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5
COOPERATIVE CACHING AND

DISTRIBUTED CONTROL

5.1 MOTIVATION

After the results obtained by the centralized version of our cooperative cache, we are

ready to present the distributed version. This new design will solve most of the problems

found in the centralized version but while still maintaining the main ideas presented in

the previous chapter.

Scalability is the first problem we want to solve with this distributed version. As it was

already explained in the previous chapter, a centralized cooperative cache can obtain

quite good performance on machines with tenths of nodes, but if larger machines are

used a distributed version is needed.

In the previous version, we wanted to prove that exploiting physical locality was not

mandatory to achieve a high-performance cache. Once this idea has been proved, there
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is no need to be so strict and ignore all physical locality. In this new version, we will

try to achieve some more locality as long as it does not add overhead to the remote

hits.

Another important objective of this distributed version consists of proving that avoiding

replication to avoid coherence problems still works when the control is distributed. The

results presented in the previous chapter give the feeling that this is a good solution to

the coherence problem. Anyway, it has to be proven in a system where the coherence

problem really exists.

Finally, we want to compare this distributed version with xFS in its original form. This

will help us to finally prove the ideas presented in this work.

5.2 FILE-SYSTEM ARCHITECTURE

In this section, we will describe the architecture of PAFS, the parallel/distributed file

system where our cooperative cache with a distributed control is located. This system is

based on several servers that take care of the different tasks that have to be done in a file

system. To run PAFS we need, at least, three sets of servers: disk-servers, cache-servers

and a redistribution-server (Figure 5.1). A fourth set of servers, the parity-servers, is

only needed whenever the fault-tolerance mechanism is activated. In this chapter, we

will focus on the three first sets and the fault-tolerance mechanism will be described in

Chapter 6.

Cache-servers are in charge of serving the clients requests. They manage the cache

and meta-data information. If the data needed by a cache-server is not in memory, and

has to be fetched from disk, this data is requested from a disk-server. These disk-

servers are processes responsible for physically reading and writing the disk blocks.

To implement a highly scalable system, the inter-server communication has to be as

low as possible. For this reason, we propose a load distribution that does not need

any communication between cache-servers. Each cache-server is responsible for a set
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Figure 5.1 PAFS architecture.

L i
Figure 5.2 An example of two cache-server partitions in a three-node machine.

of files. It keeps all the information needed to find a file block in the cache, or disk,

without the need of any other cache-server. Clients know which servers are in charge

of which files computing a hash function using the file name (or file-ID). The idea is

very similar to the one presented in PACA but instead of computing the node to place

the block, we compute the cache-server responsible for this block.

The whole global cache is distributed among the cache-servers. All the buffers assigned

to a cache-server build this server's partition. In Figure 5.2 we present an example

with two cache-servers and their partitions in a three node machine. We can see that

the buffers assigned to each partition may come from any node indistinctly. It is also

important to see that the size of the partitions may be different for each cache-server.

When a buffer is assigned to a.given partition, the cache-server which owns this partition
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is the only one allowed to use it. As the load of all the cache-servers may not always

be balanced, the system needs a mechanism to dynamically reassign buffers among the

cache-servers. The redistribution-server is in charge of such redistribution. Different

policies to distribute buffers are presented later in this chapter.

A very important issue in the design of PAFS was to enforce the lack of dedicated nodes.

Servers may run in any node and share it with user applications without interfering

too much in their performance. Disk-servers are the only exception as they have to run

on the nodes where disks are connected, but they can still share the CPU with other

applications.

As this file system was designed to study the behavior of a cooperative cache, we have

not placed much effort in designing a placement algorithm to distribute file blocks

among the disks. The disk of the first block is chosen using a hash function similar to

the one used to bind files and cache-servers. The rest of the blocks are placed among

the disks using an interleaved algorithm. This may not be the best way to distribute

blocks among the disks, but it was good enough for our purposes. Furthermore, should

any other distribution mechanisms have been used, the ideas presented in this work

could have also been applied.

To increase the performance of the write operations, PAFS uses a delayed-write policy.

Each cache-server has a thread, named syncer, that wakes up every 30 seconds. Once

it wakes up, it searches for all dirty file blocks and updates them in the disk. This

mechanism and interval have been chosen as the ones found in a Unix system [RT74],

5.3 BLOCK DISTRIBUTION AND REPLACEMENT
ALGORITHM

As has already been explained while describing the file system architecture, PAFS

has several cache-servers that manage the file blocks in the cooperative cache. This

introduces a new level in the distribution of blocks when compared to the centralized

version. In the previous version, we only needed one mapping function to decide in
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which node a given file block was to be placed. Now, the distribution algorithm that

places blocks into nodes has two mapping functions. The first one decides which cache-

server is in charge of the block while the second one places the block in one of the nodes

where the cache-server has buffers.

cache-server = fh(fileJD} = (rand(file))MOD cache-servers (5.1)

The first mapping is done on a per-file basis. This means that all the blocks from a

file are always managed by the same cache-server. This simplifies many aspects of the

design as each server behaves nearly as a centralized server for a given set of files. If only

one server is in charge of a given file, it keeps all the information for this file and does not

need to communicate with any other cache-server to fulfill any requests on this file. This

distribution of files among cache-servers allows us to implement the POSIX semantic

[Pre92] or even stricter ones as in a centralized system. The distribution of files among

cache-servers is done in a similar way as blocks among nodes in the centralized version.

We use a hash function that, from the file name (or file-ID), computes which cache-

server will be in charge of all the blocks ofthat file (equation 5.1). If this hash function

is good enough, the load of the cache-servers will also be balanced. Furthermore, this

is a very simple mechanism for the clients to know which server to contact when they

have to access data from a given file. -

The second mapping consists of placing the file block in one of the nodes where the

cache-server has buffers. This time we use a more flexible mapping than in the cen-

tralized version. A block is not assigned to a given node a priory. The replacement

algorithm will be the one to decide which node is going to keep the new block. Actually,

a block may be placed in a different node each time it enters the cache. The important

thing is that we still maintain the restrictions of not allowing, neither replication, nor

reallocation of blocks while they are in the cache. The only possible way of reallocating

a block appears after the block has been discarded from the cache. Once it is requested

again, as it is not in the cache (it was discarded) the cache-server can place it in any

node. This is not really a reallocation as the block is not moved from one node to
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another. It is as if it were the first time that this block entered the cache. This new

location of the block will not be modified as long as the block remains in the cache.

The replacement algorithm used in this distributed version is a little bit different from

the one proposed in the centralized version. The first difference relates to the choice

of the node from which a block may be replaced. In the centralized version, the node

from which a block was to be replaced was inherent to the new block. A given file

block could only be placed on a given node and thus a block from that node had to be

replaced. Now, the replacement algorithm does not have to take nodes into account, it

can replace any block from any node. The only restriction is that the replaced block is

owned by the same cache-server as the new one. This means a buffer from the partition

of this cache-server will be used. The second difference is that we have relaxed a little

bit the idea of not encouraging physical locality. We still defend that it should not

be the key issue in the design, but if some locality can be achieved with no overhead,

it would not be wise to ignore it. The replacement algorithm we propose is PG-LRU

which stands for Pseudo-Global LRU. As can be extracted from its name, it is based

on the well-known LRU but for a simple modification to increase physical locality.

To describe the modification added to increase locality, we first need to define the

concept of queue-tip. In a LRU replacement algorithm, all the blocks are kept in a

queue ordered by their last access time. We define the queue-tip as the last portion

of this list where the least-recently-used blocks are kept. The size of the queue-tip is

defined by the system administrator using a percentage of the list.

The replacement algorithm works as follows. Once a block has to be replaced, the

cache-server examines the buffers in the queue-tip. If a buffer from the queue-tip is

found in the same node as the client requesting the new block, this buffer will be used.

This will increase the number of local hits without adding any overhead to the remote-

hit operations. We should remember that this overhead in the remote hits was detected

as a problem in the previous chapter. If no such buffer is found, the least-recently-used

block will be replaced, no matter in which node it is located. It is important to notice

that each cache-server will use this algorithm to replace the blocks from their own

partitions and the blocks from other partitions will not be affected.
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We can see now that there is no communication between cache-servers. As a file is only

handled by a single cache-server, this server will have all the information about the

file and no other server will know about it. Furthermore, the replacement algorithm

only examines the blocks in the partition of the cache-server that needs to replace

a block and does not need to cooperate with any other cache-server. This lack of

communications between cache servers, will allow a high scalability of PAFS which was

one of the objectives.

5.4 COHERENCE MECHANISM

In the same line as the centralized version, we avoid the coherence problem by avoid-

ing replication. Both, the block distribution and replacement algorithms, have been

designed to avoid replication. As we obtained a good performance in the centralized

version, it is reasonable to suppose that the same idea can also be valid in the dis-

tributed version.

Avoiding replication to avoid the coherence problem is a very important difference if

compared with the solutions presented by other file systems and caches. As was ex-

plained in Chapter 2, the mechanisms proposed to solve this problem while maintaining

the Unix semantic, consist of asking permission before modifying a block. Before this

permission is granted, it is necessary to invalidate the copies that have become obso-

lete. Another possibility consists of actualizing all the copies at the same time. Both

solutions imply a significant overhead our file system is not willing to take.

5.5 BUFFER REDISTRIBUTION

It is quite straight forward to see that the load of the servers will not always be balanced.

There may be some periods of time where a given cache-server needs more buffers than

the others. On the other hand, some server may be idle while other are heavily loaded.

For this reason, it would be a good idea to allow a dynamic redistribution of the cache

buffers among the servers. A server that needs to keep more blocks should have more
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buffers than another that hardly keeps any file blocks. In this section, we describe

the mechanism proposed to distribute the buffers among the cache-servers in order to

adapt to these changing needs of the system. Furthermore, we also present some policies

that can be used with this mechanism and that will be evaluated in the performance

section(§5.8).

The mechanism we propose consists of a periodic redistribution of the buffers among

the cache-servers. The redistribution-server, which is in charge of such redistribution,

periodically asks for the working-set from each cache-server. We define the working-set

of a server as the number of different file blocks that have been accessed since the last

redistribution. From now on, we will refer to this time between two redistributions

as the redistribution interval. Using this information, and the current size of each

cache-server partition, the redistribution-server redistributes the buffers proportionally

to each server's working-set. Once the redistribution-server has decided which blocks

belong to which partitions, it sends a message to all the cache-servers informing about

the composition of their new partition.

It is important to clarify that changing the owner of a buffer (i.e., changing the partition

it belongs to) does not mean that the buffer is moved or copied to another node. It

only means that a different cache-server will be able to use it. As we have already said,

a process may program copies of memory blocks from any node to any other node using

the remote-memory copy mechanism. Only the owner of a buffer will be allowed to

copy to/from it.

It is also important to notice that once a buffer changes the partition it belongs to, it

loses all the information kept in it. This happens because the new cache-server does not

know how to handle the files of any other cache-server. For this reason, it is important

to limit the number of buffers moved from one partition to another. Moving a buffer

to a partition where it will not be used may degrade the hit ratio as a cached block

was discarded for no good reason. Another important effect of changing the owner of

a block is that, if it is dirty, it has to be sent to disk before'the new cache-server can

use it.
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The redistribution policies presented in this thesis will be based on a combination of

the following concepts. First, the number of buffers that change ownership may, or

may not, be limited in order to avoid drastic changes in the partitions size. Second,

this movement of buffers between partitions may be done eagerly or lazily.

Drastic changes in the size of the partitions may lead to bad performance results. To

avoid these dramatic changes, we propose to set a limit to both, the number of buffers

a cache-server may gain and the number of buffers that can be lost by a server in each

redistribution. Limiting the buffers a cache-server may lose should be a function of the

number of buffers it has in its partition. Using an absolute number makes no sense

as it may be too high for servers with very few blocks while it could be too small for

servers that own many buffers. We propose that the maximum number of buffers that

a cache-server may lose in each redistribution should equal a predefined percentage

of its partition size. This percentage should be tuned by the system administrator.

