2 hit becomes a miss

Figure 4.3: MLP_cost of L2 accesses in an out-of-order architecture

each L2 miss, we have modified the L2 Miss Status Holding Registers (MSHR) [61]. This

structure is similar to an L2 miss buffer and is used to hold information about any load

that has missed in the L2 cache. The modified L2 MSHR has one extra field that contains

the MLP_cost of the miss, as can be seen in Figure 4.4(b). It is also necessary to store

the stack distance of each access in the MSHR. Figure 4.4(a) illustrates the MSHR in the

cache hierarchy.

(a) MSHR (b) MSHR fields

Figure 4.4: Miss Status Holding Register (MSHR) description

When the L2 cache is accessed and an L2 miss is determined, we assign an MSHR

42

CHAPTER 4. MLP-AWARE DYNAMIC CACHE PARTITIONING
ALGORITHM

entry to the miss and wait until the data comes from main memory. We initialize the

MLP_cost field to zero when the entry is assigned. We store the stack distance of the

access together with the identifier of the owner core. In each cycle, we obtain Ndi
, the

number of L2 accesses with stack distance greater or equal to di. We have a hardware

counter that tracks this number for each possible number of di, which means a total of K

counters2. If we have Ndi
L2 misses that are being served in parallel, the miss penalty is

shared. Thus, we assign an equal share of 1
Ndi

to each miss. The value of the MLP_cost

is updated until the data comes from main memory and fills the L2, at which moment the

MSHR entry can be freed.

The number of adders required to update the MLP_cost of all entries is equal to the

number of MSHR entries. However, this number can be reduced by sharing several adders

between valid MSHR entries in a round robin fashion. Thus, if an MSHR entry updates

itsMLP_cost every 4 cycles, it has to add 4
Ndi

. In this chapter, we assume that the MSHR

contains only four adders for updating MLP_cost values, which has a negligible effect

on the final MLP_cost [89].

When dealing with th MLP_cost of L2 hits, we want to estimate the MLP_cost of

an L2 hit with stack distance di when it becomes a miss. If we forced an L2 configuration

that assigned exactlyw′i = di ways to the thread iwithw′i < wi, some of the L2 hits of this

thread would become misses, while L2 misses would remain as misses (see Figure 4.3(b)).

The hits that would become misses are the ones with stack distance greater or equal to

di. Thus, we count the total number of accesses with stack distance greater or equal to

di (including L2 hits and misses) to estimate the length of the cluster of L2 misses in this

configuration.

Deciding on the moment to free the entry used by an L2 hit is more complex than in

the case of the MSHR. As was said in [55], in a balanced architecture, L2 data misses can

be served in parallel if they all fit in the ROB. Equivalently, we say that L2 data misses

can be served in parallel if they are at ROB distance smaller than the ROB size. Thus, we

should free the entry if the number of committed instructions since the access has reached

the ROB size or if the number of cycles since the hit has reached the average latency to

memory. The former condition is clear, since L2 misses can overlap only if their ROB

distance is less than the ROB size. When the entry is freed, we have to add the number of

pending cycles divided by the number of misses with stack distance greater or equal to di.

The latter condition is also necessary, since it is possible that no L2 access is done for a

2In our CMP baseline, we assume a K-way associative cache

43

4.2. MLP-AWARE DYNAMIC CACHE PARTITIONING

period of time. To obtain the average latency to memory, we add a specific hardware that

counts and averages the number of cycles that a given entry is in the MSHR.

We use new dedicated hardware to obtain the MLP_cost of L2 hits. We denote this

hardware Hit Status Holding Registers (HSHR) as it is similar to the MSHR. However,

the HSHR is private for each core. In each entry, the HSHR needs an identifier of the

ROB entry of the access, the address accessed by the L2 hit, the stack distance value and

a field with the corresponding MLP_cost, as can be seen in Figure 4.5(b). Figure 4.5(a)

shows the HSHR in the cache hierarchy.

(a) HSHR (b) HSHR fields

Figure 4.5: Hit Status Holding Register (HSHR) description

When the L2 cache is accessed and an L2 hit is determined, we assign an HSHR entry

to the L2 hit. We initialize the fields of the entry as in the case of the MSHR. We have

a stack distance di and we want to update the MLP_cost field in every cycle. With this

objective, we need to know the number of active entries with stack distance greater or

equal to di in the HSHR, which can be tracked with one hardware counter per core. We

also need a ROB entry identifier for each L2 access. For each cycle, we obtain Ndi
, the

number of L2 accesses with stack distance greater or equal to di as in the L2 MSHR case.

We have a hardware counter that tracks this number for each possible number of di, which

means a total of K counters3.

In order to avoid array conflicts, we need the same number of entries in the HSHR

as possible L2 accesses in flight. This number is equal to the L1 MSHR size. In our

scenario, we have 32 L1 MSHR entries, which means a maximum of 32 in flight L2

accesses per core. However, we have checked that we have enough with 24 entries per

core to ensure that we have an available slot 95% of the time in an architecture with a
3In our CMP baseline, we assume a K-way associative cache

44

CHAPTER 4. MLP-AWARE DYNAMIC CACHE PARTITIONING
ALGORITHM

Table 4.1: MLP_cost quantification
MLP_cost Quantification MLP_cost Quantification
From 0 to 42 cycles 0 From 171 to 213 cycles 4
From 43 to 85 cycles 1 From 214 to 256 cycles 5
From 86 to 128 cycles 2 From 257 to 299 cycles 6
From 129 to 170 cycles 3 300 or more cycles 7

ROB of 256 entries. If there are no available slots, we simply assign the minimum weight

to the L2 access as there are many L2 accesses in flight. The number of adders required

to update the MLP_cost of all entries is equal to the number of HSHR entries. As we

did with the MSHR, HSHR entries can share four adders with a negligible effect on the

final MLP_cost estimation.

When we examine the quantification of the MLP_cost, then dealing with values of

MLP_cost between 0 and the memory latency (or even greater) can represent a signifi-

cant hardware cost. Instead, we decide to quantify this MLP_cost with an integer value

between 0 and 7 as was done in [89]. For a memory latency of 300 cycles, we can see

in Table 4.1 how to quantify the MLP_cost. We have split the interval [0; 300] with 7

intervals of equal length.

Finally, when we have to update the corresponding MLP-aware SDH, we add the

quantified MLP_cost value. Thus, isolated L2 misses will have a weight of 7, while

two overlapped L2 misses will have a weight of 3 in the MLP-aware SDH. In contrast,

MinMisses always adds a constant value (one) to its histograms.

4.2.2 Obtaining Stack Distance Histograms

Normally, L2 caches have two separate parts: one that stores data and one that stores

address tags. Tags are used to indicate whether the access is a hit or a miss. Basically,

our prediction mechanism needs to track every L2 access and store a separate copy of

the L2 tags information in an Auxiliary Tag Directory (ATD), together with the LRU

counters [90]. We need an ATD for each core that keeps track of the L2 accesses for

any possible cache configuration. Independently of the number of ways assigned to each

core, we store the tags and LRU counters of the last K accesses of the thread, where K

is the L2 associativity. As we have explained in Chapter 3, an access with stack distance

di corresponds to a cache miss in any configuration that assigns less than di ways to the

thread. Thus, with this ATD we can determine whether an L2 access would be a miss or

a hit in all possible cache configurations.

45

4.2. MLP-AWARE DYNAMIC CACHE PARTITIONING

4.2.3 Putting It All Together

Figure 4.6 shows a sketch of the hardware implementation of our proposal. On an L2

access, the ATD is used to determine the stack distance di of such access. Depend-

ing on whether it is a miss or a hit, either the MSHR or the HSHR is used to com-

pute the MLP_cost of the access. Using the quantification process, we obtain the final

MLP_cost. This number estimates how performance is affected when the application

has exactly w′i = di assigned ways. If w′i > wi, we are estimating the performance benefit

of converting this L2 miss into a hit. In case w′i < wi, we are estimating the performance

degradation of converting this L2 hit into a miss. Finally, using the stack distance, the

MLP_cost and the core identifier, we can update the corresponding MLP-aware SDH.

Figure 4.6: Hardware implementation of the MLP-aware monitoring logic

We have used two partitioning algorithms that optimize different target metrics. The

first one, which we denote MLP-DCP (standing for MLP-aware Dynamic Cache Par-

titioning), decides the optimal partition according to the MLP_cost of each way. We

define the total MLP_cost (TMLP) of a thread i that uses wi ways as TMLP (i, wi) =

MLP_SDHi,>K +
∑K

j=wi
MLP_SDHi,j . We denote the total MLP_cost of all ac-

cesses of thread i with stack distance j as MLP_SDHi,j . Thus, we have to minimize the

sum of total MLP_costs for all cores:

N∑
i=1

TMLP (i, wi), where
N∑
i=1

wi = K

46

CHAPTER 4. MLP-AWARE DYNAMIC CACHE PARTITIONING
ALGORITHM

The second algorithm consists of assigning a weight to each total MLP_cost using

the IPC of the application running in core i, IPCi. In this situation, we are giving priority

to threads with higher IPC. This point will give better results in throughput at the cost of

being less fair. IPCi is measured at run-time with a hardware counter per core. We denote

this proposal MLPIPC-DCP, which consists of minimizing the following expression:

N∑
i=1

IPCi · TMLP (i, wi), where
N∑
i=1

wi = K

4.2.4 Case Study: galgel and gzip

We have seen that SDHs can give the optimal partition in terms of total L2 misses. How-

ever, minimizing the total number of L2 misses is not the goal of DCP algorithms. Maxi-

mizing throughput (or other metrics related to IPC) is the real objective of these policies.

The underlying idea of MinMisses is that while minimizing total L2 misses, we are also

increasing throughput. This idea is intuitive as performance is clearly related to the L2

miss rate. However, this heuristic can lead to suboptimal partitions in terms of throughput,

as can be seen in the next case study.

Figure 4.7 shows the IPC curves of benchmarks galgel and gzip as we increase the

L2 cache size in a way granularity (the size of each way is 64KB). This figure also shows

the throughput for all possible 15 partitions. In this curve, we assign x ways to gzip and

16 − x to galgel. The optimal partition consists of assigning 6 ways to gzip and 10

ways to galgel, obtaining a total throughput of 3.091 instructions per cycle. However,

MinMisses algorithm assigns 4 ways to gzip and 12 ways to galgel according to the

SDHs values. Figure 4.7 also shows the total number of misses for each cache partition

as well as the per thread number of misses.

In this situation, misses in gzip are more important in terms of performance than

misses in galgel. Furthermore, gzip’s IPC is larger than the one from galgel. Con-

sequently, MinMisses obtains a suboptimal partition in terms of IPC, with a throughput

of 2.897 instructions per cycle, which is 6.3% smaller than the optimal one. In fact,

galgel clusters of L2 misses are, on average, longer than the ones from gzip. In this

way, MLP-DCP assigns one extra way to gzip and increases performance by 3%. If we

use MLPIPC-DCP, we give more importance to gzip as it has a higher IPC and, as a

result, we end up assigning another extra way to gzip, reaching the optimal partition and

increasing throughput an extra 3%.

47

4.3. EVALUATION RESULTS

Figure 4.7: Misses and IPC curves for galgel and gzip

4.3 Evaluation Results

In this section, we evaluate the performance of MLP-aware DCP algorithms for two- and

four-core architectures according to the experimental environment explained in Chapter 2.

4.3.1 Performance Results

The first experiment consists of comparing throughput results for different DCP algo-

rithms, using LRU policy as the baseline. We simulate MinMisses and our two propos-

als with the 48 workloads that were selected in Section 2.4 for configurations 2C, 4C-1

and 4C-2. Figure 4.8(a) shows the average speed up over LRU for these mechanisms.

MLPIPC-DCP systematically obtains the best average results, nearly doubling the perfor-

mance benefits of MinMisses over LRU in the four-core configurations. In configuration

4C-1, MLPIPC-DCP outperforms MinMisses by 4.1%. MLP-DCP always improves Min-

Misses but obtains worse results than MLPIPC-DCP.

All algorithms have similar results in Case 1. This is intuitive as in this situation there

is little room for improvement. In Case 2, MinMisses obtains a relevant improvement over

LRU in configuration 2C. MLP-DCP and MLPIPC-DCP achieve an extra 2.5% and 5%

improvement, respectively. In the other configurations, MLP-DCP and MLPIPC-DCP

still outperform MinMisses by a 2.1% and 3.6%. In Case 3, MinMisses presents larger

performance degradation as the asymmetry between the necessities of the two cores in-

creases. Consequently, it has worse average throughput than LRU. Assigning an appro-

priate weight to each L2 access gives the possibility of obtaining better results than LRU

using MLP-DCP and MLPIPC-DCP.

48

CHAPTER 4. MLP-AWARE DYNAMIC CACHE PARTITIONING
ALGORITHM

(a) Throughput speed up over LRU (b) Fairness speed up over LRU

Figure 4.8: Average performance speed ups over LRU of the different MLP-aware DCP
algorithms

Next, we have used the harmonic mean of relative IPCs [68] to measure fairness.

The relative IPC is computed as IPCshared

IPCalone
. Figure 4.8(b) shows the average speed up

over LRU of the harmonic mean of relative IPCs. Fair stands for the policy explained

in Section 3.4, the best policy in the literature optimizing fairness.. We can see that in

all situations, MLP-DCP always improves on both MinMisses and LRU (except in Case

3 for two cores). It even obtains better results than Fair in configurations 2C and 4C-1.

MLPIPC-DCP is a variant of the MLP-DCP algorithm optimized for throughput. As a

result, it obtains worse results in fairness than MLP-DCP.

Figure 4.9: Average throughput speed up over LRU of the different MLP-aware DCP
algorithms with a 1MB 16-way L2 cache

Regarding the equivalent cache space, DCP algorithms obtain the same performance

as LRU eviction policy with a larger cache. Figure 4.9 shows the performance evolu-

tion when the L2 size increases from 1MB to 2MB with LRU as eviction policy. In

49

4.3. EVALUATION RESULTS

this experiment, the evaluated workloads correspond to those selected for configuration

4C-1. Figure 4.9 also shows the average speed up over LRU of MinMisses, MLP-DCP

and MLPIPC-DCP with a 1MB 16-way L2 cache. MinMisses has the same average per-

formance as a 1.25MB 20-way L2 cache with LRU, which means that MinMisses pro-

vides the same performance as that obtained with a 25% larger shared cache. MLP-DCP

matches the performance of a 37.5% larger cache. Finally, MLPIPC-DCP doubles the

increase in size of MinMisses, matching the performance of an L2 cache that is 50%

larger.

4.3.2 Design Parameters Analysis

Figure 4.10(a) shows the sensitivity of the MLP-DCP algorithm to the period of partition

decisions. For shorter periods, the partitioning algorithm reacts more quickly to phase

changes. Once again, small performance variations are obtained for different periods.

However, we observe that for longer periods throughput tends to decrease, because wrong

decisions are very costly over a longer period. As can be seen in Figure 4.10(a), peak

performance is obtained with a period of 5 million cycles.

(a) Average throughput for different periods
for the MLP-DCP algorithm with the 2C con-
figuration

(b) Average speed up over LRU for different ROB
sizes with the 4C-1 configuration

Figure 4.10: Sensitivity analysis to different design parameters of the different MLP-
aware DCP algorithms

Finally, we varied the size of the ROB from 128 to 512 entries to show the sensitivity

of our proposals to this parameter of the architecture. Our mechanism is the only one

which is aware of the ROB size: the higher the size of the ROB, the larger the size of

the cluster of L2 misses. Other policies only work with the number of L2 misses, which

will not change if we vary the size of the ROB. When the ROB size increases, clusters of

misses can contain more misses and, as a consequence, our mechanism can differentiate

50

CHAPTER 4. MLP-AWARE DYNAMIC CACHE PARTITIONING
ALGORITHM

better between isolated and clustered misses. As we show in Figure 4.10(b), average

improvements in the 4C-1 configuration are a little higher for a ROB with 512 entries,

while MinMisses shows worse results. MLPIPC-DCP outperforms LRU and MinMisses

by 10.4% and 4.3% respectively.

4.3.3 Hardware Cost

We used the hardware implementation of Figure 4.6 to estimate the hardware cost of our

proposal. In this subsection, we focus on configuration 2C. We assume a 40-bit physical

address space. Each entry in the ATD needs 29 bits (1 valid bit + 24-bit tag + 4-bit for

LRU counter). Each set has 16 ways, so we have an overhead of 58 bytes (B) for each set.

As we have 1024 sets, we have a total cost of 58KB per core.

The hardware cost that corresponds to the extra fields of each entry in the L2 MSHR

is 5 bits for the stack distance and 2 bytes for the MLP_cost. As we have 32 entries,

we have a total of 84 bytes. Four adders are needed to update the MLP_cost of the

active MSHR entries. HSHR entries need 1 valid bit, 8 bits to identify the ROB entry,

34 bits for the address, 5 bits for the stack distance and 2 bytes for the MLP_cost. In

total we need 64 bits per entry. As we have 24 entries in each HSHR, we have a total

of 192 bytes per core. Four adders per core are needed to update the MLP_cost of the

active HSHR entries. Finally, we need 17 counters of 4 bytes for each MLP-Aware SDH,

which supposes a total of 68 bytes per core. In addition to the storage bits, we also need

an adder for incrementing MLP-aware SDHs and a shifter to halve the hit counters after

each partitioning interval.

Figure 4.11: Throughput and hardware cost depending on ds in a two-core CMP

The main contribution to hardware cost corresponds to the ATD. Instead of monitoring

every cache set, we can decide to track accesses from a reduced number of sets with a

51

4.3. EVALUATION RESULTS

sampled ATD. This idea was also used by Qureshi et al. [90] with MinMisses in a CMP

environment. Here, we use it in a different situation, to estimate MLP-aware SDHs with

a sampled number of sets. We define the sampling distance ds that gives the distance

between tracked sets. For example, if ds = 1, we are tracking all the sets. If ds = 2, we

track half of the sets, and so on. Sampling reduces the size of the ATD at the expense

of less accuracy in MLP-aware SDHs predictions, since some accesses are not tracked.

Figure 4.11 shows the throughput degradation in a two-core scenario as the ds increases.

This curve is measured on the left y-axis. We also show the storage overhead in percentage

of the total L2 cache size, measured on the right y-axis. Thanks to the sampling technique,

storage overhead drastically decreases. Thus, with a sampling distance of 16 we obtain

average throughput degradations of 0.76% and a storage overhead of 0.77% of the L2

cache size, which is less than 8KB of storage. We think that this is an interesting design

point.

4.3.4 Scalable Algorithms to Decide Cache Partitions

By evaluating all possible combinations, the algorithm can determine the optimal partition

for the next period. However, this algorithm does not scale adequately when associativity

and the number of applications sharing the cache is raised (see Section 3.5 for more

details). Consequently, the time to decide new cache partitions does not adequately scale.

Several heuristics have been proposed to reduce the number of cycles required to decide

the new partition [90, 108], which can be used in our situation. These proposals bound

the length of the decision period by 10, 000 cycles. This overhead is very low compared

to 5 million cycles (less than 0.2%). We also evaluated the version of EvalAll that makes

use of dynamic programming techniques [32].

Figure 4.12 shows the average speed up of MLP-DCP over LRU with the 4C-1 con-

figuration with three different decision algorithms. Evaluating all possible partitions (de-

noted EvalAll) gives the highest speed up. Marginal gains assigns one way to a thread

in each iteration [108]. The selected way is the one that gives the largest increase in

MLP_cost. This process is repeated until all ways have been assigned. The number of

operations (comparisons) is of order K ·N , where K is the associativity of the L2 cache

and N the number of cores. With this heuristic, an average throughput degradation of

0.59% is obtained. The look ahead algorithm is similar to marginal gains. The basic

difference between them is that look ahead considers the total MLP_cost for all possible

number of blocks that the application can receive [90] and can assign more than one way

52

CHAPTER 4. MLP-AWARE DYNAMIC CACHE PARTITIONING
ALGORITHM

Figure 4.12: Average throughput speed up over LRU for different decision algorithms in
the 4C-1 configuration

in each iteration. The number of operations (add-divide-compare) is of order K2·N
2

, where

K is the associativity of the L2 cache and N the number of cores. With this heuristic, an

average throughput degradation of 1.04% is obtained. These results are consistent with

those obtained with the MinMisses algorithm discussed in Section 3.5.

4.4 Summary

In this chapter we propose new DCP algorithms that assign a cost to each L2 access

according to its memory-level parallelism: isolated misses receive higher costs than clus-

tered misses. Next, our algorithm decides the L2 cache partition that minimizes the total

cost for all running threads.

We show that our proposal reaches high throughput for two- and four-core architec-

tures. In all evaluated configurations, our proposal consistently outperforms both LRU

and MinMisses, reaching a speed up of 63.9% (10.6% on average) and 15.4% (4.1% on

average), respectively. With our proposals, we match the performance of a 50% larger

cache. Next, we make use of a sampling technique to propose a practical implementation

with a storage cost that supposes less than 1% of the total L2 cache size. Finally, we evalu-

ate different scalable algorithms to determine cache partitions with nearly no performance

degradation.

53

4.4. SUMMARY

54

Chapter 5

Online Prediction of Applications Cache
Utility

General purpose processors are designed to offer high average performance regardless of

the particular application that is being run. As a result, performance and power ineffi-

ciencies appear for some programs. Reconfigurable hardware (cache hierarchy, branch

predictor, execution units, bandwidth, etc.) has been proposed to overcome these ineffi-

ciencies by dynamically adapting the architecture to the application requirements. How-

ever, previous work normally used indirect measures, or performance heuristics to guide

hardware reconfigurations, which often led to suboptimal decisions. This is the case of

the mechanisms presented above.

In this chapter we propose a run-time mechanism which involves predicting the per-

formance of an application running on an architecture with a reconfigurable L2 cache at

a way granularity. In this scenario, the number of ways assigned to an application can be

periodically changed. Thus, when an application runs with a given number of assigned

ways, the hardware mechanism predicts the performance of the same application on all

other possible L2 cache configurations. We obtain for different L2 cache sizes an average

error of 3.11%, a maximum error of 16.4% and standard deviation of 3.7%. No profiling

or collaboration with the operating system (OS) is needed in this mechanism. We also

give a hardware implementation that makes it possible to reduce the hardware cost in

terms of area to under 0.4% of the total L2 cache size, while maintaining high accuracy.

This prediction mechanism can be used to reduce power consumption in single-threaded

architectures and also to improve performance in multithreaded architectures that dynam-

ically partition shared L2 caches.

55

5.1. INTRODUCTION

5.1 Introduction

The problem of dynamically adapting resources to program requirements does not only

apply to multithreaded architectures. Several mechanisms have been proposed in super-

scalar architectures to use reconfigurable hardware that adapts microarchitecture features

to different program phases [4, 11, 12, 33, 56]. The common problem with all these self-

tuning techniques is that decisions are based on indirect performance metrics or empirical

heuristics. For instance, Bahar et al. [11] dynamically adjust the issue width and the num-

ber of execution units in an out-of-order architecture depending on the number of issued

instructions. This solution reduces power consumption at the cost of a reduced perfor-

mance. However, in some situations the power consumption reduction is not enough to

compensate for the performance loss, resulting in energy losses in these situations.

In this chapter we focus on architectures with a dynamically reconfigurable cache

hierarchy. In particular, we propose a mechanism that allows us to predict with high

accuracy the Instruction Per Cycle (IPC) of the application as we vary the amount of cache

devoted to it. The L2 cache size is changed by activating/deactivating some ways of a set

associative cache. This mechanism combines Stack Distance Histograms (SDHs) [71]

and an analytical model for predicting processor IPC introduced by Karkhanis et al. [55].

This model has to be adapted to the particular target scenario in order to increase the

accuracy of the IPC predictions. On average, for all SPEC CPU 2000 benchmarks, our

mechanism obtains an average error of 3.11%, with a maximum error of 16.4% (with

twolf benchmark) and a standard deviation of 3.7%. The ability to predict IPC as we

change the cache configuration can be applied in two different scenarios:

First, cache sharing in multithreaded architectures. A better sharing of the L2

cache among the running threads can be obtained using cache partitioning techniques.

Previous work proposed static and dynamic cache partitioning algorithms in chip multi-

processors (CMP) and simultaneous multithreading (SMT) architectures in order to maxi-

mize throughput or fairness [29, 58, 90, 99, 109]. These proposals used indirect metrics of

performance, such as the total number of misses, or data re-use, to predict the best cache

partition. The mechanism proposed in this chapter provides direct estimations of perfor-

mance for different cache configurations, which is the appropriate metric to maximize

total throughput, fairness or other IPC-related metrics. Chapter 6 describes a framework

that makes use of the IPC predictions obtained with this mechanism to partition a shared

cache among different applications.

56

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

The second scenario is power reduction. A reduction in the power dissipated in the

cache can be obtained by adjusting the hardware resources to the requirements of the

applications. By having a direct estimation of the performance of the application, it is

possible to obtain the desired trade-off between power consumption and performance.

Previous work considered statically switching on or off L2 cache ways [4] or switching

off lines after a number of cycles without being accessed [56]. However, these proposals

cannot bound performance losses and rely on empirical heuristics. Giving the real contri-

bution of each way to the final IPC allows us to bound the performance degradation while

saving power.

In both scenarios, previous work relied on empirical heuristics and thresholds to make

decisions. To our knowledge, we are the first to mix run-time measurements with analyt-

ical models to dynamically predict the actual impact on performance of such decisions.

The main contributions of this chapter are:

1) A run-time mechanism to predict IPC for different cache configurations with high

accuracy. This proposal can help to reconfigure L2 caches in CMP/SMT scenarios for

dynamic cache partitioning and to reduce power consumption. The important difference

between our mechanism and previous work in these areas is that, with our mechanism,

new configurations are based on real estimations of IPC instead of indirect measures or

ad hoc heuristics.

2) A modified version of the memory model in [55] that makes it possible to predict

the cost on performance of an L2 miss with high accuracy.

3) A sampling technique to reduce hardware cost in terms of area under 0.4% of the to-

tal L2 cache size without significantly affecting the accuracy of the prediction mechanism

(the average error raises to 4%).

The rest of this chapter is structured as follows. Section 5.2 introduces the methods

used to predict IPC curves and Section 5.3 shows how to combine them to obtain IPC

predictions. Next, Section 5.4 presents the simulation results. Section 5.5 deals with a

practical implementation in hardware as well as a sampling technique to reduce its cost.

Next, Section 5.6 reports related work and, finally, Section 5.7 summarizes the chapter.

5.2 Basis of IPC Curves Prediction

We define the IPC curve of an application as the evolution of the IPC values that the

application obtains for different configurations of the L2 cache. These configurations

57

5.2. BASIS OF IPC CURVES PREDICTION

have a way granularity. Thus, in a K-way L2 cache, IPC curves have exactly K points

(since we assume that at least one way is assigned to the application). Naturally, IPC

curves monotonically increase as the IPC of an application increases, since more cache

space is devoted to it (until it saturates to its maximum IPC). In order to accurately predict

IPC curves, we combined two instruments: the stack distance histogram (SDH) [71],

and an analytical model for superscalar processors performance [55]. In Chapter 3, the

mechanism for obtaining the SDH of an application was explained in detail. Next, we

describe the analytical model.

5.2.1 Superscalar Processors Analytical Modeling

Karkhanis et al. [55] propose a model that estimates the performance of an application

running on a superscalar processor. This model computes an ideal Cycle Per Instruction

(CPI) when no misses occur and adds CPI penalties for each type of possible hazard,

including branch mispredictions, instruction cache misses and data cache misses. Some

assumptions and simplifications are made in this model to make it manageable, but simu-

lations prove that it has high accuracy. Compared to detailed simulation, errors are within

5.8% on average and within 13% in the worst case.

We make use of this analytical model to predict the performance of a superscalar

processor as we vary the L2 cache size. In our scenario, we can assume that the ideal

CPI is independent of the cache configuration, as it only depends on data dependencies

of the particular application. We further assume that the branch miss penalty remains

constant for different cache sizes. Thus, we are only interested in using the part of the

model that concerns the cache hierarchy. The model considers L2 instruction and data

misses separately.

