

LOG-GABOR FILTER BASED FINGER VEIN BIOMETRIC SYSTEM USING MODIFIED REPEATED LINE TRACKING ALGORITHM

by

AMIR HAJIAN

Thesis submitted in fulfilment of the

requirements for the degree of

Master of Science

July 2018

ACKNOWLEDGEMENT

This dissertation is dedicated to everyone in the field of biometrics and image processing system who embarks the journey of expanding the collection of knowledge and transcendent passion for improving verification system base on finger vein biometric trait.

My uttermost gratitude goes to Associate Prof. Dr. Dzati Athiar Bt Ramli, my thesis advisor and project supervisor, for her invaluable support and guidance that were crucial for the completion of this project. Dr. Dzati has been supportive during the process of brainstorming. Her guidance and immense knowledge throughout all the time of research and writing this thesis are highly appreciated.

My special thanks reach out to Dr. Sepehr Damavandinejadmonfared who had supported me as technical advisor. Besides, I would like to thanks Universiti Sains Malaysia for supporting though the Fundamental Research Grant Scheme (6071266).

Extensive acknowledgment needs to be paid to my family and friends for their endless love and support in any aspect during the completion of this project and thesis.

Last but not least, I would like to express my deepest appreciation to my dearest friend, Dr. Hamid Reza Sadeghpour for his kindness support he has given to me on the difficult task of writing the thesis.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvi
ABSTRAK	xvii
ABSTRACT	xviii

CHAPTER ONE: INTRODUCTION

1.1	Overview of Biometric System	1
1.2	Finger Vein Biometric System	4
1.3	Problem Statement	6
1.4	Objectives	7
1.5	Scope of Research	8
1.6	Thesis Contribution	9
1.7	Thesis Outline	9

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	11
2.2	Typical Finger Vein Biometric System	11
2.3	Data Acquisition of Finger Vein Image	11

2.4	Pre-processing Techniques for Finger Vein Image		
	2.4.1 Researches in Finger Vein Pre-processing		
	2.4.2	Contrast Enhancement	19
	2.4.3	Sharpness Enhancement	23
	2.4.4	Log-Gabor Filter	25
2.5	2.5 Feature Extraction of Finger Vein		28
	2.5.1	Extraction of Feature Based on Vein Pattern	30
	2.5.2	Extraction of Feature Based on Local Binary	30
	2.5.3	Extraction of Feature Based on Dimensionality Reduction	31
2.6	Classifi	cation Techniques of Finger Vein Pattern	31
2.7	Summary		37

CHAPTER THREE: METHODOLOGY

3.1	Introdu	ction	38
3.2	Researc	ch Framework	38
3.3	System	Requirements	40
	3.3.1	Software Requirement	40
	3.3.2	Hardware Requirement	41
3.4	4 Database		41
	3.4.1	Database Description	41
	3.4.2	Database Management	43
3.5	.5 Pre-processing		43
	3.5.1	Region of Interest (ROI)	44
	3.5.2	Contrast Limited Adaptive Histogram Equalization (CLAHE)	46

	3.5.3	Filtering Enhancement with Modified Un-sharp Mask (MUM) with Log-Gabor Filter	51
	3.5.4	Modification Algorithm in Pre-processing Stage	53
	3.5.5	Quantitative Evaluation of Enhanced Image	58
		3.5.5 (a) Mean Squared Error	58
		3.5.5 (b) Peak Signal to Noise Ratio	58
3.6	Feature	Extraction	59
	3.6.1	Repeated Line Tracking Algorithm	62
	3.6.2	Modified Repeated Line Tracking Algorithm	67
3.7	Classifi	cation by Support Vector Machine	70
3.8	Performance Evaluation		71
3.9	Summary		73

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1	Introdu	ction	74
4.2	The Results of Different Steps of Pre-processing Stage		74
	4.2.1	The Results of Contrast Limited Adaptive Histogram Equalization (CLAHE)	74
	4.2.2	The Designed Log-Gabor Filter	76
	4.2.3	Subjective Evaluation of Pre-processed Images	77
	4.2.4	The Evaluation of Images Quality in Pre-processing Stage	82
4.3	.3 Modified Repeated Line Tracking Results		83
	4.3.1	The Line Tracking Repetition	83
	4.3.2	Subjective and Numeric Evaluation of Extracted Pattern of Vein	84
4.4	Perform	nances of Finger Vein Biometric System	89
	4.4.1	Performances of Finger Vein Biometric System Based on	89