On the other hand, the limitation on the buffers a cache-server may gain should be

a function of the number of buffers it will be able to use. It makes no sense to let a

cache-server to gain more buffers than the ones it can use. For this reason, we have

to find an absolute number that gives an idea of the number of new buffers that can

be used between redistributions. Our simulations show that the number of blocks that

can be physically read in a redistribution interval gives this bound. For this reason,

limiting the number of gained buffers to the number of new blocks that can be read in

a redistribution interval seems an interesting idea.

The instant when buffers change their ownership may also have a significant impact

on the effectiveness of the redistribution algorithm. One possibility is to implement an

eager algorithm that changes the ownership of a buffer as soon as all the nodes have

been notified. This eager algorithm has the problem that many reassigned buffers may

not be used until the last portion of the interval. It may even happen that they are

never used by the new cache-server. During all this time of inactivity they might have

been used by the old server increasing the system performance. To solve this problem,

a lazy algorithm may be implemented. The redistribution-algorithm may send the

number of buffers from each -node that a given cache-server has gained instead of the

identifier of these buffers. Then, when the cache-server needs a new buffer, it requests
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a buffer from one of the servers in its list. This allows the buffers to be used by their

old owner until they are really needed. It also allows the old owner to decide which

buffer to discard at the moment the buffer is really to be discarded. To implement this

request out of the critical path of the read/write operations, a deferred mechanism is

implemented. Once a cache-server gets the list, it requests the first buffer in the list.

Once this buffer is used another one is requested on the spot. This continues until

no more buffers can be requested. With this mechanism, at most one buffer changes

ownership without being used.

The first redistribution policy we propose has been named Not-limited. In this policy,

buffers change ownership using the eager mechanism and only the number of buffers a

cache server may lose is limited.

Limited is the second proposal for the redistribution policy. This policy is quite similar

the previous one. The only difference is that the number of buffers a cache-server may

gain is limited by the number of new blocks that can be physically read from disk.

Finally, Lazy-and-limited changes the eager redistribution mechanism used in the Lim-

ited algorithm and replaces it by the lazy one.

In order to see whether the dynamic redistribution is really needed, we will also evaluate

a Fixed-partition policy where the buffers are assigned at boot time.

5.6 ADAPTABILITY TO THE VARIATION OF
SERVERS, NODES AND VIRTUAL MEMORY

As we already explained in Chapter 4, it is very important to allow the cache to adapt

to the needs of the whole system. This means that we should allow nodes to enter and

leave the cache. We should also allow the nodes to decide the number of buffers that

want to share with the global cache. In this section, we briefly describe the mechanisms

proposed to allow this adaptability.
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Whenever a given node decides to start taking part in the cooperative cache it only

has to send a message to the redistribution-server. From that point, the redistribution-

server will know that those buffers are ready to be used in the next redistribution. On

the other hand, if a given node decides to leave the cooperative cache, it also has to

send a message to the redistribution-server. This server will inform all cache-servers

that all the buffers from that node have to be freed. If any of those buffers is dirty, the

cache-server in charge of the dirty block will have to send it to the disk before freeing

it.

In a similar way, our mechanism allows a given node to change the size of its local cache

in favor of the virtual-memory system as proposed in Sprite [NW088]. As speed may

be important in this case, the redistribution-server may decide to start a redistribution

before the predefined interval is over.

A different thing occurs when a new cache-server is added or taken away from the

system. This modification in the number of cache-servers implies a modification in the

hash function and the files have to be redistributed among the cache-servers according

to the new hash function. To do this redistribution, all the cache-servers will have to

communicate to pass their information about the files they owned to their new owners.

Furthermore, the buffers with already cached blocks will be moved to the partition

of the new responsible for the file blocks kept in the buffer. In the case that the

cache-server leaves the cache, all its empty buffers will belong to nobody until the next

redistribution. This movement of responsibilities has a significant overhead, but we

believe that it is not important as this situation should not be very frequent.

5.7 TUNING PAFS

In this section, we evaluate the values we need to set in the parameters of the redistri-

bution algorithm. We need to set the queue-tip size, the redistribution interval and the

percentage of blocks that a cache-server may lose in each redistribution. Once we have

set these values we can try to evaluate the proposed redistribution policies in order to

choose the most appropriate one.
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It is quite straight forward to see that all these parameters are correlated among them.

For example, the limitation on the percentage of buffers that can be lost by a cache-

server will depend on how often this distribution is done. To find the best values for

these parameters, we should design a full factorial experiment [Jai91]. The problem

with this type of experiments is the large number of tests that have to be run and this
is specially problematic if the simulations take as long as ours do. As we only want a

reasonable good set of values (not necessarily the best ones), we have decided to study

each parameter by itself keeping the rest of parameters untouched. This is a simplistic

study, but it is good enough for our needs.

It is important to notice that the queue-tip size, the redistribution interval and the per-

centage of lost buffer are parameters that should be tuned by the system administrator.

In this section, we only propose some values that should give a good performance in

most environments. Furthermore, we needed to set these parameters to run the simu-

lations presented in this work.

5.7.1 Queue-tip Size

The first parameter we need to set is the queue-tip size. This value should be large

enough to increase the physical locality of the cache while at the same time should not
imply a search of the whole LRU list. For this reason we have run several experiments

varying this percentage from 2% to 20%. These executions have been run with the fixed

partition policy as we still have not decided any of the other parameters. Figures 5.3

and 5.4 present the percentage of physical locality obtained by the different executions.
This percentage has been calculated dividing the number of local hits by the total

number of accessed blocks.

As we can see in the figures, it makes sense to search up to 5% of the queue to increase
locality. Large queue-tips do not increase the locality in any significant way and thus

are not needed. As a result of this experiment, all simulations presented from now on

will have a queue-tip size of 5% of the LRU-queue.
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To study the impact the redistribution time has on the system performance we have

used the Not-limited redistribution policy which uses an eager redistribution and only

limits the number of buffers a cache-server may lose. The percentage of the buffers a

cache-server may lose has been set to 10% and the queue-tip size was set to 5% of the

LRU list. In Figures 5.5 and 5.6 we present the average read and write times obtained

using different redistribution intervals. This study has been done using both workloads

to find an interval appropriate for both of them.

As we can see, redistribution is not needed under the sprite workload but it is ex-

tremely necessary under the CHARISMA one. It is clear that the interval cannot be

too large because large redistribution intervals obtain bad performance results under

the CHARISMA workload. On the other hand, the Sprite workload is very balanced

and redistributing buffers does not help to increase its performance. This means that

very frequent redistributions have to be avoided. This leaves us the interval between 5

and 60 seconds. Any values in this interval should obtain quite good performance in

both systems. As we have to chose one, we have picked a 5 second interval. We believe

that when the other limitations are set, the more frequent the redistribution is done,
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the better the system will perform. Anyway, we have to remember that we are not

in search of the best possible values, any reasonable value is good enough for us. The

system administrator is the one that will have to decide the most appropriate values.

5.7.3 Limiting the Number of the Buffers that can be Lost

Following a similar approach as in the previous subsection, we have run simulations

varying the percentage of buffers that can be lost. The simulations have been run

using the Not-limit redistribution policy and the redistribution interval has been set to

5 seconds. Figures 5.7 and 5.8 present the average read and write times obtained.

We can observe that distributing many buffers in each redistribution does not lead to

a good system performance. We can also see that, if no buffers are redistributed and

the load is not balanced, as in the CHARISMA trace file, the performance obtained is

also very poor. In conclusion, allowing a cache-server to lose 10% of the buffers from

its partition in each redistribution seems a reasonable limit.
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5.7.4 Redistribution Algorithms

Now, we only have to choose one of the redistribution algorithms proposed in Sec-

tion 5.5. To make this comparison, we have simulated all these policies under both

environments. The redistribution parameters used are a queue-tip size of the 5% of

the LRU-list, a redistribution interval of 5 seconds and only 10% of the buffers can be

lost in a single redistribution. Figures 5.9 and 5.10 present the average read and write

operation times obtained in these simulations.

We observe that neither redistributing buffers with no control (No-limit) nor fixed

partitions are good algorithms. The first one obtains a very poor performance if the

load is very balanced. This happens, because if a given server has a small period with

little work, once it gets its usual work again, it will have no buffers to work with. Fixed

partition is not a good algorithm either as the system may get unbalanced during some

periods of time. If the partitions are not able to adapt to this changes, the system does

not perform as well as it could.

If we compare the two remaining policies, we observe that both of them achieve a

quite similar performance under both workloads. The only difference is that Limited

uses an eager redistribution policy while Lazy-and-limited uses a lazy one. The lazy
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Figure 5.10 Influence of the limitation
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policy allows the system to obtain a better performance but its implementation is more

difficult and adds more communication between the cache-servers. We believe that any

of the two policies could be used.

In the rest of this work, we will use the Lazy-and-limited redistribution policy as it

obtains a better performance than the rest of studied policies.

5.8 EXPERIMENTAL RESULTS

Once we have chosen the redistribution policy and all the parameters needed to set

PAFS running, we should compare it against xFS. This time, the version of xFS is the

original distributed version.

5.8.1 Algorithm Comparison

Parallel Machine and CHARISMA

In this subsection, we compare the read and write performance obtained by both file

systems. Table 5.1 presents the average read and write operation times and the hit
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Average read time

Average write time

Local read hit ratio

Remote read hit ratio

Global read hit ratio

Local write hit ratio

Remote write hit ratio

Global write hit ratio

PAFS

2886.77 //s

245.03 ¿¿s

0.79%

94.18%

94.97%

0.86%

97.87%

98.73%

xFS

9273.16 //s

855.45 //s

63.99%

28.01%

92.00%

86.32%

11.95%

98.27%

Table 5.1 Average read/write times and hit ratios obtained by both file systems
(PM/CHARISMA).
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Figure 5.11 Total normalized time
spent by PAFS and xFS performing read
and write operations (PM/CHARISMA).

Figure 5.12 Total normalized time
spent by PAFS and xFS performing read
and write operations (NOW/Sprite).

ratios obtained. We observe that both read and write operations are faster with PAFS

than with xFS. To explain this improvement in performance, we will first focus on the

read operations and a dissertation on write operations will follow.

Figure 5.11 shows the total time spent performing read and write operations. These

times have been normalized to the larger one (reads on xFS) to make the graph easier
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to understand. Each bar shows the time spent working on misses, remote hits and local

hits for each operation in both file systems. The time spent performing global hits can

be easily obtained by adding the time spent on both local and remote hits.

The first thing we observe is that the time spent by PAFS working on read global hits

is much lower that the one spent by xFS. This happens because PAFS obtains a higher

global-hit ratio than xFS and because remote hits in xFS take longer than in PAFS.

The percentage of global hits obtained by PAFS (94.97%) is higher than the one obtained

by xFS (92.0%) because of the better cache utilization made by PAFS. As replication

is allowed in xFS, quite a few buffers keep replicated blocks while this space is used

by PAFS to hold other file blocks that might also be important. This replication

increases the local-hit ratio but decreases the number of global-hits. Thus, the cache

with replicated blocks behaves as a smaller one.

In order to explain why remote hits take longer in xFS than in PAFS we will first

calculate the theoretical time spent by each file system and afterwards we will compare

them.

A remote hit in PAFS only means a remote copy of the requested bytes from the cache

to the user address space (equation 5.2).

