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PENGOPTIMUMAN IN SILICO ANTIBODI DOMAIN TERHADAP HSP16.3 

DARIPADA MYCOBACTERIUM TUBERCULOSIS 

 

 

ABSTRAK 

 

 Protein renjatan haba 16.3 (HSP16.3) daripada Mycobacterium tuberculosis 

(Mtb) adalah kritikal bagi kewujudannya semasa jangkitan pendam pada manusia, 

justeru menjadi sasaran menarik untuk strategi diagnostik dan terapeutik. Model 

struktur ramalan HSP16.3 didokkan terhadap prob hidrofobik HSP, iaitu 4,4′-

dianilino-1,1′-binaphthyl-5,5′-disulfonic acid (bisANS) dan pada model perbandingan 

HSP16.3-khusus antibodi domain tunggal (sdAbs), klon E3 dan F1. Interaksi 

pengikatan tersebut dijelaskan lebih lanjut dengan pengiraan tenaga bebas. Interaksi 

bukan-kutub telah dikenalpasti sebagai kuasa utama untuk peyatuan antigen-antibodi. 

Dengan menggunakan penguraian tenaga bebas setiap residu dan pengiraan 

pengimbasan alanina, residu-residu kelompok hangat pada E3 (Y391) dan F1 (M394, 

Y396, R397 dan M398) telah dikenalpasti. Residu-residu tersebut ditaklukkan kepada 

mutagenesis in silico berdasarkan cadangan oleh pelayan web mCSM-AB. Kesan 

mutasi pada kompleks HSP16.3-dAb dianalisis dengan simulasi dinamik molekul, 

pengiraan tenaga bebas dan penguraian tenaga bebas setiap residu. Kompleks 

HSP16.3-E3Y391W diramal mempamerkan peningkatan sebanyak 69% dalam tenaga 

bebas pengikatan berbanding dengan E3 jenis liar. Sebaliknya, tahap peningkatan 

tertinggi bagi F1 jenis liar adalah HSP16.3-F1R397N (44%), diikuti oleh HSP16.3-

F1M398Y (33%), HSP16.3-F1M394E (29%) dan akhir sekali HSP16.3-F1M398W (6%). 

Kesimpulannya, dAbs (E3 dan F1) berjaya dioptimumkan terhadap HSP16.3 pada 

tahap in silico. Penemuan ini boleh digunakan sebagai garis panduan bagi reka bentuk 

dAbs yang lebih tinggi affiniti terhadap HSP16.3 pada tahap in vitro pada masa depan.  
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IN SILICO OPTIMISATION OF DOMAIN ANTIBODIES AGAINST HSP16.3 

FROM MYCOBACTERIUM TUBERCULOSIS 

 

 

ABSTRACT 

 

 Heat shock protein 16.3 (HSP16.3) from Mycobacterium tuberculosis (Mtb) is 

critical for its survival during latent infection in human, thus making it an attractive 

target for developing diagnostic and therapeutic strategies. The predicted structure of 

HSP16.3 was docked against a known HSP hydrophobic probe, namely 4,4′-dianilino-

1,1′-binaphthyl-5,5′-disulfonic acid (bisANS) and to the comparative models of 

HSP16.3 specific single domain antibodies (sdAbs), clone E3 and F1. The binding 

interactions were further elucidated by free energy calculations. The non-polar 

interactions were identified as the main force for antigen-antibody association. By 

using per-residue free energy decomposition and computational alanine scanning, the 

hot spot residues in E3 (Y391) and F1 (M394, Y396, R397 and M398) had been 

identified. These residues were subjected to in silico mutagenesis based on suggestions 

by mCSM-AB webserver. The mutational effects on HSP16.3-dAb complex were 

analysed using molecular dynamics simulation, free energy calculations and per-

residue free energy decomposition. The HSP16.3-E3Y391W complex was predicted to 

exhibit up to 69% improvement in its binding free energy over the E3 wild type. On 

the other hand, the highest improvement in F1 wild type was HSP16.3-F1R397N (44%), 

followed by HSP16.3-F1M398Y (33%), HSP16.3-F1M394E (29%) and lastly HSP16.3-

F1M398W (6%). Thus, it can be concluded that the dAbs (E3 and F1) have been 

successfully optimised against HSP16.3 at in silico level. These findings could serve 

as guidelines for design of higher affinity dAbs against HSP16.3 at in vitro level in the 

future.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Problem Statement 

Mycobacterium tuberculosis (Mtb) survives long-term dormancy due to cell 

wall thickening and upregulation of heat shock protein 16.3 (HSP16.3) which 

stabilises its cell structures (Cunningham & Spreadbury, 1998). The HSP is 

predominantly found in latent tuberculosis infection (LTBI) individuals before it 

develops or reactivates into active stage. By treating LTBI, it minimises the risk of 

progression to active tuberculosis (TB). Therefore, detection of LTBI in time plays a 

crucial role in global effort to combat TB epidemic. In this study, the domain 

antibodies (dAbs) provided by collaborator had exhibited good binding affinity 

towards HSP16.3, major antigen detected in LTBI (Bahara et al., 2016). Thus, these 

dAbs could be promising candidates as diagnostic biomarkers. To achieve good 

diagnostic accuracy, binding affinity of dAbs against HSP16.3 can be further 

optimised. However, antibody optimisation via laboratory approach is expensive and 

time-consuming. Therefore, in silico approach offers an alternative method to enhance 

the binding affinity of dAbs against HSP16.3. 

 

1.2 Background of Study 

 TB prevails as one of the most ominous global health threat. During the 18th 

and 19th centuries, TB emerged as an escalating epidemic of communicable disease 

(Daniel, 2006). The lack of knowledge about disease containment has left the world 

appalled at confirmed diagnostic evidence of the deadly TB infection in those days. 
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Despite advances in current medical technology, this age-old disease has ailed a 

staggering number of 10.4 million people and claimed at least 1.4 million lives in year 

2015, according to World Health Organisation report (WHO, 2016). Thus, one should 

not make light of the threats posed by TB. 