Different Numbers of Training Data

	4.4.1 (a)	Performances of System with Original Image Based on Different Numbers of Training Data	89
	4.4.1 (b)	Performances of System with CLAHE Based on Different Numbers of Training Data	90
	4.4.1 (c)	Performances of System with CLAHE then MUM Based on Different Numbers of Training Data	91
4.4.2		ces of Finger Vein Biometric System Based on ent Techniques	92
	4.4.2 (a)	Performances of Finger Vein Biometric System Based on Enhancement Techniques on One Training Data	93
	4.4.2 (b)	Performances of Finger Vein Biometric System Based on Enhancement Techniques on Two Training Data	94
	4.4.2 (c)	Performances of Finger Vein Biometric System Based on Enhancement Techniques on Three Training Data	95
Compa	rison with P	revious Related studies	96
Summary			96

CHAPTER FIVE: CONCLUSION

4.5

4.6

REF	ERENCES	101
5.2	Suggestion for Future Work	99
5.1	Conclusion	98

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 1.1	Comparison of different biometric traits	5
Table 2.1	Comparison of different finger databases	14
Table 2.2	Comparison of different pre-processing methods of finger vein recognition system	16
Table 2.3	Comparison of different feature extraction methods of finger vein pattern	29
Table 2.4	Comparisons between different pre-processing, feature extraction and corresponding classifier techniques	36
Table 2.5	Comparisons between different finger vein recognition techniques of previous table based on number of subjects, samples and accuracy rate	37
Table 4.1	The number of white pixels in the extracted vein samples of subject1	88
Table 4.2	The number of white pixels in the extracted vein samples of subject2	88
Table 4.3	The number of white pixels in the extracted vein samples of subject3	88
Table 4.4	EERs of System with original image and based on 1, 2 and 3 training data	90
Table 4.5	EERs of system with CLAHE enhance and based on 1, 2 and 3 training data	91
Table 4.6	EERs of system with proposed enhancement method (CLAHE then MUM) and based on 1, 2 and 3 training data	92
Table 4.7	EERs of system with different enhancement methods with one training data	93

Table 4.8	EERs of system with different enhancement methods with two	94
	training data	
Table 4.9	EERs of system with different enhancement methods with three training data	96
Table 4.10	Comparison with previous related studies	96

LIST OF FIGURES

		Page
Figure 1.1	Samples of behavioural and physiological biometric modalities	1
Figure 1.2	Seven basic criteria of a biometric trait	3
Figure 1.3	Block diagram of verification mode of a biometric system	3
Figure 1.4	Block diagram of identification mode of a biometric system	4
Figure 1.5	Overall research architecture	9
Figure 2.1	Block diagram of typical finger vein biometric system	11
Figure 2.2	Two common ways of pattern acquisition (Hashimoto, 2006) (a) Transmission IR light, (b) reflection IR light	12
Figure 2.3	(a) Scheme of acquisition device with reflection IR light method, (b) practical image device	13
Figure 2.4	Samples of captured finger images	13
Figure 2.5	Non-ideal finger vein sample from SDUMLA-FA database	15
Figure 2.6	Histogram of original image and histogram of image after histogram equalization	21
Figure 2.7	Block diagram of classical un-sharp mask filter	23
Figure 2.8	Block diagram of modified classical Un-sharp mask with Log-Gabor filter	24
Figure 2.9	Transfer function of even –symmetric Gabor filter	25
Figure 2.10	Multi-resolution Schemes. (a) Schematic contours of filters in Fourier domain with 5 scales and 8 orientations. (b) The elongation of Log-Gabor wavelets (real parts and imaginary parts in left and right column respectively). (c) and (d) are the real part and imaginary part respectively in spatial domain	27

