
Ann Oper Res (2012) 194:3–31
DOI 10.1007/s10479-010-0769-z

A harmony search algorithm for university course
timetabling

Mohammed Azmi Al-Betar · Ahamad Tajudin Khader

Published online: 10 July 2010
© Springer Science+Business Media, LLC 2010

Abstract One of the main challenges for university administration is building a timetable
for course sessions. This is not just about building a timetable that works, but building one
that is as good as possible. In general, course timetabling is the process of assigning given
courses to given rooms and timeslots under specific constraints. Harmony search algorithm
is a new metaheuristic population-based algorithm, mimicking the musical improvisation
process where a group of musicians play the pitches of their musical instruments together
seeking a pleasing harmony. The major thrust of this algorithm lies in its ability to inte-
grate the key components of population-based methods and local search-based methods in a
simple optimization model. In this paper, a harmony search and a modified harmony search
algorithm are applied to university course timetabling against standard benchmarks. The
results show that the proposed methods are capable of providing viable solutions in compar-
ison to previous works.

Keywords Course timetabling · Harmony search · Metaheuristic algorithms · Exploration ·
Exploitation

1 Introduction

University timetabling is a demanding and challenging repetitive administrative task for
academic institutions. In general, timetabling is the process of allocating given events, each
with given features, to given resources and times with respect to given constraints (Burke
et al. 2004). The timetabling process varies in difficulty according to the problem size and
demanding constraints which vary among academic institutions. The timetabling solution
is typically evaluated against satisfying constraints. Constraints are usually categorized into
two types (Burke et al. 1997): hard and soft. Hard constraints must essentially be satisfied in

M.A. Al-Betar (�) · A.T. Khader
School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
e-mail: mohbetar@cs.usm.my

A.T. Khader
e-mail: tajudin@cs.usm.my

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/199246576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mohbetar@cs.usm.my
mailto:tajudin@cs.usm.my


4 Ann Oper Res (2012) 194:3–31

the timetabling solution to be feasible, whereas soft constraints are desired but not absolutely
essential. Soft constraints may be violated. Yet the more they are met in the timetabling
solution, the better the quality of the solution. University timetabling is usually divided into
two problems: the exam timetabling problem and the course timetabling problem which is
the concern of this paper.

The course timetabling problem has been given particular attention by operational re-
search and artificial intelligence experts for quite a long time. Many methods have been
introduced in the literature to tackle such a problem. As is commonly known, the basic
timetabling problem can be modeled as a graph coloring problem (i.e., an undirected graph
involves given vertices, each of which reflects one event; the colour of each vertex reflects a
particular timeslot, and an edge between vertices reflects the conflicting events which must
be assigned different colours (or timeslots)). Therefore, the earliest methods employed graph
coloring heuristics as an essential part to construct the course timetabling solution. These
heuristics assign the courses to rooms and timeslots one by one according to a particular or-
der. A backtracking algorithm is often used as a recovery approach for unscheduled events in
the constructed solution (Carter et al. 1996). Although these heuristics show great efficiency
in constructing a timetabling solution quickly, the quality of the solution is often inferior
to that produced by metaheuristic or hyper-heuristic methods. Nowadays, these heuristics
are normally used in the construction of initial solution(s) for metaheuristic methods; they
are also employed in hyper-heuristic approaches as low level heuristics (Burke et al. 2003a,
2007). Asmuni et al. (2005) however used them collaboratively but were guided by a fuzzy
assignment function to construct a ‘good’ quality solution to the other methods.

The emergence of metaheuristics for solving difficult timetabling problems has been one
of the most notable accomplishments of the last two decades or even earlier. Commonly,
metaheuristics are divided into two categories, local search-based and population-based
methods. The local search-based methods consider one solution at a time (Blum and Roli
2003). The solution undergoes changes iteratively until a final solution which is usually in
the same region of the search space as the initial solution is reached. They often use neigh-
borhood structures guided by a given acceptance rule to improve the solution. Although the
main merit of using these methods is their strength of fine-tuning the solution more struc-
turally and more quickly than population-based methods (Blum and Roli 2003), the main
drawback is that they have a tendency to get stuck in a small region of the search space.
This is mainly due to local search-based methods focusing on exploitation rather than ex-
ploration, which means that they move in one direction without performing a wider scan of
the entire search space. The local search-based methods applied to the course timetabling
problem include Iterative Local Search (Socha et al. 2002), Simulated Annealing (Chiaran-
dini et al. 2006; Kostuch 2005), Very Large Neighborhood Search (Abdullah et al. 2007b,
2005), Great Deluge (McMullan 2007; Landa-Silva and Obit 2008, 2009; Obit et al. 2009;
Turabieh et al. 2009).

Population-based metaheuristics have also been applied to the course timetabling prob-
lem. The population-based methods consider many solutions at a time. During the search,
they recombine current solutions to obtain new ones. Unfortunately, the solutions pro-
duced by population-based methods are usually inferior to those produced by local search-
based methods because they are poorer at finding the precise optimal solution in the search
space region to which the algorithm converges (Fesanghary et al. 2008). The common
reason for this problem is that the population-based methods are more concerned with
exploration rather than exploitation. Recall that population based methods scan the so-
lutions in the entire search space without rigorous concentration on current solutions in
addition to other drawbacks such as the need for more time (Chiarandini et al. 2006).



