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Abstract. Micro-hydrokinetic turbine (μ-HKT) technology is considered a viable option for 

sustainable, green and low cost power production. In recent years, there is growing number of 

research and development on this technology to replace conventional power production 

systems such as fossil fuel as well as to provide off-grid electrification to communities in 

remote areas. This paper provides an overview of μ-HKT system, the implementation of the 

technology and the potential of using μ-HKT in Malaysia. A review on the climate in Malaysia 

shows that its average annual rainfall is higher than the world’s average annual rainfall. It 

contributes to the total hydropower resource of about 29,000 MW which is available all year-

round. Currently, hydropower resource contributes only 7.4% of the total electrical power 

production in Malaysia but is expected to increase with the main contribution coming from μ-

HKT. However, the μ-HKT technology has not been adopted in Malaysia due to some 

challenges that hinder the development of the system. This paper reviews the μ-HKT 

technology and its potential for application in Malaysia, particularly in remote areas. 

1. Introduction 

Utilization of electrical energy plays an important role in economic growth and contributes to the 

improvement of standard of living. Fossil fuel-based power generation is found to be the cheapest 

available alternative and has been the most common option for metropolitan and rural applications [1]. 

For example, diesel-power generator is used in many remote areas due to its simplicity, durability and 

requires less maintenance. However, it is observed that carbon dioxide (CO2) equivalent emission of 

greenhouse gases produced by coal is 1689 g CO2eq/kWh whereas natural gas contributes up to 930 g 

CO2eq/kWh [2]. Eventually, it contributes to the climate change and global warming crisis. Due to the 

depletion of fossil fuel reserves, the rising of its prices put burden on electrical power usage for those 

who live in rural areas as most of the residents are underprevileged.  

Current scenarios have encouraged the exploitation of renewable energy resources. An ideal 

renewable energy production technology should not only be able to sustain for future usage but must 

also have minimum negative impact on the environment and society [3]. Among the available 

renewable energy resources such as biomass, solar, wind, geothermal; hydropower energy holds the 

prime position in terms of contribution to the world’s electricity generation under the renewable 

energy resource category [4]. Since water is almost 800 times denser than air, the hydropower system 

can extract energy of about 61.32% higher than wind turbine, even at low speed [5] [6]. In addition, it 
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is found that small hydropower systems either at micro or nano-scale are the most reliable options to 

be considered particularly to power remote areas situated in close proximity to flowing water such as 

rivers and waterfalls [7]. This technology has capability to provide a cost-effective off-grid source of 

electricity less than 100kW in rural areas where populations are small and demand for power 

consumption is low [8]. 

Micro-hydrokinetic turbine (μ-HKT) system is a hydropower technology that generates electricity 

by harnessing kinetic energy of flowing water in a river or a stream with low elevation. The free-

flowing water rotates turbine blades which turns a generator via drive shaft connection. The generator 

then converts the mechanical energy into electrical energy to power electrical loads. In principle, a μ-

HKT system consists of five subsystems i.e. water turbine, generator, power control unit, support 

structure and transmission system. The water turbine of μ-HKT system can be categorized into two 

main groups, depending on the rotor axis with respect to the river flow, namely horizontal axis (or 

axial flow) turbines and vertical axis (or cross-flow) turbines [9][10]. Horizontal turbines have rotor 

parallel to the river flow and usually employ propeller-type rotors whereas vertical axis turbines have 

rotors orthogonal to the river flow. Examples of vertical axis turbines are paddle wheel, Darrieus, 

Gorlov and Savonius turbines [11]. Both horizontal and vertical axis turbines have their own technical 

advantages and disadvantages. For instance, horizontal axis turbines have self-starting capability but 

require high generator coupling cost due to underwater placement. Meanwhile, vertical axis turbines 

have lower efficiency but emit less noise due to reduced blade tip losses [9][10]. In general, the 

selection of the turbine type depends on the factors affecting the design and development such as 

hydrology and topology of a potential site, complexity, availability of technology and pertinent costs. 