With regard to instruction misses, initially, the processor issues instructions at the

steady-state IPC. When an instruction L2 miss occurs, instructions in the issue queue

and the front-end pipeline maintain issue rate for some cycles, but when the issue queue

drains, the issue rate drops to zero following a linear descend [74]. After a miss delay,

∆I , instructions are delivered from main memory. Then, IPC ramps up to its steady-

state value. Karkhanis et al. [55] show that lost cycles until steady-state IPC is attained

compensate useful cycles until the issue queue drains. Thus, the penalty for an isolated in-

struction cache misses is approximately equal to the main memory latency. Furthermore,

as instruction cache misses are serialized, each miss in a burst of consecutive instruction

cache misses has the same penalty as an isolated one: ∆I cycles.

58

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

Turning now to data misses, the basic difference between instruction and data cache

misses is that instruction fetch and issue continue after the data cache miss, and so several

data misses can occur in parallel. After ∆D cycles, data is delivered from main memory.

In [55] it is shown that the miss penalty for an isolated data L2 miss can be approximated

by ∆D.

When we have a burst of n L2 cache data misses, they will overlap if they all fit in

the reorder buffer (ROB) and are independent. In this situation, the miss penalty of ∆D

cycles is shared among all misses. Then, given that MD is the total number of L2 data

misses and Ni the number of times that we have a burst of i misses that fit in the ROB, we

can approximate the average L2 data miss penalty (avgDMP) with the following formula:

avgDMP =
1

MD

·
ROBsize∑
i=1

Ni ·∆D (5.1)

5.3 Prediction of IPC Curves

In this section, we detail how to obtain a prediction of the IPC curve of an application. We

call this methodology Online Prediction of Applications Cache Utility (OPACU). We use

SDHs to compute the number of misses for each possible L2 cache size, and the memory

model described in the previous section to determine the miss penalty of each L2 miss.

5.3.1 OPACU Methodology

In the baseline configuration, the L2 cache has a variable number of active ways. We

start by assigning w ways to an application and measuring its IPC during C cycles. This

value is denoted IPCreal,w, with IPCreal,w = I
C

, where I is the number of committed

instructions in this period. This IPC value is only valid for the particular number of ways

that are being used (w).

Thanks to the SDH, we know whether an access would be a miss or a hit with a

different number of ways w′ ∈ [1, K]. Independently of the number of active ways, we

store the LRU counters of the last K accesses of the thread and obtain the SDH for the

whole K-way associativity L2 cache, as explained in Chapter 3. Next, using the analytical

model explained in Section 5.2, we can estimate at run-time the number of times that a

burst of i L2 data misses occurs with an L2 cache with w′ ways. This number is denoted

Nw′
i for 1 ≤ i ≤ ROB size, and for any possible number of ways w′ ∈ [1, K]. The total

number of instruction and data L2 misses are denoted Mw′
I and Mw′

D , respectively.

59

5.3. PREDICTION OF IPC CURVES

These values are obtained at run-time using the hardware explained in Section 5.5.

Using Nw′
i , we can compute the average L2 data miss penalty when w′ ways are being

used, avgDMPw′ , with Formula 5.1. Thus, we can estimate the variation in cycles of

the total miss penalty for the new configuration due to data and instruction L2 misses,

∆Cw,w′

D and ∆Cw,w′

I respectively.

∆Cw,w′

D = avgDMPw′ ·Mw′

D − avgDMPw ·Mw
D (5.2)

∆Cw,w′

I = (Mw′

I −Mw
I) ·∆I (5.3)

The value ∆Cw,w′
= ∆Cw,w′

I + ∆Cw,w′

D may be positive or negative depending on

the values of w and w′. Thus, the IPC when using w′ ways, denoted IPCpred,w′ , can be

predicted with the following formula.

IPCpred,w′ =
I

C + ∆Cw,w′ (5.4)

To illustrate this technique, we chose the vortex benchmark from SPEC CPU 2000

suite. Table 5.1 shows the monitored values when using a cache configuration with 16

ways, with just 7 active ways. The measured IPC, IPCreal,7, is 1.52 instructions per

cycle. Using Formula 5.4, the IPC for a configuration with 16 active ways, IPCpred,16,

can be predicted, obtaining a value of 1.637 instructions per cycle, which is very close to

the real value of 1.647. The relative error of this prediction is 0.65%. In this example, we

assume ∆D = ∆I = 250 cycles.

Table 5.1: IPC prediction when moving from 7 to 16 active ways for vortex
I C w w′ ∆Cw,w′

∆D
272M 178M 7 16 -12.5M 250

5.3.2 Modified Memory Model

We have modified the memory model introduced by Karkhanis et al. [55] to increase

the accuracy of OPACU IPC predictions. The original model assumed that two L2 data

misses overlap if their ROB distance (in number of instructions) is less than the ROB size.

One of the main assumptions of the model is that the ROB fills after an L2 data cache

miss. However, this is not always true. To illustrate this point, we measured the average

ROB occupancy after an L2 data miss is serviced from main memory and commits for

a ROB with 256 entries. This value varies depending on the application and is always

60

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

less than the size of the ROB, as can be seen in Figure 5.1. Some benchmarks, such as

mcf or sixtrack, have less than 50% of the ROB occupied when the load commits,

while other benchmarks, such as art or mesa, have the ROB almost full. On average,

184 entries out of 256 are occupied when the load commits. Thus, L2 cache misses will

overlap if their ROB distance is less than this measured value1. This approximation works

better than using the ROB size as a constant value.

Figure 5.1: Average ROB occupancy after an L2 miss commits

The real problem is that the ROB is not always the bottleneck for performance. Some-

times issue queues are full with dependent instructions on the missing load, causing fetch

and issue to stall. Thus, it is more representative to use the average ROB occupancy after

an L2 miss to determine if two L2 misses overlap. This value is easily obtained at run-

time with a hardware counter. This intuition is confirmed by the simulations described in

Section 5.4. This improvement decreases the average and maximum errors from 3.34%

and 20.9% (with the memory model by Karkhanis et al. [55]) to an average and maximum

errors of 3.11% and 16.4%, respectively.

5.4 Evaluation Results

In this section we show the accuracy results of OPACU IPC prediction mechanism, as

well as a sensitivity analysis to different processor parameters. In order to evaluate the

accuracy of the IPC predictions obtained with OPACU, we evaluate that mechanism on

a single core superscalar processor. The processor configuration is the same as the one

explained in Chapter 2, but with just one core (see Table 2.1 for further details). Recall

that the configuration has a unified 16-way 1MB L2 cache.

1We consider that this value remains constant when varying the L2 cache size.

61

5.4. EVALUATION RESULTS

We simulated all SPEC CPU 2000 benchmarks with all possible L2 cache sizes (from

1 way to 16 ways assigned to the application) until completion. At the end of each simula-

tion, OPACU predicts the performance of the same application with all the other possible

L2 cache sizes, as described in Section 5.3. For example, when running with 2 ways as-

signed to the application, OPACU predicts the performance for 1, 3, . . . , 16 assigned ways

(the entire IPC curve for that particular application).

Subsequently, we can compare the measured IPC (in a previous simulation) with the

prediction obtained with OPACU. For each IPC prediction, denoted IPCpred,w′ , of a real

IPC, denoted IPCreal,w′ , we measure the relative error as:

rel_error = 100 · |IPCpred,w
′ − IPCreal,w′|

IPCreal,w′

Finally, we compute the arithmetic mean of all the relative errors. Recall that the

arithmetic mean x̄ of L numbers x1, . . . , xL is x̄ = 1
L
·
∑L

i=1 xi.

5.4.1 Accuracy Results

Figure 5.2 shows the average relative error for each SPEC CPU 2000 benchmark. Bench-

marks belonging to the same group (L, S, H) are shown together. Overall, the average

prediction error is 3.1%. It is important to note that average error is consistent across

benchmarks of the same type. On average, L and S benchmarks have lower error than H

benchmarks, reaching a maximum error of 16.4% in case of twolf.

Figure 5.2: OPACU mean relative error for all SPEC CPU 2000 benchmarks

Figure 5.3 shows detailed IPC prediction results for four benchmarks representative

of different error ranges. Each figure shows the IPC curves predicted when running with

62

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

a constant number of active ways (denoted i in the figure). It also shows the measured

real IPC value (denoted real). The closer a predicted IPC curve to the real IPC curve is,

the smaller relative errors are obtained.

(a) gap (0.28% error) (b) gcc (1.78% error)

(c) fma3d (3.95% error) (d) parser (9.83% error)

Figure 5.3: Real and predicted IPC curves for gap, gcc, fma3d and parser

In the case of gap (Figure 5.3(a)), the average prediction error is 0.28%. We can

see that, in this situation, predictions are extremely accurate for any number of assigned

cache ways. Figure 5.3(b) shows the predicted IPC curves for gcc, which has an average

relative error of 1.78%. In this situation, predictions, when running with a low number of

ways, overestimate IPC curves. Figure 5.3(c) shows the predicted IPC curves for fma3d,

which has an average relative error of 3.95%. Here, predictions show small errors consis-

tent for every value of active ways. In all cases, the shape of the curve remains close to

the real one. Finally, Figure 5.3(d) shows predictions for parser, which has an average

relative error of 9.83%. In this situation, predictions are inaccurate for all values of active

ways because the impact of L2 misses is underestimed in IPC predictions. Note that IPC

curves axis are scaled so that prediction errors are easier to see.

With regard to global error per benchmark group, it is significant that all benchmark

groups (H, S and L) have similar relative errors. As a result, we see that H benchmarks

present an average relative error of 5.1%, while S benchmarks present lower errors (3.3%

63

5.4. EVALUATION RESULTS

on average) and L benchmarks have negligible errors (1.1% on average). These results

are intuitive, as benchmarks that are memory bound present more IPC variability and, as

a consequence, predictions are less accurate.

Regarding error per cache size, Figure 5.4 shows the average IPC prediction error

for a given number of assigned ways (denoted Mean). For instance, the average error for

predicting performance with 2-16 ways when running with 1 way is 8%. This figure also

depicts the average error in each of the three groups of benchmarks (H, S and L). When

running with 1 assigned way, the average error in group L is reduced to 2%.

Figure 5.4: Average relative error for groups H, S and L when running with a given
number of assigned ways

Our results show that the average error is higher when running with a very small or

large number of assigned ways. In fact, if we have a number of assigned ways between 4

and 12, the average relative error is under 3%. When running with few assigned ways, the

highest errors are obtained when predicting IPC for configurations with a large number of

assigned ways. The same happens the other way round. This situation is intuitive, since

we are trying to predict the IPC for caches up to 16 times larger or smaller. The figure

shows a peak error for the smallest L2 cache configuration. In this particular case, we

are predicting the performance of a highly associative cache based on results of a 64KB

direct mapped L2 cache and 32K L1 caches. This unusual setup naturally leads to high

prediction errors.

We observed that H benchmarks present less accuracy when they are executing with

just one or two assigned ways. The same happens when S benchmarks are using just one

way. However, this situation is unlikely to happen. On the one hand, in a low power

64

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

scenario that seeks to reduce power by switching off some cache ways without losing

performance, as these benchmarks satisfy w90% > 2, then these benchmarks will have at

least 3 active ways (they would use exactly w90% active ways if the mechanism allowed

only 10% performance degradation). On the other hand, in a CMP scenario with a parti-

tioned cache, S and H benchmarks should always receive 2 or 3 ways to improve overall

performance. To illustrate this point, we have done an experiment in a two core CMP

architecture with configuration 2C (see Section 2.4 for further details). Using a partition-

ing mechanism that minimizes the total number of L2 misses, such as MinMisses [90], S

benchmarks receive more than one way in 92% of the decisions on average, while in the

case of H benchmarks, this happens in 96% of all decisions. H benchmarks receive more

than two ways in 91% of the decisions. Thus, in these situations, the mean IPC prediction

error would be even lower than the reported 3.11%.

With regard to outliers, the highest errors among benchmarks are obtained for parser

and twolf. These benchmarks do not satisfy the approximation that the miss penalty for

an isolated data L2 miss is approximately ∆D. If there are instructions before the L2

miss in the pipeline, the processor can do some useful work while waiting for data to

come from memory. This useful work is not easy to measure and even harder to predict

for different sizes of L2. This observation was also made by Karkhanis et al. [55].

Another source of inaccuracy is the use of a constant value of ROB occupancy after a

data L2 miss commits. It is clear that when the ROB size is the bottleneck, the ROB will

nearly always fill when an L2 miss occurs. This is exactly the case for art, which is the

H benchmark with the fewest errors. Figure 5.5(a) shows the histogram of art’s ROB

occupancy after an L2 miss commits: 60% of the time the ROB is completely full and

96% of the the time there are more than 200 entries occupied in the ROB. However, in the

case of twolf, the ROB occupancy after a data L2 miss commits varies considerably,

and the mean value is less representative of overlaps (see Figure 5.5(b)). Thus, when the

ROB is not the main bottleneck for performance, we obtain higher errors in predictions.

5.4.2 Sensitivity Analysis

In this section, we measure the sensitivity of OPACU methodology to several processor

parameters. We perform six different studies varying a particular processor parameter

while all the other parameters remain constant. The first two parameters are related to the

cache hierarchy, while the last four are related to the analytical model.

First, we examine data and instruction L1 cache size. We vary the L1 cache size

65

5.4. EVALUATION RESULTS

(a) Art (b) Twolf

Figure 5.5: ROB occupancy after a data L2 miss commits for art and twolf

from 16KB to 64KB, while keeping the associativity constant. When the L1 cache size

varies, the number of L2 accesses also varies. Larger L1 caches lead to less L2 accesses.

A new hit to the L1 instruction or data cache would probably be a hit in L2 if the whole

L2 cache is active. However, if just some ways of the L2 are active, this L1 hit could

have been a miss in the L2 due to its low associativity. Thus, it is intuitive that the mean

relative error will decrease with L1 cache size. Figure 5.6(a) depicts the evolution of the

mean relative error depending on the L1 cache size, confirming this intuition.

(a) Average relative error depending on the L1
cache size

(b) Average relative error depending on the la-
tency from L2 to memory

(c) Average relative error depending on the ROB
size

(d) Average relative error depending on the issue
queue size

Figure 5.6: Sensitivity analysis to different processor parameters. Only one parameter is
changed in each experiment, remaining the rest of the processor parameters constant

Second, we measure the sensitivity to the latency from L2 to memory. In this ex-

periment we vary the latency to memory from 100 cycles to 400 cycles, while keeping

66

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

other parameters constant. In this situation, the average relative error increases according

to the latency from L2 to memory. When this latency increases, the contribution of L2

misses to the total CPI becomes more significant and, consequently, the error increases.

Figure 5.6(b) shows the evolution of the mean relative error.

Next, we turn to ROB size. In this study, we vary the ROB size from 128 to 512

entries. Figure 5.6(c) shows that for smaller ROB sizes, the mean relative error decreases,

while the opposite occurs for greater ROB sizes. In our model, we expect the ROB size

to be the main bottleneck after a data L2 miss. When the ROB is larger, there is a greater

chance that the issue queue becomes the bottleneck. Thus, the mean ROB occupancy

after an L2 miss becomes less representative of overlaps. When the ROB is smaller, ROB

occupancy after an L2 miss commits is concentrated around the full ROB size.

Fourthly, we examine issue queues size, and here, we vary the size of the issue queues

from 32 to 64 entries. Although it does not appear directly in the analytical model, it is

clear that smaller issue queues lead to more conflicts, becoming the main bottleneck in-

stead of the ROB. Consequently, we have larger errors in IPC predictions. In Figure 5.6(d)

we can see the evolution of the mean relative error.

With regard to the interaction between branch mispredictions and cache misses,

we observed that in some benchmarks many wrong path instructions are executed (for

example, in twolf, 40% of the fetched instructions are from the wrong path). Thus, we

check the assumption that there is no interaction between L2 misses and branch mispre-

dictions. We ran all SPEC CPU 2000 benchmarks with a perfect branch predictor and the

mean relative errors result in approximately the same values. Hence, this hypothesis is

confirmed to be correct in this environment.

Finally, we examine the interaction between instruction and data cache misses.

We observed that in some benchmarks, the number of instruction misses in the L1 cache

is high (for example, in the case of crafty). It is important to establish whether the

interaction between instruction misses and data misses is accurately modeled or not. To

test this assumption, we considered a configuration with a perfect L1 instruction cache,

and we found that simulations results make no substantial differences in average errors.

Thus, instruction and data misses can be treated separately.

67

5.5. HARDWARE IMPLEMENTATION

5.5 Hardware Implementation

This section introduces a possible implementation of the OPACU mechanism to predict

IPC values. There are two main hardware components: First, we need a set of counters

to establish the number of committed instructions, the number of cycles and the average

ROB occupancy after an L2 miss commits. Second, we need some hardware to track L2

accesses, as previous proposals have already shown [90, 109]. For each cache configura-

tion2 we use specific hardware for three tasks, namely: to determine at run-time if two L2

accesses overlap, to count the number of bursts of overlapped L2 misses, and to predict

IPC values.

Concerning Overlap Counters, for each possible cache configuration, there is a counter

overlapw that counts the number of bursts of overlapped L2 misses. When we have a

miss, we need to know if this miss is overlapped with previous misses. According to our

memory model, instruction L2 misses do not overlap. Thus, bursts are always of only one

miss. In case of an instruction L2 miss with stack distance i, we can directly increase the

counter overlapi. In case of a data L2 miss, we need to know the average ROB occupancy

after an L2 miss commits, in order to establish whether this particular L2 miss overlaps

with previous ones or not. This information can be tracked with a hardware counter de-

noted AROAL2M (Average ROB Occupancy After an L2 Miss commits). This counter

is updated every time a served L2 miss commits. This value can be obtained with some

cycles of latency, as this latency is not crucial because the mean value should not vary too

much in a period.

A Countdown Counter is required for the second task. When a new non-overlapped

L2 miss with stack distance i appears, we set a countdown counter to the value of AROAL2M.

This counter, called cdci, is different for each L2 cache size. Each time an instruction is

committed, we decrease the counters, which saturate to zero. Thus, when a new L2 miss

with stack distance i appears, if cdci 6= 0, then it overlaps with the previous L2 miss.

Notice that we can count committed instructions that are actually prior to the miss. How-

ever, this is not a big problem as the number of prior instructions in the ROB when an L2

miss occurs is normally small [55]. In any case, if we want to check that the committed

instruction is before the data L2 miss, we can add an instruction identifier that is assigned

at fetch time and sorts instructions.

As to the third task, Predicted Cycle Variation Counters are used. We need a

2We work at way granularity. Hence, we have as many configurations as the L2 cache associativity.

68

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

counter for each cache configuration that stores the variation in total miss penalty due

to L2 misses. This counter is denoted PCVw for a cache configuration with w ways.

Two more components need describing. We need a hardware counter that gives the

total number of instructions committed in a fixed period of cycles, denoted Icounter. The

amount of cycles elapsed since we began tracking L2 accesses must be also stored in a

counter denoted Ccounter.

The final component is the Auxiliary Tag Directory (ATD). Normally, caches have

two separate parts that store data and address tags to determine if the access is a hit.

Basically, the prediction mechanism needs to track every L2 access, and store a separate

copy of the L2 tags information in an ATD, coupled with the LRU counters. In a 16-way

associative cache, 4 bits are needed to encode the stack distance. As was described in

Section 3.3, an access with stack distance larger than the cache associativity corresponds

to a cache miss. Thus, the ATD helps to determine whether an L2 access would be a miss

or a hit in the 16 possible cache configurations.

Figure 5.7 sketches a diagram of the hardware implementation described in this sec-

tion. The main contributor to the total hardware cost is the ATD, for which we propose to

use a sampled version, as we did in the previous chapter.

Figure 5.7: Hardware implementation of OPACU prediction mechanism

With regard to the Sampled ATD, instead of monitoring every cache set, we can

decide to track accesses from a reduced number of sets. This idea was also used by

Qureshi et al. [90] in a CMP environment to determine the cache partition that minimizes

the total number of misses using a sampled number of sets. In our work, we use sampling

in a different situation to predict IPC with a sampled number of sets. We define a sampling

distance ds that gives the distance between sampled sets. For example, if ds = 1, we are

69

5.5. HARDWARE IMPLEMENTATION

tracking all the sets in the cache. If ds = 2, we track half of the sets, and so on. Sampling

reduces the size of the ATD at the expense of less accuracy in IPC predictions. In this

situation, some accesses are not tracked and, as a consequence, the information in the

overlap counters is always less than real values.

Figure 5.8 shows the evolution with the sampling distance of the error curves (mean

error and for each benchmark group). Errors are measured on the left y-axis. It is clear

that, for L benchmarks, sampling makes no difference, since their IPC is nearly constant

for any L2 cache size. In S and H benchmarks, however, accuracy degradation is more

important and errors quickly become significant. With a sampling distance of 8 we obtain

average errors around 9%. We think that this is an interesting point of design.

Figure 5.8: Average relative error and hardware cost depending on the sampling distance

Turning to the issue of hardware cost, we suppose a 40-bit physical address space.

Each entry in the ATD needs 29 bits (1 valid bit + 24-bit tag + 4-bit for LRU counter).

Each sampled set has 16 ways, so we have an overhead of 58 bytes for each set. We

also need 16 cdci counters of 1 byte because the ROB has 256 entries. It is necessary an

extra counter of 1 byte for AROAL2M. Next, we need 16 overlapi counters of 4 bytes,

supposing a total of 64 bytes. For the predicted cycles variation stored in PCVw, we

need 16 registers of 4 bytes. Finally, we need two registers of 4 bytes for Icounter and

Ccounter. In that way, the hardware overhead of these circuits can be seen in Figure 5.8

measured on the right y-axis.

Next, with regard to improving accuracy, we evaluated two different methods in

order to further reduce prediction errors. First, as sampling leads to a number of untracked

70

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

accesses, we can scale the counters in the following way:

counterestimated = scaling_factor · counter

However, it is not easy to establish such a scaling factor. It is clear that the number of

misses overlapped by the first L2 miss depends on the size of available L2 cache. For

example, if we have a smaller L2 cache, then we obtain more L2 misses and, as a con-

sequence, bursts of overlapped L2 misses contain more L2 misses. Just to illustrate this

point, in the case of twolf, the miss penalty for an L2 miss goes from 137 cycles to

192 cycles when we have 1 or 16 active ways. Thus, this scaling factor should depend on

the number of ways that we predict, and, furthermore, this value depends on the applica-

tion. As a result of these considerations, we were able to empirically establish the optimal

scaling factor for each sampling distance. These values should be stored in hardware.

Figure 5.9 shows the accuracy in IPC predictions as we increase the sampling distance.

Figure 5.9: Average relative error with optimal scaling factor depending on the sampling
distance

Another option is to combine the sampled ATD with information inside the L2 cache.

If we have w ways active, we can use the LRU counters inside the L2 cache to detect

any access with stack distance less or equal to w. This proposal requires that, on every

L2 hit, the LRU counter of the accessed line can be read. Note that this information is

readable, since it should be sent to the logic that determines which line to evict on an L2

miss. Thus, we only have to drive this information outside the L2 cache, which should

not involve many changes in the cache design. With this information, we can check if

the access overlaps with previous accesses. In contrast, the sampled ATD gives misses

71

5.6. RELATED WORK

information for larger caches configurations. In this situation, IPC estimations are more

accurate, as can be seen in Figure 5.10, and we manage to obtain average errors of under

5%. An interesting point of design is obtained with a sampling distance of 16, where we

obtain average errors of around 4%.

Figure 5.10: Average relative error using information inside the L2 cache and depending
on the sampling distance

5.6 Related Work

Many papers focus on predicting the IPC of applications. Some papers seek to reduce

the time complexity of design space explorations, while other studies focus on reducing

simulation time by selecting a representative small trace of an application [37, 100, 114].

A different approach consists of sampling design space points to train artificial neural

networks that predict performance in the whole design space with high accuracy [35, 57,

116]. However, our proposal lies in a different scenario, as it is a run-time mechanism.

Another approach is to predict IPC at run-time [28]. The authors analyze IPC in a window

of time together with information obtained at compile time, and predict the future value

of IPC. The main difference is that the processor configuration remains constant in IPC

predictions.

Regarding reconfigurable hardware for single-threaded processors, several proposals

try to reduce power consumption without losing too much performance. Dhodapkar et

al. [33] make use of working set signatures to represent program instruction working

sets and to find out the minimal instruction cache size necessary in order to minimize

72

CHAPTER 5. ONLINE PREDICTION OF APPLICATIONS CACHE UTILITY

instruction misses (data misses are not treated). Albonesi [4] introduces selective cache

ways. These caches just precharge lines in active ways. This study is expanded in a

subsequent paper [12], where some algorithms are given to dynamically decide to switch

on/off cache ways. However, they are unable to ensure a quality of service (QoS) as they

are using indirect measures of IPC. For example, they report a maximum IPC reduction of

52%. Kaxiras et al. [56] propose using cache decay to dynamically switch off a cache line

when it is highly probable that it will not be accessed again. This occurs after a constant

number of cycles or other more agressive variants of this approach. Kobayashi et al. [60]

present a run-time decision algorithm for activating or deactivating cache lines based on

the number of accesses to the LRU and MRU active lines. Bahar et al. [11] dynamically

modify the issue width and the number of execution units depending on the present IPC.

When the IPC is under a given threshold, then issue width is decreased. Other authors

make use of hints given by the compiler to dynamically adjust the issue width to the

requirements of an application [54]. In this scenario, none of the proposals can estimate

performance degradation, since they depend on empirical thresholds and heuristics related

to indirect measures of performance. Our proposal gives the opportunity to bound these

losses.

5.7 Summary

In this chapter we have presented a run-time mechanism that accurately predicts IPC

as L2 cache size varies. We have shown average errors of 3.11% with predictions that

accurately follow the shape of the real IPC curve. To obtain these results, we modified

previous memory models to obtain higher accuracy in predictions. We have also discussed

a practical implementation that has an extra cost in area between 5.68% of the L2 cache

size (best accuracy) and under 0.4% (for a 4% error). Hardware cost is reduced using a

sampling technique to the monitoring logic.

Our mechanism can be used to reduce power consumption in single-threaded architec-

tures as it can be used to give the real contribution of each way to the final IPC and bound

performance losses. A second possible application is to improve performance in multi-

threaded architectures that dynamically partition shared L2 caches. OPACU gives direct

estimations of performance for different cache configurations, instead of other indirect

measures of performance that are currently used to maximize total throughput.

73

5.7. SUMMARY

74

Chapter 6

FlexDCP: a QoS framework for CMP
architectures

Current multicore architectures offer high throughput by increasing hardware resource

utilization. As the number of cores in a chip multiprocessor (CMP) increases, provid-

ing Quality of Service (QoS) to applications in addition to throughput is becoming an

important problem.

In this chapter we present FlexDCP, a framework that allows the Operating System

(OS) to guarantee a QoS for each application running in a CMP. FlexDCP directly esti-

mates the performance of applications for different cache configurations instead of using

indirect measures of performance, such as the number of misses. These predictions are

obtained using the OPACU methodology, explained above in Chapter 5. This information

allows the OS to convert QoS requirements into resource assignments. Consequently, it

offers more flexibility to the OS as it can optimize different QoS metrics, such as per-

application performance, or global performance metrics, such as fairness, weighted speed

up or throughput.

Our results show that FlexDCP is able to force applications in a workload to run at a

certain percentage of their maximum performance in 94% of the cases considered, being

on average 1.48% under the objective for remaining cases. When optimizing a global QoS

metric, such as fairness, FlexDCP consistently outperforms traditional eviction policies

such as LRU, pseudo LRU and previous dynamic cache partitioning (DCP) proposals for

two-, four- and eight-core configurations. In an eight-core architecture FlexDCP obtains

a fairness improvement of 10.1% over Fair, the best policy in the literature optimizing

fairness.