Ann Oper Res (2012) 194:3–31 5

Furthermore, according to building block theory (Goldberg 1989), the algorithm is as-
sumed to be working well when the adjacent variable of the chromosomes are strongly
correlated. In timetabling problems, however, this assumption does not seem plausible.
This is why several timetable researchers have lately started focusing their attention
on local search-based rather than the population-based methods (Abdullah et al. 2007b;
Chiarandini et al. 2006). The population-based methods applied to the course timetabling
problem include Genetic Algorithm (Lewis and Paechter 2004, 2005), Ant Colony Opti-
mization (Socha et al. 2002), and Artificial Immune System (Malim et al. 2006). Overviews
of previous methods for the course timetabling problem are available in the following sur-
veys (Burke et al. 1997, 2004; Carter and Laporte 1997; Burke and Petrovic 2002; Lewis
2008).

In light of the above, a possible way to design an efficient algorithm that tackles the
university course timetabling, is to strike a balance between global wide-ranging exploration
using the strength of population-based methods, and local nearby exploitation using the
strength of local search-based methods. Memetic Algorithms, which do attempt to combine
the best features of both types of approach have also been applied for timetabling (Burke
and Landa-Silva 2005).

With respect to the significant differences between the examination and course time-
tabling problems (McCollum 2006), in the recent comprehensive survey of examination
timetabling, Qu et al. (2009) conclude: “There are many research directions generated by
considering the hybridization of meta-heuristic methods particularly between population
based methods and other approaches”. In general, there are many research trends highlight-
ing the efficiency of using local search-based methods within population-based methods.
For example, Blum and Roli (2003) in an influential article on metaheuristics write “In
summary, population-based methods are better in identifying promising areas in the search
space, whereas trajectory methods are better in exploring promising areas in the search
space. Thus, metaheuristic hybrids that in some way manage to combine the advantage of
population-based methods with the strength of trajectory methods are often very successful”.
For course timetabling problem, a hybrid Evolutionary Algorithm with Variable Neighbor-
hood Structure is developed by Abdullah et al. (2007a) with very successful outcomes.

The harmony search algorithm is a new metaheuristic algorithm developed by Geem et al.
(2001). It mimics the musical improvisation process in which a group of musicians play the
pitches of their musical instruments together seeking a pleasing harmony as determined by
an audio-aesthetic standard. It is considered a population-based algorithm with local search-
based aspects (Lee et al. 2005). This algorithm has an interesting feature that differentiates
it from the other metaheuristics: it iteratively explores the search space by combining multi-
search space regions to visit a single search space region. We have to recall that, through
the recombination and randomness, the harmony search algorithm iteratively recombines
the characteristics of many solutions in order to make one solution. It is able to fine tune
this solution to which the algorithm converges using neighborhood structures. Throughout
the process recombination is represented by memory consideration, randomness by random
consideration, and neighborhood structures by pitch adjustment. In the typical population-
based methods, the search space is explored by moving from multi-search space regions
to multi-search space regions and the local search-based methods explore the search space
regions moving from a single region to another. As such, the harmony search algorithm has
the advantage of combining key components of population-based and local search-based
methods in a simple optimization model.

Harmony search algorithm is a stochastic search mechanism, simple in concepts, and no
derivation information is required in the initial search (Lee et al. 2005). It has been suc-
cessfully tailored to a wide variety of optimization problems such as travelling salesman



6 Ann Oper Res (2012) 194:3–31

problem (Geem et al. 2001); structural design (Lee and Geem 2004); water network design
(Geem 2006); dam scheduling (Geem 2007b), sudoku game (Geem 2007a); music compo-
sition (Geem and Choi 2007), and many others as discussed by Ingram and Zhang (2009).

The main aim of this paper is twofold: firstly, applying the basic harmony search for
the university course timetabling as an initial exploration to this algorithm in this domain;
secondly, modifying the functionality of the basic harmony search to be even more efficient
for the university course timetabling problem because optimization problems offer No Free
Lunch (Wolpert and Macready 1997). Results show that the basic harmony search can tackle
this problem intelligently and offers near optimal solutions while the modified harmony
search offers high quality solutions when compared to the previous methods.

The remainder of this paper includes the following sections: Sect. 2 discusses the uni-
versity course timetabling problem. Section 3 explains the fundamentals of harmony search
algorithm. The application of harmony search algorithm to university course timetabling
is the purpose of Sect. 4. Section 5 discusses the experimental results and compares them
with those in the previous literature. In the final section, we present a conclusion and some
possible future directions to our proposed methods.

2 The university course timetabling problem

The University Course Timetabling Problem (UCTP) version tackled in this paper was pro-
duced by Socha et al. (2002) and it can be described as follows:

– A set C = {c0, c1, . . . , cN−1} of N courses, each of which contains certain students and
needs particular features.

– A set R = {r0, r1, . . . , rK−1} of K rooms, each of which has a seat capacity and contains
specific features.

– A set S = {s0, s1, . . . , sL−1} of L students, each of them assigned to one or more courses.
– A set F = {f0, f1, . . . , fM−1} of M features.
– A set T = {t0, t1, . . . , tP−1} of P timeslots.

Furthermore, the set of problem instances produced by Socha et al. (2002) provide the fol-
lowing information:

– A vector a of room capacity where ai is the capacity of room i, i ∈ R.
– A Student-Course matrix U where ui,j = 1 denotes the student i assigns course j , ui,j = 0

otherwise, i ∈ S and j ∈ C .
– A Room-Feature matrix V which is described as a room i has a feature j if and only if

vi,j = 1, i ∈ R and j ∈ F .
– A Course-Feature matrix W means that a course i needs feature j if and only if wi,j = 1,

i ∈ C and j ∈ F .