PAFS-RJiit = Rjmemory-copy(request^size) (5.2)

As xFS places a great interest on obtaining a high local-hit ratio, a remote hit always

copies the block into the local cache. This means that two copies are needed, one

from the remote cache to the local one and another from the local cache to the user

address space (equation 5.3). We also have to take into account that the whole block

is copied through the network in xFS while only the requested bytes are sent through

the network by PAFS. Furthermore, each remote-hit implies a communication with

the manager that has the information about the location of the remote block. In this

communication, a request and a notification are sent through ports (equation 5.4). The
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simulation results show that it is quite frequent to find that the buffer needed to place

the requested block has to be forwarded to another node to increase its lifetime. The

influence this has on the average remote-hit time can be seen in equation 5.5 where the

time of forwarding a block is weighted by the probability of this happening (pf). In a

similar way, if the buffer to be used is dirty, the system will need to send it to disk before

using it. The operations needed are the same as in a forwarding (equation 5.6) but the

probability (pd) is different. Summarizing, if we add all these components together, we

will have the theoretical formula of the time that takes to serve an average remote-hit

in xFS (equation 5.7).

basic = R „memory-copy-(block „size) + L .memory .copy (request.size] (5.3)

manager = 2 * Rjport (5.4)

forward = [2 * Rjport + R jmemory.copy (block.size}} * p f (5.5)

dirty = [2 * Rjport + R.memory.copy(block-size)} * pd (5.6)

xFS-RJiit = basic + manager + forward + dirty (5.7)

To be able to calculate these two equations, we first need to know the values of pf,

pd and the average requesLsize. These probabilities are taken from the simulations

and have the following values: p/=.75, pd=.5l and requesLsize = 6741 bytes. The

probability of forwarding a block is quite high because most blocks are forwarded at

least twice in their live. The number of times a block is forwarded can be even higher

if the block is accessed after it has been forwarded and before it is finally discarded as

its forwarding counter is reset to 0. The probability of finding a dirty block may also

seem quite high. This happens because of the small local-cache size. As all writes are

placed in the local cache, and write operations are very fast, the cache is filled quite

easily. Once the cache is full of dirty buffers, the following accesses will have to send

the block to the server. As the cache is filled so easily, the syncer does not have time

to clean the blocks before they are used.

If we calculate both, the time spent in xFS and PAFS (shown in equations 5.2 and 5.7)

we find than xFS takes around 5 times longer than PAFS in performing a remote hit.
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We have to notice that this calculations did not take into account the CPU consumed,

nor the contention of the network, nor the time spent waiting for a server to become

ready, etc. If all this time is taken into account (as was done in the simulations) this 5

becomes even larger. On the other hand, PAFS only has 3.3 remote hits for each one

found in xFS. This means that the overhead paid to increase the local-hit ratio is much
higher than the benefits obtained.

Finally, it can also be observed that the time spent working on misses is also larger in

xFS than in PAFS. This is partially because of the higher miss ratio explained in the
above paragraph. The larger amount of misses on dirty that occur in xFS (as explained

earlier) also has some impact on the time spent working on misses.

Let's now explain the gain obtained in write operations. The main reason for the

performance difference is the overhead produced by the coherence algorithm. Most

writes have to ask for the block ownership and quite a few of them also have to invalidate

the copies kept in other nodes. All these operations are quite time consuming and
increase the average write time in xFS. Besides, block forwarding and the extra copies

needed to bring the block to the "local-cache" before modification also have a significant

impact on the write performance.

Another reason that explains the poor write performance obtained in xFS is the higher
number of misses on dirty found when compared with PAFS. The same explanation

given for read operations can be applied in this case.

Network of Workstations and Sprite

Now it is time to compare both file systems in a network of workstations. In Table 5.2

we present the average read and write operation times plus the hit ratios obtained in

such environment. The first thing we observe is that PAFS is still faster than xFS
but the difference is much less important. As we did in the above section we will first

explain the behavior of the read operations and the write operations will follow.
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Average read time

Average write time

Local read hit ratio

Remote read hit ratio

Global read hit ratio

Local write hit ratio

Remote write hit ratio

Global write hit ratio

PAFS

2903.80 fjs

957.34 fjs

12.22%

73.15%

85.37%

24.71%

25.21%

49.92%

xFS

3294.77 fjs

1635.77 fjs

65.51%

20.31%

85.82%

r 43.52%

6.35%

49.87%

Table 5.2 Average read/write times and hit ratios obtained by both file systems
(NOW/Sprite).

In Figure 5.12 we observe that the difference between the time spent performing read

global hits is not as big as it was in the parallel machine. This happens because now,

the difference between the time spent to perform a remote hit in PAFS and in xFS

is not as big. As the "local-caches" are bigger the probability of forwarding a block

and the probability of finding a dirty buffer are much lower. Furthermore, the Sprite

workload has much less file sharing than the CHARISMA one. This also takes away a

lot of the overhead added by the coherence mechanism.

We can also observe that the time spent working on read misses is nearly the same in

both file systems. This is because of the similar global-hit ratio achieved by both of

them (Table 5.2). Similar hit ratios are obtained as the cache is big enough to hide the

problem produced by the replication done in xFS.

The difference between write-operation average times obtained by both file systems

has also decreased in this environment if compared to the one obtained in a parallel

machine. This can be explained with the same reasoning used with the read operations.

There is much less overhead due to the coherence mechanism and the number of misses

on dirty is also much lower than the one observed in xFS.
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Figure 5.13
Interconnection-network bandwidth influ-
ence in the average read and write opera-
tion times (PM/CHARISMA).

Figure 5.14 Interconnection-network
bandwidth influence in the average read
and write operation times (NOW/Sprite).

5.8.2 Interconnection Network Influence

Parallel Machine and CHARISMA

An important part of this work is to study the influence the communication speed has on

the results presented in the previous subsection. To perform this study, we ran several

simulations varying the network bandwidth and leaving the local one unmodified. In

Figure 5.13, we can examine this variation. The X axis shows the ratio between the

local memory-copy bandwidth (L_BW) and the interconnection network one (R_BW).

The interval used starts at 1 where both bandwidths are equal and ends where the

remote bandwidth is 16 times slower than the local one. This interval should include
most parallel machines.

We observe that the bandwidth ratio affects the read operation in a similar way to both

file systems. This means that the time gained by xFS due to its higher local-hit ratio

is lost because of its remote hits. As all communications needed to serve a remote hit

go through the interconnection network, the xFS remote hits are highly penalized.
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Write operations behave in a different manner. This difference basically resides in the

way write misses are treated by both file systems. In PAFS, a miss nearly always

means a remote copy as the new block will probably replace a block in a remote node.

In consequence, a slow down in the interconnection-network speed means a slow down

in the write operation. On the other hand, a miss under xFS is always handled locally.

It replaces a local block and no remote copies have to be done unless a forwarding is

needed. These extra remote copies performed by PAFS cannot be outweighed by the

extra work needed to maintain the cache coherent. Thus, the difference between the

average write time in both file systems decreases as the network slows down.

Network of Workstations and Sprite

The influence of the interconnection-network bandwidth (Figure 5.14) is also quite

similar to the one found in a parallel machine. The most important difference is that,

with this environment and the Sprite workload, we found the point where a write

operation in PAFS becomes slower than in xFS.

The intersection point is found when a remote copy is 10 times slower than a local

one due to several reasons. First, as the local-cache size used in this experiment is

larger than the one used in the parallel machine, xFS has less remote hits and thus

their extra overhead is not as significant. Second, there is much more file sharing in

the CHARISMA trace file than in the Sprite ones. This means that the coherence

mechanism has less work to do under the Sprite workload. Finally, the average size of

the write operations in the Sprite trace file is smaller than in the CHARISMA one. If

user requests are large, fewer messages have to be sent to the server as only one for

request is needed. As this request is always handled locally by xFS and remotely by

PAFS, slowing down the network has a greater influence on PAFS than in xFS.
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5.8.3 "Local-Cache" Size Influence

Parallel Machine and CHARISMA

Another important aspect that was also studied is the influence the "local-cache" size

has on the file-system performance. To fulfill this study we simulated "local-cache"

sizes from 512KBytes up to SMBytes. It is quite clear that 512KBytes "local-caches"

are very small but it seemed interesting to observe the behavior of both system when

very small caches are used.

We observed, as expected, that decreasing the cache size, increases the read average

time (Figure 5.15). As was shown in Figure 5.11, more than 75% of the total time spent

on read operations was used to satisfy less than 8% of the blocks (misses). This means

that the file-system performance is led by the miss ratio. As can be seen in Table 5.3,

smaller caches have a much lower global-hit ratio. Thus, read operations are also much

slower.

In Table 5.3, we can also observe that PAFS always obtains a better global-hit ratio.

This is because our algorithm tries to use the global cache better by avoiding replication,

A replicated block takes the place of a block which might also be important for the
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PAFS

xFS

0.5 MB

87.69%

81.85%

1 MB

94.98%

92.00%

2MB

96.97%

95.93%

4 M B

97.78%

97.73%

8MB

98.02%

97.78%

Table 5.3 "Local-cache" size influence on the read global-hit (PM/CHARISMA) ra-
tio.

applications running on the system. This is important as long as the caches are small.

The bigger the cache is the less important this replication side effect is.

In Figure 5.15, we can see that the read performance obtained by PAFS is much higher

than the one obtained by xFS when small "local-caches" are used. The reason behind

this behavior is the global-hit ratio obtained by both algorithms.

Another conclusion that can be obtained from Figure 5.15 is that write operations are

nearly unaffected by the "local-cache" size. This is basically because the global-hit ratio

is not very important on the performance of the write operations. A hit or a miss take,

more or less, the same amount of time. Both, hits and misses, mean a copy of the

requested bytes from the user area to the cache. This is only true if writing the block

does not need to read the previous information from the disk, but we have observed

that this does not happen too often.

Another possible interpretation of the results presented in this subsection is that PAFS,

when using IMByte "local-caches" has a similar behavior than xFS with a SMByte

"local-caches". This can be used to decrease the size of the cache in order to give

more memory to the applications running on top and still have the same file-system

performance as the one obtained by xFS.

Network of Workstations and Sprite

In Figure 5.16, we can also observe that the influence of the "local-cache" is similar to

the one observed in a parallel machine environment. The same reasoning can also be

used.
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5.9 CONCLUSIONS

In this chapter, we have presented PAFS, a parallel/distributed file system that has a

cooperative cache with no coherence problems. We have shown that avoiding replication

to avoid the coherence problems not only simplifies the design, but also increases the

performance of the system.

We have also proven that obtaining a high local-hit ratio is not the only way to design

a high-performance cooperative cache. We have not exploited locality and we have still

obtained a very fast file system.

A mechanism to allow a redistribution of the cache buffers among the cache servers

has also been presented. Furthermore, we have also proposed a set of policies that

could be used to redistribute these buffers. Finally, the lazy-and-limited redistribution

policy has been detected to obtain the best performance. This happens because it

allows a fast redistribution of buffers when it is really needed, but it behaves much

more conservatively when this redistribution is not so needed.

We have proposed a generalization of the LRU replacement algorithm, PG-LRU, that

increases the locality of the cooperative cache implemented in PAFS.

Finally, we have also shown that PAFS not only works well in a parallel machine, but

it also obtains a better performance than xFS in a network of workstations.

More information about this distributed version, its characteristics and its performance

can be found in earlier papers [CGL97a, CGL97b, CGL96a].



6
FAULT TOLERANCE

6.1 MOTIVATION

In a cooperative cache, file blocks are scattered among all the nodes in the network.

Furthermore, these blocks are not sent to disk as soon as they are modified for per-

formance reasons. This means that a given application may have several dirty blocks

kept in the cache of a node where it is not running. In this situation, a node failure

will mean that all modified blocks kept in this node will be lost and, thus, some ap-

plications that did not even know the existence of the failed node, will end up having

some inconsistent files. There are environments where this situation is not acceptable

and the file system should include a tolerance mechanism so that a node failure does

not result in a lost of information.

Increasing the fault tolerance of the file system will add some overhead to the system

as more work will have to be done. The challenge consists of making this overhead as

105
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low as possible while still offering a reasonable degree of tolerance. In this chapter, we

will propose a tolerance mechanism that adds very little overhead while still achieves
a very high tolerance degree.