Unlike a conventional hydropower system, a μ-HKT does not require a construction of water 

reservoir or dam at strategic site to store water or canal to divert water from the main stream via 

penstock. Therefore, it offers minimum construction cost and minimum environmental impact which 

could disturb biodiversity within the potential site parameter. There are huge numbers of potential 

sites for the implementation of μ-HKT as it requires free-flowing stream [12]. 

Due to this fact, there is growing number of study on the development of μ-HKT technology 

recently. Researchers have done different works on various aspects which includes system design 

optimization, placement of turbine, augmentation application, reliability analysis, environmental 

monitoring and techno-economic feasibility [2]. The research on this technology is not only opted for 

in-land river but also extended for ocean current applications. At the same time, there are even field 

trial studies that have been performed all around the world to measure the practicality and feasibility 

of using μ-HKT system particularly for remote area application. 

In this paper, several case studies on utilizing small-scale hydrokinetic turbine particularly for 

remote area application are discussed, respectively. The emphasis is given on the technology, system 

performance, reliability and problems encountered by the previous field trial studies. Based on the 

case study findings, the potential application of μ-HKT and its challenges in Malaysia are discussed. 

This paper provides an overview and potential of μ-HKT application which can be used for sustainable 

power production in Malaysia. 

2. Case Study 

Field test studies intended for remote electrification from Australia, Brazil and the United Kingdom 

(UK) are considered in this paper. These field tests are presented chronologically based on the 

publication year of the reports. Practicality aspects of small hydrokinetic turbine, technology 

implemented, performance, efficiency, reliability and pertinent problems are analysed and discussed 

for each case comprehensively.  

 

2.1 Field trial in Australia 

 

The evaluation of small axial flow turbines performance intended to generate electricity for Nguiu 

community in Apsley Strait, to replace the use of diesel fuel, was performed by Tuckey et al. [13] and 
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Swenson [14]. In their work, the performance of two different types of turbines was compared. In the 

first test, the Tyson turbine with its original high solidity rotor as shown in Figure 1(a) was utilized but 

the drive train was modified to fit for two car alternators. Then, in the second test, the original rotor 

was replaced with a lower solidity propeller turbine as shown in Figure 1(b). The second turbine was 

further modified to accommodate a low speed permanent magnet generator. Both turbines were 

mounted on pontoon which served as a structural support to keep the turbines submerged in the water. 

The configuration of small axial flow turbine by using Tyson turbine and low solidity turbine are 

summarized in Table 1. 

 

(a) 

 

(b) 

 

 

Figure 1. (a) High solidity turbine (Tyson turbine) [15] and (b) low solidity turbine [14]. 

 

Table 1. Configurations of small axial flow turbine for field study in Apsley Strait. 

Type of turbine Configuration 

High solidity turbine  

(Tyson turbine) 

 2 m diameter rotor 

 7 propeller blades, high solidity type 

 4-stage drive train, turbine to alternator ratio of 182:1 (gear ratio) 

 2 car alternators 

 Mounted on  pontoon 

Low solidity turbine 

 2 m diameter rotor 

 4 propeller blades, low solidity type, 70 rpm at 2.1 m/s 

 14:1 gear ratio 

 Low speed permanent magnet generator (rated 600 rpm) 

 Mounted on pontoon 

 

A ten months of field trial showed that the maximum power coefficient Cp of the Tyson turbine 

was 0.17 at 1.6 m/s of river flow. The efficiency of the drive train and maximum efficiency of the 

alternators was estimated at 74% and 44%, respectively. Meanwhile, after a field trial of about 18 

months, the maximum Cp of the second turbine was 0.32, obtained at water velocity of 1.1 m/s and 3.5 

tip speed ratio. The drive train efficiency of 87.5% and generator efficiency of 89% were achieved 

thus resulting in the overall efficiency of 25%, higher than the first turbine with only 5.5%. However, 

both turbines were found to have problems with debris in which marine growth like seaweeds were 

found attached to the turbines. In addition, the gearbox was damaged by floating mangrove trees in the 

first field trial. 