The following hard constraints must be satisfied:

– H1. Students must not be double booked for courses.
– H2. Room size and features must be suitable for the assigned courses.
– H3. Rooms must not be double booked for courses.

And the following soft constraints should be minimized:

– S1. A student shall not have a class in the last slot of the day.
– S2. A student shall not have more than two classes in a row.
– S3. A student shall not have a single class in a day.



Ann Oper Res (2012) 194:3–31 7

The main objective of the context of UCTP is to produce a feasible solution where the
violations of soft constraints are minimized. It is worth mentioning that the context of UCTP
reflects the real course timetabling problem at Napier University in Edinburgh.

Originally, the context of UCTP used by Socha et al. (2002) was determined by the
Metaheuristics Network (MN).1 MN is a European commercial research project shared by
five European institutions between 2000 to 2004 to investigate the efficiency of different
metaheuristics on different combinatorial optimization problems.

The same context of UCTP was used in the first International Timetabling Competition.2

Twenty data instances and three more hidden ones were constructed. Those data instances
were proposed mainly to motivate the competitors to focus their attention on generating
effective approaches for UCTP. In fact, those data instances observed soft constraints mini-
mization rather than hard constraints fulfillment. Some works that have lately appeared used
the same data instances to measure the efficiency of their approaches (Chiarandini et al.
2006; Lewis and Paechter 2004; Kostuch 2005; Burke et al. 2003b).

The combinatorial optimization problems are difficult to solve due to the complexity and
size of the problem and also due to the university community which has increased rapidly
in the last five decades. With that in mind, Lewis and Paechter (2005) constructed sixty hard
data instances of the same UCTP context defined by MN to measure the capability of the
Grouping Genetic Algorithm to find feasible timetables. Tuga et al. (2007) used the same
data instances to evaluate the performance of Simulated Annealing with Kempe Chain to
find feasible timetables.

The post enrollment course timetabling problem (Lewis et al. 2007) was tracked on the
Second International Timetabling Competition (ITC-2007) (McCollum et al. 2009). This is
similar to the UCTP context of MN with slight differences: in ITC-2007, two more hard
constraints were addressed. The twenty one problem instances constructed for this track
tackled different sizes and complexity, and the distance to feasibility is considered to be
another measurement for the quality of the solutions. The term distance to feasibility refers
to the number of courses that are not scheduled in the timetable in which the number of
students within each unscheduled course is a factor for evaluation.

3 Fundamentals of the harmony search algorithm

The following is a detailed explanation of the basics of the harmony search algorithm (HSA)
and its relation to the musical context (Lee and Geem 2004, 2005).

3.1 Optimization in musical context

Before any explanation, it is worth delving into Table 1 which shows the relationship or
equivalences between the optimization terms and the musical context. Figure 1 shows the
analogy between the music improvisation process and optimization process. In musical im-
provisation, a group of musicians improvise the pitches of their musical instruments, practice
after practice, seeking for a pleasing harmony as determined by an audio-aesthetic standard.
Initially, each musician improvises any pitch from the possible pitch range which will fi-
nally lead all musicians to create a fresh harmony. That fresh harmony is estimated by an

1Metaheuristics Network official website http://www.metaheuristics.net/ (27-Sep-2009).
2First International Timetabling Competition was organized by Metaheuristics Network members and was
sponsored by PATAT. The official website is http://www.idsia.ch/Files/ttcomp2002/ (27-Sep-2009).

http://www.metaheuristics.net/
http://www.idsia.ch/Files/ttcomp2002/


8 Ann Oper Res (2012) 194:3–31

Table 1 The optimization terms
in the musical context Musical terms Optimization terms

Improvisation ←→ Generation or construction

Harmony ←→ Solution vector

Musician ←→ Decision variable

Pitch ←→ Value

Pitch range ←→ Value range

Audio-aesthetic standard ←→ Objective function

Practice ←→ Iteration

Pleasing harmony ←→ (Near-) optimal solution

Fig. 1 Analogy between music
improvisation and optimization
process

audio-aesthetic standard: if it is good (i.e., involves better pitches than the preferable pitches
in musicians’ memory), the musicians retain the good pitches in their memory instead of
those included within the worst harmony stored earlier for using them in the next practice.
Practice after practice, the good pitches are stored in the musicians’ memory which give
them a chance to produce a pleasing harmony in their following practices.

This can be translated into optimization process as follows: a set of decision variables is
assigned with values, iteration by iteration, seeking for a ‘good enough’ solution as evaluated
by an objective function. Initially, each decision variable is assigned by any value from its
possible range which will finally lead all decision variables to create a new solution vector.
That solution vector is evaluated by an objective function: if it is good (i.e., involves better
values than experience values stored in the memory), the decision variables will store the
good values in their memory instead of those included within the worst solution vector
stored earlier for using them in the next iterations. Iteration by iteration, the good values
for each decision variable will be stored in the memory giving them a chance to produce a
better solution in the following iterations.

When each musician improvises a pitch from his musical instrument, he has three op-
tions: (i) improvising any pitch from his memory (ii) modifying a pitch which exists in the
memory, or (iii) improvising any pitch from the possible pitch range. In optimization, each
value of any decision variable is decided according to one of the following options (i) assign-
ing a value stored in the memory. (ii) modifying a value which exists in the memory, or (iii)
assigning a value from its feasible range. Geem et al. (2001) formalized these three options
into three operators: memory consideration, pitch adjustment, and random consideration.
These operators are controlled by two parameters named Harmony Memory Consideration
Rate (HMCR) and Pitch Adjustment Rate (PAR) (these will be discussed in more detail in
Sect. 3.2).