75

6.1. INTRODUCTION

6.1 Introduction

The current collaboration between the OS and multithreaded architectures is inherited

from the traditional collaboration between the OS and multiprocessors: The OS perceives

the different cores in a chip multiprocessor (CMP) [45] and the hardware contexts in a

simultaneous multithreading architecture (SMT) [98, 110] as multiple, independent, vir-

tual processors. Thus, the OS is not aware of the resource sharing problem and schedules

threads onto what it regards as independent processing units. However, in multithreaded

architectures the number of instructions executed by a thread depends on the activity of

the co-scheduled threads. If no explicit control over shared resources is exercised, the

performance of applications becomes unpredictable. Several studies [23, 81] have shown

that in both SMTs and CMPs the performance of a task heavily depends on the workload1

it is executed in. To deal with this performance variability problem, the OS should be

able to exercise more control over how threads share the internal resources of the proces-

sor. More interaction is needed between the architecture and the OS to allow the latter to

provide some Quality of Service (QoS) to applications [83].

General-purpose computing is moving off desktops onto diverse devices such as cell

phones, digital entertainment centers, and data center servers. The interaction between

the OS and the architecture must be flexible enough to cover different scenarios where

the concept of QoS has different meanings. For instance, in a high throughput server

scenario the target to maximize is system performance or overall QoS [58, 90, 92], which

can be measured with metrics such as fairness, weighted speed up or throughput. In other

scenarios, such as multimedia and real-time systems, per-application or individual QoS

is required [43, 52, 82]. Finally, there are intermediate situations, such as soft real-time

systems with hybrid QoS requirements, where some applications need an individual QoS

and the remaining ones need a global QoS [43]. Hence, providing QoS to a wide range of

scenarios is an important challenge for future multicore architectures.

Recently, Nesbit et al. [83] have proposed an abstract, generic framework for future

many-core architectures that allows the OS to explicitly manage resource allocation. This

framework incorporates features from previous QoS frameworks and provides a general

approach to build new interfaces between the OS and the architecture. In Chapter 8, we

will discuss in detail the specifications of such frameworks for future CMPs with hundreds

of cores. Figure 6.1 shows the main components of this framework.

1A workload is a set of processes running simultaneously on the CMP.

76

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

Figure 6.1: Generic framework to manage shared resources in a CMP architecture

1 Policies: they are implemented primarily in software. Policies should translate ap-

plication and system objectives into resource assignments, thereby managing sys-

tem resources.

2 Enforcement mechanisms: they securely multiplex, arbitrate, or otherwise dis-

tribute hardware resources in order to satisfy the resource assignments. Their main

task is to make sure that each thread receives the amount of resources established

by the policies.

3 Feedback mechanisms: they inform the software about the global resource usage,

which can be used by the OS to find a new resource assignment to accomplish

within the QoS requirements of the running applications.

A common characteristic of all previous OS/architecture interface proposals [43, 52,

82] is that they have not addressed one of the key points of this approach, namely: convert-

ing a given QoS target by applications into a resource assignment [83]. For example, let

us assume that a given task has to be executed before a deadline d. None of the proposed

interfaces provides the user with a method of converting this high-level QoS requirements

into a resource assignment for this task in such a way that it meets the deadline d. The

OS/architecture interfaces proposed to date assume that either the applications will be

77

6.1. INTRODUCTION

able to specify a target usage of each shared resource, or that the OS will somehow know

the way to convert performance targets into resource assignments. The former situation

is not possible in most cases, since applications are normally architecture-independent.

Hence, the developer cannot provide the exact amount of resources that an application

will require to obtain a target performance. In the latter situation, the OS job scheduling

has to be architecture independent to be portable between different architectures. With

current OS/architecture interface proposals, the user establishes a given initial resource

partition for the task. At the end of each time quantum, the OS checks whether the task

can accomplish its QoS objective with this resource partition, increasing the amount of

resources given to it if this is not the case. This iterative process can take a long time, and,

as applications may change their behavior, this process has to be repeated frequently. As

a consequence, applications are constantly executed in a sub-optimal resource partition.

In this chapter, we propose FlexDCP, a flexible framework that represents the first

implementation of a complete QoS framework. On the one hand, we propose an effective

feedback mechanism that makes it possible to translate QoS requirements from the user

into a hardware resource assignment in a single step. FlexDCP is the first framework to

do this. On the other hand, FlexDCP supports all kinds of QoS requirements in CMP

architectures with a shared cache. FlexDCP can optimize any target metric related to

IPC, leading to the best performance results for at least three different targets (ensuring

an individual QoS level, fairness and throughput). This flexibility is not possible with

previous proposals, which either focus on improving a particular metric, or cannot ensure

a target individual QoS level.

In the FlexDCP framework, the architecture provides the OS with the performance of

running applications under the current cache assignment, as current performance coun-

ters do. In addition, FlexDCP uses additional hardware that provides the OS with the

performance that the running applications would have with all other possible cache size

assignments. By reading this information, the OS can compute the performance degra-

dation or improvement of each application when moving to another cache configuration.

This allows the OS to translate QoS requirements into resource assignment, without pro-

filing the application or forcing the OS to know the internal details of the architecture,

making it totally architecture independent. Nor are application developers required to

specify the exact amount of resources that their applications must use, which makes our

solution closer to more realistic scenarios.

78

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

The main contributions of this chapter are the following:

1) Flexibility: We propose a feedback mechanism that predicts the performance

of running applications under cache partitions which are different to the current one.

FlexDCP can maximize overall QoS metrics, such as harmonic mean of relative IPCs 2,

weighted speed up, or throughput, or ensure an individual QoS metric. Previous proposals

do not offer this flexibility.

- Individual QoS: In contrast to previous work, FlexDCP allows jobs to run at a certain

percentage of their maximum speed, regardless of the workload in which these jobs are

executed. Our results, in a CMP scenario with a shared L2 cache, show that FlexDCP,

working with the target IPC, successfully accomplishes its task in 94% of the cases con-

sidered, reaching an IPC that is 1.48% lower than the objective IPC in the remaining 6%

of the cases.

- Global QoS/Scalability: Our results show that previous proposals based on indirect

metrics of performance provide diminishing returns as the number of cores sharing the L2

cache increases. FlexDCP obtains sustained throughput and fairness improvements over

LRU and previous proposals on the two-, four- and eight-core architecture setups used in

this chapter. In the eight-core architecture, FlexDCP obtains a fairness improvement of

10.1% over Fair, the best policy in the literature on optimizing fairnes. When optimizing

throughput, FlexDCP obtains improvements of 11% on average over MinMisses, the best

policy in the literature on improving throughput.

2) Granularity Analysis: In this chapter we show that the time granularity at which

the resource assignment decisions are taken has a significant impact on performance.

Wrong decisions are very costly with a coarse time granularity. At the same time, making

resource assignment decisions too frequently also affects overall performance. In this

chapter, we give a complete analysis of how to tune this decision period in order to obtain

the highest performance.

The rest of this chapter is structured as follows. Section 6.2 presents our new frame-

work that ensures both individual and global QoS. In Section 6.3 simulation results are

discussed. Section 6.4 introduces the related work, and, finally, Section 6.5 summarizes

our results.

2The relative IPC of a thread is the ratio of its IPC when it runs in a workload with respect to its IPC
when it runs in isolation using all resources.

79

6.2. FLEXDCP QOS FRAMEWORK

6.2 FlexDCP QoS Framework

FlexDCP is a framework that allows the OS to guarantee a QoS for each application in

a CMP architecture with a shared last level cache (LLC) on-chip. FlexDCP provides

the OS with the necessary information to convert user’s QoS requirements into resource

allocation. In particular, FlexDCP focuses on the shared caches as one of the main sources

of interaction between threads in CMP architectures. The architecture provides the OS

with the performance of running applications under the current L2 cache assignment3,

as current performance counters do, and the performance that the running applications

would have with all other possible cache size assignments. With this information the

OS can compute the performance degradation or improvement of each application when

moving from the current cache allocation, currentCA, to a new cache allocation, newCA,

simply by computing: execution_time_reduction = IPCcurrentCA

IPCnewCA
. Given that the IPC

values are provided by the architecture and the OS works with the ratio between them, the

OS does not need to know the internal details of the architecture, making it architecture

independent.

(a) Framework overview (b) Interface between the OS and the architecture

Figure 6.2: FlexDCP: a QoS framework for CMP architectures with a shared LLC

Figure 6.2(a) describes the FlexDCP QoS framework. First, developers or users deter-

mine the target performance of the application and the QoS metric to optimize. In some
3We assume a shared L2 cache as the LLC in our baseline CMP architecture

80

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

scenarios, such as multimedia or real-time applications, different instances of the same

application have approximately the same performance [49]. Thus, the user knows before-

hand the full speed of the application and can provide it to our framework. The individual

target performance determines the minimum performance that the application requires,

while the QoS metric determines what to do with unassigned resources. If no individ-

ual target performance is specified, the QoS metric will guide resource assignments. For

example, fairness or throughput might be optimized.

Next, the OS schedules applications according to their QoS necessities. In our exper-

iments we assume that the workload has already been chosen by the OS. When different

applications start executing in the CMP architecture, an initial partition of the shared L2

cache is decided. If the OS has no prior knowledge of the applications, resources are

evenly partitioned among threads. Thus, it assigns Associativity
Number of Cores

ways of the shared L2

cache to each thread. If the OS already has prior knowledge of the applications, it can

decide the initial partition based on that information.

Next, dedicated hardware estimates the performance of the application running in each

core with all other possible cache allocations. We denote these performance estimations

Performance Projections. This hardware mechanism is detailed in Chapter 5. Each thread

stores its performance projections in a set of registers visible to the OS. We call these

registers Performance Projection Registers (PPR). For a K-way associative cache, there

are K 32-bit PPRs (Figure 6.2(b), Step 1).

After this estimation period, the OS analyzes the values of the PPRs of each core

(Figure 6.2(b), Step 2). Using this information, the OS decides a new partition for the

next period (Figure 6.2(b), Step 3). We assume that performance in the current measuring

period is representative of the performance of the next period. Thus, the optimal partition

for the last period will be chosen for the following period. FlexDCP assigns to each thread

the required cache quota necessary to satisfy its individual QoS requirements4. Then, the

remaining resources are assigned among all threads according to the overall QoS metric.

The optimal partition is determined using EvalAll algorithm, explained in Section 3.5

for all the dynamic mechanisms studied in this chapter. We take into account this time

overhead when reporting performance results.

Finally, cache partitions are implemented at a way granularity with column caching [29],

which uses a mask that marks the cache ways (or columns) reserved for each thread. When

a thread experiences an L2 miss, the evicted line is the LRU line among the lines owned

4We ensure at least one reserved way in the L2 cache for each application.

81

6.2. FLEXDCP QOS FRAMEWORK

by that thread. When the OS decides the cache quota per thread, it writes the correspond-

ing bit masks (BM) (Figure 6.2(b), Step 3). Each BM contains a bit per cache way and

there is a BM per thread. If the i-th bit of the mask of a thread is set, the thread owns

that way. Running threads can read from all cache lines and, consequently, correctness is

ensured when updating bit masks [29]. Other authors have used more flexible implemen-

tations, such as Augmented LRU [108]. However, its hardware cost is considerable, as a

counter per thread and set is needed. Thus, in this chapter we use column caching.

The following section argues for the use of direct estimations of performance as the

adequate metric to decide L2 cache partitions. Next, Section 6.2.2 describes a case study

that exemplifies that cache partitioning algorithms driven by the number of L2 misses may

obtain suboptimal partitions in terms of performance. Finally, Section 6.2.3 discusses the

adequate granularity of cache quota decisions.

6.2.1 Direct Vs Indirect Performance Metrics

A common characteristic of previous DCP proposals is that they decide new cache parti-

tions using indirect indicators of performance, mainly the number of L2 misses [29, 58,

90, 99, 108]. However, the effect of L2 misses on performance varies depending on the

application and even on the particular phase of the application.

To illustrate this point, Table 6.1 shows the variation in performance and the number

of misses for some benchmarks from the SPEC CPU 2000 suite, as we vary the number

of active ways, w. For this experiment, we simulate a single-threaded architecture with

a 16-way associativity 1MB L2 cache (see Chapter 2 for more details). The remaining

16 − w ways are simply switched off. For example, observe that when we move from

7 to 16 active ways, facerec reduces its number of L2 misses by 40%. Analogously,

equake reduces misses by 40% when it moves from 1 to 4 ways. However, the effect on

performance is different: the IPC of facerec increases by 25% while the performance

of equake only increases by 9%. In contrast, we observe similar variation in perfor-

mance for vpr and equake and the reduction in misses is different (16% and 40%).

This different impact on performance can also be observed in the case of crafty.

Translating IPC into resource assignment has been identified as a challenging prob-

lem [43, 83]. It has also been shown to be a key element in future multicore systems in

order to improve the interaction between the OS and the architecture [83]. A solution

to this problem consists of using the average miss penalty of L2 misses in the current

L2 cache configuration and assuming that it is constant for other configurations [115].

82

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

Table 6.1: Variability of the impact on performance of L2 cache misses
Benchmark Ways Misses IPC Benchmark Ways Misses IPC

crafty config. 1 10 31K 1.689 equake config. 1 1 10M 0.245
config. 2 14 21K 1.707 config. 2 4 6M 0.266
variation +4 −32% +1.1% variation +3 −40% +8.6%

facerec config. 1 7 2M 0.924 vpr config. 1 15 714K 0.88
config. 2 16 1.2M 1.16 config. 2 16 600K 0.966
variation +9 −40% +25.5% variation +1 −16% +9.7%

Figure 6.3 shows the average miss penalty of L2 data misses when we vary the number

of active ways of the L2 cache from 1 to 16 for three different benchmarks. This miss

penalty significantly varies among L2 cache configurations because the clustering level

of the L2 misses changes for different cache sizes: an isolated L2 miss has approximately

the same miss penalty as a cluster of L2 misses, if they all fit in the reorder buffer (ROB)

and thus can be served in parallel [55].

Figure 6.3: Average L2 miss penalty for apsi, gzip and vpr with three different L2
cache configurations

As an alternative, we propose a mechanism that estimates this miss penalty at run-

time by using analytic models for superscalar processor performance. This mechanism is

based on OPACU methodology [77] and allows us to predict IPC at run-time for different

L2 cache configurations without running all these configurations. Chapter 5 describes

OPACU methodology in detail.

83

6.2. FLEXDCP QOS FRAMEWORK

6.2.2 Case Study: swim and vpr

We saw in Chapter 3 that SDHs can give optimal partition in terms of total L2 misses.

However, minimizing the total number of L2 misses is not the goal of dynamic parti-

tioning algorithms. Normally, other IPC-related metrics, such as fairness or throughput,

are the true target of these policies. The underlying idea of MinMisses is that while we

minimize total L2 misses, we are also increasing throughput. This idea is intuitive, since

performance is clearly related to L2 miss rates. However, this heuristic can lead to sub-

optimal partitions in terms of throughput or fairness, as can be seen in the case study

discussed below.

Figure 6.4 shows the IPC curves of benchmarks vpr and swim as the L2 cache size is

increased at a way granularity (measured on the left y-axis). We also show the number of

misses of each application in the last interval of time for any possible cache configuration,

measured on the right y-axis. We focus this study on a two-core CMP architecture with

a 1MB 16-way L2 cache (see Chapter 2 for more details). The optimal partition when

maximizing throughput consists of assigning 15 ways to vpr and 1 to swim5, obtaining

a total IPC throughput of 1.22 instructions per cycle. However, the MinMisses algorithm

determines a new partition assigning 13 ways to vpr and 3 to swim according to the

SDHs values.

Figure 6.4: SDHs and IPC curves for swim and vpr

In this situation, misses in swim are less important in terms of performance than

5Remind that at least one way must be assigned to each thread

84

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

misses in vpr. Furthermore, vpr can reach a larger IPC than swim. As a consequence,

MinMisses obtains a suboptimal partition in terms of IPC and its throughput is 1.1 in-

structions per cycle, which is 7.7% smaller than the optimal one. If we use the OPACU

mechanism to predict IPC values, we can determine exactly what the optimal partition

will be in terms of throughput. In this way, our approach assigns two extra ways to vpr,

reaching the optimal partition.

6.2.3 Granularity of Cache Quota Decisions

The frequency of cache partitioning decisions directly impacts the performance improve-

ment obtained by the mechanism. In this section we show three possible implementations,

depending on the desired granularity of decisions. Figure 6.5 shows these three possible

alternatives.

Figure 6.5: Partitioning granularities in a two-core architecture

1) Hardware granularity. The decision logic used to decide new partitions can be

implemented in hardware [52]. With this solution, the OS specifies the desired target

performance at the time slice boundary and the hardware decides new L2 cache partitions

at a smaller time granularity. Consequently, this solution provides a quick response time

to phase changes. If there is no time overhead in deciding new partitions, the hardware

solution is the best one. However, as the number of cores and L2 associativity increase,

the time overhead of making a new decision also increases. As a consequence, deciding

new partitions too frequently can negate the performance benefits. Furthermore, it is

difficult to implement a flexible decision algorithm with different metrics to optimize

with complexity-effective hardware.

2) Interrupt granularity. The second option consists of programming a periodic in-

terrupt to decide new L2 cache partitions [92]. With this option, the frequency of partition

85

6.2. FLEXDCP QOS FRAMEWORK

decisions can be chosen, but we have to pay the overhead of interrupting the application

and executing the interrupt handler. Thus, we have lower hardware complexity than the

hardware solution and a higher time overhead as decisions are made in software. With

this solution, the time overhead can become a problem as interrupt handlers must not take

long: while the interrupt is running, other interrupts are inhibited and might be lost, which

can be a critical problem. Instead of adding the decision algorithm inside the interruption

handler, we propose using a microcode piece of code that is in charge of deciding the

new partition. This solution assures that no other interrupts are lost. The idea is similar

to millicode [46] or co-designed virtual machines [104], which have a concealed mem-

ory reserved in main memory at boot time and the conventional applications are never

informed of its existence. The OS can program this concealed memory, which gives more

flexibility to the framework. We modify the timer interrupt to invoke this microcode when

an OS tick occurs. The code that resides in the concealed memory can take control of the

hardware and decide new L2 cache partitions. Algorithm 6 shows the different actions

performed when an OS tick occurs [20].

Algorithm 6: Timer interrupt pseudo code
1- Save architecture state.;
2- Call scheduler_ticks();
begin

2.1- Update counters and statistics;
2.2- Check if there are ready threads with higher priority ;
2.3- Decrement quantum of time and check if the quantum has expired;
2.4- Balance load between different task queues.;

end
3- Invoke microcode to decide L2 cache partition;
4- Restore architecture state ;

3) OS quantum granularity. Finally, L2 cache partitions can be decided at time

slice boundaries [108]. In this case, the OS already interrupts the application, reducing

the time overhead of the solution. However, the frequency of decisions might be too

coarse to adapt to phase changes. In Linux 2.6, the timer interrupt can be configured to

different periods: 1ms, 3.33ms, 4ms (default) and 10ms. The time slice duration depends

on the thread priority and is between 5ms and 800ms (100ms by default) [20]. At a

frequency of 2GHz, this corresponds to a range from 2 to 20 million cycles for the timer

interrupt (8 million by default), and a range from 10 to 1600 million cycles for the time

slice (200 million by default). If deciding cache partitions in every OS tick becomes too

86

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

expensive, decisions can be made when the OS schedules threads. Thus, we have to make

performance projections visible to the scheduler. We propose storing these projections

in the task struct, which stores information of all processes alive in the system. With

these performance projections, the scheduler can restore the values of the performance

registers in a previous time slice. This idea prevents wrong L2 cache partition decisions

when a new thread is scheduled. Finally, the microcode is invoked to decide the new

cache partition.

The optimal granularity at which a policy decides new cache quotas depends on the

application under consideration and also on the time overhead of making a new decision.

Instead of deciding new cache partitions evaluating all possible combinations and choos-

ing the one that optimizes a given metric (exhaustive search), we implement an algorithm

that uses dynamic programming techniques to reduce the time overhead of deciding new

partitions [32]. This algorithm is explained in detail in Section 3.5. Finding the opti-

mal partition for just two cores is straightforward as we have to check just K partitions.

Thus, we can compute the optimal number of misses when w ways are assigned to these

two threads, misses(w), in w steps. This function is independent of the other threads,

allowing us to build this curve in parallel with the other thread pairings. Next, the same

algorithm is repeated for the new histograms of misses. For each pairing, the complexity

of the algorithm is O(K2/2), which is repeated N
2

+ N
4

+ . . . + 1 = N − 1 times. This

algorithm is described in detail in Section 3.5 (see Algorithm 4).

Using the PIN instrumentation framework [67], we measured the number of dynamic

instructions executed by this algorithm when no individual QoS is specified (worst-case

scenario). We evaluated different numbers of cores (2, 4 and 8) and associativities (16,

24 and 32). With a 16-way cache, the number of executed instructions is less than 5,000,

while for a 32-way cache this number increases to less than 20,000 instructions. This

algorithm only reads the PPRs and decides L2 cache quotas. Hence, no data cache miss is

caused. The number of static instructions is between 50 and 100, causing little pollution

in the instruction cache. In the case of current CMP architectures with up to 8 cores, the

time overhead of this algorithm is less than 5,000 cycles (assuming an IPC of 1 instruction

per cycle).

Next, Table 6.2 reports the performance improvements over LRU in a four-core archi-

tecture with a 1MB 16-way L2 cache when optimizing for throughput. The CMP con-

figuration and workloads are detailed in Chapter 2. First, we give the ideal performance

improvement when no time overhead is considered to make new cache decisions (see col-

87

6.2. FLEXDCP QOS FRAMEWORK

Table 6.2: Performance improvement over LRU in a 4-core CMP with a time overhead of
5,000 cycles

Granularity Decision Overhead Maximum performance Real performance
period improvement improvement

Hardware 100K 5% 10.95% 5.67%
500K 1% 10.65% 9.54%

Interrupt 1M 0.5% 10.53% 9.98%
5M 0.1% 10.15% 10.04%

Scheduler 50M 0.01% 8.51% 8.499%
100M 0.005% 8.00% 7.99%

umn 4 in Table 6.2). Next, we evaluate two possible decision periods corresponding to

the three possible implementations of our framework. We consider 100 and 500 thousand

cycles for the hardware solution, 1 and 5 million cycles for the interrupt solution, and 50

and 100 million cycles when deciding partitions at the scheduler granularity.

On the one hand, wrong decisions are very costly, mainly with high granularities. On

the other hand, making decisions too frequently also affects overall performance. On av-

erage, using the interrupt solution provides the highest improvement. For that reason, we

propose using this granularity and deciding cache partitions every 5 million cycles. Even

with a configuration with 8 cores and a shared 32-way associative cache, the overhead

is under 0.4% with this granularity. In this chapter, we consider the time overhead of

deciding new cache partitions when reporting results.

6.2.4 Scalability of FlexDCP

Currently there are processors with 32- and 64-way associative caches: Niagara T2 (32-

way [111]), AMD Barcelona (32-way L3) or ARM920T (64-way [8]). Furthermore, in

future manycore architectures, we do not expect to have dozens of cores directly sharing

the same cache, due to limitations on bandwidth and the capacity of the cache. The cores

will be clustered in reduced groups of cores sharing a cache. Hence, we believe that our

mechanism will work well with manycore architectures.

As the number of cores increases, the time overhead of evaluating all possible par-

titions also grows. Previous work has proposed several heuristics to determine partition

candidates with low time overhead and without losing performance [90, 108]. In this

chapter we make us of the dynamic programming algorithm explained in Section 3.5,

which drastically reduces the time overhead of evaluating all possible partitions. Further

reducing this overhead is part of our future work.

88

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

6.3 Evaluation Results

In this chapter we focus on a CMP with two, four and eight cores. We make use of

the simulation infrastructure described in Chapter 2, with configurations 2C (2 cores and

1MB 16-way L2), 4C-1 (4 cores and 1MB 16-way L2), 4C-2 (4 cores and 2MB 32-way

L2) and 8C-2 (8 cores and 2MB 32-way L2).

6.3.1 Ensuring an Individual Quality of Service

In scenarios such as real-time systems, we need to offer an individual QoS for each ap-

plication. We use the relative IPC to measure individual QoS, which is computed as
IPCCMP

IPCalone
. Thanks to the flexibility of the FlexDCP framework, we are able to control

the performance of an individual application when executed with other applications. Our

framework allows the OS to run jobs at a certain percentage of their maximum speed,

regardless of the workload in which these jobs are executed and without dedicating all

shared resources to them. Thus, non-time-critical jobs can also make significant progress,

without significantly compromising overall performance.

To evaluate the individual QoS results of our proposal, we generate workloads con-

taining four SPEC CPU 2000 benchmarks. One of these benchmarks is a High Priority

Thread (HPT). Our objective is to force the HPT to run at a given target percentage of its

full speed (IPC when it runs alone in the architecture). This full speed is estimated with

the run-time mechanism to predict performance, which cannot be estimated in previous

proposals. The HPT runs together with other Low Priority Threads (LPTs) which makes

it difficult to ensure performance isolation of the HPT.

For this experiment we use a worst-case scenario. We select 5 benchmarks as HPT

(ammp, art, mgrid, parser and vpr) that require many ways to achieve their max-

imum IPC (large w90% value). For benchmarks with low cache requirements, it is less

challenging to attain the target IPC. We use the 4C-2 configuration, since as the num-

ber of LPTs is high it is more difficult to ensure the target IPC for the HPT. As LPTs

we generate 3 groups of threads: we form the H group with cache hungry applications

(apsi+facerec+galgel), the S group with applications with small working sets

(crafty+gzip+vortex) and the L group with applications that do not benefit from

more cache space (equake+mesa+mcf).

Figure 6.6 shows the relative IPC of the HPT for the different workloads and different

target percentages. On the x-axis, the target percentage of the full speed of the HPT is

89

6.3. EVALUATION RESULTS

Figure 6.6: Predictable performance in the 4C-2 configuration

given, ranging from 20 to 90 percent. For each HPT and type of the LPTs, we give the

achieved relative IPC for the HPT (measured on the y-axis). For example, the first bar

corresponds to ammp when mixed with the H group apsi+facerec+galgel. The

target relative IPC is 20% and we reach 32%. Note that the number of assigned ways

is discrete and, as a consequence, we cannot always force an exact target IPC. Instead,

our mechanism assigns to the HPT the minimum number of ways needed to be above

the target IPC, which still ensures the target IPC for the HPT. Some benchmarks already

exceed the target IPC with just one reserved way in the L2 cache. This is the case of

mgrid that runs at 69% of its full speed with 1 way. Note that, over the entire range

of different workloads and target percentages, the achieved IPC follows the trend of the

target IPC.

If we consider that we accomplish the target IPC for the HPT when we obtain an IPC

with a margin of error of 5%, then we have a success rate of 89.3%, parser being the

only benchmark that does not succeed in some cases (the success rate is 47%, due to its

poor prediction accuracy). We also observe that when the LPTs have high cache require-

ments (type H), it is more difficult for the HPT to obtain its target IPC than when LPTs

are type L or S. When the target performance is not achieved, the HPT is, on average,

6.38% under the objective IPC.

Two main reasons explain why some HPTs are below their target performance. First,

the OPACU methodology shows low accuracy in IPC predictions for some benchmarks

like parser, which has an IPC prediction error of 9.8%. Thus, the predicted full speed

IPC can differ from the real one. Our mechanism assigns to the HPT the minimum number

90

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

Figure 6.7: Predictable performance in the 4C-1 configuration when the target IPC is
specified beforehand

of ways needed to reach the target IPC, which is computed as a given percentage of the

predicted full speed IPC. If this prediction is inaccurate, the decision can be wrong. To

solve this problem, the accuracy of the OPACU methodology must be improved. The

second reason why some HPTs are below target is related to the shared bandwidth to

access the different L2 cache banks. In some situations the number of ways assigned to

the HPT is enough to reach the target IPC (the decision is correct), but bus contention

is too high and performance drops. We could use a bandwidth arbiter to overcome this

situation and reserve a fraction of bandwidth to the HPT [80, 82].

Figure 6.7 shows the results of FlexDCP when the full speed of the HPT is known

beforehand. This performance could be given by the user or obtained with an improved

version of the OPACU run-time mechanism. Also, it has been shown [49] that multime-

dia applications have approximately the same performance for different instances of the

same application. Thus, in multimedia applications the user knows the full speed of the

application beforehand, and can provide it to our framework.