 

2.2 Field trial in Brazil 

 

Tiago [16] demonstrated the capability of generating AC power directly using a small water turbine 

developed by the University of Brasilia. Some innovations were presented in the project as depicted in 

Figure 2 such as the use of cone-shaped grid in the turbine entrance for debris protection and a stator 

or guide blades fitted in front of the rotor. The purpose of the stator is to direct the water flow in the 
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turbine in such a way to increase the angle of attack of the propeller thus optimizing the 

transformation of hydraulic energy. In addition, a suction tube is used at the outlet of the turbine and a 

cone was used at the center of the turbine to minimize turbulence in the water stream. 

 
Figure 2.  Turbine components: (1) cone-shape protecting grid, (2) stator or guide vanes, (3) propeller, 

(4) suction tube, (5) center cone and (6) transmission box [17]. 

 

The turbine was installed by simply suspending it from the river bank using a lever where the 

generator was mounted above the river as shown in Figure 3. This practical method allows the turbine 

to be adjusted according to the water level and lifted up for maintenance without sending men down 

into the river. Meanwhile, to counter for varying load due to varying river current, an electronic 

control system was designed to maintain the electrical load on the transmission grid. 

 

 

Figure 3. Fully submerged turbine in the river was hold by a long lever at the river bank [17]. 

 

Both vertical flow and axial flow turbines with different configurations were tested empirically in 

the field. It was found that the implementation of suction tube significantly increased the overall 

performance of the turbine. The best results were obtained with a six-blade turbine having 30% 

solidity at 2 m/s river current. Overall, the turbines were able to generate electrical power of about 

1kW using a 2kVA and 220 V AC generator enough to power a remote medical station in the state of 

Bahia, Brazil with loads including a refrigerator, a freezer and some lightbulbs. 

 

2.3 Field trial in the UK 

 

A turbine having similar design as previously studied by Bahaj et al. [18] in a cavitation tunnel and a 

towing tank at the University of Southampton was placed on a field test at Yarmouth Pier by Lowe 

[19]. The turbine consists of three propeller blades of low solidity with a rotor diameter of 2.75 m as 

shown in Figure 4, suspended from jetty. Instead of using metal shafts or gears, the kinetic energy of 

the turbine was transferred to a generator through mechanical power transmission by using pressurized 

water.  
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Figure 4. Design of the turbine adopted for the field trial study [18]. 

 

During field trial, the turbine was found to be able to generate about 1kW of electrical power at 

1.25 m/s water velocity.  The overall efficiency of the system is calculated to be about 27%. Similar to 

other axial flow turbines discussed earlier, the turbine was also found to encounter debris problem. It 

was reported that seaweed was found attached to the blades and the hub of the turbine shortly after 

being put in the water as shown in Figure 5. The performance of the turbine was found to be adversely 

affected by the debris problem. The presence of seaweed on turbine blades caused an increase in drag 

which slowed down the rotation of the turbine thus reducing the efficiency of the turbine. This 

problem has led to suggestions on avoiding or shedding debris automatically. 

 

 
Figure 5. Seaweed on turbine [19]. 

3. Potential Application Of Μ-Hkt In Malaysia 

Until December 2013, Malaysia has the maximum power generation capacity of 29, 748 MW with 

maximum load demand of 18, 902 MW [20]. According to the government forecast, the average 

annual primary energy consumption growth from the year 2004 to 2030 is 4.3%. In 2030, it is 

projected that the primary energy consumption will be tripled that of 2004 [21]. As the demand for 

energy consumption is increasing, with the increase of fossil-fuel prices as the primary energy 

resources, Malaysia is prioritizing renewable energy resources for electrical power production [22].  