Figure 2 shows the harmony memory structure which is the core part of the improvi-
sation process. Consider musical instruments of five musicians on the Jazz bandstand as



Ann Oper Res (2012) 194:3–31 9

Fig. 2 The harmony memory
structure

follows: Guitarist, Trumpeter, Drummer, Saxophonist, and Double bassist. There are sets of
preferable pitches in their memory, that is Guitarist: {Do,Mi,Sol}; Trumpeter: {La,Si,Sol};
Drummer: {Re,Sol,Si}; Saxophonist: {Fa,Do,La}; Double bassist: {Re,Sol,Mi}. Assume
in a practice if Guitarist randomly improvises {Do} from his memory, Trumpeter improvises
{Sol} from his memory, Drummer adjusts {Re} from his memory to come up with {Fa}, Sax-
ophonist improvises {La} from his memory, and Double bassist improvises {Si} from the
available range {Do,Re,Mi,Fa,Sol,Si}. All these pitches together form a fresh harmony
(Do,Sol,Fa,La,Si) which is estimated by an audio-aesthetic standard. If the fresh harmony
is better than the worst harmony stored in the harmony memory, the harmony memory will
be updated by replacing the worst harmony with the fresh one. This process will be repeated
to obtain a pleasing harmony.

The situation is similar in real optimization: consider five decision variables, each of
which has stored experience values in harmony memory as follows, x1 : {100,203,504};
x2 : {220,400,700}; x3 : {104,50,600}; x4 : {100,200,300}; x5 : {70,250,300}. Assume in
an iteration if x1 is assigned with 203 from its memory; x2 is assigned with 400 from its
memory; x3 is adjusted from the value 104 stored in its memory to be 180; x4 is adjusted
from the value 200 stored in its memory to be 250; x5 is assigned with 320 from its feasible
range x3 ∈ [0,600]. A new solution vector (203,400,180,250,320) is created and evalu-
ated by an objective function. If the solution is better than the worst solution stored in the
harmony memory, it is adopted whereas the worst solution is excluded. This process will be
repeated time and again to find a (near) optimal solution.

3.2 The basic harmony search algorithm

Algorithm 1 shows the pseudo-code of the basic HSA with five main steps that will be
described in the following:

Step 1. Initialize the problem and HSA parameters. Suppose that the discrete opti-
mization problem is modeled as in (1).

min{f (x)|x ∈ X}, Subject to g(x) < 0 and h(x) = 0, (1)

where f (x) is the objective function; x = {xi |i = 1, . . . ,N} is the set of each decision vari-
able. X = {Xi |i = 1, . . . ,N} is the possible value range for each decision variable, where
Xi = {vi,1, vi,2, . . . , vi,Ki

}. N is the number of decision variables, and Ki is the number of
values for each decision variable xi . g(x) are inequality constraint functions and h(x) are
equality constraint functions. The parameters of the HSA required to solve the optimization



10 Ann Oper Res (2012) 194:3–31

Algorithm 1 The basic harmony search algorithm
1. STEP1. Initialize the problem and HSA parameters

Input data. The data instance of the optimization problem and the HSA parameters
(HMCR, PAR, NI, HMS).

2. STEP2. Initialize the harmony memory
Construct the vectors of the harmony memory, HM = {x1, x2, . . . , xHMS}
Recognize the worst vector in HM, xworst ∈ {x1, x2, . . . , xHMS}

3. STEP3. Improvise a new harmony
x ′ = φ // new harmony vector

for i = 1, . . . ,N do // N is the number of decision variables.
if (U(0,1) ≤ HMCR) then // U is a uniform random number generator.

begin
x ′

i ∈ {x1
i , x

2
i , . . . , x

HMS
i } {* memory consideration *}

if (U(0,1) ≤ PAR) then
x ′

i = vi,k±m // x ′
i = vi,k {*pitch adjustment *}

end
else

x ′
i ∈ Xi {* random consideration *}

end if
end for

4. STEP4. Update the harmony memory (HM)
if (f (x ′) < f (xworst)) then

Include x ′ to the HM.
Exclude xworst from HM.

5. STEP5. Check the stop criterion
while (not termination criterion is specified by NI)

Repeat STEP3 and STEP4

problem are also specified in this step: the HMCR; the Harmony Memory Size (HMS) sim-
ilar to population size in Genetic Algorithm; the PAR; and the Number of Improvisations
(NI) or the number of iterations. Note that the HMCR and PAR are the two parameters re-
sponsible for the improvisation process. These parameters will be explained in more detail
in the following steps.

Step 2. Initialize the harmony memory. The harmony memory (HM) is a memory
location which contains sets of solution vectors which are determined by HMS (see (2)).
In this step, these vectors are randomly (or heuristically) constructed and stored to the HM
based on the value of the objective function.

HM =

⎡
⎢⎢⎢⎢⎣

x1
1 x1

2 · · · x1
N

x2
1 x2

2 · · · x2
N

...
...

. . .
...

xHMS
1 xHMS

2 · · · xHMS
N

⎤
⎥⎥⎥⎥⎦

. (2)

Step 3. Improvise a new harmony. In this step, the HSA will generate (improvise) a new
harmony vector from scratch, x ′ = (x ′

1, x
′
2, . . . , x

′
N), based on three operators: (1) memory

consideration, (2) random consideration, and (3) pitch adjustment.



Ann Oper Res (2012) 194:3–31 11

Memory consideration. In memory consideration, the value of the first decision variable x ′
1

is randomly assigned from the historical values, {x1
1 , x

2
1 , . . . , x

HMS
1 }, stored in HM vectors.