If we examine all possible environments where PAFS can run, we observe that their

needs are not always the same. In some environments, there is no need of a fault-

tolerance mechanism as a single node failure results in the whole system failure. There
are other environments where speed is much more important than fault tolerance and

one such mechanism is not desirable. On the other hand, there are environments where
nodes fail quite easily (i.e. in a network of workstations, the owner of a node may

disconnect it at any time). In this kind of environments, a tolerance mechanism is
strictly necessary. For this reason, we will not only present a tolerance mechanism, but

we will also propose three levels of tolerance that can be used depending on the needs

of the system.

Finally, it is important to notice that we are only concerned about not losing informa-

tion once a node fails. The mechanisms needed to maintain the dynamic information

of the cache-servers, should any of them fail, are out of the scope of this work.

6.2 PARITY MECHANISM

To solve the fault-tolerance problem, we propose a mechanism based on parity lines

and parity buffers quite similar to the one used in a RAID level 5 [PGK88]. We define a
parity line as a set of cache buffers where none of them is located in the same node. All

the buffers in the line are used to keep file blocks but one, the parity buffer. The idea

is to keep the XOR of all the dirty buffers from a line in its parity buffer. Thus, not all

buffers in the line affect the parity buffer. Only those buffers that have been modified
and still have not been updated in the disk are kept in the parity buffer. Should one

of these dirty blocks be lost, the information kept in its parity buffer could be used to

restore the last version of the lost buffer.
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Parity buffers

Parity lines

Figure 6.1 Distribution of the cache buffers in parity lines.

The parity-servers are the processes responsible for all the fault-tolerance mechanism

and cooperate with the cache-server to keep the parity information up-to-date. For

performance reasons, we have one of these servers in each node where a parity-buffer is

located and these buffers are placed in an interleaved fashion over a predefined set of

nodes. This means that a single parity-server can handle more than one line. Anyway,

if for scalability reasons, each line has to have a dedicated parity-server, this could also

be done with no modifications in the system.

Figure 6.1 presents an example of a possible distribution of cache buffers in parity-lines

on a five node machine. In this example, all parity lines have one block from each

node no matter which partition the blocks belong to (each partition is represented by

a different shade). We can also observe that there is a parity-server in each node where

one or more parity buffers are placed. These parity-servers are in charge of all the parity

buffers located in their node. It is also important to notice that parity-buffers do not

belong to any partition as they hold the parity information of blocks from possibly

different partitions.

The protocol used between cache-servers and parity-servers is described as follows. In

a write operation, and before the buffer is modified, the cache-server sends a message

to the parity-server informing that the buffer will be modified. Afterwards, the parity-

server copies the unmodified buffer to a local buffer and informs the cache-server that
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the buffer can be modified. Then, the cache-server modifies the buffer as requested by

the client. At the same time, the parity-server copies the modifications from the client

in order to keep the parity buffer up-to-date. Once the modifications are included in
the parity buffer, the parity-server informs the cache-server. Finally, the cache-server

can inform the user about the end of the write operation. Once a buffer is sent to

the disk, the parity-server is also informed and removes the information of this buffer

from the parity buffer. All the messages that go to and from the parity-server are sent

though ports while all the data copies are done using the memory-copy mechanism.

When a node fails, the parity-servers can rebuild the modified file blocks that have been

lost and can write them to disk. Once all the lost file blocks are in the disk, the file

system continues working normally but for a smaller global cache. If the parity-server

is the one that fails, we may rebuild the parity buffers using the information kept by

all the cache-servers.

6.3 TOLERANCE LEVELS

As we have already mentioned, not all systems need the same level of fault tolerance.

While in some environments fault tolerance is crucial, there are other environments

where performance is much more important than fault tolerance. In this section, we

present the three tolerance levels offered in PAFS.

No Tolerance or Level A

There are parallel machines where a single node failure results in the whole system
failure. In these machines either the hardware, or the operating system, have not been

designed to handle a node failure. In this kind of machines, it would be ridiculous to

assume the cost of a tolerance mechanism.

In other environments, speed is much more important than fault tolerance. The users
of these machines want their applications to run as fast as possible and it is not a
problem to restart the whole system if the hardware, or the operating system, fails, as
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long as it is not very frequent. In this kind of environments, it is not recommended to

have a tolerance mechanism as it will add an overhead that it is neither wanted nor

needed.

For these kind of environments, we propose that the file system should be able to

deactivate the tolerance mechanism and achieve a higher performance. From now on,

we will refer to this lack of fault tolerance as level A.

Level B

There are some environments where we can make the assumption that a file block

cached in the same node as the client which requested it may be lost when the caching

node fails. In this kind of environments, it is assumed that when a node fails, its

applications will also fail and no one will care for the last modifications they did. This

assumption was taken in the design of the fault-tolerance mechanism implemented in

xFS [ADN+95, DWAP94, Dah95].

If the afore-mentioned assumption is taken, only blocks placed in a remote cache should

be guaranteed to be in the disk (or to be recoverable through the parity buifer). The

degree of tolerance obtained and the overhead added will depend on the proportion of

blocks that are kept in a remote cache. From now on, we will refer as level B to this

second level of tolerance.

Level C

Level B might be enough in some environments but it would not be enough in a envi-

ronment with a lot of file sharing between applications. It would also not be sufficient

in an environment where a lot of communication between applications is done through

the file system.

For instance, suppose we have a parallel make which has to compile two files ( f l . c

and f2.c) and link-edit them-afterwards to generate the resulting executable file (Fig-
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X Node failure

/ /
ld fl.o f 2. o -o program

f 1.0(1) f2.o(l)

Cache buffers

ERROR: f2.o is corrupted

Figure 6.2 Example of a parallel make that needs a high tolerance level.
The contents of each cache block is represented by the file name and the block number
in parenthesis (i.e. name(#block)).

ure 6.2). As we have a parallel environment, both compilations are run in parallel in

nodes 0 and 1. One of the blocks of the object file is kept in the cache where each

compilation is being made and thus is not sent to the disk (or parity buffer). The other

block of the object file is kept in a different node as there is no room for it in the local

cache. If node 1 fails after the compilation is done, the linker will not be able to make

the executable file. It will find fl.o with no problem but the first block of f 2. o will be

lost as it was kept in the failed node and the system did not send it to the disk [Dah96].

This may not be acceptable in some environments and a higher degree of fault tolerance

has to be proposed.

To solve this problem we propose a third fault-tolerance level: level C. In this level,

all modified blocks are sent to the disk (or parity-server) even if they are placed in the

same node as the client using them. This offers a higher degree of fault tolerance. This

third level will probably have to assume a higher performance penalty but a higher

fault-tolerance level will also be achieved.



Fault Tolerance 111

8000-

6000-

;4000-

2000-

•— Level A
EBB Level B
i 1 Level C

——xFS

Read Write

Figure 6.3 -Performance of the fault-tolerance levels (PM/CHARISMA).

6.4 EXPERIMENTAL RESULTS

In this section, we will study the impact that these fault-tolerance mechanisms have on

the overall system performance. We will compare the performance obtained by PAFS

using tolerance levels A, B and C. These results will also be compared to the ones

obtained by xFS which only implements level B.

As we have already done in the previous chapter, we will first focus on the performance

obtained in a parallel machine and afterwards we will study the results obtained in a

network of workstations.

Parallel Machine and CHARISMA

Let's study the impact the fault-tolerance mechanisms have on the file-system perfor-

mance running on a parallel machine. Figure 6.3 presents the results obtained by PAFS

using the parity mechanism with the three proposed tolerance levels (solid bars). This

performance is compared to xFS which only implements level B (horizontal line).

The most important result obtained is that the cooperative algorithm implemented

in PAFS still behaves better than xFS even with a higher fault-tolerance level. This

proves that the parity mechanism can offer a high fault-tolerance level with very little
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overhead. As communications are very fast, keeping the parity information up-to-date

does not add too much overhead to the system.

If we compare the performance of the three different levels, we can see that levels B

and C take somewhat longer performing write operations than level A. This is because

some extra communication and memory-copy operations have to be done to keep the

parity mechanism working. Cache-servers have to contact parity-servers to inform that

a block is to be modified, the parity-server has to copy the current version of the block

and the modifications from the user, the parity buffer has to be updated, and finally

the cache-server has to be informed that the new version is in the parity-buffer.

Another important result is that there is no significant difference between levels B and

C in PAFS. This is because the number of blocks that are kept in the local cache of

the client is very small (Table 5.1). Thus, the number of blocks that have to be kept

in the parity buffer is very similar. Should we stress locality, this difference would also

grow.

Finally, read operations are only slightly affected as they do not take part in the parity

mechanism. The only influence they may notice is a higher resource utilization.

Network of Workstations and Sprite

We present now, the performance of PAFS with the fault-tolerance mechanism in a

network of workstations (Figure 6.4). We can see that the difference between the

tolerance levels is much more important than the one found in a parallel machine and

that the performance of the system gets much closer to the one obtained by xFS.

The difference between the performance obtained by levels B and C is due to the size

of the local cache used in this experiment. When simulating a parallel machine, the

local cache used was IMByte while in this network of workstations we have loMByte

caches. As the cache size increases, the number of blocks that can be kept in the same

node as the client requesting them also increases. This decreases the number of blocks
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Figure 6.4 Performance of the fault-tolerance levels (NOW/Sprite).

that have to be sent to the parity-server in level B but it makes no difference in level

C.

This same reasoning can be applied when comparing PAFS (levels B and C) against

xFS (level B). The larger the local cache is the less work the fault-tolerance level B has

to do, especially if the file system encourages locality as xFS does.

6.5 CONCLUSIONS

In this chapter, we have presented a parity mechanism that provides a high degree of

fault tolerance to the parallel/distributed file systems that use it. Furthermore, this

mechanism has been designed to add as little overhead as possible to the overall system.

It is important to notice that this mechanism only avoids the lose of information. It

does not guaranty that the system will still run should a cache-server fail. It only

guarantees that no information will be lost.

We have also differentiated three tolerance levels that can be implemented using the

parity mechanism. Each of these levels offers a different degree of tolerance along with

a different overhead. The higher the tolerance degree, the higher the overhead is.
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Finally, we have evaluated this parity mechanism with the three tolerance levels on

PAFS and it has performed very well in both a parallel machine and in a network

of workstations. This concludes that this parity mechanism is efficient enough to be

placed in a parallel/distributed file system and still obtain a high-performance system.

More information about this fault-tolerance mechanisms, its characteristics and its

performance can be found in an earlier paper [CGL97b].



7
LINEAR-AGGRESSIVE PREFETCHING

7.1 MOTIVATION

An interesting characteristic observed in cooperative caches is that the size of the global

cache tends to be very big. For this reason, there are long periods of time where very

old blocks are kept in the cache. There are many blocks that have not been referenced

in several hours and are still kept in the cache.

The above situation brings back the idea of aggressive prefetching. These blocks kept

in the cache for so long could be replaced by any other block and the system would not

notice the difference. Nobody expects to find in the cache a block that was last accessed

several hours earlier. The idea we propose is to do an aggressive prefetching so that

these old blocks are replaced by other blocks that might be useful for the applications

currently running. If many blocks are prefetched, the probability of bringing to the

cache the blocks that applications really need increases. Furthermore, we can be quite
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aggressive because a miss-prediction will replace a very old and probably not-needed

block by another one that will also not be needed as it was miss-predicted. The im-

portant thing is that, most of the time, the useful blocks will not be replaced by these

miss-predictions.

On the other hand, this idea of aggressiveness has to be controlled. For example, if

the system had an extremely fast disk so that it could read the whole file between two

requests, a very aggressive algorithm could be implemented. The system could prefetch

the whole file after each request. This algorithm would not work well if files are larger

than the cache as the same prefetch would discard its own prefetched blocks.

For these reasons, we present the linear-aggressive prefetching. This is a mechanism

that builds aggressive algorithms from more conservative ones. These new algorithms

will be quite aggressive while, at the same time, they will be smart enough to avoid

the danger of over prefetching.

In this chapter, we will present two prefetching algorithms and their linear-aggressive

version. We will evaluate their performance on top of two different file systems that

implement a cooperative cache (i.e. PAFS and xFS).