Figure 2.11	Inverse Fourier transform functions of Gabor and Log-Gabor at same frequency with different bandwidths (a, b, c are 1, 2 and 3 octaves respectively)	28
Figure 2.12	Hyper-plane margin used to separation negative to positive cases	33
Figure 3.1	Overall research framework	40
Figure 3.2	Original finger images of both hands from a subject in SDUML-HMT Database (a, b, c are index, middle and ring fingers of left hand respectively and d, e, f are index, middle and ring fingers of right hand respectively)	
Figure 3.3	Data enrolment and data verification in recognition system	43
Figure 3.4	Left and right boundaries of image	44
Figure 3.5	Masks for detection the ROI. (a): Mask for detecting upper boundary of finger. (b): Mask for detection lower boundary of finger	
Figure 3.6	Boundary Detection of Three Finger Images (The original image, binary image, and edge detected, from left to right respectively)	46
Figure 3.7	The organization of tiles in a 272×192 finger image	47
Figure 3.8	ure 3.8 Clipping and Redistribution According to Clip Limit β . (a) Detecting the exceeded counts. (b) Redistributing extra counts uniformly	
Figure 3.9	The neighbouring structure of IR tile. (a) The IR tile with its bordering regions. (b) Specified pixel and its relation with centers of its four nearest regions	49
Figure 3.10	The neighbouring structure of BR tile. (a) The BR tile with its bordering regions. (b) Pixel p in quadrant 2 its relation with	50

centers of its four nearest regions

Figure 3.11	The Neighbouring Structure of CR tile	50
Figure 3.12	Product of Low-pass filter to radial Log-Gabor component of filter	52
Figure 3.13	The result of MUM algorithm and the result of CLAHE then MUM algorithm	55
Figure 3.14	The pre-processing stage of verification system	55
Figure 3.15	The block diagram of image modification in the pre-processing stage of system	56
Figure 3.16	Cross-sectional profile of vein image	60
Figure 3.17	Location of Current Tracking Point on the Cross-sectional profile	61
Figure 3.18	The flowchart of RLT algorithm	63
Figure 3.19	The flowchart of MRLT method	68
Figure 3.20	(a) Finger image, (b) Binary image, and (c) Skeleton image	68
Figure 4.1	Original finger image, contrast enhanced by CLAHE and corresponding histograms. (a),(b) and(c) are three samples of finger image	75
Figure 4.2	Designed Log-Gabor Filter. (a) and(c) are the even-symmetric component of the filter. (b) and(d) are the odd-symmetric component of the filter. (e) Angular component of the filter. (f) The product of radial and angular components to make Log- Gabor filter	76
Figure 4.3	Results of finger image enhancement of three sample image. (a) Original image. (b) Finger images after applying Log-Gabor filter. (c) Results of enhanced finger image by MUM algorithm	77

Figure 4.4	The results of different modification of finger vein images	
Figure 4.5	Finger image of subject 1 (index, middle and ring fingers of both hands) Original image, modified by CLAHE and modified by proposed method	79
Figure 4.6	Finger image of subject 2 (index, middle and ring fingers of both hands) Original image, modified by CLAHE and modified by proposed method	80
Figure 4.7	Finger image of subject 3 (index, middle and ring fingers of both hands) Original image, modified by CLAHE and modified by proposed method	81
Figure 4.8	Average of MSE test for all images of database	82
Figure 4.9	Average of PSNR test for all images of database	83
Figure 4.10	Extracted patterns of finger vein by RLT method with different repetitions . (a) Finger sample; (b) $N = 500$; (c) $N = 1000$; (d) $N = 1500$; (e) $N = 2000$; (f) $N = 2500$; (g) $N = 3000$; (h) $N = 3500$	84
Figure 4.11	Vein pattern extraction of subject 1 (index, middle and ring fingers of both hands) with pre-processed by CLAHE and proposed enhance method	85
Figure 4.12	Vein pattern extraction of subject 2 (index, middle and ring	86

- fingers of both hands) with pre-processed by CLAHE and proposed enhance method
- Figure 4.13 Vein pattern extraction of subject 3 (index, middle and ring 87 fingers of both hands) with pre-processed by CLAHE and proposed enhance method

Figure 4.14	Performance of system with extracted pattern of original images	90
Figure 4.15	Performance of system with extracted pattern of enhanced image by CLAHE	91
Figure 4.16	Performance of system with extracted pattern of enhanced image by proposed method (CLAHE then MUM)	92
Figure 4.17	Performances of system with different enhancement method with one training data	93
Figure 4.18	Performances of system with different enhancement method with two training data	94
Figure 4.19	Performances of system with different enhancement method with three training data	95