Values of the other decision variables, (x ′
2, x

′
3, . . . , x

′
N), are sequentially assigned in the same

manner with probability (w.p.) HMCR where 0 ≤ HMCR ≤ 1. This operator acts similar
to the recombination operator in other population-based methods and is a good source of
exploitation (Yang 2009).

Random consideration. Decision variables that are not assigned with values according to
memory consideration are randomly assigned according to their possible range by random
consideration with a probability of (1-HMCR) as in (3).

x ′
i ←

{
x ′

i ∈ {x1
i , x

2
i , . . . , x

HMS
i } w.p. HMCR

x ′
i ∈ Xi w.p. 1-HMCR.

(3)

Random consideration is functionally similar to the mutation operator in Genetic Algorithm
which is the source of global exploration in HSA (Yang 2009). The HMCR parameter is
the probability of assigning one value of a decision variable, x ′

i , based on historical values
stored in the HM. For instance, if HMCR = 0.90, this means that the probability of assigning
the value of each decision variable from historical values stored in the HM vectors is 90%,
and the value of each decision variable is assigned from its possible value range with the
probability of 10%.

Pitch adjustment. Each decision variable x ′
i of a new harmony vector, x ′ = (x ′

1, x
′
2,

x ′
3, . . . , x

′
N), that has been assigned a value by memory considerations is examined for

whether or not it should be pitch adjusted with the probability of PAR where 0 ≤ PAR ≤ 1
as in (4).

Pitch adjusting decision for x ′
i ←

{
Yes w.p. PAR

No w.p. 1-PAR.
(4)

A PAR of 0.10 means that the HSA modifies the existing value of decision variables
assigned by memory consideration with a probability of (PAR × HMCR) while the other
values of decision variables assigned by memory consideration do not change. If the pitch
adjustment decision for x ′

i is Yes, the value of x ′
i is modified to its neighboring value as

follows:

x ′
i (k) = vi,k±m, (5)

where x ′
i is assigned with value vi,k , that is, the kth element in Xi . m is the neighboring

index, m ∈ Z. Equation (6) summarizes the improvisation process

x ′
i ←

⎧⎪⎨
⎪⎩

x ′
i ∈ {x1

i , x
2
i , . . . , x

HMS
i } w.p. HMCR

x ′
i = vi,k±m w.p. HMCR × PAR

x ′
i ∈ Xi w.p. 1-HMCR.

(6)

Step 4. Update the harmony memory. If the new harmony vector, x ′ = (x ′
1, x

′
2, . . . , x

′
N),

is better than the worst harmony stored in HM in terms of the objective function value, the
new harmony vector is included to the HM, and the worst harmony vector is excluded from
the HM.

Step 5. Check the stop criterion. Steps 3 and 4 of HSA are repeated until the stop
criterion (maximum number of improvisations) is met. This is specified by NI parameter.



12 Ann Oper Res (2012) 194:3–31

Fig. 3 The location matrix
which shows each location with
its room-timeslot pair. For
example, location 0 denotes the
room-timeslot pair (0,0);
location 1 denotes the
room-timeslot pair (0,1); etc.

t0 t1 . . . tP−1

r0 0 1 . . . P − 1
r1 P P + 1 . . . 2P − 1
r2 2P 2P + 1 . . . 3P − 1
...

...
...

. . .
...

rK−1 (K − 1)P (K − 1)P + 1 . . . KP − 1

4 The harmony search algorithm for UCTP

In order to choose a suitable timetable representation for the HSA, the timetable solution is
represented by a vector of courses x = (x1, x2, . . . , xN), each course must be scheduled in
a feasible location; each location denotes a unique pair of room-timeslot. Each course, xi ,
is to be scheduled in a feasible location within the range between [0,K × P − 1], where
K and P , as pointed out earlier, is the number of rooms and timeslots consecutively (see
the location matrix in Fig. 3). For example, in the medium problem instances established by
Socha et al. (2002), the number of courses N = 400, the number of rooms K = 10 and the
number of timeslots P = 45, the possible locations of each course, xi , is within the range
between 0 to 449. The HSA interprets the location of each course, xi , as in (7):

xi = j × P + m. (7)

This means that course xi is scheduled in timeslot tm at room rj , j is the room index
and m is the timeslot index. For example, let x = (449,21,102, . . . ,0) be a feasible and
complete timetable. The HSA interprets the solution as follows: course x1 is scheduled in
location 449, in timeslot index 44 at room index 9; course x2 is scheduled in location 21, in
timeslot index 21 at room index 0; course x3 is scheduled in location 102, in timeslot index
12 at room index 2; . . .; course xN is scheduled in location 0, in timeslot index 0 at room
index 0. In practice, the timeslot index can be extracted form the location of the course xi as
in (8) and the room index can be extracted from the same location as in (9).

tm = xi modP, (8)

rj =
⌊

xi

P

⌋
. (9)

This solution representation directly satisfies the H3 hard constraint. Practically, the fol-
lowing data structures are used to build a university course timetabling solution:

– Conflict matrix: is a matrix B of size N × N where bi,j = the number of students sharing
courses i and j . This matrix is used to deal with the H1 hard constraint.

– Course room matrix: is a binary matrix D of size N × K where di,j contains either 1 if
and only if course i and room j is compatible with both aspects of size and features or 0
otherwise. This matrix is used to deal with the H2 hard constraint.