Currently, more than half of electrical power is generated from coal and natural gas which share the 

same percentage of 43.70%. This is followed by the renewable hydropower which contributes 8.70%, 

of total electrical power production, diesel (2%), fuel oil (1.2%) and other renewable resources (solar, 

wind and biomass) as shown in Figure 6. The percentages indicate that the electrical power production 

from renewable energy in total is so far less than 10%. Nevertheless, the energy generated through 

hydropower was found to increase year by year from 1990 to 2013 and Malaysia is targeting to 

increase its renewable energy production from 217 MW in 2011 to 11.5 GW by 2050 [20][23]. It is 

predicted that the main contribution to the increment of renewable energy resources will be from the 
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utilization of hydropower resource specifically small hydropower system because it is most 

economical, simple, low operation and maintenance costs with shorter duration of construction, 

environmental friendly and can give direct off-grid supply of electrical power.  

 

 

Figure 6. Electrical power production resources in Malaysia [24]. 

 

Malaysia is drained by a dense network of rivers and streams originated from highlands which act 

as catchment areas as shown in Figure 7. In Peninsular Malaysia, there are about 150 major river 

basins that flow downstream to the sea, the longest being the Pahang river (459 km) in the East Coast. 

Meanwhile, there are 50 major river basins in East Malaysia which mostly are larger than those in 

West Malaysia [25][26] while the Rajang river across the state of Sarawak being the longest river (563 

km) in Malaysia and the Kinabatangan river in Sabah (560 km) being the second longest. 

Due to the latitude of Malaysia that lies in the equatorial zone, the country has a tropical climate 

which allows reception of precipitation throughout the year. The rainfall is governed by the northeast 

and southwest monsoons and Malaysia receives rainfall the most during the period between these two 

monsoons [26]. It is estimated that the average annual rainfall in Malaysia is about 2450 mm in 

Peninsular Malaysia, 2630 mm in Sabah and 3850 mm in Sarawak. In fact, these values are higher 

than the world’s average annual rainfall which is about 750 mm [8]. Unlike non-tropical countries 

which are prone to face drought crisis during dry season or frozen river during winter, the warm and 

wet tropical climate allows rivers in Malaysia to flow continuously every year. 

 

 
 

Figure 7. River networks in Malaysia [27]. 
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Based on the vast river networks and the amount of rainfall per year, the hydropower resource is 

estimated to be 29,000 MW with 500 MW from small hydropower systems [8]. Therefore, Malaysia 

has a significant potential for the utilization of small scale hydropower especially μ-HKT where a 

continuous 24 hours of electrical power can be generated all year-round. Since μ-HKT generates 

electrical power directly from run-off-rivers, there are many potential sites available along the rivers 

that can opt for off-grid electrical power in remote areas where common grid power supply is less 

viable and non-economical due to some topological and financial challenges.  

Most remote communities in rural areas live near rivers for source of water to perform their daily 

chores, agricultures and for drinking. These communities live under poverty with lack of access to 

basic needs including power supply. In Malaysia, there are roughly 8.4% of people in rural areas live 

below the poverty line and this is mostly found in remote areas in Sabah and Sarawak [28].  Statistical 

data on poverty in 2014 shows that the incidence of poverty level in Sabah is 3.9 which is the highest 

followed by Sarawak i.e. 0.9 [28]. The poverty level in remote areas is associated with energy poverty 

and lack of electricity which hinder positive economic growth and social development of the 

communities. In 2000, the electrical supply in rural areas in Sabah and Sarawak is found to be 67.05% 

and 66.91%, respectively. These values are far lower than in Peninsular Malaysia where the 

percentage of electrical supply in rural areas is above 90% as shown in Table 2.  

 

Table 2. Electricity supply in urban and rural areas in Malaysia in year 2000 [25]. 

State Urban Rural State Urban Rural 

Johor 99.53 98.22 Perlis 99.63 99.17 

Kedah 99.84 98.58 P. Pinang 99.84 99.16 

Kelantan 99.52 97.50 Sabah 89.65 67.05 

Melaka 99.90 99.28 Sarawak 93.96 66.91 

N. Sembilan 99.61 98.60 Selangor 99.39 97.92 

Pahang 99.63 93.96 Terengganu 99.65 98.24 

Perak 99.64 96.11 W.P. Kuala Lumpur 99.76 - 

 