We evaluate a four-core architecture with a 1MB 16-way L2 cache. As in the previous

experiment, some benchmarks already exceed their target IPC with just one reserved way

(art reaches 76% of its full speed with one way). Here, FlexDCP achieves the target IPC

94% of the time and the obtained IPC is much closer to the target IPC. For the remaining

6% of the time, our framework is 1.48% under the target IPC on average. We note that

vpr and ammp cannot reach 90% of their maximum performance because they need more

than 13 ways and we are assuming that each application has at least one reserved way of

the L2 cache (that is, there are not enough resources in the architecture).

91

6.3. EVALUATION RESULTS

6.3.2 Ensuring a Global Quality of Service

In this section we evaluate the performance of FlexDCP when optimizing an overall QoS

metric. We compare our proposal with the best state-of-the-art dynamic cache partitioning

(DCP) mechanisms, namely: MinMisses [90], which is the best policy in the literature on

improving throughput, and Fair [58], which is the best policy in the literature on improv-

ing fairness. MinMisses estimates the number of misses of each running application for

all cache configurations and selects the L2 cache partition that minimizes the total num-

ber of misses. Instead of minimizing the total number of misses, Fair forces all threads

to have the same increase in percentage of L2 misses, trying to equalize the statistic

Xi =
missessharedi

missesalonei
of each thread i. Section 3.4 describes these algorithms in detail.

With regard to optimizing fairness, by using predicted IPCs, we can decide to max-

imize any global QoS metric related to IPC. A relevant goal in some environments such

as high performance servers is to have fairness among threads. Several metrics have been

used to measure fairness, such as weighted speed up, or the harmonic mean of relative

IPCs. In this chapter, we show results for the latter, since it has been shown to provide

better fairness-throughput balance than weighted speed up [68]. In any case, our results

for weighted speed up follow the same trends than for harmonic mean. We compute the

relative IPC as IPCCMP

IPCalone
. We denote our proposal FlexDCP-MaxFair as we maximize

fairness. We compare our proposal with LRU, MinMisses, Fair and FlexDCP-MaxIPC.

To evaluate our proposals, we randomly generate 16 workloads belonging to each case

for the four selected configurations6 (48 workloads per configuration). Average improve-

ments consider the distribution of workloads among the three groups. We denote this

mean weighted mean, as we assign a weight to the speed up of each case depending on

the distribution of workloads from Table 2.6. For example, for the 2C configuration, we

compute the weighted mean improvement as 0.48 · x1 + 0.41 · x2 + 0.11 · x3, where xi is

the average improvement in Case i.

Figure 6.8 shows the average Hmean improvement of all policies over LRU for the

four configurations. We observe that for all processor/cache setups, FlexDCP-MaxFair

outperforms the other proposals on average. For the 4-core configurations, FlexDCP-

MaxFair outperforms Fair by 3.5% and MinMisses by 6.5%. It is interesting to note that

as the number of cores and cache size increase, the Hmean improvement of FlexDCP-

MaxFair over previous proposals also increases, outperforming Fair by 10.1%, and Min-

Misses by 10.3% on average in the largest configuration (8C-2).

6Except Case 1 in configuration 8C-2, as only one workload belongs to this group.

92

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

Figure 6.8: Hmean speed up over LRU when optimizing different QoS metrics

All algorithms have similar results in Case 1. This is intuitive, since in this situation

there is little room for improvement as all threads fit in cache. In Case 2, FlexDCP-

MaxFair improves previous approaches by between 8.2% and 15.2%. As the number of

cores increases, MinMisses and Fair find it more difficult to find the optimal partition for

fairness. In configuration 8C-2, FlexDCP-MaxFair achieves an improvement of 10.8%

over Fair and of 9.8% over MinMisses. In Case 3, MinMisses and Fair present perfor-

mance degradations with respect to LRU because of the asymmetry between the cache

requirements of applications [76]. As a result, MinMisses has worse average fairness than

LRU (4.6% on average). The same happens with Fair, which has a performance 2.6%

worse than LRU. By using IPC predictions, FlexDCP-MaxFair, in contrast, obtains better

results than LRU, 8.6% in the 8-core configuration and 10.9% in the 4-core configura-

tions.

Next, we analyze the results of FlexDCP when it maximizes throughput. We denote

this proposal FlexDCP-MaxIPC, since the metric to optimize is throughput. We simulate

MinMisses, Fair and FlexDCP-MaxIPC with the same 48 workloads that we selected for

the fairness results. Figure 6.9 shows the average speed up over LRU for these mecha-

nisms. FlexDCP-MaxIPC provides the best performance for all cache configurations. In

83.2% of the workloads, FlexDCP-MaxIPC outperforms the throughput obtained by Min-

Misses, which means that performance improvements are consistent among workloads.

Figure 6.9 shows that the performance benefits of MinMisses decrease with the in-

crease in the number of cores and associativity, obtaining 2.4% less throughput than LRU

in configuration 8C-2. In the 2C configuration it improves by 8.5% over LRU, while in

93

6.3. EVALUATION RESULTS

Figure 6.9: Throughput improvement of MinMisses, Fair and FlexDCP-MaxIPC over
LRU

4C-1 and 4C-2 these benefits decrease to 6.2% and 3.1% respectively. Fair obtains even

worse results than MinMisses in all configurations. In contrast, FlexDCP-MaxIPC has

a more consistent throughput improvement over LRU: 9.7% (2C), 10.3% (4C-1), 7.5%

(4C-2), and 8.4% (8C-2) respectively. Figure 6.8 shows that performance improvements

over LRU and MinMisses are not at the expense of fairness, as we improve in both fairness

and throughput.

We turn now to the issue of interaction with real pseudo LRU implementations.

One of the key aspects of any QoS framework to be considered by industry is that it has

to work with replacement policies implemented in real processors. For highly associa-

tive caches, implementing true LRU replacement becomes complex and implies a high

hardware cost. As a consequence, current high performance processors implement other

simpler replacement algorithms in the L2 cache with similar performance to LRU [47].

For example, the Sun UltraSPARC T2 [111] has a shared 4Mbyte 16-way associativity

L2 cache with pseudo LRU replacement, which has a used-bit scheme to implement a

Not Recently Used (NRU) replacement. The used bit is set to one each time a cache line

is accessed or when initially fetched from memory. For a given cache set, if setting the

used-bit causes all used bits to be set to one, the remaining used bits are cleared instead.

On a miss, the L2 looks for the first line in that set with a used-bit set to zero, which is

chosen as the evicted line.

We propose partitioning a shared L2 cache with the NRU replacement algorithm ex-

tending columnization, an idea which was previously proposed in partitioning caches with

94

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

Figure 6.10: Average speed up over pseudo LRU when optimizing throughput

the LRU replacement algorithm [29]. We assign an initial used-bit mask (UBM) for each

thread that sets the ways owned by other threads to one, and sets its owned ways to zero.

Thus, threads can evict only lines from their owned ways. Extending columnization for

the NRU replacement algorithm is mechanical, and we do not give all implementation

details for the sake of simplicity. Exploring the interaction with other replacement algo-

rithms is part of our future work.

Next, we show that our QoS framework is compatible with the NRU replacement

algorithm. Figure 6.10 shows the average speed up over NRU when optimizing a global

QoS metric such as throughput. We evaluate MinMisses and FlexDCP-MaxIPC with the

workloads that were selected in Section 2.4. Neither the SDHs nor the PPRs will provide

results as accurate as those obtained with LRU, although speed ups are nearly the same

as those obtained with LRU. MinMisses presents diminishing returns as the number of

core increases, with an average improvement of 4.6% over NRU. FlexDCP-MaxIPC has

more consistent results with an average improvment of 9.6% over NRU. The results when

optimizing fairness and individual QoS present the same trend as Figures 6.6, 6.7 and 6.8.

6.3.3 Putting it all together

FlexDCP is the only framework providing enough flexibility to provide individual or

global QoS to applications. FlexDCP can maximize overall QoS metrics such as har-

monic mean of relative IPCs, weighted speed up, or throughput, outperforming LRU and

previous throughput- or fairness-oriented DCP algorithms. The performance results pre-

95

6.4. COMPARISON OF DIFFERENT QOS FRAMEWORKS

sented in this section prove that using performance projections to decide cache partitions

is more adequate and leads to better performance than previous proposals guided by miss

rates.

6.4 Comparison of Different QoS Frameworks

With regard to previous QoS frameworks, some efforts focus on ensuring QoS in mul-

tithreaded architectures. Cazorla et al. [23] introduce a mechanism to force predictable

performance in SMT architectures. They manage to run time-critical jobs at a given

percentage of their maximum IPC. To attain this goal, they need to control all shared

resources of the SMT architecture, while we work with a CMP architecture.

Concerning CMP architectures, Rafique et al. [92] propose managing shared caches

with a hardware cache quota enforcement mechanism, and an interface between the archi-

tecture and the OS to let the latter decide quotas. However, this proposal cannot guarantee

individual QoS. Nesbit et al. [82] introduce Virtual Private Caches (VPC), which consist

of an arbiter to control cache bandwidth and a capacity manager to control cache stor-

age. They show how the arbiter makes it possible to meet QoS performance objectives, or

fairness. However, the authors do not discuss the question of how resource assignments

decisions are made. A similar framework is presented by Iyer et al. [52], where resource

management policies are guided by thread priorities. Individual applications can specify

their own QoS target (for example, IPC, miss rate, cache space) and the hardware dy-

namically adjusts cache partition sizes to meet their QoS targets. Guo et al. [43] present

an extension of this work with an admission mechanism to accept jobs in a CMP archi-

tecture. However, the authors claim that IPC is not suitable for specifying a QoS target,

because IPC is not easily convertible into resource allocation. In this chapter, FlexDCP

successfully converts IPC into resource assignment.

Lee et al. [64] present METERG QoS system, which provides QoS in a soft real-time

scenario. However, in this framework, the developer needs to run the application in the

system beforehand, in order to guarantee a QoS in future executions. With our framework,

no profiling information is needed to guarantee a QoS.

Table 6.3 compares the functionalities that previous proposals offer with those offered

by FlexDCP. In this table, we use the following symbols: +++ (very high), ++ (high), +

(medium), - (low, equivalent to LRU), 4 (feature supported), × (feature not supported).

FlexDCP is the first framework to cover all the necessary to convert performance and

96

CHAPTER 6. FLEXDCP: A QOS FRAMEWORK FOR CMP
ARCHITECTURES

Table 6.3: Functionalities offered by the different QoS frameworks
Performance/ Provides Provides Provides

Framework resource translation individual QoS hybrid QoS global QoS Fairness Throughput
MinMisses [90] × × × 4 + ++
Fair [58] × × × 4 ++ +
VPC [82] × 4 × × − −
Guo et al. [43, 52] × 4 4 × − −
FlexDCP 4 4 4 4 + + + + + +

QoS requirements into resource assignments. Furthermore, the flexibility of the frame-

work makes it possible to ensure that all concepts of QoS are covered, giving the best

performance when optimizing global QoS metrics such as fairness or throughput.

6.5 Summary

In this chapter, we propose FlexDCP as a new framework which allows the OS to guaran-

tee a QoS for each application running in a CMP architecture with a shared LLC. Instead

of using indirect measures of performance, FlexDCP uses direct estimations of the per-

formance of each thread for different cache configurations to decide cache quota assign-

ments. These estimations enable our framework to control the performance of individual

applications when executed in a workload, ensuring an individual QoS. In addition, this

framework provides higher flexibility than previous proposals as it allows the OS to opti-

mize either fairness, total throughput, or any other IPC-related metric.

Simulation results show that FlexDCP is able to force applications to run at a certain

percentage of their maximum performance, which is required in real-time environments.

We manage to reach the objective performance in 94% of the cases considered, being

1.48% under the objective for remaining cases. When optimizing for a global QoS metric

such as fairness or throughput, FlexDCP obtains the best performance in all metrics. In an

eight-core architecture, FlexDCP-MaxFair obtains an average 10.1% improvement over

Fair in fairness, while FlexDCP-MaxIPC obtains an average 11.2% improvement over

MinMisses in throughput. Finally, we showed that FlexDCP also works with pseudo LRU

replacement algorithms currently implemented in processors such as the Sun UltraSPARC

T2.

FlexDCP provides a platform that can also be used with parallel applications. In single

process-multiple data applications, all the processes execute the same code on different

data sets and use synchronization primitives to coordinate their work. Thus, the FlexDCP

framework can be used to estimate the performance of each process between communica-

tion primitives. In the case of parallel applications in which threads concurrently work on

97

6.5. SUMMARY

the same data, the parallel application can be seen as a whole accessing the shared cache.

With that goal, bit masks should be assigned to processes instead of cores. In the next

chapter, we evaluate a possible implementation of such an automatic balancing algorithm

with parallel applications.

98

Chapter 7

Load Balancing Using Dynamic Cache
Allocation

Supercomputers require an enormous budget to cover build and maintenance. In order

to maximize the use of their resources, application developers spend time attempting to

optimize the code of the parallel applications and to minimize execution time. Despite

this effort, load imbalance still arises in many optimized applications, due to causes not

controlled by the application developer, resulting in significant performance degradation

and waste of CPU time. If the nodes of the supercomputer use chip multiprocessors, this

problem may become even worse, as the interaction between different threads inside the

chip may affect their performance in an unpredictable way.

Although there are many techniques that may be used to address load imbalance at

run-time, in fact, these techniques may not be particularly effective when the cause of the

imbalance is the performance sensitivity of the parallel threads when accessing a shared

cache. To address this problem, we present a novel run-time mechanism, with minimal

hardware, that automatically tries to balance parallel applications using dynamic cache

allocation. The mechanism detects which applications are sensitive to cache allocation

and reduces imbalance by assigning more cache space to the slowest threads. The effi-

ciency of our proposed mechanism is demonstrated with both synthetic workloads and

a real-world parallel application. In the former case, we reduce the execution time by

up to 28.9%; in the latter case, our proposal reduces the imbalance of a non-optimized

version of the application to the values obtained with a hand-tuned version of the same

application, in which several man-years of effort have been devoted to manually balance

the load, achieving an overall execution time reduction of 7.4%.

99

7.1. INTRODUCTION

7.1 Introduction

In order to obtain good performance from parallel applications it is essential to guarantee

that, during execution, the amount of time a processor is waiting for other processors’

results is kept to a minimum. Achieving this essential condition requires good load bal-

ancing of the parallel threads. Expert programmers often spend a significant amount of

time optimizing work and data distribution in parallel applications so that any potential

sources of load imbalance are eliminated. However, no matter how good their work is,

there might still be issues that cause load imbalance during the application’s execution,

which may not be easily addressable a priori.

According to the classification in [18], there are two main classes of load imbalance

which result from causes that become apparent only during the application’s execution:

the first class is intrinsic load imbalance, and this type of imbalance is caused by charac-

teristics which are intrinsic to the application, such as the input data. For example, sparse

matrix computations depend heavily on the number of non-zero values in the matrix; the

convergence time of iterative methods that approximate the solution of a problem (for

example, partial differential equations) may change for different domains of the modeled

space. It is very difficult (while not impossible) for the application programmer to bal-

ance the application a priori to deal with all possible input data sets. The second class is

extrinsic load imbalance, caused by external (to the application) factors, that may slow

down some processes but not others. A major source of load imbalance could be the op-

erating system (OS) when performing services such as handling interrupts, reclaiming or

assigning memory, etc. For example, the OS may decide to run another process (say a

kernel daemon) in place of the process running on a CPU. Extrinsic load imbalance may

also be caused by thread contention for processor’s shared resources; this may be partic-

ularly true in the case of SMT architectures, where threads share and compete for most of

the processor’s resources [18]. Clearly, there is nothing that the application programmer

could do a priori to prevent extrinsic load imbalance.

A standard way to address the aforementioned two types of load imbalance is to use

dynamic load balancing mechanisms, which are triggered as necessary at run-time. We

can distinguish between two main strategies used to perform dynamic load balancing:

work and/or data redistribution and resources redistribution [18]. The former strategy

includes run-time mechanisms which move some work or data (load) from processes

whose execution lags behind fast-running threads [72, 96]. The latter strategy relates to

100

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

run-time mechanisms, which may dynamically assign more resources to slow-running

threads. Such resources are mainly the number of CPUs, with more CPUs allocated to

slow-running threads [31, 36]. Other authors make use of hardware thread priorities to

change the instruction decode rate of each thread running on an SMT architecture. This

type of software-controllable processor resource allocation makes it possible to balance

parallel applications [18, 19], but memory-bound applications are insensitive to decoding

priority [17] and many CMP processors have only one thread per core.

Adjusting the workload of each thread or adding more processors to slow-running

threads may seem a natural solution to the problem. However, uniformly resorting to

such solutions may forfeit the possible benefits stemming from other options, which may

sometimes be potentially closer to the root of the problem. For instance, in the case of

CMPs, most of them share some cache resources. It has been demonstrated many times

in the literature that such a sharing may affect the performance of the threads that share

the cache [27, 53, 90, 108]. A corollary of the body of work is that, in CMPs, the cache

replacement policy implicitly determines the relative speed of each thread. Generaliz-

ing this observation, the hypothesis of this chapter is that we can dynamically partition

the cache (shared by the parallel threads) in such a way that the impact of the cache re-

placement policy (and its direct impact on the relative speed of each thread) leads to load

balance. Although there has been a significant amount of work on dynamic cache parti-

tioning (DCP) this work has focused on issues such as fairness, throughput, or ensuring a

minimum performance for an application [52, 58, 90, 108]. To the best of our knowledge,

this chapter is the first work to describe a strategy for dynamic cache partitioning whose

objective is to achieve load balance. Conversely, we are not aware of any dynamic load

balancing strategies that are based on controlling the cache allocation.

To this end, this chapter takes advantage of the opportunity offered by shared caches in

CMP architectures to propose a dynamic mechanism which reduces the load imbalance

of parallel applications (whose parallel threads share a CMP’s cache). Our mechanism

detects in which situations cache allocation can be used to balance applications and, in

these situations, it assigns more cache resources to processes computing longer. The

iterative nature of many parallel applications facilitates this task because the behavior of

an application in previous iterations can be used as a learning phase of the algorithm in

the following iterations. Furthermore, we analyze the time granularity at which cache

allocation decisions should be taken. We explore both application granularity at iteration-

level (in the order of milliseconds), in which the balancing algorithm can be executed in

101

7.2. MOTIVATION

software, and a finer granularity that requires minimal hardware support. We conclude

that the software solution provides better results as it has a global vision of the imbalance

of the application.

When applied to synthetic workloads, our suggested mechanism can reduce execution

time by up to 28.9%. When applied to a real-world parallel application, wrf [73], our

mechanism helps reduce the long and expensive optimization time that expert program-

mers spend hand-tuning the application. In particular, our proposal reduces the load im-

balance of a non-optimized version of wrf to values comparable to an optimized version

of wrf, in which several man-years of effort have been devoted to balance the applica-

tion; the overall reduction in execution time achieved is about 7.4%. This suggests that

our balancing mechanism may represent an alternative approach to considerably reduce

the development time invested in balancing parallel applications manually.

The rest of this chapter is structured as follows. Section 7.2 presents the motivation

for this work. The dynamic mechanisms to balance applications are explained in detail

in Section 7.3. Section 7.4 presents a theoretical analysis of the load imbalance problem.

Section 7.5 describes the experimental environment, while, in Section 7.6, simulation

results for synthetic workloads are discussed. Section 7.7 evaluates the mechanisms for

a real-world parallel application. Finally, Section 7.8 presents the main findings of this

chapter.

7.2 Motivation

In CMP architectures, other shared resources, such as cache space, can be redistributed

to balance parallel applications. Caches are built up with equally-sized groups of cache

lines, called sets. The size of each cache set is called the K-associativity of the cache.

Different cache lines that collide into the same cache set can be distributed along the

K different ways of the set. When a new request arrives to a set that is full, a cache

eviction policy, like Least Recently Used (LRU), chooses the victim line to evict from

the cache set. The LRU eviction policy is demand-driven and tends to give more cache

space to threads accessing more frequently the cache hierarchy. Moreover, the OS and

software cannot exercise any control over how threads share a cache when using LRU

as eviction policy. In contrast, way-partitioned caches provide the opportunity to control

cache allocation from the software level, which can lead to significant performance speed

ups for sequential applications [58, 90, 108]. A way-partitioned cache prevents threads

102

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

from negative interference: a thread checks all cache lines in a set when it accesses the

cache, but is allowed only to evict lines from a reduced number of ways [108]. Partitioned

caches can also be used for ensuring a minimum performance to applications [52].

The use of cache allocation control mechanisms may not be a useful load balancing

mechanism in all execution settings. In some cases, the execution of the parallel threads

may be highly cache sensitive (and, hence, it would be feasible to balance the load dy-

namically through appropriate adjustment of cache resources), but, in other cases, the

parallel threads may be cache insensitive (in which case, different ways to allocate cache

resources may have little or no impact on their performance). Detecting whether a par-

ticular parallel workload is cache sensitive or not is something that cannot be assumed to

be known; instead, some kind of on-the-fly assessment of the parallel workload, to learn

whether it is cache sensitive or not, would be required. Assuming that the parallel work-

load follows some kind of an iterative pattern, where there is a repetition of a sequence

consisting of a computation phase followed by a barrier synchronization, then the behav-

ior of the application in the previous iteration can be used to make decisions for the next

iteration1.

(a) Execution without controlling the shared LLC (b) Execution after assigning more cache space to
the bottleneck thread

Figure 7.1: Synthetic example of a parallel application with 4 threads running in the same
CMP

To illustrate this, consider the example shown in Figure 7.1(a), which shows the ex-

ecution of a parallel application running with four threads. The application consists of a

number of iterations, in each of which a computation phase is followed by barrier syn-

chronization; two iterations are shown in the figure. The first thread in Figure 7.1(a) is the

1Iterative patterns are often encountered in many High-Performance Computing (HPC) Applications.
For example, a partial differential equation (PDE) solver may consist of an outermost sequential loop inside
which a parallel loop is executed. This specifies a number of iterations each of which completes with a call
at a barrier at the joint point of the parallel loop that synchronizes all threads.

103

7.2. MOTIVATION

bottleneck (bottleneck thread), as other threads have to wait at the barrier until it finishes

executing. Assuming that the threads run in a multithreaded processor sharing the last

level cache (LLC), then ideally, assigning more cache resources to the first thread would

reduce its execution time without excessively degrading the other threads’ performance.

Figure 7.1(b) shows the execution of the application after a new assignment of the cache

resources has been applied to the second iteration; it is assumed that T ′ < T . If the paral-

lel application consists of many more iterations, the new cache allocation can be used to

reduce the overall execution time of the application. The idea is that, in one iteration, an

appropriate detection mechanism learns the behavior of the application (learning phase)

and activates a balancing algorithm from the next iteration of the application (activation

phase).

Anecdotal evidence collected after many man-years of experience with several HPC

applications running on the MareNostrum supercomputer [70] suggests that, usually, in-

trinsic load imbalance in HPC applications is due to two main reasons. First, all processes

of the HPC application execute the same number of instructions but each of them has a

different LLC behavior, since some processes experience more LLC misses than others.

Second, all processes of the HPC application have a similar LLC behavior but the number

of instructions each of them executes is different.

Figure 7.2: Execution of the wrf parallel application with 64 threads applications. Only the first
16 threads are shown for simplicity. The same behavior is observed in the other 48 MPI processes

A real-world example is given in Figure 7.2, which shows part of the execution of a

parallel MPI application, wrf (which will be explained in detail in Section 7.7), when

running on the MareNostrum supercomputer [70] with 64 MPI processes. Here we show

104

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

the execution of the first 16 threads for simplicity; the same behavior is observed in the

other 48 MPI processes. Each application iteration takes about 1.5 seconds; one iteration

is shown in Figure 7.2. The iteration is comprised of several computation phases, denoted

Ci, each having a different color. At the end of each computation phase, a synchronization

phase begins. Communication and waiting times are marked in white. The iteration

begins with a long computation phase of about 0.3 seconds, denoted C1. Note that many

MPI processes have to wait for a long period of time until all threads finish this phase

and reach the barrier. This computation phase is a clear representative of the second

scenario of intrinsic imbalance mentioned above (where the number of instructions of

each thread is different), as process 14 executes 40.1% less instructions than process 16.

Next, there are three short phases (C2, C3 and C4, during 0.2 seconds in total) and then,

a long computation phase begins (C5 between times 0.5 and 0.75 seconds). This phase is

more balanced than the first one, but load imbalance is still present. In phases C2, C3 and

C4 the number of executed instructions is the same and the load imbalance is mainly due

to different LLC behavior. Subsequently, in the same application iteration, the execution

continues with computation phases C1, C2, C3, C2 and C5. As will be shown in our

experimental results section, by adjusting the cache resources allocated to each thread,

and by using an appropriate learning mechanism in one iteration and applying it to the

next iteration, we were able to achieve a performance improvement for the application,

which is comparable to the performance obtained through manual tuning after several

man-years of effort.

A key idea in this example is the notion of an iteration. Detecting iterations in a

parallel application can be done with different approaches. Static offline profiling infor-

mation can be used to inform the OS about the iteration borders. Some authors propose

introducing checkpoints in the source code of the parallel application to identify possible

unbalanced points in a parallel loop [21]. Other authors make use of run-time libraries

that dynamically measure the percentage of load imbalance per process [31]. In fact,

parallel applications alternate computing phases with waiting phases (when a process is

waiting for synchronization). Thus, some authors consider the sum of a computing and

a waiting phase as one iteration of the parallel application [19]. Other solutions based

on analyzing performance counters are also useful to detect these parallel iterations [22].

Online detection of iterations is still an open research issue that is beyond the scope of

this thesis.

105

7.3. DYNAMIC LOAD BALANCING THROUGH CACHE ALLOCATION

7.3 Dynamic Load Balancing Through Cache Allocation

In this section, we describe in detail two different algorithms, which implement a mecha-

nism that can dynamically change the cache allocation of a parallel application, as it runs,

to reduce load imbalance. It is assumed that the parallel application consists of iterations,

as described above. The key idea is that at the end of each iteration our mechanism in-

vokes one of the two proposed algorithms to make a decision on whether to change the

current cache allocation or not. The decision of the algorithms is based on an analysis of

the behavior of the parallel threads in the preceding iteration; this decision is then applied

to the immediately following iteration. The main difference of the two algorithms is their

complexity. Thus, the first algorithm implements a simple heuristic that tries to give more

cache space (one extra way in the cache) to slow threads by removing an equal amount

of cache space from fast threads, while the second algorithm tries to (re-)allocate cache

space for all threads at once, in a way that minimizes their overall execution time. The

two algorithms are presented in the next section, below.

7.3.1 Iterative Method: Load Imbalance Minimization

The first algorithm proposed is based on monitoring the execution time of running threads

at each iteration. At the end of the iteration, the degree of load imbalance is calculated and

the algorithm responsible for reallocating ways of the cache is invoked if this imbalance

is above threshold ε1.

To measure the degree of load imbalance amongst parallel threads, two metrics have

been suggested: the relative load imbalance [95] and the imbalance percentage (IP) [93].

The former is a ratio of the deviation of the execution time of the longest running thread

from the average execution time of the threads, divided by the execution time of the

longest running thread. The latter is a normalized version of the former with values be-

tween 0 and 100. High values indicate high load imbalance. We chose the latter because

it makes understanding easier, especially when dealing with small numbers of threads.

Thus, if we have a parallel application with N processes, N ≥ 2, we define

IP = 100 · MaxExecT ime− AverageExecT ime
MaxExecT ime

· N

N − 1
.

Intuitively, it is useful to see the imbalance percentage (IP) as the average percentage of

time that the parallel threads are waiting at the end of a parallel section for the slowest

thread to finish [93].