– Course position matrix: is a binary matrix Q of size N × HMS where qi,j changes itera-
tively during the improvisation process (STEP 3 of HSA) which contains either qi,j = 1
if and only if a course i has a feasible location in the solution j that is stored in HM to
be scheduled in a new harmony solution or qi,j = 0 otherwise. This matrix is initialized
by 1 at the beginning of the improvisation process. It is also updated when a course is



Ann Oper Res (2012) 194:3–31 13

Fig. 4 A harmony search algorithm for UCTP

scheduled out of memory consideration or random consideration, or adjusted by pitch
adjustment operator.

Figure 4 describes the steps of HSA with application to the UCTP. It has to be borne in
mind that this paper considers the feasible search space region. Therefore, some of the HSA
steps and operators had to be modified to preserve the feasibility.

4.1 Initialize the HSA and UCTP parameters

Within UCTP, the parameters are extracted from the problem instances such as set of
courses C , set of rooms R, set of timeslots P , set of features F , set of students S , Room-Size
vector a, Student-Course matrix U, Room-Feature matrix V, and Course-Feature matrix W.
These parameters are described in Sect. 2. Furthermore, in this step, the HSA builds the
Conflict matrix B and Course room matrix D.

It has to be recalled that the main decision variables of UCTP are the courses; the location
(or the room-timeslot pair) of each course might be changed during the search process of
the HSA. The possible range of each course is the set of feasible locations available to it
during the search.



14 Ann Oper Res (2012) 194:3–31

Definition 1 The location l is feasible for course xi to be scheduled in the timetable x if
and only if the following conditions are met:

1. xj �= l, ∀xj ∈ x ∧ i �= j ,
2. di,
 l

P
� = 1,

3. xj modP �= l modP , ∀xj ∈ x ∧ bi,j > 0 ∧ i �= j .

The objective function described by Chiarandini et al. (2006) is utilized to evaluate the
timetable solution, x, as in (10):

f (x) =
L−1∑
s=0

(f1(x, s) + f2(x, s) + f3(x, s)). (10)

Where f (x) is the objective function to evaluate the timetabling solution, x. f1(x, s),
f2(x, s) and f3(x, s) describe the violation in the soft constraints S1, S2 and S3 consecu-
tively for all students s where s = 0 . . .L − 1.

The HSA parameters described in Sect. 3 that are required to solve UCTP are also spec-
ified in this step namely, HMS, HMCR, PAR and NI.

4.2 Initialize the HM with random feasible timetable solutions

In Step 2, HSA constructs feasible timetabling solutions as determined by HMS. HM is
filled with these solutions. See (2). The objective function value for all solutions in HM is
maintained separately. Meanwhile, the solutions are increasingly sorted in HM according to
their objective function value.

In the UCTP, a backtracking algorithm (Carter et al. 1996) and the proposed MultiSwap
algorithm are applied to generate random HM solutions after assigning the courses by using
the weighted largest degree (WLD) first heuristic method (Arani and Lofti 1989). This strat-
egy ensures that all HM solutions are feasible. In WLD, the course with the largest number
of conflicting students is scheduled first.

All courses that cannot be assigned to the timetable solution after the completion of the
assignment process by the WLD heuristic method are entered to a list called the unscheduled
list.

This list is then passed to a backtracking algorithm that will select each unscheduled
course xi from the unscheduled list and explore all courses in conflict using a Conflict
matrix B. Those courses that share one or more students with course xi are removed from
the timetable solution and added to the unscheduled list again. After that, the backtracking
algorithm attempts to assign feasible locations to all courses in the unscheduled list. This
process is iterated several times until no further locations can be filled. Some courses may
not be scheduled at the end of this process. In this case, the MultiSwap algorithm will be
used.

The proposed MultiSwap algorithm shuffles the courses in different rooms within the
same timeslot where the shuffling is performed consecutively at all timeslots. It is worth
mentioning that there are two reasons why unscheduled courses cannot find feasible lo-
cations. Firstly, the appropriate rooms for the unscheduled courses are reserved by other
courses. Secondly, the timeslots which contain courses share a student or more with the
unscheduled course. Backtracking handles the second reason while MultiSwap tackles the
first one. In MultiSwap algorithm, courses are taken from the same timeslot and shuffled to
different suitable rooms using Course room matrix D in the hope of finding the appropriate
rooms for the unscheduled courses.



Ann Oper Res (2012) 194:3–31 15

Algorithm 2 Schematic pseudo-code of building HM solutions

for i = 1, . . . ,HMS do
repeat

xi = φ

WLD(xi )
while(xi is not complete ‖ predefined iterations are not met) do
begin

Backtracking(xi )
MultiSwap(xi )

end
until(xi is complete)
store xi in the HM
calculate f (xi )

end for

If this process with predefined iterations cannot find a feasible solution, we propose to
restart the whole process all over again. The schematic pseudo-code of building HM solu-
tions is shown in Algorithm 2.

4.3 Improvise a new harmony solution

In Step 3, a new harmony timetabling solution, x ′ = (x ′
1, x

′
2, . . . , x

′
N), is generated from

scratch based on three operators: (i) memory consideration, (ii) random consideration,
(iii) pitch adjustment. The new harmony in this paper must be feasible and complete. In
some iterations, the HSA operators may not improvise (generate) a complete timetable. In
such cases, the repair process has to take over. Algorithm 3 shows the pseudo-code for im-
provising a new harmony solution.