WHO estimated that 5-15% of people infected with Mtb stand a risk of 

developing TB disease later in life (WHO, 2016). In line with End TB Strategy, LTBI 

treatment coverage is one of the indicators used by WHO to monitor implementation 

of the strategy. Examples of high-risk groups for LTBI include children aged under 

five years with close contact with culture-positive pulmonary TB patients, HIV-

positive patients and citizens in high TB burden countries.  

As a means to prevent and contain the infectious disease, it is a priority to 

characterise mycobacterial antigens for better understanding of the molecular 

mechanism of pathogen to stay in dormant stage and its pathogenesis. A 16 kDa alpha 

crystalline-like small heat shock protein (sHSP) has been identified to be latency 

associated antigen predominantly expressed by Mtb (Yuan et al., 1996). Several 

studies have directed HSP16.3 as a potential diagnostic marker (Davidow et al., 2005; 

Kashyap et al., 2011; Rabahi et al., 2007; Shekhawat et al., 2016; Silva et al., 2014; 

Zhang et al., 2015), and shared principal findings whereby the 16 kDa antigen has 

elevated levels in latent TB subjects.  

 Antibodies targeting major antigen can contribute in the advancement of 

research, diagnosis and possible therapeutics of TB. Instead of using conventional 

antibodies, single-domain antibodies (sdAbs) were selected in order to study their 

interactions with HSP16.3 in this research. Other than being smaller in size, sdAbs 

possess high physical-chemical stability, good water solubility and better penetration 

in reaching target antigens (Eyer & Hruska, 2012). The dAbs have been reported to 
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have reasonable expression level, good solubility and capable of binding to HSP16.3 

at denaturing environment (Bahara et al., 2016). Therefore, further optimisations of 

these dAbs against HSP16.3 in this study could be useful for development in 

diagnostics and therapeutics. 

On the other hand, recent progress on in silico approach contributed to the 

exponential growth of computational modelling which in turn enables antibodies to be 

re-designed or optimised to portray better affinity or other favourable changes (Kuroda 

et al., 2012). This is due to in silico simulation can enable more directional mutations 

at complementarity determining regions (CDRs) to be studied at a relatively lower 

running cost. For example, an early study employed computational modelling to select 

favourable residues for random mutagenesis (Barderas et al., 2008). As a result, they 

obtained novel antibodies with 454-fold more enhanced binding affinities over the 

wild type (WT). 

 

1.3 Scope of Study 

The study started with the modelling of HSP16.3. The reliability of HSP16.3 

model was evaluated by analysing its interactions with 4,4′-dianilino-1,1′-binaphthyl-

5,5′-disulfonic acid (bisANS), a known hydrophobic ligand for sHSPs. Next, dAbs 

were modelled and docked to predicted epitopes on HSP16.3. Interactions established 

in docked complexes were investigated by molecular dynamics (MD) simulation and 

binding free energy calculations. Computational alanine scanning and per-residue 

binding free energy calculations were then performed on the dAbs. In silico 

mutagenesis was performed on the identified hot spot residues in dAbs. Successful 

dAb mutants with enhanced binding affinity against HSP16.3 were identified by 

improvement in their binding free energy compared to WT. 
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1.4 General Objective 

 The general objective in this study is to optimise the HSP16.3-specific dAbs 

for possible binding affinity improvement with HSP16.3 at computational level. 

 

1.5 Thesis Outline 

 Chapter one enlightens the current status of TB by providing background of 

study and addressing problems to be solved. It also included scope, general objective 

and outlined the thesis structure.  

 Chapter two covers the first stage of study which involved predicting the 

structure of HSP16.3 and exploring its interactions with bisANS. Specific objectives 

and introductory concepts of HSP16.3 structure and relevant computational 

approaches in structural biology were discussed too. Protocols used and research 

findings can be referred to methodology, results and discussion sections respectively. 

 Chapter three highlights on the second stage of study which focused on 

modelling of dAbs, docking of dAbs to HSP16.3, binding free energy calculations of 

docked complexes and assessment of point mutational effects in dAbs on their binding 

affinities against HSP16.3. An overview on antibody design and the successes of 

computer-aided antibody design were provided in introduction. Specific objectives can 

also be found. Detailed protocol and research outcomes can be found in methodology, 

results and discussion sections respectively.  

 Chapter four concludes the overall research findings, acknowledges limitations 

in this study and suggests directions for future research.   
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CHAPTER 2 

 

PREDICTING THE STRUCTURE OF HSP16.3 

 

2.1 Introduction 

2.1.1 Structural and Functional Studies of HSP16.3 

 In times of cellular stress, HSPs (as the stress proteins) are often upregulated 

as part of cellular defensive response. The vital role of HSPs in stress tolerance makes 

them highly conserved and ubiquitous across species. By distinguishing HSPs on the 

basis of molecular mass, it results in six major classes i.e. HSP100, HSP90, HSP70, 

HSP60, HSP40 and sHSPs (Bakthisaran et al., 2015). The present study focused on a 

sHSP, namely HSP16.3 (Verbon et al., 1992), a membrane protein which facilitated 

the persistence of Mtb (Cunningham & Spreadbury, 1998). 

 In general, sHSPs have molecular mass ranging from 12-43 kDa, that 

agglomerates into diversified oligomers consisting of 4-42 subunits (Schumann, 2006). 