For instance, due to the lack of grid electrical infrastructure, indigenous communities who live in 

thick rainforests in Kapit, Sarawak only rely on diesel generators to power their traditional longhouses 

[22]. The dependency on diesel-based electrical power contributes various problems to the 

surrounding environment. Fuel leakage can cause river pollution and reduce soil fertility which are 

used for agriculture whereas gas emissions from power generation increase greenhouse gases in the 

atmosphere. At the same time, the increase of global fossil fuel prices put huge burden to the local 

communities who live under poverty to get fuel supply. The situation becomes even worse as the price 

could be doubled due to difficulties to transport diesel supply to remote locations. Therefore, the 

utilization of low cost μ-HKT system is considered as a viable option to replace the conventional 

electrical power generation using diesel generator among remote communities.  

Besides, μ-HKT has huge potential to provide off-grid electrical power at recreational sites located 

near the river. Some locations along the rivers in Malaysia are commonly developed to be recreational 

parks or camp sites due to their eco-tourism topological features such as Hutan Lipur Bukit Hijau in 

Baling, Kedah as shown in Figure 8. The utilization of electrical power from a low cost and 

environmental friendly small hydrokinetic system can minimize the operational cost of such sites thus 

encourage more visits from local and foreign visitors. In turn, it helps boost the growth in tourism 

sector as well as the socio-economics of nearby communities. Besides, the generated electricity can 

also be distributed to the surrounding communities where many of them still live in poverty with lack 

of access to the basic needs and limited power supply. 
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Figure 8. Hutan Lipur Bukit Hijau in Baling, Kedah [29]. 

4. Challenges 

Although the entry of renewable μ-HKT system into the mainstream electrical power production in 

Malaysia is very promising, its full utilization in the rivers has yet to be realized. It is due to 

constraints in the current state of technology, debris threats and economical aspects which need to be 

addressed. 

 

4.1 Technological aspects 

Until now, the technology of μ-HKT is not well established yet where some are still under research 

and development phase. The μ-HKT technology is mostly adopted from the conventional large 

hydropower system and it does not really fit for small-scale applications. The field trial results from 

the case studies in the previous section showed that the maximum efficiency of the turbine was 0.27 

from the theoretical maximum efficiency of 0.592 [12,18]. Various design aspects of μ-HKT still need 

to be investigated for optimal operation of the system.  

 

4.2 Debris threat 

Like most case studies, the utilization of μ-HKT in Malaysia has to address with the debris problem. 

Since Malaysian’s tropical rivers flow through thick jungle, this threat can be more problematic. 

Sometimes huge amount of debris such as vines, leaves, logs and other jungle trash may float down 

the river at high speed during flash flood which can cause serious damages to μ-HKT installed in the 

river. This situation demand a better robust debris management strategies without reducing turbine 

overall efficiency and adding complexity to the systems [11]. 

 

4.3 Economical barrier 

As the μ-HKT system is particularly opted to power electricity for poor communities in remote areas, 

cost is critical. Since the μ-HKT technology is still new, some components are not readily available in 

the rural areas, thus development, maintenance and replacement cost could be higher. Techno-

economic analysis is required to evaluate the viability of the system design with respect to the cost 

without burdening the socio-economic status of the remote communities at potential sites. 

5. Conclusion 

A review on three case studies on the utilization of μ-HKT system has been provided. Each case study 

illustrated the feasibility and practicality of the system for low cost and low power demand. However, 

several aspects need to be investigated further for optimal and reliable operation of the system. These 

aspects are associated with the pertinent problems faced by the system during the field trials such as 

debris problems and overall efficiency enhancement. The review on the current status of μ-HKT 
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system in Malaysia indicates a significant potential for off-grid power production in remote areas 

where power supply is very limited. This is strongly supported by the country’s vast river networks 

with estimated small hydropower resource of 500 MW and Malaysia’s vision in prioritizing the use of 

renewable energy. In order to fully utilize its potential, the challenges described here in terms of 

technological, potential site induced problems and economic issue need to be investigated and 

analyzed before implementing the μ-HKT system in Malaysia. 
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