7.2 PREFETCHING ALGORITHMS

In this section, we present two basic prefetching algorithms that will be transformed

into aggressive ones in the next section. It is not important whether they are the

best prefetching algorithms ever designed as we want to prove that linear-aggressive

prefetching is a good way to improve the performance of already existent prefetching

algorithms.

7.2.1 One-Block-Ahead (OBA)

The first algorithm we present is the well-known One-Block-Ahead (OBA). This algo-

rithm is based on the idea that file operations very frequently have sequential locality
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as it has been proved in may workload studies [KE90, Kot91, BHK+91, Smi78, Smi85].

Sequential locality appears when blocks of a file are accessed in a sequential manner

(i.e. after accessing block n, block n+l is requested).

The implementation of this prefetching algorithm is very simple. Following each read or

write operation, the system prefetches the next sequential block after the ones requested

by the user in the last operation.

The main problem this algorithm has is that not all files are accessed in a sequential

way. There are many applications, specially parallel ones, where files are accessed

using strided or even more complicated patterns [KN94, NKP+94|. In these situations,

One-Block-Ahead is not able to correctly predict the next block to be accessed.

7.2.2 Interval-and-Size-Graph (ISG)

In order to present a more intelligent prefetching algorithm, we have developed Interval-

and-Size-Graph (ISG). The idea behind this algorithm is that applications usually

access files using a regular pattern [KN94, NKP+94]. For this reason, we have imple-

mented an algorithm that tries to learn the patterns used by the application to be able

to prefetch the blocks that are really going to be accessed.

This algorithm is a simplification of the algorithm based on data compression designed

by Vitter et al. [VK96, CKV93]. In their algorithm, they try to build a tree of

precedence that allows to decide which block is going to be accessed after a sequence

of blocks. We have simplified it as our prediction will only depend on the last access

and not the whole sequence. Furthermore, our algorithm does not base its decision on

the blocks accessed but on the offset intervals as was proposed by Kotz [KE90, Kot91],

This algorithm keeps track of which offset interval comes after a given offset interval.

Furthermore, it also remembers the size requested by the operation. With this infor-

mation, it is quite simple to decide which blocks to prefetch. The system only has to

keep the offset of the previous request and the offset of the current request. With these
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Access patern A • Access pattern B •

Figure 7.1 Example of a couple of access patters and their prefetch graphs.

two offsets, it can compute the interval and use it to predict the new position and the

number of blocks that should be requested in the next operation.

Dynamic Graph Construction

The data structure needed to store all this information is a directed graph where the

system keeps which offset interval followed another one and the number of blocks that

were requested. This interval is always measured in blocks (not in bytes) because this

is the basic access unit used by the file system. A node in the graph represents an offset

interval that has been used when working with this file. It also represents the size of

the requested information after the jump represented in the node. A link between two

nodes means that after the interval kept by the first node, the user jumped the interval

represented in the second node. In these links, the system may keep information such

as the number of times this path has been followed, or a time stamp with the last time

this link was followed.

Figure 7.1 presents an example of two access patterns and the graphs needed to be

able to prefetch correctly the next requests. In access pattern "A" one of every three

blocks is requested by each user operation. This pattern is very simple and a graph

with only one node is sufficient to keep all the information about the pattern. Access

pattern "B" is a little more complicated. After an interval of 2 blocks always comes

a 4 block interval to once more jump two blocks. The accessed number of blocks also
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varies depending on the interval. To keep all this information, the prefetching system

needs a two-node graph as shown in the figure.

Besides the graph, the system also needs to maintain three additional variables. The

first one keeps the offset of the last request. The second one keeps the number of blocks

requested in the last operation. And finally, the third variable keeps the offset of the

access previous to the last one.

To get a better understanding of the algorithm and its possibilities, it seems adequate

to describe the way this graph is dynamically built. Once a file is open for the first

time, the graph is completely empty and no prefetching can be done. The first two user

operations are needed to fill the variables afore mentioned. Furthermore, the second

operation has enough information to add the first node to the graph. This new node

represents the first interval and the number of blocks requested after this interval. From

this point on, the system enters the permanent state and its behavior is explained in

the next paragraphs.

After each new access, the system should add a new node that contains the interval

between the offset of the two last operations. This node should also contain the number

of blocks requested in the last operation. If this node is not in the graph yet, it is

inserted. Otherwise, there is no need to insert it as it already exists. Now, it is time

to link this node to the node used in the previous operation. If a link already exists

between these two nodes, the system only has to increment the number of times this

links has been used or to place a new time stamp on it. If this link does not exist, it

has to be added to the graph. This link should also be time stamped or the system

should indicate that it has only been followed once.

To clarify this mechanism, we present an example that shows the creation of the graph

needed for the access pattern "B" shown in Figure 7.1. Figure 7.2 presents the first

five requests done by the user and the influence these operations have on the creation

of the graph. In each step, the blocks marked in black are the blocks requested by the

user in the current operation; Each node contains the interval it represents and the

number of blocks requested after the interval. Each link also has the number of times
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Figure 7.2 Example of a graph creation.

it has been followed and the time stamp (i.e., Tl, T2, T3,...) of the last time this link

was followed.

The only exception to this algorithm appears when two consecutive operations request

bytes that start from the same block. As the requested block is the same as the one

just requested, there is no need to prefetch it again (in most cases). For this reason,

the system does not take this access into account and thus the graph is not modified

in any way. This means that the graph will never have a node with an interval of 0

blocks. Furthermore, this variation in the algorithm has proved to avoid many loops

that decreased the effectiveness of the prefetching mechanism.

Using the Graph to Prefetch

Before starting to describe the usage of this graph to prefetch blocks, it is necessary to

define three terms used to describe the algorithm. The first one is the last accessed
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Figure 7.3 Example of a prefetch graph where nodes have more than one link that
start from it.

node. This node is the node that represents the last interval requested by the user.

Second, the last prefetched node is the last node used to prefetch blocks from the

disk. Finally, the prefetching path is the path followed by the prefetching mechanism

to go from the last accessed node to the last prefetched node.

The first prefetch starts when the graph builds the first loop. This means that a regular

pattern has been detected (or at least this is the assumption). In this situation, the

system gets the last accessed node and follows its link to get the next node in the graph.

From this node, the prefetching mechanism extracts all the information needed to start

the next prefetching. The system will prefetch as many blocks as the ones indicated in

the node and the first block will be calculated by adding the interval kept in the node

to the offset of the last user request. Now, the prefetching path is made by two nodes

and one link.

After this first prefetch, each new user request will mean a new prefetch. Depending on

the effect the request had on the graph, the system may have two different behaviors.

If the last accessed node is not new and it is located in the prefetching path, it means

that the algorithm is prefetching the right blocks. This means that the prefetching

mechanism will use the node that follows the last prefetched block in order to prefetch

the new blocks. Otherwise, it means that the prefetching path was wrong or that some

changes have been done in the access pattern. In this situation, the system starts a

new prefetching path starting-from the new last accessed block.
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So far, we have assumed that from every node only started one link. This will not

always be the case, for example in Figure 7.3 we have a prefetching graph where the

shaded node has two links that start from itself. This happens because after jumping

four blocks, sometimes the application has jumped two blocks while other times the

interval has been 8 blocks. In this situations, we have two possible alternatives. The

system could follow the most used link or the most recently followed one. After some

experiments we have seen that following the most used link achieves worst performance

results than following the most recently used one. For this reason, the second option

has been used in ISG. This means that in the example shown in Figure 7.3, after the

shaded node the system would go to the node with and interval of 8 blocks as was used

more recently than the other one. Following the most recently used link obtains better

performance results because it adapts to variation in the access pattern much faster

than the other proposal.

This algorithm is able to prefetch the correct blocks as long as the access pattern can

be represented by the proposed graph. The problem appears during the first requests

to a file. As the graph does not have information about the pattern that will be used,

it is not able to make any decision of which blocks to prefetch. This initial state takes

as many requests as different intervals are in the pattern plus 2. To solve this problem,

we have made a small modification to the algorithm. If the current offset interval is

not found in the graph, the system will behave as the One-Block-Ahead algorithm. We

have to keep in mind that this algorithm will only be used during the time needed to

build the graph. From that point on, blocks will be prefetched using the information

from the graph.

The system keeps several prefetching graphs for each file, one for each process that is

working with the file. As our simulations have shown that most graphs do not have

more than two or three nodes, the system can keep many of these graphs without

consuming too much memory. Furthermore, our simulations have also shown that if

one graph is kept for each process, the prediction is much more effective than if only

one graph is maintained for each file.
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Figure 7.4 Example of a regular access pattern that cannot be prefetched by ISG.

Drawbacks of ISG

This algorithm has two major drawbacks. The first one has already been explained and

solved. It consisted on the time needed to build the graph before the system is able

to prefetch any block. The solution, as we already explained, consists of prefetching

like a One-Block-Ahead as long as the graph does not have the current access pattern

detected.

The second major drawback is that there are some regular access patterns that cannot

be represented by the graph and thus cannot be correctly prefetched. For instance, the

access pattern shown in Figure 7.4 is a clear example of a regular access patter that

ISG would always fail to prefetch. In this example, after an interval of three blocks, it

comes an interval of two, then an interval of three blocks again, then another interval

of four blocks and the pattern starts again. This pattern, although it is regular, cannot

be effectively represented by the proposed graph and would always follow the incorrect

prefetching path leading to many miss-predictions. The solution to this problem con-

sists of designing a better pattern representation, but this falls out of the scope of this

work as we only want to present a simple but intelligent prefetching algorithm.
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7.3 LINEAR-AGGRESSIVE PREPETCHING

In this section, we explain how to improve the performance of simple algorithms, such

as the ones already presented, by making them aggressive. The idea is very simple,

the prefetching mechanism will prefetch blocks continuously as long as it can predict

blocks which are not in the cache yet. This mechanism was originally designed to work

on a cooperative cache as the size of this kind of caches is quite big. Furthermore, the

results we will present later in this chapter show that this mechanism can also be used

in any kind of cache.

7.3.1 Aggressive One-Block-Ahead (Agr_OBA)

Making the aggressive version of One-Block-Ahead simply consists of continuously

prefetch blocks in a sequential way starting from the last requested one. The sys-

tem will keep prefetching the blocks sequentially until one of two things happens. If

the end of file is reached, the prefetching mechanism will stop until a new request is

done. If a new request is done before the prefetching algorithm reaches the end of file,

and the requested block has not been prefetched yet, the system restarts the prefetch-

ing from the new position of the file pointer. If the requested blocks had already been

prefetched, this means that the system prediction is correct and there is no need to

modify the prefetching path. For this reason, the system continues bringing new blocks

as if the user had not requested any block.

7.3.2 Aggressive Interval-and-Size-Graph (Agr JSG)

The aggressive version of Interval-and-Size-Graph works in a very similar way. Af-

ter a user request, the prefetching mechanism will decide which are the next blocks

to prefetch as was done in the non-aggressive version. Once these blocks have been

prefetched, it behaves as if the user had already requested the prefetched blocks and

goes for the next node in the graph. This keeps going until the next block to prefetch

is out of the file in which case the prefetching mechanism stops until a new request is

performed. If the next user request is not the one predicted by the prefetching mecha-
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nism, the algorithm modifies the graph and restarts the prefetching sequence from from

the last requested block.

7.3.3 Limiting the Aggressiveness: Linear-aggressive
Prefetching

As we have already said, there has to be a limit to the aggressiveness of the prefetching

algorithms. To set this limitation we propose the linear-aggressive algorithms. The

idea behind this limitation is to only allow the prefetching of a single block at a time

for each file. We propose that a system with more than one disk should not use them

to prefetch more than one block of the same file in parallel. Exploiting the parallelism

offered by multiple disks can be achieved by prefetching blocks from different files. We

may be prefetching as many blocks as disks but always from different files.