The domain architecture of sHSP family constitutes of a highly conserved α-crystallin 

domain (ACD) that is placed between variable N-terminal and C-terminal regions, as 

discussed in a review (Hilton et al., 2013). The C-terminal region can be further 

divided into C-terminal tail, IXI motif and C-terminal extension. Acting as ATP-

independent chaperones, sHSPs bind denatured proteins to prevent unwanted 

aggregation (Jakob et al., 1993). It is postulated that these bound proteins are subjected 

to refolding, being degraded to smaller peptides or spontaneous release.  

The identified 16 kDa HSP16.3 is consistent with the known size range of 

sHSPs (Lee et al., 1992). The chaperone-like activity of HSP16.3 is evidenced from 

an early study whereby it had successfully inhibited thermal aggregation of citrate 
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synthase at elevated temperature (Chang et al., 1996). In addition, novel function of 

HSP16.3 has been unveiled in a recent discovery that reported its ability to prevent 

thermal inactivation of enzymes (Panda et al., 2017).  

  The critical role of the N-terminal and C-terminal region of HSP16.3 has been 

extensively highlighted in an early study (Fu et al., 2005). A few observations had 

been noticed. The absence of first 35 N-terminal residues was found to dissociate the 

oligomeric assembly, abolished its substrate binding capability and chaperoning 

activity. Apart from that, removal of C-terminal extension (nine residues) could lead 

to oligomeric dissociation and enhanced its chaperoning activity. Moreover, varying 

C-terminal truncated forms of HSP16.3 exhibited different strengths of chaperone 

function (Panda et al., 2017). These results thus suggested the importance of C-

terminal extension in chaperone function, oligomerisation and its dynamics. 

Due to the diagnostic potential of HSP16.3 (Davidow et al., 2005; Kashyap et 

al., 2011; Rabahi et al., 2007; Shekhawat et al., 2016; Silva et al., 2014; Zhang et al., 

2015), the research community is intrigued to determine its protein structure. Protein 

structure determination often plays a pivotal role as it holds the key to understanding 

the protein functions better. By unearthing new pieces of structural information, it 

would be helpful to gain further insights into the immunodominant antigen of Mtb.  

Nevertheless, elucidating the macromolecular assembly of HSP16.3 is an 

exceptionally challenging task. Previously, the oligomeric form of HSP16.3 was 

proposed as a nonamer that formed by trimers (Abulimiti et al., 2003; Chang et al., 

1996; Gu et al., 2002). The early findings were then contradicted by later research. 

There is conclusive evidence that showed HSP16.3 as a dodecamer built from six 

homodimers arranged in a tetrahedral assembly (Kennaway et al., 2005). The atomic 

coordinates of a wheat HSP16.9 dimer was fitted to the electron microscopy (EM) 
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density map to construct the HSP16.3 dodecameric assembly. Although it offered new 

perspectives on molecular architecture of HSP16.3, there is missing structural 

information on N-terminal region and C-terminal tail. Due to observed sequence 

divergence between HSP16.3 and template in the above-mentioned regions, they were 

not included in the 3D reconstruction study. Considering the significance of the N-

terminal region, in silico approaches were thus employed to predict the full structure 

of HSP16.3 in this study. The following sections introduce and briefly discuss about 

relevant computational approaches in predicting and refining theoretical protein 

structure. 

 

2.1.2 Employing in Silico Approaches in Structural Biology 

 As the key determinant of its 3D structure, protein sequence provides clues 

about its protein functionality. By obtaining structural information of the target protein, 

structural biologists might be able to infer its protein functions. Therefore, numerous 

studies are dedicated towards determining protein structures to annotate their unknown 

functions (Kennaway et al., 2005; van Montfort et al., 2001).  

X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy 

are commonly employed in structural studies of proteins. However, conventional 

experimental methods often face inevitable hurdles such as lengthy time, laborious 

process and high experimental cost. Furthermore, novel protein sequences are being 

rapidly discovered at a pace that far exceeds the amount of known structures. To 

address the knowledge gap, in silico approaches offer an attractive alternative for 

protein structure prediction, thus serve as an essential complement to existing 

experimental methods.  
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2.1.3 Protein Structure Prediction Using Comparative Modelling 

Computational protein structure prediction is classified into two major 

approaches, namely template-based modelling (TBM) and ab initio modelling. The 

TBM approach is based on the principle that higher possibility of predicting the model 

folding correctly when its sequence identity is above 30% (Sánchez and Sali, 1998). 

Therefore, it is possible to predict structure of a given target sequence by aligning it to 

an experimentally solved homologous protein structure. This is commonly known as 

comparative modelling. However, it is later discovered that distantly related protein 

sequences also share similar structural patterns (Bowie et al., 1991), thus contributed 

to the concept of threading. In threading, target sequence is aligned to known protein 

structures to predict its tertiary folds by matching residue environments. On the other 

hand, ab initio modelling predicts native-like conformations for target sequence in the 

absence of known structure homologues (Lee et al., 2009). The most 

thermodynamically stable model is selected by identifying the conformation that is 

close to the global free-energy minimum from the pool of structural decoys.   

Since comparative modelling is a well-established approach, various 

comparative protein modelling tools have been developed and made available. Some 

examples of the popular modelling tools include SWISS-MODEL (Arnold et al., 2006) 

and MODELLER (Šali & Blundell, 1993). Regardless of the choice of tools, 

conventional comparative modelling protocol usually consists of a few sequential 

steps. It begins searching for suitable templates, aligning target sequence to selected 

templates, building the model and lastly evaluating the reliability of the built model. 