For UCTP or generally for any timetabling problems, constructing a feasible solution (in
our case a new harmony solution) is a crucial task. As such, the common idea to reserve
the feasibility for the timetabling solution is to order the courses according to how difficult
they are to be scheduled in the new harmony solution (i.e., graph coloring heuristic meth-
ods). Note that the improvisation step of basic HSA (See Algorithm 1, STEP 3) selects the
decision variables to be assigned in the new harmony solution sequentially, starting from
x ′

1 until x ′
N . However, it is difficult to sequentially find feasible locations for all courses

in the new harmony solution. With analogy to the ordering priority of the largest satura-
tion degree (Brélaz 1979) where the courses must be ordered iteratively one by one based
on the assigning difficulties during the construction process, the proposed smallest posi-
tion algorithm is responsible for selecting courses with the least feasible locations in HM
solutions by using the Course position matrix. Formally, let nk = ∑HMS

j=1 qk,j be the total
number of feasible location of course xk , the smallest position algorithm selects course x ′

i

where

i = arg min
k=1,...,N

nk

If there is more than one course at each iteration with the same least feasible locations, the
proposed algorithm selects one course depending on the WLD heuristic.



16 Ann Oper Res (2012) 194:3–31

Algorithm 3 Improvise a new harmony solution

begin
x ′ = φ

for j = 1 . . .N do
begin
x ′

i = Smallest_positions()
if (U(0,1) ≤ HMCR) then

begin
x ′

i = x
j

i , where (xj

i ∈ Bbest)
rnd = U(0,1)

if (rnd ≤ PAR1) then
Pitch adjustment Move(x ′

i )
elseif (rnd ≤ PAR2) then

Pitch adjustment Swap-location(x ′
i )

elseif (rnd ≤ PAR3) then
Pitch adjustment Swap-timeslot(x ′

i )
end

else
x ′

i ∈ Qi , where Qi = {l|l is feasible for x ′
i , l ∈ [0,P × K − 1]}

end
repair_process(x ′)

end

4.3.1 Memory consideration

Basic memory consideration: The basic memory consideration selects feasible locations
of the courses to be scheduled in the new harmony solution, x ′ = (x ′

1, x
′
2, . . . , x

′
N), from the

solutions stored in HM with the probability of HMCR. Formally, let course x ′
i be specified

by the smallest position algorithm, let set Hi = {xj

i |qi,j = 1,∀j ∈ [1,HMS]} where (i =
1 . . .N) and qi,j ∈ Q. The location of course x ′

i will be selected randomly from set Hi with
probability of HMCR.

Modified memory consideration: In UCTP, we modify the functionality of the basic mem-
ory consideration operator so as to always mimic the best solutions so far stored in HM that
have feasible locations for all courses, such that,

Bbest =
{
x

j

i |j = arg min
k s.t. xk

i
∈Hi

f (xk)
}
.

In other words, the location of course x ′
i is selected from the best solution, so far stored in

HM, that has a feasible location for x ′
i such that x ′

i = x
j

i where x
j

i ∈ Bbest with probability
HMCR. This idea stems from the analogy of Particle Swarm Optimization (PSO) (Kennedy
and Eberhart 1995) where a swarm of individuals (called particles) explore the search space.
Each particle is a candidate solution. It is drawn back to its best position and to the best
position in the whole swarm once a new best particle is found.

4.3.2 Random consideration

The remaining courses that have not been scheduled by memory consideration will se-
lect any feasible location available to be scheduled in the new harmony solution with



Ann Oper Res (2012) 194:3–31 17

probability (1-HMCR). Formally, let course x ′
i be selected by the smallest position algo-

rithm to be scheduled in the new harmony solution, let set Qi = {l|l is feasible for x ′
i , l ∈

[0,P × K − 1]}. The course x ′
i will be scheduled in any feasible location in set Qi with

probability of (1-HMCR).

4.3.3 Pitch adjustment

In the basic HSA, the pitch adjustment operator is mainly designed for mathematical and
engineering optimization problems where the values of the examined decision variables that
meet the PAR probability are replaced by the neighboring values by means of modifying the
decision variable by m (see (5)). This does not seem practical in UCTP.

For UCTP, we designed the pitch adjustment operator to work similar to neighborhood
structures in local search-based methods as follows: we divide the pitch adjustment oper-
ator into three procedures. (i) The pitch adjustment Move, (ii) the pitch adjustment Swap-
location, and (iii) the pitch adjustment Swap-timeslot. Each course x ′

i scheduled out of
memory consideration is examined as to whether it should be pitch adjusted with proba-
bility of PAR where 0 ≤ PAR ≤ 1. The PAR in our study is divided into three parame-
ters PAR1, PAR2 and PAR3, each of which controls the pitch adjustment procedure as
in (11):

Adjust the value of x ′
i ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Move 0 < U(0,1) ≤ PAR1

Swap-location PAR1 < U(0,1) ≤ PAR2

Swap-timeslot PAR2 < U(0,1) ≤ PAR3

do nothing PAR3 < U(0,1) ≤ 1.

(11)

It is worth emphasizing again that only the courses that are scheduled according to mem-
ory consideration are examined by pitch adjustment procedures to determine the need for
such adjustment. The courses that are scheduled out of random consideration are not exam-
ined by pitch adjustment procedures. This can be seen from Algorithm 3 where the pitch
adjustment procedures run within the memory consideration operator. This is discussed by
Yang (2009) who held that the pitch adjustment in the musical context allows the musicians
to explore the preferable pitches stored in their memory while the pitch adjustment in the
optimization context helps the HSA to locally explore the search space region of each de-
cision variable. The three proposed pitch adjustment procedures are designed to work as
follows:

– Pitch adjustment Move. A course x ′
i that meets probability PAR1 is randomly moved to

any free feasible location in the new harmony solution.
– Pitch adjustment Swap-location. A course x ′

i that meets the range of probability PAR1 and
PAR2 is randomly swapped with another course (e.g., x ′

j ) that has already been scheduled
in the new harmony while maintaining the feasibility.