A more intuitive way of aggressive prefetching consists of using the potential parallelism

offered by the disks to prefetch several blocks in parallel [KTP+96, PG94]. This way

of aggressive prefetching achieves a very good disk utilization when only one file is

being accessed. In the same situation, our proposal leaves all disks but one unused.

On the other hand, we have the feeling that a parallel machine should be used to run

many applications in parallel minimizing the time that only one file is being used. If as

many files as disks are being accessed, our proposal achieves a similar disk utilization.

Furthermore, the prefetching is more balanced as blocks from more than one file are

being prefetched in parallel. We are not saying that exploiting the parallelism of several

disks ends up in a bad system performance, we are only proposing another way to do an

aggressive prefetching that limits the number of prefetched blocks by only prefetching

one block per file at a time.

This limitation of only prefetching one block per file at a time may seem a little too

restrictive. Actually, we could study increasing this limitation of parallelism to meet

each site needs. Anyway, in this work we prove that having a single line of prefetching

for each file is aggressive enough while, at the same time, does not flood the caches

with prefetched information.
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7.4 INCLUDING THE LINE AR-AG GRES SI VE
ALGORITHMS IN PAFS AND XFS

Once designed the prefetching algorithms, we need to test them on top of a file system

with a cooperative cache. We have done it on two different file systems. The first

one is PAFS which is the file system presented in Chapter 5. The other one is xFS,

the file system proposed by the NOW team. It is important to notice that these two

file systems have been chosen because both implement a cooperative cache while their

design issues are very different. In this chapter, we are not willing to compare both file

systems but to evaluate the viability of the linear-aggressive prefetching algorithms we

are presenting.

In PAFS, the management of a given file is handled by a single server. This kind of

centralized management allows a simple implementation of the idea of a linear prefetch-

ing. The cache-server in charge of a file keeps all the prefetching information and can

limit the number of simultaneously prefetched blocks to one. These servers have all

the information about the access patterns as all requests have to go through them. All

these factors favor the implementation of the proposed prefetching mechanism.

Implementing this kind of linear algorithms is not as simple in xFS if we want to

maintain its original philosophy. In this system, each node is allowed to make its own

decisions and only contacts a manager wherever an external help is needed. Following

this idea, it makes sense that each node also makes its prefetching decisions. Further-

more, only the local node is able to have full information about the access patterns

made by an application over a file. The manager only sees some of the operations,

the ones that the local system cannot handle locally. This local prefetching presents a

problem in order to implement a linear-aggressive prefetching. We can limit the number

of blocks that are being prefetched by all the applications located in a single node, but

there is no easy way to coordinate all nodes to avoid several prefetches of the same file

being done in parallel. This problem could be solved using some external prefetcher,

but this solution would modify the general philosophy of xFS.



Linear-Aggressive Prefetching 127

What we have done consists of adding a linear-aggressive prefetching per node to xFS.

This means that each node will only prefetch one block per file at a time but several

blocks of the same file may be prefetched in parallel from different nodes. This is not

a perfect implementation of our proposal but it is the closest design we have been able

to find without modifying the original philosophy of xFS. Furthermore, it will help us

to evaluate whether this linearity is a good idea or not.

There is still another implementation issue that should be explained before getting into

the experimental results. It is clear that both, read and write operations are more

important than prefetching a block. A user requested operation is always useful while

a prefetched block might not be used if it was a miss-prediction. For this reason, we

have given a lower priority to prefetching operations. Prefetching a block will never be

done if other operations are waiting to be done on the same disk.

7.5 EXPERIMENTAL RESULTS

In this section, we present the results obtained while evaluating the proposed prefetch-

ing algorithms. We only present the results obtained by the read operations as the

gains obtained are much more significant than the ones obtained by write operations.

Write operations are not greatly affected by an increase on the number of cache hits as

was already explained in Chapters 4 and 5.

The first thing we evaluate is the improvement in performance obtained by all the

prefetching algorithms. We also compare the aggressive algorithms against the conser-

vative ones. Then, we will present a study on the variation in disk traffic produced by

these prefetching algorithms. It is interesting to evaluate the different loads placed on

the disk by all the prefetching algorithms as it helps to evaluate the benefits compared

to the amount of resources needed by each algorithm.

All these experiments were done using both, the CHARISMA and Sprite, trace files. All

of them have been simulated using the parameters of a parallel machine and network

of workstations as was explained in the methodology chapter (§3).
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7.5.1 Performance Improvement

Parallel Machine and CHARISMA

In this subsection, we present the average read time obtained by both, PAFS and xFS,

while using the four prefetching algorithms presented in this chapter. These times

have been compared to the ones obtained by the cooperative cache with no prefetching

(Figures 7.5 and 7.6).

Let's first examine the results obtained in PAFS (Figure 7.5 and Table 7.1). The first

thing we observe is that both linear-aggressive prefetching algorithms improve the read

performance very much. This increase in performance is even bigger when large caches

are used. Actually, we nearly have a 100% hit ratio. Such a high effectiveness has been

obtained because there is a lot of reutilization of blocks and because the access patterns

are mostly strided. Anyway, this is the kind of file-access that may be found in some

parallel environment as the trace was taken from a real environment.
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None

OBA

ISG

Agr_OBA

AgrJSG

PAFS
1MB

5.32

4.74

4.98

4.06

4.14

2MB

3.03

2.73

2.70

1.39

1.31

4MB

2.22

1.77

1.05

0.25

0.23

8MB

1.98

1.62

0.57

0.25

0.18

16MB

1.98

1.62

0.48

0.24

0.17

xFS
1MB

7.98

7.61

6.91

7.32

5.50

2MB

4.06

3.56

2.23

3.25

2.53

4MB

2.23

1.85

0.74

0.93

0.51

8MB

2.13

1.76

0.61

0.44

0.29

16MB

2.13

1.73

0.58

0.36
0.22

Table 7.1 Global miss ratio obtained by the presented prefetching algorithms
(PM/CHARISMA).

We can also observe that ISG performs much better than OBA. This happens due to a

couple of reasons. The first one is that ISG is more intelligent than OBA and thus knows

how to predict blocks better. As we have already said, many of the accesses are strided

ones and OBA is not able to predict this kind of patterns because it only prefetches the

next sequential block and this is seldom the needed block. The second reason is that

ISG is more aggressive than OBA. While OBA only prefetches a block after a read or

write operation, ISG prefetches a whole set of blocks. If the user requests large amounts

of blocks in each operation, ISG will also prefetch large amounts of blocks. As this is

the case in some parts of the CHARISMA workload, ISG behaved as a quite aggressive

algorithm and achieves a performance similar to the one obtained by Agr.OBA and

AgrJSG.

It is also interesting to see that Agr_OBA, although it is less sophisticated than AgrJSG,

achieves a very similar performance. The reason behind this behavior is, once more,

the strided patterns found in the CHARISMA trace file. As Agr_OBA tries to prefetch

further than just the next sequential block, the probability that the blocks of a strided

pattern are prefetched is quite high. On the other hand, AgrJSG prefetches strided

patterns quite effectively as it is designed to recognize such kind of patterns. Further-

more, this similar performance results, show that the idea of making simple algorithms

aggressive improves their performance quite a lot. They may even catch-up with more

sophisticated ones as in this case.
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Let's now compare the results obtained on xFS (Figure 7.6 and Table 7.1). With this file

system we can also observe that, with large caches, linear-aggressive algorithms obtain

better performance than their non-aggressive versions. The difference in performance

between the aggressive and the conservative version is not as important as the one found

in PAFS. This happens because the aggressive algorithms can prefetch more than one

block from the same file in parallel. This makes these algorithms too aggressive and

end up flooding the cache and decreasing the system performance.

We can also observe that ISG obtains a better performance than AgrJSG with 2 and

4-MByte local caches. In the first case, this happens because the non-aggressive version

obtains a higher hit ratio. With this small cache, the aggressive, and not-linear, version

floods the cache discarding already useful blocks, this decreases the hit ratio as the

discarded blocks will have to be brought from disk again when needed. In the second

case (4-MByte caches), the performance of ISG is higher even with a lower hit ratio.

This happens because so many blocks are prefetched that, during some periods of

time, the managers and the disks get overloaded and cannot serve client requests as

fast as they should. This also happens because the aggressive version was not the

linear-aggressive one.

Network of Workstations and Sprite

When tested the prefetching algorithms on a network of workstations (Figures 7.7, 7.8

and table 7.2), the results obtained are not as impressive. Prefetching algorithms are

not as effective because the files are much smaller than in the previous experiment.

Small files are very difficult to prefetch as the system needs some requests to build

their access pattern. Furthermore, with the presented algorithms, there is no way to

prefetch the first access to a file and this can be a big percentage of the blocks accessed

in a small file.

Anyway, we also observe that the aggressive versions obtain a better performance than

the non-aggressive ones. This, again, proves that the idea of converting conservative

algorithms in aggressive ones achieves a higher performance.
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None

OBA

ISG

Agr.OBA

AgrJSG

1MB

30.06

25.32

24.76

24.79

21.06

2MB

25.09

21.72

21.11

20.72

18.13

PAFS

4MB

22.18

19.53

18.43

18.83

16.31

8MB

18.91

16.76

16.61

16.64

14.07

16MB

14.63

12.89

12.28

12.56

10.98

1MB

31.27

26.20

28.09

26.93

24.84

2MB

25.40

21.82

21.99

22.42

19.14

xFS

4MB

21.85

19.17

19.00

18.88

16.60

8MB

18.27

16.44

15.84

16.05

14.00

16MB

14.18

12.15

11.78

11.80

10.36

Table 7.2 Global miss ratio obtained by the presented prefetching algorithms
(NOW/Sprite).

In this experiment, we also observe that when the aggressive algorithms are not imple-

mented in a linear way, their performance is not as good as if they were implemented in

a linear way. This is, once more, due to the cache floods and the excessive load placed

on the managers and disk during some periods of time.
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OBA

ISG
Agr.OBA

AgrJSG

PAFS

1MB

-1.38

22.98

19.73

43.41

2MB

-0.29

12.21

5.42

15.76

4MB

-1.47

6.79

4.01

1.11

8MB

4.68

4.77

-5.58

-3.99

16MB

1.42

-6.30

-7.99

-6.28

xFS

1MB

1.44

32.06

10.25

38.10

2MB

-0.39

6.99

7.50

19.71

4MB

-0.24

2.32

6.69

12.47

8MB

0.38

2.67

5.31

9.40

16MB

0.31

2.63

4.18

10.05

Table 7.3 Variation in disk traffic due to the presented prefetching algorithms
(PM/CHARISMA).

7.5.2 Disk Traffic

After concluding that linear-aggressive prefetching increases the system performance,

it is necessary to study the impact this aggressive prefetching has on the disk traffic. In

this section, we present the disk-traffic variation observed when aggressive prefetching

is done compared to the traffic observed when there is no prefetching.

Parallel Machine and CHARISMA

Table 7.3 presents the variation in the disk traffic produced by the different prefetching

policies when the CHARISMA trace file was simulated. Each cell represents the per-

centage of traffic added by the prefetching policy when compared to the non-prefetching

execution. If this number is positive, the prefetching algorithm increases the disk traf-

fic while a negative percentage means that the disk traffic has decreased due to the

prefetching algorithm. It is important to have in mind that the disk traffic is led by

write operations and that doubling the number of reads does not have a great impact

on the overall disk traffic. Only around a 10% of the disk traffic is done to fetch blocks

from the disk in the version with no prefetching.

The first thing that can be observed is that OBA does not increase the disk traffic. This

happens because this prefetching algorithm is very conservative and only prefetches one

block for each user operation. As most of these prefetched blocks are used sooner or

later, the disk traffic is not increased.
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Prefetching algorithm

No Prefetching

OBA

ISG

AgrJDBA

AgrJSG

Physical writes
per block

5.959
5.930
3.419
3.514

3.263

Table 7.4 Average number of times a block is sent tot he disk during its life in the
cache:

If we examine the increase of disk traffic made by ISG, we observe that it is nearly as

high as the one found in the aggressive version. This happens because the number of

blocks prefetched by this algorithm depends on the number of blocks requested by the

user in each operation. As in the CHARISMA trace file there are many large requests,

this algorithm prefetches many blocks and behaves as a quite aggressive algorithm and

thus it has a similar amount of disk traffic as the aggressive algorithms.