LIST OF ABBREVIATIONS

AHE	Adaptive Histogram Equalization		
BBHE	Brightness Bi-Histogram Equalization		
BR	Border Region		
CCD	Charge-Coupled Device		
CDF	Cumulative Density Function		
CLAHE	Contrast Limited Adaptive Histogram Equalization		
CR	Corner Region		
СТР	Current Tracking Point		
DNA	Dexoyribo Nucleic Acid		
DSIHE	Dualistic Sub-image Histogram Equalization		
EER	Error Equal Rate		
et al.	(et alia): and others		
FAR	False Acceptance Rate		
FIR	Finite Impulse Response		
FFT	Fast Fourier Transform		
FRR	False Rejection Rate		
GAR	Genuine Acceptance Rate		
HE	Histogram Equalization		
ID	Identity Document		
IR	Inner Region		
КРСА	Kernel Principal Component Analysis		

- LBP Local Binary Pattern
- LDA Linear Discriminate Analysis
- LDP Local Direction Pattern
- LED Light Emitting Diodes
- LLBP Local Line Binary Pattern
- MLP Multilayer Perception
- MRLT Modified Repeated Line Tracking
- MSE Mean Square Error
- MUM Modified Un-sharp Mask
- NIR Near-Infrared Reflectance
- PBBM Personalized Best Bit Map
- PCA Principal Component Analysis
- PSNR Peak Signal Noise Ratio
- PWM Personalized Weight Maps
- RLT Repeated Line Tracking
- RMSHE Recursive Mean-Separate Histogram Equalization
- ROC Receiver Operation Characteristic
- ROI Region of Interest
- RSWHE Recursive Separated and Weighted Histogram Equalization
- SVM Support Vector Machine

LIST OF SYMBOLS

- $\sigma_{
 ho}$ Angular bandwidth
- $\sigma_{ heta}$ Radial bandwidths
- θ_{pk} Frequency center of filter
- D_{lr} Dimension left to right
- D_{du} Dimension down to up
- N_r Neighbouring pixel
- p_{new} New pixel value
- p_{old} Old pixel value
 - *R* Maximal signal power
- T_r Locus matrix
- (x_c, y_c) Current tracking point

SISTEM BIOMETRIK URAT JARI BERASASKAN PENURAS LOG-GABOR MENGGUNAKAN ALGORITMA PENJEJAKAN GARIS ULANGAN TERUBAHSUAI

ABSTRAK

Prestasi sistem pengecaman vena jari bergantung pada kualiti imej yang ditangkap. Walaupun topeng penyahtajaman lelurus klasik mampu mempertingkatkan bahagian gelap dan bayang-bayang imej urat jari, tetapi imej yang dipertingkatkan akan mengalami dua kekurangan. Pertama, kesan halo yang muncul di sekitar kawasan imej yang lebih tajam. Kedua, hingar yang wujud dalam imej juga akan dipertingkatkan. Kajian ini mengubah topeng penyahtajaman lelurus klasik dengan menggunakan penapis Log-Gabor. Topeng Penyahtajaman Diperbaiki (MUM) meningkatkan kontras dan ketajaman imej tanpa kelemahan yang disebutkan di atas. Kajian ini memperkenalkan peringkat pra-pemprosesan dalam sistem pengesahan vein jari yang mana, mulanya, kaedah penyamaan Histogram Pengesuaian Had (CLAHE) akan digunakan pada imej masukan dan kemudiannya teknik MUM digunakan untuk meningkatkan ketajaman dan kontras imej urat jari. Hasil daripada ciri yang diekstrak menunjukkan peningkatan yang cemerlang dalam mengenalpasti perincian vena dengan menggunakan kaedah prapemprosesan yang dicadangkan ini. Penjejakan Garis Ulangan Terubahsuai (MRLT) digunakan sebagai kaedah pengekstrakan ciri Manakala Mesin Vektor Sokongan (SVM) digunakan sebagai pengelas. Kadar Kesalahan Seimbang (EER) digunakan sebagai pengiraan prestasi dalam kajian ini. EER yang diperolehi untuk sistem pengesahan dengan meggunakan tiga data latihan ialah 16.66% untuk imej asal, 14.22% untuk imej CLAHE yang dipertingkatkan dan 6.28% untuk imej bagi kaedah yang dicadangkan (CLAHE kemudian MUM).