106

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

Algorithm 7: An iterative method for load balancing using dynamic cache alloca-
tion: MinLoadImb

Data: Threshold values 0 ≤ ε1, ε2 ≤ 1, execution time of all threads in the previous
iteration, ET previousi , and current eviction policy (LRU or partitioned cache)

Result: Final cache allocation for the next iteration (LRU or new cache partition)
begin

compute imbalance percentage, IP
//activation mechanism
if (LRU is the current eviction policy) then

if (IP/100 < ε1) then choose LRU and stop
else choose a partitioned cache.

end
L← list of threads sorted by ET previousi

while number of threads in L ≥ 2 do
remove the slowest thread s from L
find_fastest_thread:

remove the fastest thread f from L
if (thread f has no more than one assigned way)

then if (L is not empty)
then goto find_fastest_thread
else stop

if
(
ET previous

s −ET previous
f

ET previous
f

> ε2

)
then assign one way from thread f to thread s

end
stop

end

Once the balancing algorithm is activated, at the end of each iteration of the parallel

application it tries to remove one way (from the cache allocation) of the fastest threads and

assign it to the slowest threads. To do this, threads are ordered in terms of their execution

time in the previous iteration, ET previousi . The fastest thread surrenders one way to the

slowest thread, then the second fastest to the second slowest and so on. This is repeated

until the ratio of the next slowest thread to the next fastest thread does not exceed the value

of a given threshold ε2, or there are no more threads to consider. During this process, the

algorithm ensures that all threads retain at least one way from the cache allocation.

The intuition behind this proposal is that taking (cache) resources from fastest threads

and allocating them to slowest threads may hopefully reduce the overall load imbalance.

The proposed algorithm is denoted MinLoadImb and is described in Algorithm 7. Note

that the cache partition is not changed during the execution of an iteration of the applica-

107

7.3. DYNAMIC LOAD BALANCING THROUGH CACHE ALLOCATION

tion but only when the iteration completes. The algorithm uses as an input the execution

time of each thread in the previous iteration ET previousi , which can be obtained using per-

formance counters. The algorithm makes also use of two thresholds, ε1 and ε2. The value

of ε1 controls how often the algorithm will be invoked. High values indicate that the al-

gorithm will be rarely invoked, only in cases of a high imbalance percentage. Conversely,

the value of ε2 controls how far the reallocation of ways from the fastest to the slowest

threads would go. Again, high values indicate that only a small number of the fastest and

slowest threads will be considered for reallocation of ways. After performing a sensitivity

study we concluded that good performance is obtained when ε1 = 0.075 and ε2 = 0.025.

7.3.2 Single-step Method: Execution Time Minimization

The second algorithm proposed is denoted MinExecTime. Through the specialized hard-

ware described in Chapter 5, MinExecTime can estimate the execution time of a given

parallel thread with a different cache assignment (for example, when a specific number

of ways are assigned to it). This information can be used to find an optimal cache parti-

tion. As before, this algorithm is also invoked at the end of each iteration of the parallel

application.

Algorithm 8: A single-step method for load balancing using dynamic cache alloca-
tion: MinExecTime

Data: Threshold values 0 ≤ θ ≤ 1 and execution time of the previous iteration
with the previous cache allocation, ETprevious

Result: Final cache allocation for the next iteration (LRU or new cache partition)
begin

assign one way to each thread
estimate ETi for each thread with the current cache allocation
while (available ways exist) do

find the slowest thread s
assign one extra way to thread s
estimate ETs

end
find the slowest thread s
ETMinExecT ime ← ETs
//activation mechanism

if
(
ETprevious−ETMinExecTime

ETprevious
> θ
)

then apply the new cache partition found above
else keep the previous cache allocation (LRU or previous cache partition)

stop
end

108

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

To understand how to use the information provided by the specialized hardware we

describe the problem to be solved next. We define φ(k̄) = maxi{ETi(ki)} the execution

time of the application with the cache partition k̄ = (k1, . . . , kN), where ETi(ki) is the

execution time of thread i when ki ways are assigned to it. Then, we are looking for the

optimal cache partition k̄opt, which is the one that minimizes the execution time of the

application, that is:

φ(k̄opt) = min
k̄=(k1,...,kN)

{
φ(k̄)

∣∣∣∣ N∑
i=1

ki = K

}
Checking all possible combinations for the values of ki would be too expensive in time.

However, we can avoid doing this by noting that ETi(ki) is monotonically non-increasing

and that φ(k̄) is determined by the execution time of the slowest thread. This means that

we can find an optimal cache partition by following a procedure that: (i) starts with the

assignment of one way to each thread; and, (ii) assigns the remaining ways, one-by-one,

to the slowest thread (which thread is the slowest is recalculated after the assignment of

each additional way according to the hardware estimates).

The algorithm is illustrated in Algorithm 8. Initially, one way is assigned to every

thread. To minimize load imbalance, we need to minimize the execution time of the slow-

est thread. Clearly, it is not possible to do this if we do not assign more cache resources

to this particular thread. Thus, the algorithm assigns, in each step, one extra way to the

estimated slowest thread. Then, the algorithm obtains the optimal solution in K − N

iterations of the while loop, where K is the cache associativity and N is the number of

threads. Finally, if the optimal cache partition is an improvement over LRU by more than

a threshold value θ, this partition is applied to the next iteration of the application. The

algorithm uses as an input the execution time of the application in the previous iteration

ETprevious, which can be obtained with current performance counters. Also, with respect

to the threshold θ, following sensitivity analysis, we chose to use in our experiments a

value of θ = 0.05.

A critical aspect of this algorithm is the use of specialized hardware to obtain per-

formance estimations. We evaluated different approaches to obtain such estimations [77,

115] and concluded that having better accuracy in performance estimations leads to larger

speed ups and less wrong activation decisions. The best results are obtained using OPACU [77],

as it has an average 3.11% error over the whole SPEC CPU 2000 [105] benchmark suite.

In Section 7.6 we show that, thanks to the high accuracy of this mechanism, we never

109

7.3. DYNAMIC LOAD BALANCING THROUGH CACHE ALLOCATION

activate the cache partitioning mechanism in a situation where it would worsen perfor-

mance.

Chapter 5 describes in detail the OPACU mechanism. Recall that in a CMP architec-

ture with a shared L2 cache that is the last level cache on-chip, OPACU uses a sampled

Auxiliary Tag Directory (ATD) to obtain the number of misses per L2 configuration as

in [58, 90, 108]. The ATD has the same associativity and size as the tag directory of the

shared L2 cache and uses the same replacement policy. It stores the behavior of mem-

ory accesses per thread in isolation. While the tag directory of the L2 cache is accessed

by all threads, the ATD of a given thread is only accessed by the memory operations

of that particular thread. In out-of-order architectures, different cache misses can occur

concurrently if they all fit in the reorder buffer (ROB), which allows the Memory Level

Parallelism (MLP) of the application to be exploited. A group of cache misses is denoted

a cluster of misses. OPACU uses a reduced number of hardware counters to determine

if L2 data misses are clustered or not. Three counters per core are needed to count the

number of instructions, the number of cycles, and the average ROB usage after an L2 miss

(AROAL2M). Three counters per cache assignment are also needed: last L2 miss identifier

(cdci), number of clusters (overlapi) and predicted total waiting cycles due to an L2 miss

(PCVi). When a load instruction accesses the L2, the sampled ATD is used to determine

if it would be a miss in other possible cache assignments. Using the last L2 miss iden-

tifier, it can be determined whether a new cluster of misses begins or not. The number

of clusters and lost cycles is updated accordingly. With this information, OPACU can

predict the IPC of the process under different cache configurations. Figure 5.7 illustrates

this mechanism.

7.3.3 Comparison of the Algorithms

Next, we list the main differences between the balancing algorithms discussed above.

First, activation. The activation decision represents a key feature of the load balancing

mechanism. Wrong activations may lead to performance degradation as not all applica-

tions benefit from cache partition mechanisms: at one extreme, one application suffers a

slowdown of up to 14% in our experimental setup when the balancing mechanisms are

activated blindly. MinLoadImb estimates the load imbalance using the execution time of

each thread in the previous iteration. However, this proposal is not aware of the effect

that the assignment of one extra way to a thread will have on the performance of the other

threads. As a consequence, MinLoadImb may suffer a performance degradation due to

110

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

wrong activation decisions. In contrast, MinExecTime is based on direct execution time

estimations. In Section 7.6 we show that this mechanism has a high accuracy and that

it never activates the dynamic cache partitioning mechanism in a situation where perfor-

mance degradation would have been obtained.

The second difference concerns convergence time: the time needed to converge to

the optimal solution is different for each mechanism. MinLoadImb assigns at most one

extra way per thread every time it is called, while MinExecTime has no limit in new

cache assignments. Thus, MinExecTime will respond more quickly to the imbalance of

an application and reach the optimal partition sooner. Figure 7.3 illustrates this situation.

In the first iteration, both mechanisms make use of the LRU eviction policy. In the next

iteration, MinExecTime converges to the optimal partition, while MinLoadImb needs more

iterations to reach the same optimal partition.

Figure 7.3: Convergence rate to the optimal cache partition solution for MinLoadImb and
MinExecTime

The third issue is hardware cost, and here, the hardware cost of thes mechanisms

is significantly different. MinLoadImb decides cache partitions with nearly no hardware

overhead, since it can read performance counters to obtain the execution time of each

thread in the previous iteration. In contrast, MinExecTime requires special hardware to

obtain performance estimations for all cache configurations. For a 4-core CMP with a

shared 1MB 16-way L2 cache, OPACU needs less than 1KB of total storage per core

(including a sampled ATD [90] and all the required hardware counters [77], as explained

in Section 5.5). Some authors have embedded the monitoring logic inside the L2 cache,

devoting some sets to monitor each thread [53]. Using a similar approach, the hardware

cost of OPACU would be reduced to 204 bytes per core with a 16-way L2 cache.

111

7.4. ANALYSIS OF THE LOAD IMBALANCE PROBLEM

7.4 Analysis of the Load Imbalance Problem

In this section we present an analytical model of the maximum execution time reduction

that can be obtained with load balancing algorithms. This model allows us to better under-

stand the balancing algorithms presented in the previous section and gives the necessary

insight to explain the results presented in Sections 7.6 and 7.7.

Consider a CMP architecture with N cores and a shared last level of cache (LLC) in

which we run N threads. We denote ET ISOLi the execution time of a thread i in isolation

in the CMP, and ETCMP
i , its execution time when running simultaneously with other

threads in a workload (sharing the cache). Throughout this chapter, we use load imbalance

and total execution time as performance metrics. As we have explained in the previous

section, we use two different metrics to measure imbalance: Imbalance Time (IT) and

Imbalance Percentage (IP) [93], both explained next.

We define M = maxi=1,...,N ET
CMP
i the execution time of the slowest thread in the

workload, m = mini=1,...,N ET
CMP
i the execution time of the fastest thread in the work-

load, and Avg = 1
N

∑N
i=1ET

CMP
i the average execution time of all threads. Then, we

have IT = M −Avg and IP = M−Avg
M
· N
N−1

(%). Figure 7.4(a) shows an example of IT

and IP computation for an application with four threads. Here, we have M = 10, m = 6

and Avg = 8. As a result, IT = 2 and IP = 26.6%.

(a) IT and IP computation (b) Execution time in a two-core scenario

Figure 7.4: Load imbalance computation and definitions

The execution time of the entire workload equals the execution of the slowest thread

in the workload ETCMP
workload = M = maxi=1,...,N ET

CMP
i . In contrast, the minimum time

required to execute a workload equals ET ISOLslowest = maxi=1,...,N ET
ISOL
i , where slowest

112

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

denotes the slowest thread in the workload. Ideally, the workload is executed so that the

slowest thread is not delayed with respect to its execution time in isolation. In addition,

the other threads are executed using the resources not used by the slowest thread. We

assume that between synchronization points threads do not share the same address space

as is the case for example in MPI applications. That is, a thread cannot prefetch data for

another thread, and hence the minimum time to execute a thread is bound by ET ISOLslowest.

Hence, the maximum speedup, SUmax, in the execution time of the workload occurs

when we reduce this time down to the shortest possible execution time (ET ISOLslowest):

SUmax ≤
maxi=1,...,N ET

CMP
i

maxi=1,...,N ET ISOLi

=
ETCMP

workload

ET ISOLslowest

(7.1)

Let us assume that all threads in the workload suffer the same slowdown because of

sharing the LLC. This is a common situation in SPMD applications, since all processes

carry out similar work. We can define a multiplicative factor ρ ≥ 1 such that ETCMP
i =

ρ · ET ISOLi . This parameter models the slowdown due to contention in shared resources

(LLC in our case). Using this parameter in Equation 7.1 leads to the bound SUmax ≤ ρ.

However, this bound does not take into account that contention depends on the number of

running threads. Let us define ρ(n) as the slowdown due to inter-thread contention when

n threads are active. Hence, ρ(n) is an increasing function with the number of threads

(the more active threads, the higher the contention). And ρ(1) = 1, as there is only one

active thread. We define ρ = ρ(N), the slowdown when all N threads are active. Now,

let us define the average slowdown of thread i due to contention, ρ̄i such that ETCMP
i =

ρ̄i · ET ISOLi . With this definition, and given that we assume that all threads have similar

behavior, the slowest thread when running all threads simultaneously in the CMP is the

same slowest thread when running in isolation. Thus, we have SUmax ≤
ρ̄slowest·ET ISOL

slowest

ET ISOL
slowest

and SUmax ≤ ρ̄slowest as a consequence.

To illustrate this formula, let us focus on a two-core architecture where the slow

thread executes alone in the architecture when the fast thread finishes executing (see Fig-

ure 7.4(b)). In this case, ρ(1) = 1, ρ(2) = ρ and ET ISOLslowest = m
ρ

+ (M − m)2. On the

other hand, we have that the imbalance percentage IP = M−Avg
M
· N
N−1

=
M−M+m

2

M
· 2 =

M−m
M

= 1− m
M

. Putting it all together, we have that ρ̄slowest =
ETCMP

slowest

ET ISOL
slowest

= M
m/ρ+(M−m)

=
ρ

m/M+ρ(1−m/M)
= ρ

1+(ρ−1)IP
.

Next, assume that we use a load balancing algorithm that tries to balance the applica-

2recall M = maxi=1,...,N ETCMP
i and m = mini=1,...,N ETCMP

i

113

7.4. ANALYSIS OF THE LOAD IMBALANCE PROBLEM

tion (not restricted to balancing through cache allocation). In order to do this, the algo-

rithm gives some shared hardware resources to the slowest thread, taking those resources

from the remaining threads. In this scenario, we can refine the speed up bound assuming

that the balancing algorithm improves the performance of the slowest thread i by a factor

∆i(n) when running with n other threads. As a consequence of applying the balancing

algorithm, the performance of the other threads is reduced (as they receive less shared

resources). We have assumed that the system is fair, which implies that
∏N

i=1 ∆i(n) = 1.

This assumption means that threads cannot obtain a speed up for free (this would hap-

pen if this product is larger than one) or that performance losses will be obtained (if the

product is less than one). This is a limitation of our model (we are not modeling step func-

tion behavior), but the results obtained in Sections 7.6 and 7.7 show that the estimation

accuracy is high.

In an instant of time t with n running threads, the total slowdown after the balancing

algorithm is triggered is ρ(n)
∆i(n)

. As we have already said, the execution time of a thread in

isolation is a lower bound of the execution time when running in the CMP: ETCMP
i ≥

ET ISOLi . Thus, we have that ρ(n)
∆i(n)
·ET ISOLi ≥ ET ISOLi , and so, ∆i(n) ≤ ρ(n). Next, in a

balanced application all threads finish at the same time T , implying that T =
ρ(N)ET ISOL

i

∆i(N)

for all i ∈ {1, . . . , N}. If threads are perfectly balanced and finish at the same time T , we

have ρ̄i = ρ as there are always N active threads. Thus, we have:

TN =
ρ · ET ISOL1

∆1(N)
· . . . · ρ · ET

ISOL
N

∆N(N)
=

N∏
i=1

ρET ISOLi

∆i(N)
(7.2)

= ρN ·
∏N

i=1 ET
ISOL
i∏N

i=1 ∆i

= ρN ·
N∏
i=1

ET ISOLi (7.3)

Thus, the execution time when all threads are balanced is T = ρ · N

√∏N
i=1ET

ISOL
i ,

the geometric mean of individual execution time in isolation multiplied by ρ. Note that in

our model, T can be reached only when T ≥ ET ISOLslowest. Consequently, a new bound for

the maximum speed up is obtained in Equation 7.5.

SUmax =
ETCMP

workload

max (ET ISOLslowest, T)
= min

(
ρ̄slowest ;

ETCMP
workload

T

)
(7.4)

= min

ρ̄slowest ;
ETCMP

workload

ρ · N

√∏N
i=1 ET

ISOL
i

 (7.5)

114

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

In a two-core architecture and using that ETCMP
workload = M and the execution time in

isolation described in Figure 7.4(b), this bound translates into:

SUmax = min

(
ρ

1 + (ρ− 1)IP
;

1√
(1− IP) · (1 + (ρ− 1) · IP)

)
(7.6)

Figure 7.5: Maximum achievable speed up based on a multiplicative ∆ (Formula 7.6)

Figure 7.5 shows the evolution of SUmax for different values of ρ and IP in a two-core

architecture. Representing this figure for more threads is possible using Formula 7.5, and

the same conclusions can be stated, but the intuition of metrics such as the imbalance

percentage is lost. Using this model in a CMP with a shared LLC, we can conclude the

following:

• Small values of ρ correspond to applications that are not much affected by the shared

LLC. Consequently, execution time cannot be reduced by more than 5-10%, even for large

imbalance percentages.

•When ρ becomes larger, the bound also becomes higher for large imbalance percent-

ages. A maximum speed up of 25% is obtained with ρ = 2.0 and IP = 60%. Note that

for imbalance percentages close to 0% and 100% the bound is nearly 0%, which means

that no execution time reduction can be obtained.

• If threads are perfectly balanced, there is no opportunity for performance speed ups.

• Analogously, if threads are totally unbalanced, the slowest thread will spend most

115

7.5. EXPERIMENTAL ENVIRONMENT

of the time running alone, and thus no performance improvements are possible.

• In intermediate situations, and depending on the value of ρ, we will have more

opportunities for improvement. On average, the maximum speed up is between 5% and

15% for imbalance percentages between 20% and 80%.

In Sections 7.6 and 7.7 we evaluate the accuracy of this model through an extensive

set of experiments with synthetic workloads and a real-world parallel application running

on a supercomputer.

7.5 Experimental Environment

First, with regard to the simulation configuration, in this chapter we focus on a CMP

architecture with two and four cores. We make use of the MPSim [1] simulator to model

CMP architectures, as explained in Section 2.2, with a two-level cache hierarchy in which

each core has a private data and instruction L1 caches and the unified L2 cache is shared

among cores.

With regard to workloads, in order to evaluate our dynamic load balancing algorithms

and model, presented in Section 7.3 and 7.4 respectively, we use both synthetic workloads

and a real-world parallel application in production at our supercomputing center. Syn-

thetic workloads allow us to evaluate our proposals in a wide range of scenarios, while

the real-world HPC application completes the study and demonstrates the robustness of

our proposals.

As pointed out in Section 7.2, there are two main situations of intrinsic load imbalance,

namely: when all threads execute the same number of instructions but have different

cache behavior, and when all threads have a similar cache behavior but the number of

executed instructions is different. The objective of the synthetic workloads is to mimic

these situations and to show that our proposals reduce load imbalance in both situations

and that the model can be used to predict their results. We compose 2-thread workloads

from SPEC CPU 2000 [105] benchmarks. From each benchmark we collect traces of

the most representative 300 million instruction segment of each program, following the

SimPoint methodology [100]. We artificially add a barrier at the beginning and end of the

execution of these benchmarks to mimic a parallel HPC application. In our simulation

methodology, each thread introduces a different skew to virtual addresses, which avoids

different cores hitting the same cache set. Furthermore, each copy of the same program is

forwarded a different number of instructions to avoid each copy being at exactly the same

116

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

point of execution.

These synthetic workloads are designed to have different cache necessities depending

on their building benchmarks. To that end, we have used the classification explained in

Section 2.4 of SPEC CPU 2000 benchmarks into three groups: Low utility (L), Small

working set or saturated utility (S) and High utility (H).

Finally, we evaluate our model and load balancing algorithms (Section 7.3) with real

traces from a parallel application running on an actual supercomputer: wrf. We used

two versions of this application: (i) an optimized version, currently in production at our

supercomputing center, to which several man-years of effort have been devoted to its

(manual) optimization; and (ii) a non-optimized version of the same application to which

less optimization techniques have been applied. Thus, we have two versions of the same

application, wrf, with different imbalance percentages. Section 7.7 presents our evalua-

tion results, including a full description of how traces of wrf were obtained, which was

a complex and time-consuming task.

7.6 Performance Characterization with Synthetic Work-
loads

In this section we analyze the accuracy of the analytic model presented in Section 7.4 and

the behavior of the load balancing algorithms, presented in Section 7.3, using synthetic

workloads. We simulate a CMP architecture with two cores for the sake of clarity, al-

though all the conclusions of this section apply to CMPs with N cores. In the experiments

in this section, we run two benchmarks simultaneously. When the fastest benchmark ends,

the slowest keeps executing until it finishes its execution. This is what we call an itera-

tion. In each execution we run ten iterations. It is only at the end of the first iteration that

the load balancing algorithms may be activated (since the first iteration is used purely as

a learning phase), thus, we report the average execution time of the final nine iterations

with respect to the results of the first iteration.

As pointed out in Section 7.2, there are two situations of (intrinsic) load imbalance that

can be solved with our proposal. Section 7.6.1 evaluates the situation in which all threads

execute a similar number of instructions but have different L2 cache behavior. Next,

Section 7.6.2 evaluates the situation where all threads have a similar L2 cache behavior

but the number of instructions is different.

117

7.6. PERFORMANCE CHARACTERIZATION WITH SYNTHETIC
WORKLOADS

7.6.1 Load Imbalance due to Different L2 Cache Behavior

To mimic the situation where all threads execute the same number of instructions but have

different L2 cache behavior, we randomly generate 36 pairs of benchmarks with different

cache requirements. We choose the workloads listed in Table 7.1. We denote XY the

pairings of benchmarks where X and Y are the slowest and fastest thread, respectively.

Table 7.1: Workloads of benchmarks with different L2 cache behavior. Four workloads per group
are chosen

Group Slow Th Fast Th IP (%) Group Slow Th Fast Th IP (%) Group Slow Th Fast Th IP (%)
LL1 sixtrack bzip2 44.8 LS1 applu gzip 48.3 LH1 lucas art 29.9
LL2 mcf wupwise 95.2 LS2 sixtrack eon 33.9 LH2 swim vpr 9.19
LL3 lucas gap 63.5 LS3 mcf vortex 95.3 LH3 mcf facerec 93.6
LL4 equake swim 30.8 LS4 gap perlbmk 62.4 LH4 wupwise apsi 35.7
SL1 perlbmk mesa 5.95 SS1 crafty eon 23.3 SH1 crafty apsi 19.3
SL2 vortex wupwise 2.11 SS2 vortex crafty 14.8 SH2 gcc apsi 20.6
SL3 gcc sixtrack 8.78 SS3 gcc perlbmk 35.1 SH3 vortex ammp 16.2
SL4 crafty bzip2 37.0 SS4 vortex gzip 40.8 SH4 vortex apsi 33.6
HL1 galgel bzip2 60.8 HS1 twolf crafty 54.0 HH1 galgel ammp 6.42
HL2 mgrid gap 28.5 HS2 ammp gcc 30.4 HH2 parser apsi 60.1
HL3 parser applu 30.9 HS3 gap mgrid 28.5 HH3 twolf art 16.6
HL4 fma3d swim 73.8 HS4 parser perlbmk 65.8 HH4 vpr facerec 26.8

Figure 7.6(a) shows the total execution time for both load balancing algorithms: Min-

LoadImb and MinExecTime. All results are normalized to the execution time of the first

iteration, in which the LRU replacement policy is used. All workloads in which MinEx-

ecTime decides to make use of LRU as eviction policy are represented in the first set of

bars, denoted OFF (as the cache partitioning algorithm is not activated) with their aver-

age results. Clearly, the average normalized execution time with respect to LRU is equal

to 1 in case of MinExecTime. MinLoadImb is sometimes triggered in these workloads,

without leading to any improvement of the execution time with respect to LRU. In fact,

the imbalance percentage is reduced from 40% to 20% but this is not translated into any

reduction in the execution time. This result suggests that the activation mechanism of

MinExecTime is more accurate than the one of MinLoadImb.

All algorithms present similar results in groups LL, LS and LH as the shared L2 has

little impact on the performance of the bottleneck thread (ρ̄slowest ≈ 1). Consequently,

MinExecTime detects that there is no room for improvement and keeps using LRU as evic-

tion policy (the results are represented in bar OFF). In contrast, MinLoadImb is triggered

118

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

(a) Execution time normalized with respect to LRU (b) Imbalance percentage

Figure 7.6: Execution time and imbalance percentage for pairings with different L2 cache behav-
ior

in all these workloads as the imbalance percentage is greater than 7.5% in all of them.

When LRU is not harming the performance of the slowest thread, there is no room

for improvement as ρ̄slowest ≈ 1. The MinExecTime activation mechanism detects these

situations and does not try to balance the application. Instead, MinLoadImb is triggered

in 89.6% of the situations without significantly reducing the execution time. In general,

MinLoadImb is triggered more often than MinExecTime, even in situations where signif-

icant performance degradations are obtained (9.6% in SH3 and 8.4% in HS23). When

LRU is clearly biased toward the fastest thread (SS4, HL3, HH2, HH3 and HH4), the

reduction in execution time is more significant, ranging between 4.1% and 21.6% (HH4).

In intermediate situations, the bottleneck thread is less affected by the fast thread and the

performance speed ups are smaller (between 1.5% and 4.5%).

MinLoadImb converges more slowly to the optimal solution than MinExecTime, and

as a result it normally returns worse results. However, as the number of total iterations

of the application increases, this difference in performance decreases as both algorithms

eventually reach an optimal partition. In some pairings, MinLoadImb gets stuck in a local

minimum because the threshold ε2 may be too big for the situation, while in other situa-

tions it suffers a ping-pong effect between the optimal and a suboptimal partition (because

ε2 may be too small for the situation). These problems do not occur with MinExecTime,

since it estimates the execution time for each cache configuration and finds the optimal

partition in one step.

On average, MinLoadImb and MinExecTime outperform LRU by 6.9% and 7.9%, re-

spectively. Figure 7.6(b) shows the imbalance percentage for both algorithms with differ-

ent workloads. Our algorithms reduce the imbalance percentage from an overall average

3Workloads SH3 and HS2 are not on Figures 7.6(a) and 7.6(b) as they are represented in the bar OFF

119

7.6. PERFORMANCE CHARACTERIZATION WITH SYNTHETIC
WORKLOADS

of 34.3% to 12.7% (MinLoadImb) and 14.1% (MinExecTime). In general, MinLoadImb

succeeds in reducing the imbalance percentage more than MinExecTime, since this metric

(that is, load imbalance minimization) is guiding the MinLoadImb algorithm.

7.6.2 Load Imbalance due to a Different Instruction Count

In the next experiment, we run two instances of the same benchmark and we artificially

generate load imbalance by reducing the number of executed instructions of the second

thread. To generate an I% of imbalance, we appropriately reduce the number of instruc-

tions of the second trace. This experiment mimics the situation where all threads have the

same cache behavior but different instruction count. As in the previous section, we repeat

each iteration ten times and report the average execution time of the final nine iterations

with respect to the results of the first iteration.

Given that both threads have the same cache behavior, LRU devotes a roughly equal

portion of the cache to each thread. As a consequence, LL and SS pairings will leave no

opportunity for execution time reduction. When the bottleneck thread belongs to group

L, it will not be affected by the other executing threads. The same situation will happen

if the bottleneck thread belongs to group S, as the cache requirements of each thread

are fulfilled. Thus, for these benchmarks we cannot obtain significant improvements in

execution time, even for high values of imbalance percentage because ρ̄slowest ≈ 1. In

these situations, MinExecTime is able to detect that it cannot obtain any performance

gain, and it keeps LRU as replacement policy, avoiding any performance degradation. In

contrast, MinLoadImb is triggered in 95% of the situations with a negligible impact on

the execution time. For HH pairings, the situation is different, since an execution time

reduction is possible through cache partitioning. Next, we study the pairs consisting of

two instances of each of the 10 H benchmarks in more detail.