These sequential steps will be further elaborated using MODELLER as the modelling 

tool.  
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As a preliminary step, template selection is non-trivial in comparative 

modelling. There are several things to consider before deciding on the most suitable 

template for modelling. Other than prioritising sequence similarity, quality of the 

potential template is equally important (Fiser, 2010). Structural divergence and poor 

template quality could usually affect the modelling accuracy. A minimum of 30% 

template sequence identity and a good template-sequence alignment, are likely to build 

a reliable model that overlaps the actual structure about 75-90% (Forrest et al., 2006; 

Sánchez & Sali, 1998). In the case of multiple potential templates that share high 

sequence similarity with target sequence, the template determined at better resolution 

shall be selected (Sánchez & Šali, 2000). To further improve modelling accuracy, 

multiple templates are commonly used as they can provide adequate structural 

information for matching protein regions (Webb & Sali, 2014).  

 After identifying ideal template, the next step is sequence alignment. Likewise, 

caution shall be exercised while performing an alignment. Misalignment can introduce 

unrecoverable errors during modelling. Thus, numerous alignment algorithms have 

been devised to optimise the alignment accuracy and improve the protein structure 

prediction. For instance, variable gap penalty (VGP) algorithm in MODELLER 

(Madhusudhan et al., 2006). The algorithm is based on a global dynamic programming 

algorithm, alternatively known as the Needleman-Wunsch algorithm after the names 

of developers (Needleman & Wunsch, 1970). Basically, the Needleman-Wunsch 

algorithm describes how to find the best global pairwise alignment that holds the 

optimal alignment score. The use of a score matrix enables scores to be assigned for 

observed amino acid substitutions during alignment. Next, a traceback matrix is 

employed to keep track of the maximum score value and to deduce the best alignment 

along the traceback path. The VGP algorithm distinguishes itself from conventional 
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alignment approaches by including structural information from selected template 

(Madhusudhan et al., 2006). To improve alignment accuracy, gap penalties are given 

when gaps are placed within secondary structure elements, straight backbone segments 

that are solvent inaccessible and residues that are not within close spatial proximity.  

 The theoretical model can now be built using the sequence-template alignment. 

Guided by spatial restraints derived from alignment, MODELLER can predict the most 

probable conformation of target sequence (Eswar et al., 2007; Šali & Blundell, 1993). 

The spatial information can be retrieved from homology-derived restraints and 

stereochemical restraints. The homology-derived restraints regarding distances and 

dihedral angles in target sequence are inferred from its structural alignment with 

homologous proteins. On the other hand, the stereochemical restraints (bond length 

and bond angle preferences) are retrieved from the Chemistry at Harvard 

Macromolecular Mechanics force field (CHARMM22) (MacKerell et al., 1998) and 

statistical data of dihedral angles and non-bonded atomic distances from databases of 

known protein structures. Optimisation of the built model is then performed using the 

variable target function method (VTFM) (Braun & Go, 1985) with conjugate gradients 

(CG), followed by molecular dynamics (MD) to minimise violations of the spatial 

restraints.  

 Upon completion of model building, it is necessary to evaluate the model 

quality. The Discrete Optimised Protein Energy (DOPE) is a scoring function 

implemented in MODELLER to rank and to discriminate the most native-like model 

among a pool of decoys (Shen & Sali, 2006). As an atomic distance-dependent 

statistical potential, DOPE is based on physical reference state that describes the finite 

and spherical shape of native proteins. Model with more negative DOPE score 

assigned can be considered well correlated to native-like model. Additionally, 
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evaluation of model accuracy can also be made using the GA341 method in 

MODELLER (John & Sali, 2003; Melo et al., 2002). The GA341 score is calculated 

by assessing structural compactness, combined statistical potential Z-score of model 

and sequence identity of the alignment used for modelling. The reliability of the model 

increases as the GA341 score close to 1.0.  

 For more robust examination on the stereochemistry of comparative model, a 

Ramachandran plot (Ramachandran et al., 1963) can be used to highlight potential 

errors in model regions that require further optimisation. There are many programs 

such as PROCHECK (Laskowski et al., 1993) and RAMPAGE (Lovell et al., 2003), 

that include Ramachandran plot analysis for model assessment. First described by 

Ramachandran (1963), the plot defines the range of allowed phi and psi dihedral angles 

in a protein that avoid steric collisions between atoms. It is generally accepted that a 

good model should have above 90% of its residues located in the most favoured 

regions (Laskowski et al., 1993). Other than that, the spatial properties of built models 

can be assessed using Verify3D (Bowie et al., 1991; Luthy et al., 1992) and ProSA-

web (Sippl, 1993; Wiederstein & Sippl, 2007). In Verify3D, the compatibility of the 

predicted model structure with its amino acid sequence is verified by its 3D profile. 

Therefore, a modelled segment with low profile score indicates an incorrect structure. 

On the other hand, ProSA calculates Z-score of protein model which indicates its 

overall quality and compares it with scores observed for known protein structures. 

Besides, regional model quality is examined by measuring energies as a function of 

amino acid sequence position. Regions with positive energy values hint at erroneous 

parts of the model.  

Although comparative modelling has made great strides in solving 3D 

structures of target proteins, there are certain limitations to overcome, such as template 
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identification and alignment accuracy. For these reasons, model assessment becomes 

an essential step as it ultimately determines the reliability of the comparative model to 

be used for addressing biological questions. The quality of a comparative model can 

always be improved by iterating the abovementioned modelling steps until satisfying 

result is achieved.  

 

2.1.4 Protein-Ligand Docking 

Molecular docking is crucial for elucidating interactions between biomolecules 

at the atomic level to understand the underlying fundamental biochemical processes. 

Docking studies that involve protein-ligand interactions and protein-protein 

interactions have garnered considerable research interest given their pharmaceutical 

and therapeutic significance. Furthermore, the computer-aided molecular docking 

offers an attractive alternative to determine binding modes and affinities in molecular 

recognition, in contrary to conventional experimental approaches which are laborious 

and costly (Huang & Zou, 2010). The subject of this section will be focusing on 

protein-ligand docking.  