We can also observe that the disk traffic produced by the aggressive algorithms is

much higher in xFS than in PAFS when medium-size and large caches are used. This

happens because of the linear-aggressive algorithms. As prefetching algorithms cannot

be made linear in xFS, many more blocks are prefetched and the disk traffic increases.

If we examine the results obtained with l MBytes caches, it seems that this trend is

not followed. But if we examine the absolute disk-traffic values observed in this case,

we observe that the traffic is actually much higher in xFS than in PAFS. This miss-

leading percentage appears because of the higher disk traffic observed in xFS when no

prefetching is done. This higher traffic is due to the larger number of misses obtained

by xFS when compared to the misses found under PAFS (explained in Chapter 5). As

the reference point of the percentage is very different in xFS and in PAFS, these two

columns cannot be compared.

Finally, the most surprising result appears when examining the variation in disk traffic

made by the aggressive algorithms when PAFS has large caches. We can see that

the disk traffic decreases when aggressive prefetching is done. This is completely anti-
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Figure 7.9 Load placed on the disks by ISG with a IMByte local cache.

intuitive. As many more blocks are read, the number of disk blocks should not decrease

but increase. Actually, the number of blocks fetched increases. What happens is that, in

these cases, the number of disk writes decreases. This behavior can be easily-explained.

There are many blocks that are constantly being modified during their life in the cache.

These blocks are sent to the disk periodically by the syncer. If all file-system operations

between each modification are done faster, the period of time that this block is being

modified decreases. This implies that the syncer has less opportunities to send this

block to the disk and the number of physical writes also decreases. In order to support

this idea, we present table 7.4 that shows the average number of times a block is sent to

disk during its life time. We can observe that blocks are written to the disk less times

when aggressive algorithms are used. This result does not only affect prefetching but

any mechanism that speeds up the file system operations. The faster the operations are,

the more probable the above situation will be and this will decrease the write traffic.

This is not detected in xFS because many more blocks are prefetched increasing the

disk traffic and because the operations are not as fast as in PAFS.

As the increase of disk traffic is quite significant when small caches are used, it seems

interesting to study the real load placed on the disks. Figure 7.9 presents the percentage

of disk utilization made by PAFS with ISG and IMByte local caches (solid bars). This
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OBA

ISG

AgrJDBA

AgrJSG

1MB

-3.28

-1.59

3.81

3.79

2MB

-4.36

-2.52

1.77

2.36

PAFS

4MB

-3.29

-3.02

0.85

0.69

8MB

-4.10

-2.43

-0.11

-0.47

16MB

-4.02

-3.61

-1.04

-0.18

1MB

-2.59

2.99

2.97

12.77

2MB

-3.13

0.00

4.71

8.19

xFS

4MB

-3.18

-0.93

4.18

6.15

8MB

0.61

1.75

6.04

7.36

16MB

-4.41

-3.37

-0.95

1.24

Table 7.5 Variation in disk traffic due to the presented prefetching algorithms
(NOW/Sprite).

utilization is compared to the one obtained by the same system without prefetching

(horizontal lines). We can see that during the most loaded hour, the disk traffic was only

around a 16% of the possible with ISG and only 8% with no prefetching. This shows

that linear-aggressive prefetching does not generally overload the disks while, at the

same time, prefetches aggressively enough to greatly improve the system performance.

Network of Workstations and Sprite

If we perform the same study with the Sprite traces running on a network of worksta-

tions we obtain the results presented in Table 7.5.

The first thing we observe is that traffic is increased less than in the previous study.

This happens because of the characteristics of the Sprite workload. In this workload, it

is more difficult to prefetch blocks as was explained in Section 7.5.1. This fewer number

of prefetched blocks leads to a smaller increase in the disk traffic if compared to the

one observed in the CHARISMA study.

ISG behaves much more like OBA than in the previous study. This is because this

algorithm is much less aggressive with the Sprite trace file than with the CHARISMA

one. This happens because, in this study, the size of the user requests is smaller than

in the previous one. -
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The rest of the results observed in this workload are very similar to the ones observed

in the CHARISMA study and the same explanations can be applied.

7.6 CONCLUSIONS

The first conclusion that can be extracted from this work is that aggressive prefetching

is a good idea. It increases the system performance specially when caches are big as it

happens in cooperative caches.

In this chapter, we have also observed that prefetching with no limit may end up in a

degradation of the system performance. For this reason, we proposed a way to limit the

aggressiveness of the prefetching algorithms by only allowing a single prefetch for each

file at a time. This has proven to be a good mechanism to limit the aggressiveness of

prefetching and has achieved very good performance results. Anyway, this limitation in

the parallelism of the prefetching might be too restrictive and a more flexible limitation

should also be studied. There are environments where 2 or 3 lines of prefetch could

obtain better performance results.

We have also presented a way to make linear-aggressive prefetching algorithms from

simple and conservative ones. As this kind of prefetching algorithms obtained quite

good performance results, it seems interesting to try to apply the same mechanism to

more sophisticated algorithms to obtain a more intelligent aggressive prefetching.

Finally, we have shown that linear-aggressive prefetching does not necessarily overload

the disk. As it is not too aggressive, the number of disk accesses is not excessive.

Furthermore, it even decreases the disk traffic as it avoids some of the writes done by

the syncer. Actually, this result is not only an effect of aggressive prefetching but

should also appear with any mechanism that increases the file-system performance.

It is important to notice that this effect could not have been detected using the old

methodology as a speed up in the file system could not affect the distribution of the

requests.
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CONCLUSIONS AND FUTURE WORK

8.1 CONTRIBUTIONS OF THIS WORK

In this section, we describe the main contributions made in this thesis. These contri-

butions have been achieved in three different fields. First, a novel approach to design

cooperative caches has also been presented. Second, we have also contributed with a

new mechanism that implements aggressive prefetching. The last contribution is the

methodology used as a new way of simulation has been proposed.
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8.1.1 Cooperative Caching

New Approach

The most important contribution made in this work is the new approach followed in

the design of cooperative caches. So far, these kind of caches were designed following

a common key issue. All of them relied on the physical locality of data to obtain high

performance caches. The idea was to place the cached blocks in the local cache of the

node that would request them. This was done because accessing a local cache is faster

that accessing a remote one.

We propose that basing the performance on the physical locality is not the only way

to achieve high-performance cooperative caches. Actually, we have designed a cooper-

ative cache that does not exploit this locality and achieves a higher performance than

traditional cooperative caches. The main problem found when exploiting physical lo-

cality is that keeping the blocks in the node that will need them introduces a significant

overhead. This overhead is not outweighed by the benefits of this locality and ends up

in a performance degradation.

This does not mean that physical locality is not a good idea. Of course that increasing

it will increase the system performance as long as it does not introduce an additional

overhead. For this reason, our system tries to achieve locality only when it does not

add any overhead to the system.

The experimental results presented in this work show that this new approach obtains

very efficient cooperative caches. Furthermore, it also simplifies the design and imple-

mentation allowing a more reliable system.

Cache Coherence

Replication has been traditionally used to increase the locality of the distributed sys-

tems. As the design approach used in this thesis does not stress locality, there is no

need for replication. A very interesting side effect of the lack of replication is that all co-
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herence problems disappear. If there is only one copy of the cached blocks, these blocks

are always the up-to-date copy and there is no need to implement any cache-coherence

mechanisms.

In our system, replication is not allowed and the cache-coherence problem is avoided.

Avoiding this problem simplifies the cache design because we get rid of the coherence

mechanisms which are quite complicated and time consuming. Furthermore, it increases

the reliability of the file system because it is much simpler and easier to debug than

traditional systems.

This way of solving the coherence problem does not have a performance penalty as

we have already shown that not exploiting locality is a valid approach to design high-

performance cooperative caches.

Fault-tolerance Mechanism

The last contribution done in the field of cooperative caches is the design of a parity-

based fault-tolerance mechanism. This mechanism is able to handle the failure of a

node with no loss of information. Once a node fails, the system can reconstruct all

lost blocks using the parity information kept by the system. Once all blocks have been

reconstructed and sent to the disk, the system continues its execution as if nothing

had happened. This mechanism only cares about data. If a given file-server fails, the

meta-data information kept by this server is lost and the system execution will have to

be aborted.

In order to design a flexible system, we have defined three tolerance levels. Each

level has different assumptions and offers a different degree tolerance. The higher the

tolerance degree is the higher the performance penalty will be.
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8.1.2 Préfet ching

Linear Aggressive Prefetching

Finally, we have done some contributions in the field of file prefetching. In the previous

study, we noticed that cooperative caches offer very large caches and that these caches

usually keep some blocks that are very old. This led us to believe that aggressive

prefetching could be used to increase the system performance quite easily. As very

old blocks are kept in the cache, they can be replaced by the predicted ones and if

the prediction was wrong no much difference should be noticed in the overall system

performance.

As caches are very big, we can implement quite aggressive prefetching polices. On the

other hand, if this prefetching is too aggressive the system may end up in a performance

degradation. For this reason, we have designed the linear-aggressive prefetching. This

mechanism converts a traditional conservative algorithm in a new one that is aggressive

but intelligent enough to not flood the cache. It basically consists of prefetching blocks

continuously but with the limitation that only one block can be fetched per file at a

time. This mechanism has been tested with two simple prefetching algorithms and the

experimental result show that the file system performance increases significantly.

In the experimental section, we have observed that this prefetching mechanism is not

only valid for large cooperative caches. It can also be used with traditional caches of

medium size and achieve quite good performance results. Anyway, the bigger the cache

is, the better the algorithm will behave.

Finally, we have observed a very anti-intuitive behavior of the aggressive prefetching

algorithms. We have observed that these kind of algorithms do not necessarily increase

the disk traffic and that they may even decrease it. This happen because speeding

up the file system operations decreases the number of'write operations done by the

syncer.
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8.1.3 Methodology

So far, all research done in file-system simulation has been done using traces that keep

the absolute time for each file-system event. This was done because it maintains the

same load distribution as the one measured in the original system. Furthermore, the

usage of this trace-file format eases the task of implementing the simulator as it does

not need to simulate any process scheduling policy.

The problem with this methodology is that some side effects cannot be measured. For

instance, if file-system operations are done faster, the applications will be able to make

more requests to the system in the same period of time. This variation in the load

distribution cannot be measured using the old methodology. Another problem is that

the traces are not independent of the file systems they were taken from. The absolute

time between events includes the CPU consumed by the application and the time needed

by the file system to perform the operation. This time should not be present in the

trace as the new file system will need a different amount of time for each operation. As

there is no way to know the amount of time used by the system, it is not possible to

take it away from the trace file and it adds some noise to the results obtained.

Our proposal consists of building the traces using relative times. The trace should only

contain file-system events and the CPU time consumed by the applications between

these events. It is important to notice that this CPU time only contains the time

consumed by the application. This leaves out of the trace the time needed by the file

system to perform the current event. This makes the traces more independent of the

system they were taken from. It also allows a better simulation of the applications that

make the I/O operations.

This new methodology adds some overhead to the simulations as a new resource has

to be handled. Now, the sharing of the CPU has to be taken into account by the

simulator. We believe that this overhead is not important if compared to the higher

degree of accuracy achieved by the simulations.
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8.2 FUTURE WORK

The work described in this dissertation has addressed many of the basic questions

about building parallel/distributed file systems with a cooperative cache that has no

coherence problems, but it leaves some questions unanswered and raises several new

issues. This section describes some of the future work needed to address the unresolved

problems and to increase the knowledge of the new issues.