The speed-up that both proposed algorithms achieve over LRU with the 10 pairs of

the H benchmarks and for an imbalance percentage varying from 10% to 90% is shown

in Figures 7.7(a) and 7.7(b). The line denoted AVG indicates the average results with

each algorithm among all benchmarks for a given imbalance percentage. The line de-

noted AVG-perfect indicates the average results of a partitioning algorithm with perfect

knowledge that always makes the correct decision.

Studying the behavior of MinLoadImb in Figure 7.7(a), we observe that all pairs ex-

cept apsi obtain significant performance speed ups as we vary the imbalance percentage

of the application. In the case of apsi there is a performance degradation of 13.9% with

120

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

(a) Speed up over LRU with MinLoadImb (b) Speed up over LRU with MinExecTime

Figure 7.7: Execution time reduction for HH pairings of SPEC CPU 2000 benchmarks with an
imbalance due to a different number of executed instructions

an imbalance percentage of 20%. This is a consequence of the nature of MinLoadImb and

its activation mechanism. In contrast, MinExecTime never degrades performance with re-

spect to LRU. This is corroborated by the results in Figure 7.7(b). In fact, the activation

mechanism of MinExecTime is conservative and may lose opportunities for performance

improvements with small imbalance percentages. However, this is the cost that has to be

paid in order to never lose performance with respect to LRU. Thus, on average, the speed

up achieved by MinExecTime is 5.8%. In contrast, the MinLoadImb activation mechanism

is much more aggressive and is triggered more often, reaching an average 6.3% improve-

ment. As a consequence, in some situations it loses performance with respect to LRU (up

to 13.9% of degradation in the case of apsi). Finally, it is noted that a perfect prediction

mechanism, which always tries to balance an application when there are opportunities to

do so, would obtain an average speed up of 7.1%. The gap is not very high, but closing

the gap between the proposed mechanisms and a perfect predictor is part of our future

work.

Another observation from both figures is that the improvement is, in general, less

when the imbalance percentage is very high. This can easily be explained, because when

the imbalance percentage is, say, 90%, it means that most of the time one thread is execut-

ing on its own, hence there are only limited opportunities for dynamic cache partitioning.

Also, despite the differences of the two algorithms, the behavior of each benchmark is

largely determined by its characteristics. Thus, the maximum speed up is obtained with

mgrid with an imbalance percentage of 30%, reaching a speed up of 28.9%. The behav-

ior of ammp, twolf and vpr corresponds to benchmarks that are very sensitive to cache

allocation, reaching speed ups between 15% and 25%. In fact, their behavior matches the

theoretical speed ups when ρ is between 1.6 and 1.9, which is very close to the measured

121

7.6. PERFORMANCE CHARACTERIZATION WITH SYNTHETIC
WORKLOADS

ρ in these workloads (1.80, 1.78 and 1.92, respectively). Other benchmarks, such as art,

facerec, fma3d, galgel, mgrid or parser, are less sensitive to the cache allo-

cation and exhibit speed ups between 5% and 10%. These results correspond to smaller

values of ρ in the model (between 1.1 and 1.3), which also matches the measured value

of ρ (1.36, 1.19, 1.16, 1.31, 1.35 and 1.22, respectively). The obtained results are close

to the maximum speed ups predicted by the model explained in Section 7.4, which shows

the robustness of the analytical model. Small differences are mainly due to the asymmetry

in performance/cache space figures.

Table 7.2 shows the accuracy of the activation mechanism for MinLoadImb and MinEx-

ecTime. We compare their results with the correct decision that would be taken by an ideal

activation mechanism with perfect knowledge. When LRU obtains better performance

than a partitioned cache, the correct decision should be to keep LRU as eviction policy

(denoted No in the 2nd row of Table 7.2). Conversely, if the partitioned cache obtains bet-

ter performance, the correct decision should be to activate the load balancing algorithm

(denoted Yes in the 1st row of Table 7.2). MinExecTime is never triggered when there

is no opportunity for execution time reduction. This was the main design goal of this

mechanism, because this situation may lead to heavy execution time degradation of the

application. On the other hand, in 53.3% of the cases in which it is possible to benefit from

cache partitioning to balance the workload, MinExectime is triggered. The lost opportu-

nities are 24.4% of the total cases. As a future work we plan to develop a more aggressive

prediction mechanism to decrease this loss of opportunities. In contrast, MinLoadImb is

much more aggressive than MinExecTime and is triggered is 94.4% of the situations, lead-

ing to better average results, but suffering significant performance degradations in some

situations.

Table 7.2: Accuracy of the activation mechanism with HH pairings

MinLoadImb decision MinExecTime decision
Yes No Yes No

Correct decision Yes (77.7%) 73.3% 4.4% 53.3% 24.4%
(perfect knowledge) No (22.3%) 21.1% 1.2% 0% 22.3%

7.6.3 Granularity Analysis of the Load Balancing Mechanism

So far, we have assumed that the cache allocation is changed at the boundary of a compu-

tation phase (that is, at the end of each iteration). This is a coarse enough granularity to

122

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

implement this solution in software at the OS or runtime level. The cache partition found

out at the end of one iteration is maintained throughout the whole iteration that follows

(and its computation phases).

As an alternative to the previous approach, we can use a dynamic algorithm that

changes the cache partition during the execution of a computation phase (inside each

iteration). This mechanism continuously monitors the load imbalance (or predicted exe-

cution time) and adapts the cache partition to IPC variations inside the same computation

phase. An algorithm working at this granularity is invoked periodically and executed in

a dedicated hardware, such as in [90]. In our baseline configuration, cache partitions are

decided every 5 million cycles4. As cache partitions are modified during the execution of

a phase, we denote our algorithms Dynamic-MinLoadImb and Dynamic-MinExecTime.

In the case of Dynamic-MinLoadImb, at the end of the first iteration of the applica-

tion, the mechanism decides to activate the load balancing algorithm if the load imbalance

of the application is above a threshold ε1 (implemented at software level). During the next

iteration new cache partitions are decided at intervals of 5 million cycles.

This hardware estimates the execution time of each thread with the current cache

partition using the current IPC of the application and stores the result in the Execution

Time Table (ETT). This structure sorts all threads according to their execution time. Once

we have filled the ETT with all the values, we use Algorithm 7 to partition the cache.

The fastest threads give one extra way to the slowest ones if their difference in execution

time is greater than ε2 and the slowest thread has more than one way. No extra ways

will be assigned to a thread that has already finished executing. The main difference with

the static algorithm is that here we use the predicted remaining execution time instead

of the execution time in the last interval. In fact, using the IPC of the application in the

last iteration (instead of the current IPC), we will obtain the same cache partition as with

MinLoadImb.

In the case of Dynamic-MinExecTime, the hardware implementation of this proposal

is similar to the previous mechanism, since it also requires the ETT. The basic difference

is that a dedicated hardware [77] provides the IPC of the application with a different cache

assignment. First, the execution time of each thread with only one way is estimated and

sorted in the ETT. Then, one way is assigned to the slowest thread and its new execution

time is estimated and inserted again in the ETT. This process is repeated K − N times

4The frequency of cache partition decision has been chosen after evaluating the mechanism for a wide
range of values

123

7.6. PERFORMANCE CHARACTERIZATION WITH SYNTHETIC
WORKLOADS

until all ways have been assigned (see Algorithm 8).

Next, we account for the total extra storage needed for the versions of the load bal-

ancing algorithms implemented in hardware explained in this section. In the case of

Dynamic-MinLoadImb, for an 8-core CMP, we need less than 20 bytes of total storage

per thread. In the case of Dynamic-MinExecTime, we need extra storage for the IPC pre-

dictions. Thus, for an 8-core CMP with a 16-way L2 cache, we need less than 80 bytes of

total storage per thread.

We evaluated the dynamic approaches with the same workloads as in the previous sec-

tions. These mechanisms show similar performance to the static ones. It is clear that the

dynamic mechanisms that change the cache partition during the execution of a computa-

tion phase will react to phase changes and converge more quickly to the optimal partition.

However, there are problems with benchmarks that exhibit large IPC variations during

their execution. This point may seem counter-intuitive, but optimal decisions at one point

of a computation phase may not be the optimal partition for the entire computation phase.

This is the case of apsi in pair HH2 with parser: In the first 54.6% of the time, apsi

has an IPC of 0.94 instructions per cycle. In the remaining 45.4% of the time it has an

average IPC of 3.59 instructions per cycle. Thus, dynamic algorithms try to assign as

much cache space as possible to apsi because it is assumed to be the bottleneck of the

parallel application. However, this is a wrong decision as later it automatically catches

up parser, which is the real bottleneck in this pairing. When benchmarks behave in a

similar way during the entire execution, the dynamic mechanisms obtain better results.

On average, the performance benefits obtained with static balancing algorithms are

slightly better than the dynamic mechanisms (between 2.3% and 2.7% in execution time

and between 2.5% and 3% in imbalance percentage). For that reason, we conclude that

using a static mechanism is more suitable to balance parallel applications.

7.6.4 Conclusions

In general, the largest reduction in execution time is obtained when a thread with more

cache accesses and less cache utility is executed with a thread with more cache utility and

less cache accesses. In this situation, an eviction policy such as LRU cannot restrict the

cache space assigned to the thread with less cache requirements, harming the performance

of the other thread. Next, we list the main findings of this section.

1) When threads are not cache sensitive, adjusting the cache space devoted to each

thread has almost no impact on performance, as ρ̄slowest ≈ 1.

124

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

2) When threads have different cache behavior and the bottleneck thread benefits little

from additional cache space, there is little room for improvement, as ρ̄slowest ≈ 1.

3) When threads have different cache behavior and the bottleneck thread is more sen-

sitive to cache space, we can manage to improve total execution time by reducing the load

imbalance.

4) When threads have similar cache behavior, performance speed ups are obtained

when all threads are classified as high utility.

5) Cache partition decisions should be made at the beginning of an iteration of the

application, since the load balancing algorithms provide better results when they have a

global vision of the imbalance of the application.

Finally, we have shown that the model previously introduced is robust among a wide

variety of synthetic workloads. In the next section, we show that the same conclusions

apply to a real-world parallel application.

7.7 Performance Evaluation with a Parallel HPC Appli-
cation

7.7.1 Extracting a Representative Trace from a Parallel HPC Appli-
cation

In this section, we evaluate our balancing algorithms with real traces from a parallel HPC

application running on an actual supercomputer: wrf. The Weather Research and Fore-

casting (wrf) model [73] is a mesoscale numerical weather prediction system designed

to serve both operational forecasting and atmospheric research needs. In this experiment,

we use the non hydrostatic mesoscale model dynamical core.

Simulating all threads of the parallel application implies a significant amount of sim-

ulation time, since these applications usually run for days or weeks on a supercomputer.

We use an automatic mechanism to choose the most representative computation regions

to be traced and simulated with a cycle-accurate simulator [40]. The simulation method-

ology starts with a paraver [62] trace file generated with OMPItrace package [84]. This

trace file consists of a complete timestamped sequence of events of the whole execution

of a parallel application. We used an automatic methodology to extract the internal struc-

ture of the trace [22], which allows us to select the most meaningful part of the trace file.

This methodology uses non-linear filtering and spectral analysis techniques to determine

the internal structure of the trace and detect periodicity of applications. The methodology

125

7.7. PERFORMANCE EVALUATION WITH A PARALLEL HPC
APPLICATION

makes it possible to cut the original parallel trace and to generate a new trace between

10 and 150 times shorter [22], but still in the order of minutes of real execution and not

affordable for a cycle-accurate simulator.

Next, we use a clustering algorithm to determine the most representative computa-

tion bursts inside an iteration of the new trace. In [41] the authors use a density-based

clustering algorithm applied to the hardware counters offered by modern processors to

automatically detect the representative sections of a parallel application. This algorithm

obtainsR representative sections of each computation phase, whereR is given by the user.

As we model a CMP with four cores, we select four representatives of each computation

phase with the same load imbalance as the entire phase.

We used these reduced trace files to feed up the cycle-accurate architecture simulator

described in Section 7.5. We simulate all threads sharing the L2 cache in a CMP architec-

ture. When a thread finishes executing, it waits until all other threads have also finished.

Finally, the obtained speed ups in the computation phases execution time are passed to

dimemas [39] (a high-level MPI application simulator) to estimate the total execution

time of the parallel application.

Figure 7.8: Experimental methodology to obtain representative traces of parallel applications.
Example with wrf with 64 MPI processes. Four representatives are chosen per computation
phase

Figure 7.8 exemplifies this methodology for a real application running on a super-

126

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

computer. We execute wrf with 64 MPI processes. On the top of the figure, we show the

beginning of the original trace. First, we determine the periodicity of the application and

cut the meaningful part of the trace. This process reduces an original trace from 5.06GB to

38.7MB. Next, the clustering algorithm detects five representative computations phases.

For example, computation phase C1 is executed twice during one iteration of the applica-

tion. Finally, we choose 4 representative processes of each computation phase with the

same load imbalance as the original phase. Note that selecting one representative for each

phase reduces the simulation time by a factor of 2.5x in this application (we simulate only

40% of the total time of an iteration), while choosing 4 representatives out of 64 gives a

16x speed up.

The simulation methodology described above significantly reduces the time needed

to obtain an estimation of execution time. In the case of a real application such as wrf

running with 64 threads, this methodology reduces simulation time by three orders of

magnitude (5300x speed up). Using the selected traces on a single processing machine,

we would need approximately half a day to estimate the speed up of a configuration, which

would make it unaffordable to simulate the whole application (we would need more than

100 days of simulation time).

7.7.2 Case Study with a Real HPC Application: wrf

Using the methodology described in the previous section, we extracted a trace from an

execution of wrf with 64 MPI processes and obtained 4 representatives for the 5 compu-

tation phases that compose the application.

(a) Execution time reduction over LRU (b) Imbalance Percentage

Figure 7.9: Imbalance metrics when using LRU and the balancing algorithms with wrf (CMP
architecture with 4 cores and a shared 1MB 16 ways L2 cache)

In this evaluation, we use two versions of the same application: wrf-non-optimized

and wrf-optimized. The former is a version of the application that has not been op-

127

7.7. PERFORMANCE EVALUATION WITH A PARALLEL HPC
APPLICATION

timized for our supercomputer infrastructure. Consequently, it suffers from the load im-

balance problem: the average imbalance percentage is 41.6%. After a long optimization

process, requiring several man-years of effort, the application has been heavily tuned to

solve this problem and reduce the imbalance percentage to 11.2%; we call this version

wrf-optimized.

Figure 7.9(a) shows the reduction in execution time obtained with MinLoadImb and

MinExecTime with the two versions of the parallel application. In the case of wrf-non-

optimized, the execution time with MinExecTime is consistently reduced, reaching

14% speed up in computation phase C3 and 7.4% on average (average results take into

consideration the weight of each phase in the application). The same behavior is ob-

served with MinLoadImb, although the performance speed ups are not as good because

the mechanism converges to the optimal partition more slowly. The obtained reduction in

execution time with our algorithms matches the estimation of the analytical model in Sec-

tion 7.4: the measured values of ρ are between 1.03 and 1.21, the imbalance is between

33.6% and 43.4%, and the expected improvements are in the range [1.5% ; 13.2%].

MinExecTime also improves the performance of wrf-optimized, where a signif-

icant effort from the application writers was devoted to balance it, by 1.4%. The mech-

anism is not activated in phases C2 and C3 (LRU is maintained for these phases). For

MinLoadImb, the balancing mechanism is only activated in phase C1, obtaining an aver-

age 1.0% reduction in execution time.

Figure 7.9(b) shows the improvements in imbalance percentage obtained with our

mechanisms. In the case of wrf-non-optimized, the imbalance percentage is consis-

tently reduced, from an average of 41.6% to 12.4% (MinExecTime) and to 13.0% for Min-

LoadImb. Computation phaseC3 was the most unbalanced phase when using LRU, which

explains the large speed ups in execution time that were obtained. In the case of wrf-

optimized, the original 11.2% imbalance percentage is reduced to 5.1% for MinExec-

Time and to 6.5% for MinLoadImb. The most important conclusion of Figure 7.9(b) is that

our balancing algorithms reduce the imbalance of wrf-non-optimized to the same

values of wrf-optimized. That is, in both cases the imbalance percentage is similar,

which means that, in balancing the non-optimized code, we reach the same performance

with the optimized code, without having to spend several man-years of effort in order to

change the code of the application.

128

CHAPTER 7. LOAD BALANCING USING DYNAMIC CACHE ALLOCATION

7.8 Summary

In this chapter we present a model that estimates the maximum reduction in execution

time which a load balancing algorithm can obtain when balancing a parallel HPC appli-

cation. Thanks to this model, we know in which situations execution time can be reduced,

which gives us the necessary to develop two load balancing algorithms for parallel appli-

cations, both of which make use of a dynamic cache allocation mechanism to balance the

application.

Our balancing algorithms have a learning phase in which the mechanism monitors

the usage of the shared last level cache in a CMP, determining whether it is useful to

trigger cache partitioning or keep using LRU. When triggered, our algorithms assign more

cache space to the slowest threads of the application. We suggest that these assignments

should be done at the end of each computation phase, since finer granularities may have

problems with workloads that exhibit large IPC variations during their execution. The

proposed model and load balancing algorithms were validated through an extensive set

of experiments with synthetic workloads. Our balancing algorithms reduce the execution

time with synthetic workloads by up to 28.9%.

We also applied the proposed algorithms to a real-world parallel application. The

balancing algorithms reduce the imbalance of wrf-non-optimized to 12%, the same

value as in wrf-optimized in which the optimization phase required several man-

years of effort. Overall we obtained a 7.4% execution time reduction. This is encouraging,

because it indicates that our dynamic load balancing algorithms may represent a one-time

effort that may considerably reduce the development time invested in balancing HPC

applications.

129

7.8. SUMMARY

130

Chapter 8
Multicore Resource Management in the

Manycore Era

General-purpose computing is moving onto diverse devices such as cell phones, digital

entertainment centers, and data center servers. At the same time, conventional monolithic

processor designs have pushed technology to its fundamental limits, and consequently,

the systems community has shifted its focus to distributed multicore architectures. Multi-

core architectures are more efficient than large monolithic processors, but they present a

number of new challenges. At the same time, over the last three decades, general-purpose

system architecture has become overly specialized for single-threaded personal comput-

ers.

Contemporary general-purpose system architecture, as exemplified by desktop/laptop

computers, is too slight a foundation upon which to build scalable multicore systems

capable of satisfying the diverse demands of future systems. Therefore, in this chapter,

we present our vision of future multicore system architectures. We propose to enrich the

current interaction between system software and architecture, allowing the application and

system software to explicitly manage a multicore system’s resources in order to satisfy

system and application specific objectives. Finally, we would like to mention that this

chapter has been developed with the collaboration of Kyle J. Nesbit and James E. Smith

from the University of Wisconsin-Madison, United States.

8.1 Introduction

Continuing the long-term trend of increasing integration, the number of cores per chip is

projected to increase with each successive new technology generation. These chips yield

increasingly powerful systems with reduced cost and improved efficiency. At the same

time, general-purpose computing is moving off desktops and onto new devices such as

131

8.1. INTRODUCTION

cell phones, digital entertainment centers, and data-center servers [66]. These computers

must have the key features of today’s general-purpose systems (high performance and

programmability) while satisfying stricter cost, power, and real-time performance con-

straints.

An important aspect of chip multiprocessors (CMP) is improved hardware resource

utilization. On a CMP, concurrently executing threads can share costly microarchitec-

ture resources that would otherwise be underutilized, such as off-chip bandwidth. Higher

resource utilization improves aggregate performance and enables lower-cost design alter-

natives, such as smaller die area or less exotic battery technology. However, increased

resource sharing presents a number of new design challenges. In particular, greater hard-

ware resource sharing among concurrently executing threads can cause individual thread

performance to become unpredictable and might lead to violations of the individual ap-

plications’ performance requirements [23, 75, 82].

Traditionally, operating systems (OS) are responsible for managing shared hardware

resources, processor(s), memory, and I/O. This works well in systems where processors

are independent entities, each with its own microarchitecture resources. However, in

CMPs, processors are concurrently executing threads that compete with each other for

fine-grain microarchitecture resources. Hence, conventional operating system policies do

not have adequate control over hardware resource management. To make matters worse,

the operating system’s software policies and the hardware policies in the independently

developed microarchitecture might conflict. Consequently, this compromises operating

system policies directed at overall system priorities and real-time performance objectives.

In the context of future applications, this poses a serious system design problem, mak-

ing current resource management mechanisms and policies no longer adequate for future

multicore systems. Policies, mechanisms, and the interfaces between them must change

to fit the multicore era.

In this chapter, we outline our vision for resource management in future multicore sys-

tems, which involves enriched interaction between system software and hardware. Our

goal is for the application and system software to coordinately manage all the shared

hardware resources in a multicore system. For example, a developer or end user will

specify an application’s Quality of Service (QoS) objectives, and the developer or system

software stack will translate these objectives into hardware resource assignments. Be-

cause QoS objectives are often application specific, the envisioned multicore architecture

provides an efficient and general interface that can satisfy QoS objectives over a range of

132

CHAPTER 8. MULTICORE RESOURCE MANAGEMENT IN THE
MANYCORE ERA

applications. By enriching the interaction between hardware and software, the envisioned

resource management framework facilitates a more efficient, better performing platform

design.

Designing general-purpose systems requires a clear separation of policies and mech-

anisms [65]. Policies provide solutions; for flexibility, policies should be implemented

in software. Mechanisms provide the primitives for constructing policies. Because prim-

itives are universal, system designers can implement mechanisms in both hardware and

software. In general, mechanisms that interact directly with fine-grain hardware resources

should be implemented in hardware; to reduce hardware cost, mechanisms that manage

coarse-grain resources should be implemented in software.

8.2 Virtual Private Machines

In a traditional multiprogrammed system, the operating system assigns each application

a portion of the physical resources (for example, physical memory and processor time

slices). From the application’s perspective, each application has its own private ma-

chine with a corresponding amount of physical memory and processing capabilities. With

CMPs containing shared microarchitecture level resources, however, an application’s ma-

chine is no longer private, and consequently, resource usage by other independent appli-

cations can affect its resources.

As a result of these considerations, we make use of the virtual private machine (VPM)

framework as a means of handling resource management in systems based on CMPs [82].

This framework was introduced by Nesbit et al. [82] to manage the cache hierarchy in

CMP architectures. VPMs are similar in principle to classical virtual machines. However,

classical virtual machines virtualize a system’s functionality [88] (ignoring implementa-

tion features), while VPMs virtualize a system’s performance and power characteristics,

which are implementation specific. A VPM consists of a complete set of virtual hard-

ware resources, both spatial (physical) resources and temporal resources (time slices).

These include the shared microarchitecture-level resources. By definition, a VPM has the

same performance and power characteristics as a real machine with an equivalent set of

hardware resources.

The VPM abstraction provides the conceptual interface between policies and mech-

anisms. VPM policies, implemented primarily in software, translate application and

system objectives into VPM resource assignments, thereby managing system resources.

133

8.2. VIRTUAL PRIVATE MACHINES

Then, VPM mechanisms securely multiplex, arbitrate, or distribute hardware resources to

satisfy the VPM assignments.

Figure 8.1: Virtual private machine (VPM) spatial component. The policy has distributed
the CMP’s resources among three VPMs. After assigning VPM 1 50 percent of the shared
resources and VPMs 2 and 3 each 10 percent, it leaves 30 percent of the cache and memory
resources unallocated for excess service

8.2.1 Spatial Component

A VPM’s spatial component specifies the fractions of the system’s physical resources

that are dedicated to the VPM during the time(s) that it executes a thread. For example,

consider a baseline system containing four processors, each with a private L1 cache. The

processors share an L2 cache, main memory, and supporting interconnection structures.

Figure 8.1 shows that the policy has distributed these resources among three VPMs. VPM

1 contains two processors, and VPMs 2 and 3 each contain a single processor. The policy

assigns VPM 1 a significant fraction (50 percent) of the shared resources to support a

demanding multithreaded multimedia application and assigns the other two VPMs only

10 percent of the resources. These assignments leave 30 percent of the cache and memory

resources unallocated; these resources are called excess service. Excess service policies

distribute excess service to improve overall resource utilization and optimize secondary

performance objectives.

In our example, we focus on shared memory hierarchy resources, but VPM concepts

also apply to internal processor resources, such as issue queue entries, and instruction

decode and execution bandwidth [23]. Furthermore, we can apply the same concepts to

architected resources such as memory capacity and I/O.

As Figure 8.1 illustrates, a VPM’s spatial component might contain multiple pro-

cessors. Multiprocessor VPMs are a natural extension of gang scheduling and support

hierarchical resource management [42, 85]. For example, schedulers and resource man-

agement policies running within a multiprocessor VPM can schedule and manage the

134

CHAPTER 8. MULTICORE RESOURCE MANAGEMENT IN THE
MANYCORE ERA

VPM’s processors and resources as if the VPM were a real multiprocessor machine. That

is, multiprocessor VPMs can support recursive virtualization [88].

8.2.2 Temporal Component

A VPM’s temporal component is based on the well-established concept of ideal propor-

tional sharing [86]. It specifies the fraction of processor time (processor time slices) that a

VPM’s spatial resources are dedicated to the VPM (see Figure 8.2). As with spatial VPM

resources, a VPM’s temporal component naturally lends itself to recursive virtualization

and hierarchical resources management, and excess temporal service might exist.

Figure 8.2: VPMs consist of a spatial component and a temporal component. The tempo-
ral component specifies the fraction of processor time that a VPM’s spatial resources are
dedicated to the VPM

8.2.3 Minimum and Maximum VPMs

To satisfy objectives, policies might assign applications minimum or maximum VPMs,

or both, depending on the objectives. Mechanisms ensure an application is offered a

VPM that is greater than, or equal to, the application’s assigned minimum VPM. Infor-

mally, the mechanisms offer an application at least the resources of its assigned minimum

VPM. When combined with the assumption that an application will only perform better if

it is offered additional resources (performance monotonicity [64]), ensuring a minimum

VPM assignment leads to desirable performance isolation; that is, the running application

135

8.3. POLICIES

performs at least as well as it would if it were executing on a real machine with a config-

uration equivalent to the application’s assigned VPM. This performance level is assured,

regardless of the other applications in the system.

Mechanisms can also ensure that an application receives no more than its maximum

VPM resources. Policies can use maximum VPM assignments to control applications’

power consumption, which is based on the assumption that an application’s power con-

sumption is a monotonically increasing function of its resource usage (power monotonic-

ity). For maximum VPM assignments to improve power savings significantly, they should

be supported by mechanisms that power down unused resources. Furthermore, because

temperature and transistor wear-out strongly depend on power consumption, policies can

use maximum VPMs to control temperature and lifetime reliability [97]. Lastly, applica-

tion developers can use maximum VPMs to test whether a minimum VPM configuration

satisfies an application’s real-time performance requirements [64].

8.3 Policies

VPM assignments satisfy real-time performance, aggregate performance, power, tempera-

ture, and lifetime reliability objectives. Overall, the VPM policy design space is enormous

and is a fertile area for future research. Here, we begin with a high-level overview of the

policy design space and then discuss the basic types of policies and how they interact in

our envisioned system architecture.

In general, we envision two basic types of policies. Application-level policies satisfy

an application’s QoS objectives by translating the QoS objectives into a VPM configura-

tion as well as scheduling and managing VPM resources assigned to the application. Sys-

tem policies satisfy system objectives by controlling the distribution of VPM resources

among applications. System policies control resource distribution by granting and re-

jecting requests for VPM resources and revoking VPM resources when the system is

overloaded.