Prior to docking, it is necessary to identify putative binding region in protein 

to increase docking efficiency (McConkey et al., 2002). The binding region can be 

identified from literatures or with the help of binding site prediction tools. This binding 

site information helps to narrow down the conformational sampling space and allows 

intensive conformational sampling of ligand on the predefined protein region. Finally, 

scoring function is used to discriminate near native docked pose from decoys. In short, 

the docking performance is closely associated with sampling or scoring.  

To tackle docking problem, a variety of docking tools and programs based on 

different algorithms have been developed. Although some of the newly released 
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docking programs proclaim to have better accuracy and speed, there are doubts on the 

validity of results and their performance (Wang et al., 2016). In contrary, traditional 

docking program such as AutoDock suite is well validated and its predictions are 

reliable. Besides that, the availability of its interactive graphical user interface 

simplifies the setup and docking analysis (Morris et al., 2008).  

AutoDock suite performs ligand sampling by implementing the stochastic 

search method. It generates an ensemble of ligand binding poses by randomly 

changing the translational and rotational position of ligand, together with its torsion 

angles (Forli et al., 2016). The method is based on genetic algorithm (GA), a popular 

class of evolutionary algorithm to guide the prediction of optimal ligand binding 

conformations (Huang & Zou, 2010). In GA, the global minimum energy 

conformation is searched using user defined rates of cross-over and random mutations. 

It works in similar manner as biological evolution; binding mode with lowest energy 

score is ultimately selected. Meanwhile, introduction of Lamarckian genetic algorithm 

(LGA), an improved version of traditional GA, performs search in local 

conformational space to identify local minima which will be passed on to its offspring 

(Morris et al., 1998).  

In AutoDock 4, a semiempirical free energy force field is implemented to rank 

docked decoys (Huey et al., 2007). Unlike its predecessor, the force field incorporates 

intramolecular energies in binding free energy estimation. This makes the scoring 

function for docking comparable to function for binding free energy prediction. Hence, 

it successfully solves the common problem encountered in empirical free energy force 

fields. There are two aspects evaluated for receptor-ligand binding: intramolecular 

energetics for both receptor and ligand in their apo and holo forms, intermolecular 

energetics of receptor-ligand complex. In addition, a novel charge-based desolvation 
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method with defined atom types and charges is incorporated as well.  

 To date, numerous molecular interactions have been successfully elucidated 

using docking approach. It has identified natural inhibitors against the primary targets 

for cervical cancer (Kumar et al., 2014), helped in developing pheromone trap for 

rodent pest management by evaluating binding affinity between pheromone 

compounds and its targeted carrier protein (Rajesh et al., 2016), studied  the 

interactions of new antifungal drugs against an essential enzyme in fungi (Saha et al., 

2012) and used in a wide range of applications.  

 

2.1.5 Molecular Dynamics (MD) 

MD simulation serves as a powerful in silico approach to study molecular 

motions as a function of time. The physical movement of particles in a system can be 

deduced by solving Newton’s second equation of motion (Leach, 2001). Thus, it 

generates a trajectory that describes time-dependent behaviour of particles.  

Numerous force field models have been developed to simulate different types 

of biomolecules. Basically, a force field is a mathematical expression that describes 

the dependence of the energy of a system on its particle coordinates (González, 2011). 

It can be represented by the following expression: 
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The first four terms in expression describe bonded term contributions (bond stretching, 

angle bending, dihedral and improper torsions) to the total energy whereas the last two 

terms describe non-bonded terms, namely repulsive and van der Waals (vdW) 

interactions and Coulombic interactions. In simple terms, a force field provides 

(Eq. 2.1) 
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parameterisation for the energy surface of protein (Guvench & MacKerell, 2008). 

These force field parameters are derived from quantum mechanical calculations or 

experimental studies (Adcock & McCammon, 2006). Examples of some popular 

protein force field models are AMBER (Cornell et al., 1995), CHARMM (MacKerell 

et al., 1998) and GROMOS (Oostenbrink et al., 2004).   

In practice, a standard MD simulation is performed under isothermal-isobaric 

conditions (Nurisso et al., 2012). Prior simulation, an initial structure (experimentally 

determined or computationally predicted) is prepared by fixing structural errors such 

as missing atoms, assigning atom types and charges and adding solvent molecules. The 

system is simulated in the presence of explicit solvent. The computational cost is saved 

by applying periodic boundary conditions to minimise non-essential calculations of 

solvent degree of freedom (Wassenaar & Mark, 2006). Energy minimisation is then 

carried out to relax the initial structure. After heating up the system to the desired 

temperature, the system is equilibrated to achieve stability which is usually assessed 

in terms of energy, density, temperature and pressure. Next, the equilibrated system is 

subjected to production phase which collects structural and energetic data versus time. 

Finally, the sampled trajectories are analysed in terms of thermodynamic, structural 

and dynamical properties.  

The applicability of MD has been described for refining comparative models 

(Nurisso et al., 2012), its role in drug discovery (Durrant & McCammon, 2011) and 

protein design (Childers & Daggett, 2017). On top of that, it is also frequently used as 

complementary with docking method because it offers more realistic energy prediction 

of a bound complex than computational docking (Forli et al., 2016). Given the 

advancement in computing power, it is now possible to perform an all atom MD 

simulation involving larger system that consists millions of atoms on an extended time 
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scale up to millisecond. The development of theories and algorithms that mimic 

experimental conditions allow to perform realistic MD simulation (Adcock & 

McCammon, 2006). This enable MD to serve as a computational microscope that 

illustrates biochemical processes in atomic detail which is difficult to examine in 

experiment.  

 

2.1.6 Energetic Characterisation of Protein-Ligand Interaction Surface  

Binding free energy is main indicator for complex stability, which is central to 

all biomolecular binding events (Adcock & McCammon, 2006). Using MD, the 

binding conformations and corresponding binding free energies can be predicted for 

protein-ligand complexes.  