xvii

LOG-GABOR FILTER BASED FINGER VEIN BIOMETRIC SYSTEM USING MODIFIED REPEATED LINE TRACKING ALGORITHM

ABSTRACT

The performance of finger vein recognition system relies on the quality of captured image. Although the classical linear Un-sharp mask can enhance the dark and shadowy parts of finger vein image, but the enhanced image suffers two drawbacks. First, the halo effects that appears around sharper areas of image. Second, the noises which exist in image are over enhanced. This study modifies the classical linear Unsharp mask with use of Log-Gabor filter. This Modified Un-sharp Mask (MUM) enhances the contrast and sharpness of image without aforementioned drawbacks. This study, introduced a pre-processing stage in the finger vein verification system which first, applies Contrast Limit Adaptive Histogram Equalization (CLAHE) method on input image then use MUM technique in order to enhance the sharpness and contrast of finger vein image. The results of extracted feature show the excellent improvement in detection of vein details by using the proposed pre-processing method. The Modified Repeated Line Tracking (MRLT) is used as feature extraction method and Support Vector Machine (SVM) is used as classifier. The Equal Error Rate (EER) is used as performance evaluation in this study. The EERs for the verification system at three training data is observed to be 16.66% for original image, 14.22% for CLAHE enhanced image and 6.28% for proposed method (CLAHE then MUM).

CHAPTER ONE

INTRODUCTION

1.1 Overview of Biometric System

The biometric technology is defined as the science of identification/verification based on behavioural or physiological characteristic of a human such as handwriting, signature, voice, face, fingerprint, iris, and DNA (RavaleNerkar, 2015; Syazana-Itqan, Syafeeza, & Saad, 2016). Figure 1.1 shows some biometric modalities that are currently used by researchers.

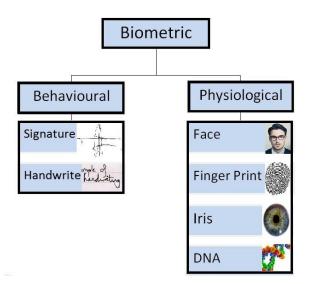


Figure 1.1: Samples of behavioural and physiological biometric modalities.

In recent decades, recognition systems which work based on biometric traits have been widely used and played an important role for individuals' identification/verification in systems and applications (Jain, Ross, & Prabhakar, 2004; Mir, Rubab, & Jhat, 2011). The conventional recognition systems such as pin code, password, and ID card are not reliable and jeopardize the security of the system. This is because the risk of being thieved by scammers is one of the reasons that is contributed to the unreliability of them (Battacharyya, Ranjan, Alisherov, & Choi, 2009). Furthermore, it is likely being accessed by an unauthorized person which adds cautious to these systems (Connie, Teoh, Goh, & Ngo, 2003). Hence in order to maintain the privacy, security and confidentially of systems, biometric traits can be a reliable solution.

A biometric trait of human has seven basic criteria such as universality, uniqueness, performance, permanence, acceptability, collectability and circumvention (Schuckers, 2001) that are shown in Figure 1.2.

- Uniqueness: A biometric trait needs to be unique for each person and can has the distinction between individuals.
- Universality: Every person must possess that kind of biometric trait.
- Performance: Considered as accuracy, robustness and process speed of the authentication system.
- Permanence: A biometric trait has to be constant in a certain period of time.
- Acceptability: A biometric trait must be accepted in people's view.
- Collectability: A biometric trait should have the ability to quantitatively measure by the authentication system.
- Circumvention: Considered as how easily the biometric trait which is provided by a person, can lead to failure.

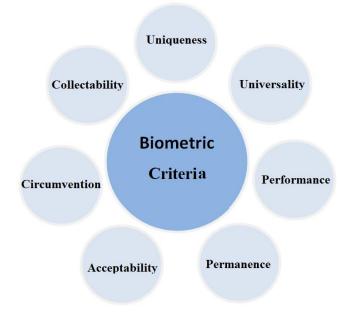


Figure 1.2: Seven basic criteria of a biometric trait

A biometric recognition system is essentially a pattern recognition system which senses a biometric trait, extraction a feature and compares it with stored template of system. In reality, the typical biometric recognition system operates in two modes of verification or identification that are shown in Figure 1.3 and Figure 1.4 respectively.