The policy architecture’s main feature is its extensibility: we clearly separate policies

from mechanisms [65], and policies are easy to replace or modify on a per system and per

application basis [38]. For example, in Figure 8.3, a system is running five applications,

each within its own VPM (not shown). The first application (on the left) is a real-time

recognition application. To satisfy its real-time requirements, the application is running

with an application-specific VPM that the application’s developer computed offline. The

136

CHAPTER 8. MULTICORE RESOURCE MANAGEMENT IN THE
MANYCORE ERA

Figure 8.3: The VPM system architecture consists of application-level policies, system
policies, software mechanisms, and hardware mechanisms. The extensible policy archi-
tecture lets policy builders modify policies on a per system and per application basis

second and third applications (mining and synthesis) are written in a domain-specific,

concurrent programming language. The language includes a run-time that computes VPM

configurations online and optimizes applications’ concurrency in coordination with the

applications’ VPM resources. The mining and synthesis applications are isolated from

each other, but they share the library code which implements the language’s run-time.

The last two applications (MySQL and Apache) are standard Linux applications which

are oblivious to the underlying system’s VPM support. The applications are running on a

virtual version of Linux, which in turn is running on a thin software layer that monitors

the applications’ workload characteristics and roughly computes VPM configurations,

using heuristics and ad hoc techniques. Most importantly, application-level policies allow

application developers and run-time libraries to customize a system’s behavior to satisfy

a range of applications’ requirements.

8.3.1 Application-level Policies

In general, there are two logical steps for determining VPM assignments: modeling and

translation. We describe the steps as separate phases, although in practice they may be

combined. As we described earlier, application policies compute VPM configurations

either online (automated) or offline (manually). Online policies are based primarily on

run-time analysis (for example, by using performance counters), while offline policies

require an application developer to perform most of the program analysis. Online/offline

hybrid policies are also feasible.

In addition, application policies can use standardized application-level abstraction lay-

ers which provide developers with abstract machine models. Such models are often imple-

137

8.3. POLICIES

Figure 8.4: Application policies compute VPM configurations in two logical steps: VPM
modeling and translation. Standardized application-level abstractions can be used to ab-
stract away irrelevant implementation specific VPM details

mentation independent and have performance characteristics that are easier for developers

to reason about (see Figure 8.4).

With respect to VPM modeling, the VPM modeling step maps application QoS objec-

tives, such as minimum performance and maximum power, to VPM configurations. The

sophistication of VPM modeling techniques spans a fairly wide range. At one end are

simple, general-purpose analytical models that use generic online profiling information

to roughly predict an application’s performance and power when running on different

VPM configurations. At the other end are models specialized to a specific application

(or a domain of applications) through offline profiling and characterization. Such offline

models can precisely capture an application’s performance and power on different VPM

configurations.

Application- or domain-specific VPM modeling can provide more precise predictions,

but might require more developer effort (for example, to determine suitable VPM configu-

rations offline). Applications with critical QoS objectives (such as real-time applications)

will generally require more precise VPM modeling.

138

CHAPTER 8. MULTICORE RESOURCE MANAGEMENT IN THE
MANYCORE ERA

Turning now to VPM translation, the VPM translation step uses the VPM models to

find VPM configurations which satisfy an application’s QoS objectives. Multiple VPM

configurations can satisfy the same objective. For example, multiple minimum VPM con-

figurations can satisfy a single real-time performance objective; that is, one suitable VPM

configuration might have a larger spatial component and smaller temporal component,

while another suitable VPM might have a larger temporal component and smaller spatial

component. Or there might be different combinations of resources within the same spatial

component.

Furthermore, applications might have multiple objectives that a policy can use to

prune the number of suitable VPM configurations. For example, an application policy

can search for a VPM configuration that satisfies a real-time performance requirement and

minimizes power consumption. Moreover, a policy can assign an application a maximum

VPM to bound the application’s power consumption. In many practical situations, find-

ing the optimal VPM configuration is NP-hard. Consequently, online translation generally

must use approximate and heuristic-based optimization techniques. For applications with

critical QoS objectives, the application developer can do a portion of the VPM transla-

tion offline. Moreover, the developer can combine the VPM modeling and translation

steps into a single step. For example, an application developer might use maximum VPM

assignments and trial and error to compute a minimum VPM configuration that satisfies

their application’s real-time performance objective [64].

Once the policy has found a suitable VPM configuration, it initiates a request to the

system’s policies for the VPM resources. If the VPM resources are available, the system

policies securely bind the VPM resources to the application [38]. When a system is

heavily loaded, the system policies might reject an application’s VPM request or revoke

a previous VPM resource binding.

An application policy must implement a procedure for handling VPM rejections and

revocations. When a rejection or revocation occurs, an application policy can find another

suitable VPM configuration or reconfigure the application to reduce the application’s re-

source requirements. For example, a real-time media player can downgrade its video

quality or simply return an insufficient resource error message and exit.

To help with global (systemwide) resource optimization, VPM system policies can

provide feedback to the applications’ policies. The feedback informs the applications of

global resource usage. An application’s policies can use the system feedback informa-

tion to further prune the suitable VPM configurations and find a VPM that is amenable

139

8.3. POLICIES

to systemwide resource constraints. In addition, an application’s policies can use VPM

modeling and online profiling information to dynamically respond to changing workload

characteristics.

A third consideration is the VPM abstraction layer. In our discussion so far, we

have assumed a relatively high-level VPM abstraction (for example, VPMs that consist

of shares of cache bandwidth, cache storage, and memory system bandwidth). However,

real hardware resources are more complex. For example, a physical cache implementation

consists of banks, sets, and ways. VPM mechanisms do not abstract hardware resources;

that is, the VPM mechanisms convey implementation specific details to the application

policies. Exposing implementation details creates an interface that is more efficient to

implement and grants more latitude to implementers of higher-level abstractions [38].

However, exposing implementation details to applications can make applications im-

plementation dependent. Moreover, many application policies do not need low-level im-

plementation details to satisfy their QoS objectives. To improve application compatibility,

many application policies can use standardized VPM abstraction layers. A VPM abstrac-

tion layer provides a high-level VPM that abstracts away a system’s implementation-

specific details while capturing the system’s first-order performance and power character-

istics. At run-time, the abstraction layer efficiently translates high-level VPM configura-

tions into low-level VPM assignments that the system’s mechanisms support.

8.3.2 System Policies

System policies control the distribution of VPM resources by dealing with applications’

VPM requests. System policies have three basic components: a system monitor, feedback

policies, and excess service policies, as shown in Figure 8.5.

The system monitor tracks the load on the system’s resources and detects system over-

load. A system is overloaded if it does not have enough resources to satisfy its applica-

tions’ VPM assignments. In general, it is best to detect overload as early as possible,

such as when an application initiates a VPM request that causes the system to become

overloaded. To detect system overload, the system must monitor any shared resource that

can become overloaded, such as cache storage, execution bandwidth, cooling capacity,

and power delivery. We can detect that a VPM request overloads a system’s physical re-

sources with an admission control test [43]. For example, the system monitor can compare

the set of dedicated VPM resources with the capacity of the system’s physical resources.

Detecting that a VPM request overloads a system’s less tangible resource constraints

140

CHAPTER 8. MULTICORE RESOURCE MANAGEMENT IN THE
MANYCORE ERA

Figure 8.5: System policies deal with VPM requests and monitor application resource
usage to ensure that the system does not become overloaded

(such as a power-delivery system, cooling capacity, or transistor lifetime reliability) is

more difficult. The system monitor must use VPM models to translate between less tan-

gible resource constraints and VPM configurations. The VPM models should be accurate

enough to detect most overload conditions at the time an application initiates a VPM re-

quest; however, they do not have to be completely accurate. The system monitor’s VPM

models are used to supplement conventional hardware sensors, such as voltage and tem-

perature sensors. Hardware sensors can detect anomalous overload conditions (such as

overheating) in real-time and prevent catastrophic failures. If a sensor detects an over-

loaded resource, the system policies have accepted more VPM requests than the system’s

physical resources can satisfy. In this case, the system policies must revoke some appli-

cations’ assigned VPM resources.

With regard to feedback policies, these determine which applications’ VPM resources

should be rejected or revoked when the system is overloaded. For example, when a sys-

tem is overloaded, a feedback policy might reject any incoming VPM request or revoke

the VPM resources of the application with the lowest user-assigned priority. Feedback

policies also inform applications of systemwide resource utilization and the causes of re-

jected or revoked VPM requests (for example, the system might have insufficient power

resources available).

As we described earlier, applications’ policies can use the feedback to compute a suit-

able VPM configuration that is amenable to systemwide resource usage. The feedback

policies should also provide applications with up-to-date systemwide resource usage in-

formation regardless of VPM rejections and revocations. In this way, the feedback poli-

141

8.4. MECHANISMS

cies can direct the global optimization of a system’s resource usage.

The third element is excess service policies. After application and system policies

have settled on a suitable set of VPM assignments, there might be excess service avail-

able. Excess service is service that is unassigned or unused by the application to which

it is assigned. Excess service policies distribute excess service to optimize system ob-

jectives. For example, these policies can distribute service to improve response time or

throughput averaged over all applications, to conserve power or transistor lifetime, or a

combination of such objectives. To optimize power or transistor lifetime objectives, ex-

cess service policies prevent applications from consuming the excess service. That is,

these policies assign tasks maximum VPMs, thus causing the excess resources to be pow-

ered off. Excess service policies must also ensure that distributing excess service does not

violate applications’ maximum VPM assignments.

In most cases, excess service policies transparently adjust applications’ VPM assign-

ments. For example, they can transparently increase a minimum VPM assignment or

decrease a maximum VPM assignment without violating the application policy’s VPM

assignments. For some resources, the policies must notify an application’s policies when

excess resources are added (for example, they must notify an application’s thread sched-

uler when processors are added to a VPM).

For some resources, excess service becomes available and must be distributed at a

fine time granularity, such as with SDRAM memory system bandwidth. In such cases,

a portion of the excess service policy must be implemented in hardware. However, a

policy’s hardware portion should be simple, parameterized, and general; that is, it should

work with multiple software excess service policies.

8.4 Mechanisms

There are three basic types of mechanisms needed to support the VPM framework: a VPM

scheduler, partitioning mechanisms, and feedback mechanisms, as shown in Figure 8.6.

The first two types securely multiplex, arbitrate, or distribute hardware resources in order

to satisfy VPM assignments. The third type provides feedback to application and system

policies. Because mechanisms are universal, system builders can implement mechanisms

in both hardware and software. Generally, the VPM scheduler is implemented in software

(in a microkernel [38] or a virtual machine monitor [103]), while the partitioning mech-

anisms and feedback mechanisms are primarily implemented in hardware. Although a

142

CHAPTER 8. MULTICORE RESOURCE MANAGEMENT IN THE
MANYCORE ERA

basic set of VPM mechanisms are available [23, 75, 82], many research opportunities

remain to develop more efficient and robust VPM mechanisms.

Figure 8.6: VPM mechanisms are implemented in hardware and software. The mecha-
nisms satisfy VPM resource assignments and provide feedback regarding individual ap-
plication and systemwide resource usage

8.4.1 VPM Scheduler

The VPM scheduler satisfies applications’ temporal VPM assignments by time-slicing

hardware threads. The VPM scheduler is a proportional-fair scheduler [13], but it must

also ensure that co-scheduled applications’ spatial resource assignments do not conflict

(that is, it must ensure that the set of co-scheduled threads’ spatial resource assignments

match the physical resources available, and do not oversubscribe any microarchitecture

resources). VPM scheduling in its full generality, satisfying proportional fairness without

spatial conflicts, is an open research problem.

When the VPM scheduler context switches an application onto a processor (or a group

of processors), the scheduler communicates the application’s spatial VPM assignment to

the hardware partitioning mechanisms through privileged control registers. Once the con-

trol registers are configured, the VPM resources are securely bound to the application.

Secure binding decouples the authorization from resource usage [38] (that is, once a re-

source is securely bound to an application, the application’s policies can schedule and

manage its VPM resources without re-authorization). In this way, VPMs can efficiently

support hierarchical scheduling [42].

The VPM scheduler we describe here is a first-level scheduler (or root scheduler),

while application-level schedulers are second-level schedulers. Hierarchical scheduling

is useful for satisfying different classes of QoS requirements [42]. Furthermore, precise

143

8.4. MECHANISMS

application-level schedulers will play an important role in future parallel programming

models.

8.4.2 Partitioning Mechanisms

To satisfy the spatial component of VPM assignments, each shared microarchitecture re-

source must be under the control of a partitioning mechanism that can enforce minimum

and maximum resource assignments. As we described earlier, the resource assignments

are stored in privileged control registers that the VPM scheduler configures. In gen-

eral, each shared microarchitecture resource is one of three basic types of resources: a

memory storage, buffer, or bandwidth resource. Each type of resource has a basic type

of partitioning mechanism. For example, thread-aware replacement algorithms partition

storage resources (main memory and cache storage [75, 78, 82, 108]), upstream flow

control mechanisms partition buffer resources (issue queue and miss status handling reg-

isters [23]), and fair-queuing and traffic-shaping arbiters partition bandwidth resources

(execution and memory ports [81]). These basic techniques, combined with the proper

control logic, can sufficiently enforce minimum and maximum resource assignments.

For maximum VPM assignments to be useful, the partitioning mechanisms must be

accompanied by mechanisms to power down resources during periods of inactivity. An

example would be mechanisms that clock-gate unused pipeline stages and transition in-

active memory storage resources into a low-power state. As we mentioned earlier, by

controlling resources’ power consumption, policies can control other important charac-

teristics such as die temperature and transistor wear out [88].

8.4.3 Feedback Mechanisms

Mechanisms also provide application and system policies with feedback regarding phys-

ical resource capacity and usage. Feedback mechanisms communicate to system policies

the capacity of the system’s resources and the available VPM partitioning mechanisms.

They also provide application policies with information regarding individual applications’

resource usage and performance.

Application resource usage information should be independent of the system archi-

tecture and the application’s VPM assignments. For example, a mechanism that measures

a stack distance histogram can predict cache storage behavior for many different cache

sizes as we have shown in the previous chapters. Other mechanisms such as OPACU

144

CHAPTER 8. MULTICORE RESOURCE MANAGEMENT IN THE
MANYCORE ERA

would make it possible to obtain performance projections of the application with other

resource assignments.

Lastly, feedback mechanisms provide information regarding overall resource utiliza-

tion. For example, a system’s mechanisms should provide system policies with die tem-

perature and power consumption information.

8.5 Summary

Overall, the presented framework provides a solid foundation for future architecture re-

search, but many challenges remain in evaluating this framework. First, the framework

targets system-level metrics that occur over time granularities which preclude the use of

detailed simulation. Second, many of the applications we are interested in (such as smart

phone or cloud computer applications) are unavailable or unknown. To address these

problems, we plan to develop most of the framework with analytical models and reduce

the simulation time as much as possible using well-known techniques like sampled or

statistical simulation.

145

8.5. SUMMARY

146

Chapter 9
Conclusions

This chapter summarizes the main contributions of this thesis and presents an analysis of

the results shown in each chapter. This chapter also presents future lines of work opened

up by this thesis.

9.1 Goals, Contributions and Main Conclusions

In the last few years, chip multiprocessors (CMP) have become widely used in academia

and industry in order to increase the system aggregated performance. CMPs increase

hardware resource utilization, while reducing design costs and average power consump-

tion by exploiting design re-use and simpler processor cores.

However, these new multithreaded architectures also have to face the challenge of

making a better use of shared resources. A key shared resource in CMP architectures is

the cache hierarchy, since this is one of the resources that has the most impact on the final

performance of the application. In CMP architectures, shared last levels of cache (LLC)

have become popular as they make it possible to increase the utilization of the cache (and

consequently, aggregate performance) and to simplify the coherence protocol.

As we have seen in this thesis, applications make very different use of the cache

hierarchy, depending on their data re-use and access patterns. When running multiple ap-

plications in a CMP with a shared cache, undesired situations can occur where a subset of

the applications monopolizes the shared cache, degrading the performance of the others.

And even worse, the Operating System (OS) has no way of enforcing a Quality of Service

(QoS) to applications.

In this thesis, we propose software and hardware mechanisms whose aim is to improve

cache sharing in CMP architectures. We make use of a holistic approach, coordinating

targets of software and hardware, in order to improve system aggregate performance and

provide QoS to applications. We make use of explicit resource allocation techniques to

147

9.1. GOALS, CONTRIBUTIONS AND MAIN CONCLUSIONS

control the shared cache in a CMP architecture, with resource allocation targets driven by

hardware and software mechanisms.

The main contributions of this thesis are the following.

• We have characterized different single- and multithreaded applications and classi-

fied workloads using a systematic method, in order to better understand and explain

the cache sharing effects on a CMP architecture. We have made a special effort

to study previous cache partitioning techniques for CMP architectures, in order to

acquire the insights mecessary to propose improved mechanisms.

• In CMP architectures with out-of-order processors, cache misses can be served in

parallel and share the miss penalty to access main memory. We take this fact into

account in order to propose new cache partitioning algorithms which are guided by

the memory-level parallelism (MLP) of each application. With these algorithms,

system performance is improved (in terms of throughput and fairness) without sig-

nificantly increasing the hardware required by previous proposals.

• Driving cache partition decisions with indirect indicators of performance such as

misses, MLP, or data re-use, may lead to sub-optimal cache partitions. Ideally, the

appropriate metric to drive cache partitions should be the target metric to optimize,

which is normally related to IPC. Thus, we have developed a hardware mechanism,

namely OPACU, that is able to obtain accurate predictions at run-time of the per-

formance of an application when running with different cache assignments.

• Using performance predictions, we have introduced a new framework to manage

shared caches in CMP architectures, namely FlexDCP, which allows the OS to op-

timize different IPC-related target metrics, such as throughput or fairness, and pro-

vide QoS to applications. FlexDCP allows for an enhanced coordination between

the hardware and the software layers, which in turn leads to improved system per-

formance and flexibility.

• Next, we have made use of performance estimations in order to reduce the load

imbalance problem in parallel applications. We built a run-time mechanism that

detects parallel applications sensitive to cache allocation and, in these situations,

reduces the load imbalance by assigning more cache space to the slowest threads.

This mechanism helps to reduce the long optimization time in terms of man-years

of effort devoted to large-scale parallel applications.

148

CHAPTER 9. CONCLUSIONS

• Finally, we have stated the main characteristics that future multicore processors

with thousands of cores should have. An enhanced coordination between the soft-

ware and hardware layers has been proposed to better manage the shared resources

in these architectures.

9.2 Future Work

The different techniques presented in this dissertation can be further enhanced or ex-

tended. Moreover, this thesis opens up several new topics which we want to explore

further. Among others, we would like to highlight the following:

• Low power cache designs. A reduction in the power dissipated in the cache can

be obtained by adjusting the active hardware resources to the requirements of the

applications. A direct estimation of the performance of the application (using IPC

predictions obtained with OPACU mechanism) makes it possible to obtain the de-

sired trade-off between power consumption and performance.

• Parallel applications with shared data. Dynamic cache partitioning (DCP) tech-

niques can also be used in the case of parallel applications in which threads con-

currently work on the same data. The parallel application can be seen as a whole

accessing the shared cache. With that goal, bit masks and monitoring logic should

be assigned to processes instead of to cores.

• Enhanced feedback mechanisms between the architecture and the OS. CMP archi-

tectures with shared caches introduce complexities when accounting for CPU uti-

lization. This is due to the fact that the progress made by an application during an

interval of time depends to a great extent on the activity of the other applications

which it is co-scheduled with. An inaccurate measurement of the CPU utilization

affects several key aspects of the system, such as the application scheduling, or the

charging mechanism in data centers. CPU accounting should be aware of how dif-

ferent co-scheduled applications are sharing the cache, which can be achieved by

using the monitoring logic described in this thesis.

• Predictable performance for hard real-time applications. The increasing demand

for new functionalities in current and future hard real-time embedded systems like

automotive, avionics and space industries is driving an increase in the performance

149

9.3. PUBLICATIONS

required in embedded processors. Multicore processors represent a good design

solution for such systems, due to their high performance, low cost and power con-

sumption characteristics. However, hard real-time embedded systems require time

analyzability, and current multicore processors are less analyzable than single-core

processors, due to the interferences between different tasks when accessing shared

hardware resources. Cache partitioning techniques can be used to allow CMPs to

be analyzed.

Some of these topics are already being developed. We hope to deal with the remaining

topics in the near future.

9.3 Publications

Below we list the publications which our research to date has produced. First, we list

accepted publications related to this thesis. Then, we enumerate submitted publications

for which we are still waiting for an answer and, finally, we list other publications on

other topics that we have done in the past few years.

9.3.1 Accepted Publications

• M. Moretó, F. J. Cazorla, A. Ramirez, R. Sakellariou and M. Valero. FlexDCP: a

QoS framework for CMP architectures. In ACM SIGOPS Operating System Re-

view, Special Issue on the Interaction among the OS, Compilers, and Multicore

Processors, April 2009.

• K. J. Nesbit, M. Moretó, F. J. Cazorla, A. Ramirez, M. Valero, and J. E. Smith.

Multicore Resource Management. In IEEE Micro, Special Issue on Interaction of

Computer Architecture and Operating System in the Manycore Era, vol. 38, no. 3,

May/June 2008.

• M. Moretó, F. J. Cazorla, A. Ramirez and M. Valero. Dynamic Cache Partitioning

based on the MLP of Cache Misses. In Transactions on High Performance Embed-

ded Architectures and Compilers. vol. 3, no. 1, March 2008.

• M. Moretó, F. J. Cazorla, A. Ramirez and M. Valero. MLP-aware dynamic cache

partitioning. In International Conference on High Performance Embedded Archi-

tectures and Compilers (HiPEAC). Goteborg, Sweden, January 2008.

150

CHAPTER 9. CONCLUSIONS

• M. Moretó, F. J. Cazorla, A. Ramirez and M. Valero. MLP-aware dynamic cache

partitioning. In International Conference on Parallel Architectures and Compilation

Techniques (PACT), Poster Abstracts. Brasov, Romania, September 2007.

• M. Moretó, F. J. Cazorla, A. Ramirez and M. Valero. Online Prediction of Through-

put for Different Cache Sizes. In XVIII Jornadas de Paralelismo. Zaragoza, Spain,

September 2007.

• M. Moretó, F. J. Cazorla, A. Ramirez and M. Valero. Online Prediction of Ap-

plications Cache Utility. In International Symposium on Systems, Architectures,

MOdeling and Simulation (SAMOS). Samos, Greece, July 2007.

• M. Moretó, F. J. Cazorla, A. Ramirez and M. Valero. Explaining Dynamic Cache

Partitioning Speed Ups. In IEEE Computer Architecture Letters, vol. 6, no. 1,

March 2007.

• M. Moretó, F. J. Cazorla, A. Ramirez and M. Valero. Reducing Simulation Time. In

Advanced Computer Architecture and Compilation for Embedded Systems (ACACES),

Poster Abstracts. L’Aquila, Italy, July 2006, pp. 233-236. Academic Press, ISBN

90 382 0981 9.

9.3.2 Submitted Articles for Publication

• M. Moretó, F. J. Cazorla, R. Sakellariou and M. Valero. Load Balancing Through

Cache Allocation. Submitted to Computing Frontiers 2010.

• J. González, M. Casas, M. Moretó, J. Gimenez, A. Ramirez, J. Labarta and M.

Valero, Simulating Whole Supercomputer Applications. Submitted to ICS 2010.

9.3.3 Other Publications

• K. Kędzierski, M. Moretó, F. J. Cazorla and M. Valero. Adapting Cache Partition-

ing Algorithms to the pseudo-LRU Replacement Policy. To appear in IPDPS 2010.

• J. Cámara, M. Moretó, E. Vallejo, R. Beivide, C. Martínez, J. Miguel-Alonso and

J. Navaridas. Twisted Torus Topologies for Enhanced Interconnection Networks. In

IEEE Transactions on Parallel and Distributed Systems (TPDS). To appear in 2010.

151

9.3. PUBLICATIONS

• C. Luque, M. Moretó, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu and M. Valero.

ITCA: Inter-Task Conflict-Aware CPU Accounting for CMPs. In PACT 2009. Raleigh,

USA, September 2009.

• K. Kędzierski, M. Moretó, Bringing Cache Partitioning in CMPs to Reality. In

PACT 2009. Poster Abstracts. Raleigh, USA, September 2009.

• A. Ramirez, M. Alvarez, F. Cabarcas, M. Moretó, A. Rico, and C. Villavieja. Ex-

periencia en el desarrollo colaborativo de documentos usando Wiki. Jornadas Do-

centes del Departamento de Arquitectura de Computadores (JoDoDAC). Barcelona,

Spain, February 2009.

• C. Luque, M. Moretó, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu and M. Valero.

CPU accounting in CMP Processors. In IEEE Computer Architecture Letters. Vol-

ume 8, Issue 1, January 2009.

• C. Martínez, M. Moretó, R. Beivide, E. Gabidulin and E. Stafford. Modeling

Toroidal Networks with the Gaussian Integers. In IEEE Transactions on Computers,

vol. 57, no. 8, August 2008.

• P. A. Castillo, J. J. Merelo, M. Moretó, F. J. Cazorla, M. Valero, A. M. Mora, J. L.

J. Laredo, and S.A. McKee. Evolutionary system for prediction and optimization of

hardware architecture performance. In IEEE Congress on Evolutionary Computa-

tion (CEC). Hong Kong, June 2008.

• P. A. Castillo, A. M. Mora, J. J. Merelo, J. L. J. Laredo, M. Moretó, F. J. Cazorla,

M. Valero, and S.A. McKee. Architecture performance prediction using evolution-

ary artificial neural networks. In European Workshop on Hardware Optimization

Techniques (EVOHot). Napoli, Italy. March 2008.

• J. Cámara, M. Moretó, E. Vallejo, R. Beivide, C. Martínez, J. Miguel-Alonso and J.

Navaridas. Mixed-radix Twisted Torus Interconnection Networks. In IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS). Long beach, USA,

March 2007.

• C. Martínez, M. Moretó, R. Beivide and E. Gabidulin. A Generalization of Perfect

Lee Codes over Gaussian Integers. In IEEE International Symposium on Informa-

tion Theory. Seattle, USA, July 2006.

152

CHAPTER 9. CONCLUSIONS

• C. Martínez, E. Vallejo, R. Beivide, C. Izu and M. Moretó. Dense Gaussian Net-

works: Suitable Topologies for On-Chip Multiprocessors. In International Journal

of Parallel Programming, Vol. 33, No. 3, June 2006.

• C. Martínez, E. Vallejo, M. Moretó, R. Beivide and M. Valero, Hierarchical Topolo-

gies for Large-scale Two-level Networks. In XVI Jornadas de Paralelismo. Granada,

Spain, September 2005

• M. Moretó, C. Martínez, R. Beivide, E. Vallejo and M. Valero. Hierarchical Gaus-

sian Topologies. In ACACES, Poster Abstracts. L’Aquila, Italy, July 2005, pp.

211-214. Academic Press, ISBN 90 382 0802 2.

153

9.3. PUBLICATIONS

154

Bibliography

[1] C. Acosta, F. J. Cazorla, A. Ramirez, and M. Valero. The MPSim Simulation Tool.

Technical Report UPC-DAC-RR-2009-7, January 2009.

[2] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz. April: A processor archi-

tecture for multiprocessing. Technical report, Cambridge, MA, USA, 1991.

[3] P. Aitken, T. Anderson, S. Apiki, A. Bailey, A. McNaughton, A. W. Morales,

L. O’Brien, J. Whitney, and A. Zeichick. Surviving and thriving in a multi-core

world. AMD Developer Central White Paper, 2006.

[4] D. H. Albonesi. Selective cache ways: on-demand cache resource allocation. In

MICRO, pages 248–259, 1999.

[5] AMD. Family 10h amd phenom ii processor product data sheet. AMD White Paper,

February 2009.

[6] AMD. Software optimization guide for amd family 10h processors. AMD White

Paper, May 2009.

[7] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega. Cotson: in-

frastructure for full system simulation. SIGOPS Oper. Syst. Rev., 43(1):52–61,

2009.

[8] ARM920T. Technical Reference Manual. http://infocenter.arm.com/

help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf.

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The

landscape of parallel computing research: A view from berkeley. Technical Re-

port UCB/EECS-2006-183, EECS Department, University of California, Berkeley,

December 2006.