Molecular mechanics generalised Born and Poisson-Boltzmann surface area 

continuum solvation methods (MM-GBSA/PBSA) are commonly employed in free 

energy calculations of protein-ligand system. Alternatively, they are known as end-

point methods as binding free energy is computed using the bound and unbound states 

of system. Therefore, it is computationally less demanding. 

In general, the binding free energy for protein-ligand complex formation can 

be obtained as below (Pearlman, 2005): 

ΔGbind = G (protein-ligand complex) – G (protein) – G (ligand)     (Eq. 2.2) 

On the other hand, the binding free energy for each molecular system (protein, ligand 

and protein-ligand complex) can be expressed as summation over three components: 

ΔGbind = ΔEMM + ΔGsolv – TSsolute       (Eq. 2.3) 

In equation 2.3, ΔEMM is molecular mechanics energy in gas phase, ΔGsolv is solvation 

free energy and Ssolute is the solute entropy. The molecular mechanics term can be 

further decomposed to bonded and non-bonded energy whereas the solvation free 
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energy term can be further divided into polar contribution (electrostatic part from 

solvation model) and non-polar contribution (solvent-accessible surface area, also 

known as SASA). Due to high computational cost associated with solute entropy term 

estimation and its lack of conformational information, the term is often ignored in 

calculation (Genheden & Ryde, 2015). 

 The reliable performance of MM-GBSA/PBSA approaches and their ability to 

predict binding free energies comparable to experimental values have been reported 

previously (Genheden & Ryde, 2012; Rastelli et al., 2010). Despite the success of 

MM-GBSA/PBSA in predicting ligand binding affinities, there are certain underlying 

limitations. For example, questionable entropy contributions and data accuracy that 

heavily depended on conformational space sampled and parameters assigned (Weis et 

al., 2006). Nevertheless, both approaches are still appealing as they offer fast 

prediction of receptor-ligand binding thermodynamics at computational level.  

 

2.2 Specific Objectives 

i) To predict the three-dimensional (3D) structure of HSP16.3 

ii) To evaluate the predicted 3D structure of HSP16.3 
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2.3 Methodology 

 The following flow chart outlines the overall research design in predicting 

HSP16.3 structure (Figure 2.1): 

 

Figure 2.1 The overall methodology flowchart of HSP16.3 structure prediction 

 

2.3.1 Comparative Modelling of HSP16.3 

The target sequence of HSP16.3 (accession ID: P9WMK1) was retrieved from 

the UniProt Knowledgebase (UniProtKB) (The Uniprot Consortium, 2017). Prediction 

servers were used to perform preliminary sequence analysis by predicting its 

secondary structures (APSSP2 (Raghava, 2002), Jpred4 (Drozdetskiy et al., 2015), 

SSpro (Cheng, Randall, et al., 2005), PORTER (Pollastri & McLysaght, 2005), 

PredictProtein (Rost et al., 2004) and PSIPRED v3.3 (Buchan et al., 2013; Jones, 

1999)), disordered regions (DISpro (Cheng, Sweredoski, et al., 2005), IUPred 

(Dosztányi et al., 2005), Meta-Disorder (Kozlowski & Bujnicki, 2012), PONDR (Li 

et al., 1999; Romero et al., 2001), PrDOS (Ishida & Kinoshita, 2007) and RONN v3.2 

(Yang et al., 2005)) and functional sites (Consurf server (Ashkenazy et al., 2010; 

Berezin et al., 2004; Celniker et al., 2013)). Suitable candidate templates were 

identified by Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) 

against Protein Data Bank (PDB) proteins (Berman et al., 2000), followed by aligning 

the target and template sequences using MODELLER 9.14 program (Šali & Blundell, 

Comparative modelling of HSP16.3

Docking of bisANS to HSP16.3 dimer

MD simulation of HSP16.3-bisANS complex

Free energy calculation and per-residue decomposition
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1993). During modelling, symmetry restraints were applied on the HSP16.3 

dodecamer to achieve symmetry on each chain. From the pool of comparative models, 

the best model which was defined as the model with the lowest DOPE score (Shen & 

Sali, 2006), was selected for further loop refinement. Lastly, the quality of the model 

was examined using model evaluation servers such as Verify3D (Bowie et al., 1991; 

Luthy et al., 1992), PROCHECK Ramachandran (Laskowski et al., 1993) and ProSA-

web (Sippl, 1993; Wiederstein & Sippl, 2007).  

 

2.3.2 Docking Simulation of bisANS to HSP16.3 Dimer 

An early study has shown that HSP16.3 exists in dimeric form after standard 

HSP isolation procedures (Srivastava et al., 2013). Therefore, docking simulation was 

performed on HSP16.3 dimer (chain A and B). To evaluate binding properties of 

HSP16.3 dimer, a known hydrophobic probe for HSP, bisANS was chosen for the task. 

The AutoDock 4.2.6 software (Morris et al., 2009) and its graphical front-end, 

AutoDockTools were used in docking simulation. The ligand coordinate file for 

bisANS was prepared using ChemDraw Professional 15.0. Next, Gasteiger charges 

were calculated and hydrogen atoms were added for both HSP16.3 dimer and bisANS. 

The HSP16.3 dimer was regarded as rigid entity whereas flexibility of bisANS was 

allowed up to seven torsional degrees of freedom. The grid size was defined as 126 × 

126 × 126 points, centered at -2.444, -0.152 and 13.965 with grid spacing of 0.375 Å. 