» Detailed definition of a new trace format and simulation methodology. A wide set

of traces with this new format should also be gathered.

• Study the benefits of integrating our cooperative cache with a log-structured file

system.

• Modify the replacement algorithm using the lessons learned from Segmented-LRU.

• Relax the condition that the network and all the nodes are secure.

» Increase the scope of the fault-tolerance mechanism.

• Test the linear-aggressive prefetching on more intelligent algorithms.

« Study a possible increase in the number of blocks that can be prefetched in parallel

from a single file.

New Trace Format and Simulation Methodology

After translating the traces to the new format, we reached the conclusion that new

mechanisms to obtain traces should be defined. To be able to make better file-system

simulations, the traces should have information on the application that made the re-

quests. Knowing which node did which operations is not enough if a system that uses

such information is to be designed and tested. This information has been traditionally

taken away from the trace for privacy reasons and a way should be found so that this

information is offered to the researchers while still maintain the privacy of the users.

It is also important to extract the effects of the original system from the trace. The

interval between two file system operations should not include the time needed by the
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system to perform any of these events. Finally, we should collect a significant set of

traces so that the new file-system researchers can use them to design better systems.

As the trace format is modified, a new simulation methodology is also needed. When

using this trace format, the simulation will have to take into account the processor

sharing between applications. It will also need to find a way to avoid race conditions

or a way to measure their effect.

Integration with Log-structured File System

As cooperative caches offer such large caches, the disk traffic is led by write operations

as most of the reads are handled by the cache. This is one of the basic assumptions

made in the design of the log-structured file system. For this reason, it seems interesting

to study the possibility of changing the Unix-like file system used in PAFS by a log-

structured one.

Integration with Segmented-LRU

In this work, we have based our replacement algorithm on the well-known LRU because

it is simple and easy to understand. Furthermore, it is the replacement algorithm most

widely used in comertial file systems. Anyway, it seems interesting to create a new

version of PG-LRU based on Segfnented-LRU and try to take advantage of the benefits

this algorithm has.

Security Issues

In the current design, all nodes are trusted ones. The system can cache file blocks

in any of them knowing that the information will not be seen nor modified by any of

the nodes. If the system is to be used in a very wide environment, this assumption

may become too restrictive. We should find a way to allow remote caching even if a

given node is not secure. This could be done by encrypting the file blocks and using a

checksum for each block. A similar mechanism could also be used to solve the possible

problems of an insecure, network.
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Increase the Scope of the Fault-tolerance Mechanism

Allowing the failure of file servers was out of the scope of this work as we only wanted

to avoid losing information. This kind of failures should also be handled to offer a

higher degree of fault tolerance. This could be solved by replicating the servers or by
keeping a log with all the information needed to start a server to replace the failed one.

Linear-aggressive Prefetching

More work has to be done in the field of aggressive prefetching. We should test the

linear-aggressive mechanism with more intelligent algorithms such as the ones based on
Markov chains proposed by Vitter et al. [CKV93]. This should produce very intelligent

aggressive algorithms that only prefetch the blocks needed by the applications.

We have also shown that one line of prefetching obtains good performance results and
that many lines decrease the performance. We should study if more than one prefetching

line can be used and which parameters affect this limitation.



A
xFS AND N-CHANCE FORWARDING

A.I INTRODUCTION

xFS is the first example of a new paradigm for network file-system design, serverless

network file systems. While traditional network file systems rely on a central server

machine, a serverless system utilizes workstations cooperating as peers to provide all

file system services. Any machine in the system can store, cache or control any block of

data. This approach uses this location independence, in combination with fast local area

networks, to provide better performance and scalability than traditional file systems.

Furthermore, because any machine in the system can assume the responsibilities of a

failed component, this serverless design also provides high availability via redundant

data storage.

As the scope of both file systems (xFS and PAFS) is not equal, we will only describe the

issues of xFS that are relevant to our work. We will explain the kind of servers and the
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way they cooperate. We will also describe the cooperative caching mechanisms in detail.

And finally, we will explain the most important differences in the approaches followed

by both file systems and the modifications needed to implement xFS on DIMEMAS.

Further information about xFS may be found in the literature [ADN+95, DWAP94,

Dah95].

A.2 N-CHANCE FORWARDING: A COOPERATIVE
CACHE

This cooperative cache is based on the idea that the cache of each node (or client if

using the terminology used in xFS papers) is divided in two parts. The first part is

locally managed by this client and it is the client that decides the information kept in

it. The second part is used to build a globally coordinated cache. In this global cache

the system keeps those block that are not specially needed by any node but that may

increase the system effectiveness. This does not mean that a given node may not access

the blocks kept in the locally coordinated cache of another node, it only means that it

will not be able to decide the contents of this local part of the cache.

N-Chance Forwarding adjusts the fraction of each client's cache that is managed co-

operatively depending on the client activity. N-Chance Forwarding recognizes that

singlets are more globally valuable than duplicates, so it preferentially caches singlets.

A singlet is defined as the only cached copy of a file block. N-Chance uses a randomized

load balancing rather than a global knowledge to distribute singlets across the global

cache.

A client in the N-Chance algorithm always discards the locally least-recently used object

from its cache when it makes space for new blocks. However, if the discarded item is

a singlet, the client forwards the singlet to another client's cache rather than allow the

last copy of the block to drop out of the cooperative cache. The client that receives the

data adds the block to its LRU list as if it had recently referenced the block.
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To limit the amount of memory consumed by old singlets, each block has a recircu-

lation count that clients increment when forwarding singlets. Clients discard, rather

than forward, singlets whose recirculation count reaches n. If a client references a local

singlet, it resets the recirculation count to zero, and if a client references a remote re-

circulating singlet, the remote client discards the singlet after reseting the recirculation

count to zero and forwarding it to the client that referenced it. Thus, an unreferenced

singlet survives n cache lifetimes in the global cooperative cache, giving the algorithm

its name. After many experiments the value of n proposed by the NOW team is 2.

Using the recirculation count, this algorithm provides a dynamic trade-off for each

client cache's allocation between local data (being cached because the client referenced

it) and global data (singlets being cached for the good aggregate system performance).

Active clients will tend to force any global data sent to them out of their caches quickly

as local references displace global data. Idle clients, in contrast, will tend to accumulate

global blocks and hold them in memory for long periods of time.

An implementation of this algorithm must prevent a ripple effect where a block for-

warded form one client displaces a block to another client and so on. Note that in the

most common case, the displaced block is not a singlet, so no ripple occurs. However,

to guard against the uncommon case, the system imposes a policy that prevents deep

recursion from ever occurring: a client receiving a recirculating block is not allowed to

forward a block to make space.When a client receives such a block, it uses a modified

replacement algorithm, discarding its oldest duplicate. If the cache contains no dupli-

cates, the client discards the oldest recirculating singlet with the fewest recirculating

remaining.

A.3 xFS: GENERAL OVERVIEW

In order to implement a serverless file system where each node may do any of the tasks

of the system, we need to define a set of servers (or functions) that have to be done in

the nodes depending on the roles they want to assume. Any node in the system my

have the following roles: client, manager, storage server and cleaner. Actually, a given
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Figure A.I Possible xFS configuration in a network of workstations.

node may assume one, or more than one, of these roles. Figure A.I presents a possible

configuration of a network of workstations with xFS running. In this example we can

see a node that only acts as client and other nodes that have more than one of these

functions.

Among the four possible roles, there are only three in which we are interested: clients,

managers and storage servers. Client are in charge of handling file system requests

from the applications running on their node. Managers are in charge of keeping track

of the file system data and meta-data distributed in the whole system. They are also

responsible for the consistency of the cached blocks. Finally, the storage servers are in

charge of the physical placement of the data on the the disks. This last role has been

simplified as we are not interested in simulating the stripe group mechanism.

A file-system operation starts when the application requests a block to the operating

system (client). If the requested block is in the client's local cache, it is handled to

the user. So far, there are no differences if compared to a regular Unix system. The

differences appear when the client does not have the block cached. As this block may

be cached in a remote node, the client contacts the block manager and requests this

block. The manager checks if a copy of the block is already cached in any node. If such

copy exists, the request is forwarded to the remote node holding the block. The kernel

of this node will send the copy to the requesting node which will also cache it in its

local cache. If there are no copies in the system, then that manger contacts a storage
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Figure A.2 Steps followed by xFS to fulfill a client request.

server which will access the block from the disk and will send it to the requesting node.

Once the client obtains the block, either from a remote cache or the disk, it sends it to

the application that requested it. A diagram of this process is presented in Figure A.2.

Each manager is responsible for a set of files. Clients know which manager is responsible

of which files indexing the Manager-Map using the file-ID. This Manager-Map is a

globally replicated table that keeps the information of which servers are responsible of

which files. To increase the efficiency of the system, xFS tries to assign the files used

by a client to a manager located on the same node. This is done using a policy named

First-Writer. When a client creates a file, xFS chooses a manager located in the same

node.
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Managers implement a token-based cache-consistency scheme similar to Sprite [NWO88],

Andrew [HKm+88], Spritely NFS [SM89], Coda [KS92], and Echo [BHJ+93] except that

in xFS this consistency is managed on a per-block basis instead of using the file as the

basic consistency unit [Bur88]. Before a client modifies a block, it must acquire write

ownership of that block, so the client sends a message to the block's manager. The man-

ager then invalidates any other cached copies of the block, updates its cache consistency

information to indicate the new owner and replies to the client, giving permission to

write. Once the client owns a block, the client can write the block repeatedly until some

other client reads or writes the data, at which point the manager revokes ownership,

forcing the client to stop writing the block.

A.4 COMPARISON BETWEEN
COOPERATIVE-CACHE ALGORITHMS

In this section, we detail the most significant differences between xFS and the systems

presented in this thesis.

The first difference is that xFS encourages local hits by placing new blocks in the client's

local cache and making a local copy of the blocks found in a remote cache. PAFS, on

the other hand, does not try to increase the number of local hits. It tries to speed up

remote hits to make less significant the local-hit ratio.

A second difference is the way the coherence problem is approached. While PAFS avoids

it by simply avoiding replications, xFS implements a token-based-on-a-per-block-basis

cache consistency scheme.

In PAFS, once a block is placed in a node, it remains there until it is discarded. On the

other hand, xFS keeps moving blocks from one node to another for two basic reasons.

The first one is to increase the local-hit ratio. The second one is to increase the life-time

of a block. Once a block reaches the last position in the LRU list, it is forwarded to

another node. After N jumps without being accessed, the block is finally discarded.
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Finally, only one level of fault-tolerance is implemented by xFS while PAFS offers three

different levels of fault tolerance to adapt to the needs of each configuration.

A.5 MODIFICATIONS MADE IN OUR SIMULATIONS

As we are not using the real system but a simulation build on DIMEMAS, some mod-

ifications have been made to the original system. These modifications have been kept

to a minimum as we wanted to compare with a system as similar to the original one as

possible.

Most of the code implemented in xFS is placed inside the kernel and some operations

can be handled locally without sending or receiving any messages. As our system could

not simulate this in-kernel operations, we placed the file-system functions of the kernel

in an out-of-kernel server leaving all the rest untouched. We also placed one such server

in each node in order to minimize the impact of sending a message for each request.

This was proved to be nearly irrelevant in the overall system performance [CGL97a,

CGL96a].

The second difference was that only the relevant parts of the system were implemented.

As we have already said, the scojae of xFS is broader than the one of PAFS. This means

that some of the features of xFS are not relevant when comparing both systems. In

order to simplify the comparison, we have not simulated features like stripe groups,

logs, cleaning mechanisms, etc. because they have nothing to do with the cooperative

cache nor the load distribution mechanism studied in our work. Ignoring these features

should not affect the results presented in this thesis as they are not specially related to

the cooperative cache.

Finally, the last modification was the centralized version simulated to compare with

PACA. This simplified version was only used in Chapter 4 to get an easier understanding

of the cooperative cache mechanisms. Once understood, the distributed version of xFS

has been used as it is.
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