155

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf

BIBLIOGRAPHY

[10] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for computer

system modeling. Computer, 35(2):59–67, February 2002.

[11] R. I. Bahar and S. Manne. Power and energy reduction via pipeline balancing. In

ISCA, pages 218–229, 2001.

[12] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Mem-

ory hierarchy reconfiguration for energy and performance in general-purpose pro-

cessor architectures. In MICRO, pages 245–257, 2000.

[13] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate

progress: a notion of fairness in resource allocation. In STOC, pages 345–354,

1993.

[14] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive selective replica-

tion for CMP caches. In MICRO, pages 443–454, 2006.

[15] R. Bedichek. SimNow: Fast platform simulation purely in software. Hot Chips

Symposium, August 2004.

[16] F. Bellard. QEMU, a fast and portable dynamic translator. USENIX 2005 Annual

Technical Conference, FREENIX Track, pages 41–46, 2005.

[17] C. Boneti, F. J. Cazorla, R. Gioiosa, C.-Y. Cher, A. Buyuktosunoglu, and M. Valero.

Software-Controlled Priority Characterization of POWER5 Processor. In ISCA,

pages 415–426, 2008.

[18] C. Boneti, R. Gioiosa, F. J. Cazorla, J. Corbalan, J. Labarta, and M. Valero. Bal-

ancing HPC Applications Through Smart Allocation of Resources in Multithreaded

Processors. In IPDPS, pages 1–12, 2008.

[19] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero. A dynamic scheduler for

balancing HPC applications. In SC, pages 1–12, 2008.

[20] D. P. Bovet and M. Cesati. Understanding Linux kernel. O’Reilly, 3rd edition,

2005.

[21] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and A. González. Meeting

points: using thread criticality to adapt multicore hardware to parallel regions. In

PACT, pages 240–249, 2008.

156

BIBLIOGRAPHY

[22] M. Casas, R. M. Badia, and J. Labarta. Automatic structure extraction from MPI

applications tracefiles. In Euro-Par, pages 3–12, 2007.

[23] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez, A. Ramirez, and

M. Valero. Predictable performance in SMT processors: Synergy between the OS

and SMTs. IEEE Transactions on Computers, 55(7):785–799, 2006.

[24] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache con-

tention on a chip multi-processor architecture. In HPCA, pages 340–351, 2005.

[25] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen, S. Chiu,

R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D. Srivastava. The 65-nm 16-

mb shared on-die l3 cache for the dual-core intel xeon processor 7100 series. IEEE

Journal of Solid-State Circuits, 42(4):846–852, April 2007.

[26] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In ISCA,

pages 264–276, 2006.

[27] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors.

In ICS, pages 242–252, 2007.

[28] S. Chheda, O. Unsal, I. Koren, C. M. Krishna, and C. A. Moritz. Combining com-

piler and runtime IPC predictions to reduce energy in next generation architectures.

In CF, pages 240–254, 2004.

[29] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Dynamic cache partitioning via

columnization. In Design Automation Conference, 2000.

[30] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing replication, commu-

nication, and capacity allocation in CMPs. In ISCA, pages 357–368, 2005.

[31] J. Corbalan, A. Duran, and J. Labarta. Dynamic load balancing of MPI+OpenMP

applications. In ICPP, pages 195–202, 2004.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press and McGraw-Hill, 2001.

[33] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration hardware via

dynamic working set analysis. In ISCA, pages 233–244, 2002.

157

BIBLIOGRAPHY

[34] J. Doweck. Inside intel core microarchitecture and smart memory access. an in-

depth look at intel innovations for accelerating execution of memory-related in-

structions. Intel White Paper, 2006.

[35] C. Dubach, T. Jones, and M. O’Boyle. Microarchitectural design space exploration

using an architecture-centric approach. In MICRO, pages 262–271, 2007.

[36] A. Duran, M. Gonzàlez, and J. Corbalán. Automatic thread distribution for nested

parallelism in openmp. In ICS, pages 121–130, 2005.

[37] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. D. Bosschere. Statistical simulation:

Adding efficiency to the computer designer’s toolbox. IEEE Micro, 23(5):26–38,

2003.

[38] D. R. Engler, F. M. Kaashoek, and J. O’Toole. Exokernel: An operating system ar-

chitecture for application-level resource management. In Symposium on Operating

Systems Principles, pages 251–266, 1995.

[39] S. Girona and J. Labarta. Sensitivity of performance prediction of message passing

programs. Journal of Supercomputing, 17(3):291–298, 2000.

[40] J. Gonzalez, M. Casas, M. Moretó, J. Gimenez, A. Ramirez, J. Labarta, and

M. Valero. Simulating Whole Supercomputer Applications. Technical Report

UPC-DAC-RR-CAP-2009-29, June 2009.

[41] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic detection of parallel applica-

tions computation phases. In IPDPS, pages 1–11, 2009.

[42] P. Goyal, X. Guo, and H. M. Vin. A hierarchial CPU scheduler for multimedia

operating systems. In OSDI, pages 107–121, 1996.

[43] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing quality of

service in chip multi-processors. In MICRO, pages 343–355, 2007.

[44] R. H. Halstead, Jr. and T. Fujita. Masa: a multithreaded processor architecture for

parallel symbolic computing. In ISCA, pages 443–451, 1988.

[45] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip multiprocessor. Com-

puter, 30(9):79–85, 1997.

158

BIBLIOGRAPHY

[46] L. C. Heller and M. S. Farrell. Millicode in an ibm zseries processor. IBM J. Res.

Dev., 48(3-4):425–434, 2004.

[47] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative ap-

proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[48] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, utilitarian, and

capitalist cache policies on CMPs: caches as a shared resource. In PACT, pages

13–22, 2006.

[49] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan. Variability

in the execution of multimedia applications and implications for architecture. In

ISCA, pages 254–265, 2001.

[50] Intel. Intel research advances “Era Of Tera”. Intel News Release, February 2007.

[51] Intel. Introducing the 45nm next-generation intel core microarchitecture. Intel

White Paper, 2007.

[52] R. R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. R.

Hsu, and S. K. Reinhardt. QoS policies and architecture for cache/memory in CMP

platforms. In SIGMETRICS, pages 25–36, 2007.

[53] A. Jaleel, W. Hasenplaugh, M. K. Qureshi, J. Sebot, S. C. Steely, and J. Emer.

Adaptive insertion policies for managing shared caches on CMPs. In PACT, page

208Ű219, 2008.

[54] T. M. Jones, M. F. P. O’Boyle, J. Abella, and A. Gonzalez. Software directed issue

queue power reduction. In HPCA, pages 144–153, 2005.

[55] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor model. In

ISCA, pages 338–349, 2004.

[56] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting generational behav-

ior to reduce cache leakage power. In ISCA, pages 240–251, 2001.

[57] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra. Using predictivemodeling for

cross-program design space exploration in multicore systems. In PACT, pages 327–

338, 2007.

159

BIBLIOGRAPHY

[58] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip

multiprocessor architecture. In PACT, pages 111–122, 2004.

[59] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark work-

load for simulation-based computer architecture research. Computer Architecture

Letters, 1(1):7–10, 2002.

[60] H. Kobayashi, I. Kotera, and H. Takizawa. Locality analysis to control dynamically

way-adaptable caches. Comput. Archit. News, 33(3):25–32, 2005.

[61] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In ISCA,

pages 81–88, 1981.

[62] J. Labarta, S. Girona, V. Pillet, T. Cortes, , and L. Gregoris. Dip: A parallel program

development environment. In Euro-Par, pages 665–674, 1996.

[63] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti,

W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM POWER6 microarchitecture.

IBM J. Res. Dev., 51(6):639–662, 2007.

[64] J. W. Lee and K. Asanovic. Meterg: Measurement-based end-to-end performance

estimation technique in QoS-capable multiprocessors. In RTAS, pages 135–147,

2006.

[65] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism sepa-

ration in hydra. In SOSP, pages 132–140, 1975.

[66] S. Lohr and M. Helft. Google gets ready to rumble with microsoft. New York

Times, 16 December 2007.

[67] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: building customized program analysis tools with

dynamic instrumentation. In PLDI, pages 190–200, 2005.

[68] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in

SMT processors. In ISPASS, pages 164–171, 2001.

[69] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,

F. Larsson, A. Moestedt, and B. Werner. Simics: A full system simulation platform.

Computer, 35(2):50–58, February 2002.

160

BIBLIOGRAPHY

[70] MareNostrum Supercomputer. http://www.bsc.es.

[71] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for

storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[72] Metis. Family of multilevel partitioning algorithms. http://www.cs.umn.edu/metis.

[73] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and

W. Wang. The Weather Reseach and Forecast Model: Software Architecture and

Performance. In ECMWF, 2004.

[74] P. Michaud, A. Seznec, and S. Jourdan. Exploring instruction-fetch bandwidth

requirement in wide-issue superscalar processors. In PACT, pages 2–10, 1999.

[75] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero. FlexDCP: a

QoS framework for CMP architectures. ACM SIGOPS OSR, 43(2):86–96, 2009.

[76] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. Explaining dynamic cache

partitioning speed ups. IEEE Computer Architecture Letters, 6(1), 2007.

[77] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. Online prediction of appli-

cations cache utility. In IC-SAMOS, pages 169–177, 2007.

[78] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. MLP-aware dynamic cache

partitioning. International Conference on High Performance Embedded Architec-

tures and Compilers (HiPEAC), January 2008.

[79] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Environment for powerpc microar-

chitecture exploration. IEEE Micro, 19(3):15–25, 1999.

[80] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip

multiprocessors. In MICRO, pages 146–160, 2007.

[81] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory

systems. In MICRO, pages 208–222, 2006.

[82] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. ISCA, pages 57–68,

2007.

[83] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J. E. Smith. A

Framework for Managing Multicore Resources. IEEE Micro, 23(5):26–38, 2008.

161

http://www.bsc.es

BIBLIOGRAPHY

[84] OMPItrace tool. Instrumentation of combined OpenMP and MPI applications.

http://www.bsc.es/media/1382.pdf.

[85] J. K. Ousterhout. Scheduling techniques for concurrent systems. In ICDCS, pages

22–30, 1982.

[86] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to

flow control in integrated services networks: The single-node case. IEEE/ACM

Transactions on Networking, 1:344–357, 1993.

[87] P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, and E. Hagersten. Modeling

cache sharing on chip multiprocessor architectures. In IISWC, pages 160–171,

2006.

[88] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third gener-

ation architectures. Communications of the ACM, 17(7):412–421, 1974.

[89] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case for MLP-Aware

Cache Replacement. In ISCA, pages 167–178, 2006.

[90] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches. In MICRO,

2006.

[91] S. E. Raasch and S. K. Reinhardt. The impact of resource partitioning on SMT

processors. In PACT, pages 15–25, 2003.

[92] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural support for operating

system-driven CMP cache management. In PACT, pages 2–12, 2006.

[93] L. D. Rose, B. Homer, and D. Johnson. Detecting application load imbalance on

high end massively parallel systems. In Euro-Par, pages 150–159, 2007.

[94] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete computer sys-

tem simulation: The SimOS approach. IEEE Parallel and Distributed Technology,

3:34–43, 1995.

[95] R. Sakellariou and J. R. Gurd. Compile-time minimisation of load imbalance in

loop nests. In ICS, pages 277–284, 1997.

162

http://www.bsc.es/media/1382.pdf

BIBLIOGRAPHY

[96] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-

constraint graph partitioning. In Euro-Par, pages 296–310, 2000.

[97] A. S. Sedra and K. C. Smith. Microelectronic Circuits. Oxford University Press,

4th edition, 1998.

[98] M. J. Serrano, R. Wood, and M. Nemirovsky. A study on multistreamed superscalar

processors. Technical Report 93-05, University of California Santa Barbara, 1993.

[99] A. Settle, D. Connors, E. Gibert, and A. Gonzalez. A dynamically reconfigurable

cache for multithreaded processors. Journal of Embedded Computing, 1(3-4),

2005.

[100] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and

exploiting program phases. IEEE Micro, 2003.

[101] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. Power5

system microarchitecture. IBM J. Res. Dev., 49(4/5):505–521, 2005.

[102] B. J. Smith. Architecture and applications of the hep multiprocessor computer

system. SPIE Real Time Signal Processing IV, pages 241–248, 1981.

[103] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and Pro-

cesses. Morgan Kaufmann, June 2005.

[104] J. E. Smith and R. Nair. Virtual machines: versatile platforms for systems and

processes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[105] Standard Performance Evaluation Corporation. SPEC CPU 2000 benchmark suite.

http://www.spec.org.

[106] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache memory. IEEE

Transactions on Computers, 41(9):1054–1068, 1992.

[107] S. Storino, A. Aipperspach, J. Borkenhagen, R. Eickemeyer, S. Kunkel, S. Leven-

stein, and G. Uhlmann. A commercial multithreaded risc processor. pages 234–

235, 442, February 1998.

[108] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for

memory-aware scheduling and partitioning. In HPCA, pages 117–128, 2002.

163

http://www.spec.org

BIBLIOGRAPHY

[109] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache

memory. Journal of Supercomputing, 28(1):7–26, 2004.

[110] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: maxi-

mizing on-chip parallelism. In ISCA, pages 392–403, 1995.

[111] UltraSPARC T2 Supplement to the UltraSPARC Architecture

2007. http://opensparc-t2.sunsource.net/specs/

UST2-UASuppl-current-draft-HP-EXT.pdf.

[112] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and M. Valero. A

novel evaluation methodology to obtain fair measurements in multithreaded archi-

tectures. In MoBS, 2006.

[113] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and M. Valero.

FAME: Fairly measuring multithreaded architectures. In PACT, pages 305–316,

2007.

[114] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Accelerating

microarchitecture simulation via rigorous statistical sampling. ISCA, pages 84–95,

2003.

[115] T. Y. Yeh and G. Reinman. Fast and fair: data-stream quality of service. In CASES,

pages 237–248, 2005.

[116] E. Ypek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz. Efficiently

exploring architectural design spaces via predictive modeling. In ASPLOS, pages

195–206, 2006.

[117] M. Zhang and K. Asanovic. Victim replication: Maximizing capacity while hiding

wire delay in tiled chip multiprocessors. In ISCA, pages 336–345, 2005.

[118] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar. Dy-

namic tracking of page miss ratio curve for memory management. In ASPLOS,

pages 177–188, 2004.

164

http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf

List of Figures

1.1 Total execution time of swim in different workloads running on an Intel

Xeon Quad-Core processor with a shared L2 cache 3

1.2 Performance and MPKI variability of ammp in different workloads run-

ning in a 4-core CMP environment with a shared L2 cache using LRU as

eviction policy . 4

1.3 Thesis structure (DCP stands for Dynamic Cache Partitioning) 8

2.1 Blocks diagram of our baseline architecture 13

2.2 Pipeline stages in our baseline architecture 13

2.3 IPC curve as we vary the number of assigned ways to applu (L), gzip

(S), and ammp (H) in a 1MB 16-way L2 cache 19

3.1 Main components of a cache partitioning framework for a 2-core CMP

architecture with a shared L2 cache: monitoring logic (ML), modified

replacement logic (MRL), and partitioning logic (PL) 24

3.2 Stack distance histograms of all SPEC CPU 2000 benchmarks with a 16-

way 1MB L2 cache. Darker colors correspond to more accesses per thou-

sand cycles with a given stack distance 26

3.3 MinMisses dynamic cache partitioning example 27

3.4 EvalAll dynamic programming algorithm (Algorithm 4) example with

four cores sharing a 4-way associative cache 32

3.5 Performance comparison between the different algorithms: EvalAll, marginal

gains (MG), look ahead (LA), marginal gains in reverse order (MGRO)

and EvalAll with dynamic programming techniques (EvalAll-DP) 34

4.1 Cache miss penalty of isolated and clustered L2 misses in an out-of-order

architecture . 38

165

LIST OF FIGURES

4.2 Average miss penalty of an L2 miss in a 1MB 16-way L2 cache for the

whole SPEC CPU 2000 benchmark suite 39

4.3 MLP_cost of L2 accesses in an out-of-order architecture 42

4.4 Miss Status Holding Register (MSHR) description 42

4.5 Hit Status Holding Register (HSHR) description 44

4.6 Hardware implementation of the MLP-aware monitoring logic 46

4.7 Misses and IPC curves for galgel and gzip 48

4.8 Average performance speed ups over LRU of the different MLP-aware

DCP algorithms . 49

4.9 Average throughput speed up over LRU of the different MLP-aware DCP

algorithms with a 1MB 16-way L2 cache 49

4.10 Sensitivity analysis to different design parameters of the different MLP-

aware DCP algorithms . 50

4.11 Throughput and hardware cost depending on ds in a two-core CMP 51

4.12 Average throughput speed up over LRU for different decision algorithms

in the 4C-1 configuration . 53

5.1 Average ROB occupancy after an L2 miss commits 61

5.2 OPACU mean relative error for all SPEC CPU 2000 benchmarks 62

5.3 Real and predicted IPC curves for gap, gcc, fma3d and parser . . . 63

5.4 Average relative error for groups H, S and L when running with a given

number of assigned ways . 64

5.5 ROB occupancy after a data L2 miss commits for art and twolf 66

5.6 Sensitivity analysis to different processor parameters. Only one param-

eter is changed in each experiment, remaining the rest of the processor

parameters constant . 66

5.7 Hardware implementation of OPACU prediction mechanism 69

5.8 Average relative error and hardware cost depending on the sampling distance 70

5.9 Average relative error with optimal scaling factor depending on the sam-

pling distance . 71

5.10 Average relative error using information inside the L2 cache and depend-

ing on the sampling distance . 72

6.1 Generic framework to manage shared resources in a CMP architecture . . 77

6.2 FlexDCP: a QoS framework for CMP architectures with a shared LLC . . 80

166

LIST OF FIGURES

6.3 Average L2 miss penalty for apsi, gzip and vpr with three different

L2 cache configurations . 83

6.4 SDHs and IPC curves for swim and vpr 84

6.5 Partitioning granularities in a two-core architecture 85

6.6 Predictable performance in the 4C-2 configuration 90

6.7 Predictable performance in the 4C-1 configuration when the target IPC is

specified beforehand . 91

6.8 Hmean speed up over LRU when optimizing different QoS metrics 93

6.9 Throughput improvement of MinMisses, Fair and FlexDCP-MaxIPC over

LRU . 94

6.10 Average speed up over pseudo LRU when optimizing throughput 95

7.1 Synthetic example of a parallel application with 4 threads running in the

same CMP . 103

7.2 Execution of the wrf parallel application with 64 threads applications. Only the

first 16 threads are shown for simplicity. The same behavior is observed in the

other 48 MPI processes . 104

7.3 Convergence rate to the optimal cache partition solution for MinLoadImb

and MinExecTime . 111

7.4 Load imbalance computation and definitions 112

7.5 Maximum achievable speed up based on a multiplicative ∆ (Formula 7.6) 115

7.6 Execution time and imbalance percentage for pairings with different L2 cache

behavior . 119

7.7 Execution time reduction for HH pairings of SPEC CPU 2000 benchmarks with

an imbalance due to a different number of executed instructions 121

7.8 Experimental methodology to obtain representative traces of parallel applica-

tions. Example with wrf with 64 MPI processes. Four representatives are cho-

sen per computation phase . 126

7.9 Imbalance metrics when using LRU and the balancing algorithms with wrf

(CMP architecture with 4 cores and a shared 1MB 16 ways L2 cache) 127

167

LIST OF FIGURES

8.1 Virtual private machine (VPM) spatial component. The policy has dis-

tributed the CMP’s resources among three VPMs. After assigning VPM

1 50 percent of the shared resources and VPMs 2 and 3 each 10 percent,

it leaves 30 percent of the cache and memory resources unallocated for

excess service . 134

8.2 VPMs consist of a spatial component and a temporal component. The

temporal component specifies the fraction of processor time that a VPM’s

spatial resources are dedicated to the VPM 135

8.3 The VPM system architecture consists of application-level policies, sys-

tem policies, software mechanisms, and hardware mechanisms. The ex-

tensible policy architecture lets policy builders modify policies on a per

system and per application basis . 137

8.4 Application policies compute VPM configurations in two logical steps:

VPM modeling and translation. Standardized application-level abstrac-

tions can be used to abstract away irrelevant implementation specific VPM

details . 138

8.5 System policies deal with VPM requests and monitor application resource

usage to ensure that the system does not become overloaded 141

8.6 VPM mechanisms are implemented in hardware and software. The mech-

anisms satisfy VPM resource assignments and provide feedback regard-

ing individual application and systemwide resource usage 143

168

List of Tables

2.1 MPSim baseline processor configuration 14

2.2 SPEC CPU INT 2000 benchmarks description and simulation starting

point using the SimPoint methodology [100] 15

2.3 SPEC CPU FP 2000 benchmarks description and simulation starting point

using the SimPoint methodology [100] 16

2.4 Number of repetitions required for each SPEC CPU 2000 benchmark in

our baseline configuration for a 5% MAIV value 18

2.5 For all SPEC CPU 2000 benchmarks, we give the metricsw90% and APTC

needed to classify workloads together with their IPC for a 1MB 16-way

L2 cache configuration . 20

2.6 Workloads belonging to each case for a 1MB 16-way and a 2MB 32-way

shared L2 cache . 21

3.1 Stack distance computation. Cache hits are marked in bold 25

3.2 Stack distance histogram example . 26

3.3 Computational complexity of the different cache partitioning decision al-

gorithms . 34

3.4 Different cache partitioning proposals 36

4.1 MLP_cost quantification . 45

5.1 IPC prediction when moving from 7 to 16 active ways for vortex 60

6.1 Variability of the impact on performance of L2 cache misses 83

6.2 Performance improvement over LRU in a 4-core CMP with a time over-

head of 5,000 cycles . 88

6.3 Functionalities offered by the different QoS frameworks 97

169

LIST OF TABLES

7.1 Workloads of benchmarks with different L2 cache behavior. Four workloads per

group are chosen . 118

7.2 Accuracy of the activation mechanism with HH pairings 122

170

Glossary

2C Configuration with 2 cores and 1MB 16-way L2 cache. 21, 48, 89

4C-1 Configuration with 4 cores and 1MB 16-way L2 cache. 21, 48, 89

4C-2 Configuration with 4 cores and 2MB 32-way L2 cache. 21, 89

8C-2 Configuration with 8 cores and 2MB 32-way L2 cache. 22, 89

AROAL2M Average ROB occupancy after an L2 miss commits. 68

ATD Auxiliary tag directory. 45, 69

avgDMP Average L2 data miss penalty. 59

BBV Basic block vector. 17

BIC Bayesian information criterion. 17

BM Bit mask. 82

CGMT Coarse grain multithreading. 1

CMP Chip multiprocessor. i, 1, 38, 56, 75, 76, 132, 147

CPI Cycles per instruction. 58

DCP Dynamic cache partitioning. 6, 23, 35, 37, 40, 75, 92, 101, 149

ETT Execution time table. 123

FGMT Fine grain multithreading. 1

FlexDCP Flexible dynamic cache partitioning framework. 78, 148

171

Glossary

H High utility. 19, 38, 62, 89, 117

HPT High priority thread. 89

HSHR Hit status holding registers. 44

ILP Instruction-level parallelism. 1

IP Imbalance percentage. 112

IPC Instructions per cycle. 5, 18, 38, 56, 78

IT Imbalance time. 112

L Low utility. 19, 38, 62, 89, 117

LLC Last level on-chip cache. i, 2, 14, 37, 80, 104, 147

LPT Low priority thread. 89

LRU Least recently used. i, 5, 20, 23, 59, 79, 102

MAIV Maximum Allowable IPC Variance. 18

MLP Memory-level parallelism. 9, 38, 40, 148

MPKI Misses per thousand (kilo) instruction. 5

MRU Most recently used. 25, 73

MSHR Miss status holding registers. 42

NRU Not recently used. 94

OPACU Online prediction of applications cache utility. 59, 75, 83, 109, 144, 148

OS Operating system. 3, 11, 36, 55, 75, 132, 147

PPR Performance projection registers. 81, 95

QoS Quality of service. i, 3, 5, 7, 73, 75, 76, 132, 147

172

Glossary

ROB Reorder buffer. 13, 36, 37, 59, 83, 110

S Saturated utility. 19, 38, 62, 89, 117

SDH Stack distance histogram. 25, 39, 56, 58, 95

SMT Simultaneous multithreading. 1, 56, 76

SPEC Standard Performance Evaluation Corp.. 14, 56, 82

TLP Thread-level parallelism. 1

TMLP Total memory-level parallelism cost. 46

UBM Used-bit mask. 95

VPC Virtual private caches. 96

VPM Virtual private machines. 133

173

	Abstract
	Acknowledgments
	Index
	Introduction
	Thesis Objectives and Contributions
	Weighted Dynamic Cache Partitioning Algorithm
	Obtention of IPC Estimations
	Use of IPC Estimations to Guide Resource Assignments
	Resource Management in Future Manycore Architectures

	Thesis Structure

	Platform, Tools and Benchmarks
	Introduction
	MPSim Simulator
	Benchmarks
	Simulation Time Reduction
	Simulation Methodology

	Workload Classification
	Performance Metrics

	Dynamic Cache Partitioning Algorithms
	Introduction
	Modified Replacement Logic
	Monitoring Logic
	Partitioning Logic
	Cache Partitioning Decision
	Generating All Possible Combinations
	Marginal Gains Algorithm
	Look Ahead Algorithm
	Marginal Gains in Reverse Order Algorithm
	EvalAll Dynamic Programming Solution
	Overhead and Performance Comparison

	Other Cache Partitioning Algorithms

	MLP-aware Dynamic Cache Partitioning Algorithm
	Introduction
	MLP-Aware Dynamic Cache Partitioning
	MLP-Aware Stack Distance Histogram
	Obtaining Stack Distance Histograms
	Putting It All Together
	Case Study: galgel and gzip

	Evaluation Results
	Performance Results
	Design Parameters Analysis
	Hardware Cost
	Scalable Algorithms to Decide Cache Partitions

	Summary

	Online Prediction of Applications Cache Utility
	Introduction
	Basis of IPC Curves Prediction
	Superscalar Processors Analytical Modeling

	Prediction of IPC Curves
	OPACU Methodology
	Modified Memory Model

	Evaluation Results
	Accuracy Results
	Sensitivity Analysis

	Hardware Implementation
	Related Work
	Summary

	FlexDCP: a QoS framework for CMP architectures
	Introduction
	FlexDCP QoS Framework
	Direct Vs Indirect Performance Metrics
	Case Study: swim and vpr
	Granularity of Cache Quota Decisions
	Scalability of FlexDCP

	Evaluation Results
	Ensuring an Individual Quality of Service
	Ensuring a Global Quality of Service
	Putting it all together

	Comparison of Different QoS Frameworks
	Summary

	Load Balancing Using Dynamic Cache Allocation
	Introduction
	Motivation
	Dynamic Load Balancing Through Cache Allocation
	Iterative Method: Load Imbalance Minimization
	Single-step Method: Execution Time Minimization
	Comparison of the Algorithms

	Analysis of the Load Imbalance Problem
	Experimental Environment
	Performance Characterization with Synthetic Workloads
	Load Imbalance due to Different L2 Cache Behavior
	Load Imbalance due to a Different Instruction Count
	Granularity Analysis of the Load Balancing Mechanism
	Conclusions

	Performance Evaluation with a Parallel HPC Application
	Extracting a Representative Trace from a Parallel HPC Application
	Case Study with a Real HPC Application: wrf

	Summary

	Multicore Resource Management in the Manycore Era
	Introduction
	Virtual Private Machines
	Spatial Component
	Temporal Component
	Minimum and Maximum VPMs

	Policies
	Application-level Policies
	System Policies

	Mechanisms
	VPM Scheduler
	Partitioning Mechanisms
	Feedback Mechanisms

	Summary

	Conclusions
	Goals, Contributions and Main Conclusions
	Future Work
	Publications
	Accepted Publications
	Submitted Articles for Publication
	Other Publications

	Bibliography
	List of Figures
	List of Tables
	Glossary