The docking search parameter chosen was Lamarckian genetic algorithm. The 

population size was set to 150; maximum number of energy evaluations at 2,500,000; 

maximum number of generations at 27,000. Default values were used for remaining 

parameters. A total of 1000 docking runs was performed. All conformations generated 

were clustered using root mean square deviation (RMSD) tolerance of 2.0 Å. 
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2.3.3 MD Simulation of HSP16.3-bisANS Complex 

MD simulation was performed with AMBER 12 (Case et al., 2012) to evaluate 

stability of the docked HSP16.3-bisANS complex and to study its dynamics. Since the 

system involved a protein-ligand complex, the geometry of ligand (bisANS) was first 

optimised using Antechamber tool (Wang et al., 2006). The partial charges of bisANS 

were assigned using AMC-B11 charge model (Jakalian et al., 2000; Jakalian et al., 

2002) and ligand parameters were defined by general AMBER force field (GAFF) 

which is specific for small organic molecules (Wang et al., 2004). Next, the system 

was set up by preparing complex topology and coordinates files required for simulation. 

The AMBER force field FF14SB (Maier et al., 2015), an significant improvement over 

its predecessor in terms of optimised dihedral parameters for protein backbone and 

side chains, was applied along with GAFF. Counterions (14 sodium ions) were added 

to neutralise the system. For newer force fields such as FF14SB, the ion parameters 

for TIP3P water (Jorgensen et al., 1983) were required to be sourced. After loading 

necessary ion parameters, a truncated octahedral TIP3P water box of 12.0 Å was added 

to solvate the docked complex. The total number of atoms in system were 106, 909. 

Prior to MD, the solvated complex was subjected to two rounds of minimisation. 

During the first minimisation stage, 1000 minimisation cycles were performed with 

positional restraints (force constant of 100 kcal/mol/Å2) to fix the solvated complex at 

reference position. The use of restraints could be useful to prevent structural distortions 

during beginning of energy minimisation (Struthers et. al., as cited in Greer, 1991). 

The subsequent minimisation stage which involved 2000 minimisation cycles was 

carried out without positional restraints. The minimisation method changed from 

steepest descent to conjugate gradient upon reaching half of the maximum number of 

minimisation cycles. After minimisation, the solvated system was heated up to 300 K 
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within 100 ps. The system temperature was regulated by Langevin dynamics with the 

collision frequency of 2.0 ps-1. Besides, the SHAKE algorithm was applied to constrain 

bonds involving hydrogen (Ryckaert et al., 1977). The solvated system was maintained 

at constant volume. Next, the solvated system was equilibrated for 900 ps to relax the 

water box before running 10 ns of production. Both equilibration stage and production 

stage were simulated at constant pressure, controlled by Berendsen at constant 

temperature to mimic laboratory conditions. The MD simulation was performed under 

periodic boundary condition with Particle Mesh Ewald (PME) cutoff at 8.0 Å. The 

time step in simulation was 2 fs. The system equilibrium was monitored in terms of 

energy, temperature, pressure, volume, density and RMSD. A MD representative 

structure was extracted from the equilibrated trajectory (10th ns) via clustering using 

MMTSB toolset (Michael Feig et al., 2004). All protein structure visualisations were 

generated using PyMOL (Delano, 2002).  

 

2.3.4 Free Energy Calculations and Per-Residue Decomposition  

The binding free energy of HSP16.3-bisANS complex was calculated using 

MM-GBSA/PBSA. The calculations were performed using snapshots extracted at 10 

ps intervals from single MD trajectory of complex at the 10th ns MD simulation 

trajectory. In MM-GBSA, the polar solvation free energy was approximated by 

applying the modified GBOBC (II) model (Onufriev et al., 2004) (igb=5) using mbondi2 

radii set. The Linear Combination of Pairwise Overlaps (LCPO) method (Weiser et al., 

1999) was used for determining the non-polar solvation free energy. The surface 

tension parameter used was 0.0072 kcal/mol/A2. In MM-PBSA, the polar solvation 

free energy was calculated by solving the PB equation. The non-polar solvation free 

energy was calculated by classical model (inp=1) using surface tension parameter that 
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was set at 0.005 kcal/mol/A2. The radii from topology files (radiopt=0) were used for 

PB calculation and its non-polar calculations. By using the same set of radii for both 

MM-GBSA/PBSA approach, it ensures consistency between the calculations for 

comparison purpose. The interior and exterior dielectric constant was set to 1.0 and 

80.0 in both MM-GBSA/PBSA calculations. Due to surface hydrophobicity of 

HSP16.3, lower interior dielectric constant was employed in this study. It has been 

reported that low solute dielectric constant (Ԑin = 1) is generally applicable for 

hydrophobic environment whereas high solute dielectric constant (Ԑin > 1) is suitable 

for charged environment (Hou et al., 2011a). The interaction energy between HSP16.3 

and bisANS was also studied by decomposing the total binding free energy into its 

individual contributions on a per-residue basis.  

 

2.4 Results 

2.4.1 Sequence Analysis of HSP16.3 

Secondary structure predictions showed HSP16.3 was overrepresented in beta 

strands (Table 2.1). Based on the consensus prediction, beta strands were found 

distributing among residues 42-46, 50-56, 66-71, 74-80, 90-94, 96-103, 113-117, 121-

127 and 137-141. Besides, the N-terminal (residues 15-23) was predicted to adopt 

helical conformation. The proposed secondary structures of HSP16.3 is consistent with 

protein disordered region prediction results. The protein residues which presumably 

involved in forming secondary structure element were also predicted to fall into 

ordered regions of HSP16.3 (Table 2.2). The results showed that residues 1-7, 56, 79-

84 and 142-144 were disordered regions, as agreed by prediction servers. Therefore, 

these identified regions are likely unstable and do not have regular structures.  
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Table 2.1 Secondary structure prediction by APSSP2 (Raghava, 2002), Jpred4 (Drozdetskiy et al., 2015), SSpro (Cheng, Randall, et 

al., 2005), PORTER (Pollastri & McLysaght, 2005), PredictProtein (Rost et al., 2004) and PSIPRED v3.3 (Buchan et al., 2013; Jones, 