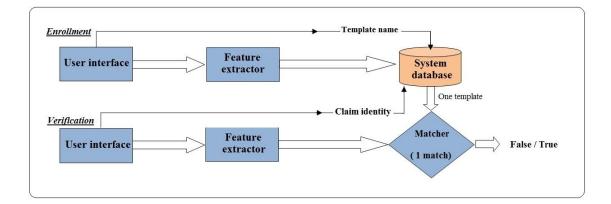


Figure 1.3: Block diagram of verification mode of a biometric system



Figure 1.4: Block diagram of identification mode of a biometric system

The duty of enrolment stage is for collecting the information of users from their biometric traits and save the information in the database of the system. The identification or verification phase (recognition is the general term of both) is for extracting the feature of a biometric trait from an examination image, then compare it with the reference database of the system (Mu, 2013).

Identification and verification blocks work differently in the database comparison. The system output of identification is an identity and it is described as a one-to-many comparison. In other words, the system attempts to answer the question " Who is the person?". While in the verification mode, the identity of the user is authenticated and it is described as a one-to-one comparison. In other words, the system tries to answer the question " Is this person who they say they are?" (Kornelije & Miroslav, 2007).

1.2 Finger Vein Biometric System

Among different biometric modalities such as the face, voice, iris, fingerprint and so on, finger vein trait has more advantages. Table 1.1 shows the comparison among different biometric modalities in terms of advantage, disadvantage, security level and cost of the system (Syazana-Itqan et al., 2016).

Biometric Trait	Main Advantage	Disadvantage	Security Level	Sensor	Cost
Voice	Natural and Convenient	Noise	Normal	Non-contact	Low
Face	Remote Capture	Lighting Conditions	Normal	Non-contact	Low
Fingerprint	Widely Applied	Skin	Good	Contact	Low
Iris	High Precision	Glasses	Excellent	Non-contact	High
Finger Vein	High- Security Level	Quality of Captured Image	Excellent	Non-contact	Low

Table 1.1 Comparisons of Different Biometric Traits

As it is shown in Table 1.1, the finger vein biometric method has the highest security compared to other methods. Besides, it has low cost and the minimum disadvantage. Some other advantages of the finger vein biometric method are presented as follows:

- Finger vein sample can only capture from living body, therefore it is impossible to steal it from a dead person (Yang, Yang, Yin, & Zhou, 2014).
- Every person generally has ten fingers; hence if an unforeseen incident happens to any of the fingers, other fingers are available for replacement in authentication process (Xuebing, Jiangwei, & Xuezhang 2010; Yang, Shi, & Yang, 2011).
- As vein is located underneath of human's skin, it is invisible to eyes, so the risk of steal or forgery is lower than other biometric traits.
- As finger vein acquisition process is contactless, ensuring hygiene and convenience for users.

Since the finger vein modality has many advantages such as the highest security and user convenience compared other biometric modalities, this study develops a recognition system based on finger vein modality and tries to improve the extracted feature of finger in order to get higher accuracy rate.

1.3 Problem Statement

In order to have a recognition system with higher accuracy and lower identification error rate, the pattern of finger vascular has to be extracted precisely from the captured image. The captured finger image by a charge-coupled device (CCD) camera is not clear and it contains noise and irregular shadows since it was produced by different thickness of finger muscles and bones. Therefore, precise extraction of finger vein pattern becomes a challenge (Perez Vega , Travieso , & Alonso 2014).

Since the illumination of a digital image often need to be corrected, many scholars worked on the improvement of capturing devices in order to tune the environmental illumination as the out-coming images of the devices are either too dark or too bright (Ton & Veldhuis 2013; Yin , Liu , & Sun 2011; Yu, Shan, Sook, Zhihui, & Dong, 2013). Besides, many researchers introduced various methods of feature extraction in order to improve the precious of the extracted pattern (Kumar & Zhou 2012; Liu , Xie , Yan , Li , & Lu 2013; Miura & Nagasaka, 2004; Miura, Nagasaka, & Miyatake, 2007; Qin, Yu, & Qin, 2011; Song et al., 2011).Yet, there is still more works to do to achieve more accurate extracted pattern of finger vein.

Scholars have proposed various image enhancement methods based on different concepts of feature extraction techniques. Since the extraction method of the current study is based on Modified Repeated Line Tracking (MRLT) method which operates according to cross-sectional profile of the finger image, hence the modifications of sharpness and contrast of finger image leads to better performance of vein detection