1999). Indicator: H – alpha helix; B – beta strand 

 

HSP16.3 sequence 

1 11 21 31 41 51 

MATTLPVQRH PRSLFPEFSE LFAAFPSFAG LRPTFDTRLM RLEDEMKEGR YEVRAELPGV 

APSSP2 ---------- HHHHHHHHHH HHHHH----- ---------- ---BBB---B BBBBBB---- 

Jpred4 ---------- ------HHHH HH-------- ---------- -BBBBB---B BBBBBBB--- 

SSpro ------H--- ---HHHHHHH HH-------- ---------- -BBBBB---B BBBBBB---- 

PORTER ---------- ----HHHHHH HHH------- ---------- -BBBBB---B BBBBBB---- 

PredictProtein ---------- HHHHHHHHHH HHHH------ ---------- -BBBBB---B BBBBBBB--- 

PSIPRED v3.3 ---------- -----HHHHH HHH------- ---------B BBBBBBB--B BBBBBB---- 

Consensus ---------- ----HHHHHH HHH------- ---------- -BBBBB---B BBBBBB---- 

 
61 71 81 91 101 111 

DPDKDVDIMV RDGQLTIKAE RTEQKDFDGR SEFAYGSFVR TVSLPVGADE DDIKATYDKG 

APSSP2 ----BBBBBB B--BBBBBBB B-------BB BBBBB-BBBB BBB------H HHBBBBB--- 

Jpred4 ----BBBBBB B--BBBBBBB --------BB BBBBBBBBBB BB-------- --BBBBB--- 

SSpro -----BBBBB ---BBBBBBB ---------- BBBB---BBB BBB------H HHBBBBB--- 

PORTER ------BBBB B--BBBBBBB ---------- -----BBBBB BBB------H HH-BBBB--- 

PredictProtein ---BBBBBBB B--BBBBBBB ---------- -----BBBBB BBB------- -BBBBBBB-- 

PSIPRED v3.3 -----BBBBB B--BBBBBBB BBBBB----B BBBBBBBBBB BBB------- ---BBBB--- 

Consensus -----BBBBB B--BBBBBBB ---------B BBBB-BBBBB BBB------- --BBBBB--- 

 121 131 141    

 ILTVSVAVSE GKPTEKHIQI RSTN    

APSSP2 BBBBBBB--- -----BBBBB B---    

Jpred4 BBBBBBBB-- ------BBBB B---   

SSpro BBBBBB---- ------BBBB B---   

PORTER BBBBBB---- -----BBBBB BB--    

PredictProtein BBBBBBB--- -----BBBBB B---    

PSIPRED v3.3 BBBBBBB--- ------BBBB BB--    

Consensus BBBBBBB--- ------BBBB B---    
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Table 2.2 Prediction of protein disordered regions in HSP16.3 by DISpro (Cheng, Sweredoski, et al., 2005), IUPred (Dosztányi et al., 

2005), Meta-Disorder (Kozlowski & Bujnicki, 2012), PONDR (Li et al., 1999; Romero et al., 2001), PrDOS (Ishida & Kinoshita, 2007) 

and RONN v3.2 (Yang et al., 2005).  

 

 1 11 21 31 41 51 

HSP16.3 sequence MATTLPVQRH PRSLFPEFSE LFAAFPSFAG LRPTFDTRLM RLEDEMKEGR YEVRAELPGV 

DISpro DDDDDDDDDO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

IUPred DDDOODOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO DDDDDDOOOO 

Meta-Disorder DDDDDDDDDD DDDDDDDODD DDDDDDDDDD DDDDDDDDDD DDDDDDDDDD OOOOODDDDD 

PONDR DDDDDDDOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO ODDDDDDDDD DDDDDDDDDD 

PrDOS DDDDDDDDDD DDOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

RONN v3.2 DDDDDDOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOODDDDDDD DDDDDDDDOO 

Consensus DDDDDDDOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOODOOOO 

 61 71 81 91 101 111 

 DPDKDVDIMV RDGQLTIKAE RTEQKDFDGR SEFAYGSFVR TVSLPVGADE DDIKATYDKG 

DISpro OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

IUPred OOOOOOOOOO DDOOOOOODD DDOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

Meta-Disorder DDDDDOOOOO ODDDDDDDDD DDDDDDDDDD DDDDDDOOOO ODDDDDDDDD DDDDDOOODO 

PONDR DDDDDDDDDD DDDDDDDDDD DDDDOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

PrDOS OOOOOOOOOO OOOOOOOOOO OODDDDDDDD DOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

RONN v3.2 OOOOOOOOOO OOOODDDDDD DDDDDDOOOO OOOOOOOOOO OOODDDDDDD DDDDDDDDOO 

Consensus OOOOOOOOOO OOOOOOOODD DDDDOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

 121 131 141    

 ILTVSVAVSE GKPTEKHIQI RSTNoooooo    

DISpro OOOOOOOOOO OOOOOOOOOO OODDoooooo    

IUPred OOOOOOOOOO OODDDDDDDD DDDDoooooo    

Meta-Disorder OOOODDDDDD DDDDDDDDDD DDDDoooooo   

PONDR OOOOOOOOOO OOOODOOOOO OOODoooooo   

PrDOS OOOOOOOOOO OOOOODDDDD DDDDoooooo   

RONN v3.2 OOOOOOOOOO OOOOOOOOOO ODDDoooooo   

Consensus OOOOOOOOOO OOOOOOOOOO ODDDoooooo    

Indicator: D – disordered region; O – ordered region