– Pitch adjustment Swap-timeslot. A course x ′
i that meets the range of probability PAR2 and

PAR3 is adjusted as follows: (i) select all courses that have the same timeslot (e.g., tj ) as
course x ′

i ; (ii) select a timeslot at random (e.g., tk); (iii) simply swap all the courses in the
timeslot tj with all the courses in the other timeslot tk without changing the rooms. For-
mally, let x ′

i be scheduled by memory consideration and examined for pitch adjustment by
Pitch adjustment Swap-timeslot. Let the set A = {xj |xj modP = x ′

i modP,∀j ∈ [1,N ]}
contain all courses scheduled in a new harmony solution x ′ having the same timeslot as



18 Ann Oper Res (2012) 194:3–31

the course x ′
i . Let the set B = {xb|xb modP = tk,∀b ∈ [1,N ]} contain all courses sched-

uled in x ′ that have the same randomly selected timeslot tk where (tk �= x ′
i modP ). Simply

∀xj ∈ A, xj = 
 xj

P
� × P + tk and ∀xb ∈ B, xb = 
 xb

P
� × P + x ′

i modP .

Note that the pitch adjustment in the basic harmony search accepts the adjustments of all
examined decision variables randomly (i.e., as a random walk in the search space), without
checking if these adjustments will not negatively affect the objective function value. In the
case of the UCTP, the number of decision variables is considerable, and the random ac-
ceptance rule may lead to undesirable diversity. Therefore, a possible way to manage this
operator is to accept the adjustments done by any pitch adjustment procedure mentioned
above, on the condition that the objective function value of the new harmony solution is
not negatively affected (i.e., side walk and first improvement acceptance rule). In this paper,
we modified the pitch adjustment procedures to accept the adjustments performed by (11),
if and only if the objective function value of the new harmony solution is not negatively
affected. Contrary to what (Yang 2009) explained as the pitch adjustment operator being
used for local exploration, our study has modified such an operator to be used for local
exploitation.

4.3.4 Repair process

During the improvisation process of a new harmony solution, some courses that were sup-
posed to be scheduled based on the operators of memory consideration or random consid-
eration were not able to find feasible locations in the new harmony solution. This occurs
when the HMS is small and the size of the timetable instance is medium or large. The
process of producing a feasible new harmony needs a repair process to schedule these un-
scheduled courses. It is indeed difficult to design an effective repair process that changes
the new harmony solution from an incomplete state to a complete one without affecting the
optimization nature of the harmony search. Thus, the repair process used here is based on a
one-level backtracking process. In other words, the repair process is iterative during which
the following operations are performed at each iteration:

1. Select an unscheduled course xi .
2. Find all feasible locations for the unscheduled course xi which is currently occupied by

other courses in the new harmony solution.
3. Greedily select the best feasible location (e.g., l) for the unscheduled course xi in terms

of the value of the objective function.
4. Delete the course (e.g., xj ) that held the feasible location l and add it to the unscheduled

list.
5. Schedule the unscheduled course xi to new harmony solution in the feasible location l

and remove it from the unscheduled list.

The repair process then attempts to find new feasible locations for the new unscheduled
courses. If the repair process with the predefined iterations cannot find a complete feasi-
ble timetable, the improvisation process of new harmony is restarted with a new random
seed.

The main difference between the backtracking algorithm used in Sect. 4.2 and the one-
level backtracking used in this section is that the backtracking algorithm removes all courses
conflicting with the unscheduled courses. Thus, the number of courses is probably high,
which may affect the efficiency of the HSA operators if the same algorithm is used to repair
the new harmony solution. The one-level backtracking removes one course at a time from



Ann Oper Res (2012) 194:3–31 19

Table 2 The characteristics of
each class of Socha benchmark Class Small Medium Large

Number of events 100 400 400

Number of rooms 5 10 10

Number of features 5 5 10

Number of timeslots 45 45 45

Approximate features per room 3 3 5

Percentage of the feature use 70% 80% 90%

Number of students 80 200 400

Maximum events per student 20 20 20

Maximum students per event 20 50 100

a new harmony solution based on the objective function. Evidently then, the efficiency of
HSA operators mentioned above are not highly affected.

Finally, we apply for UCTP the same functionality of Steps 4 and 5 discussed in
Sect. 3.2.

5 Experimental results

The performance of our basic HSA and modified harmony search algorithm (MHSA) for
UCTP are evaluated in this section. The basic HSA used the functionally of HSA operators
as appeared in Lee and Geem (2005), where it used a basic memory consideration and pitch
adjustment with random walk as an acceptance rule. The MHSA changes the functionality
of the basic HSA as described in Sect. 4, where it used a modified memory consideration
and pitch adjustment with side walk and first improvement acceptance rule. The proposed
methods are coded in Microsoft Visual C++ 6 under Windows XP platform on an Intel
2 GHz Core 2 Quad processor with 4 GB of RAM.

5.1 The problem instances

The UCTP data used in the experiments in this study are freely available,3 prepared by
Socha et al. (2002). For the purposes of our study, we call them the ‘Socha benchmark’. The
11 problem instances, which are grouped into five small problem instances, five medium
problem instances and one large problem instance, have different levels of complexity and
various sizes, as shown in Table 2. The solution to all problem instances must satisfy the
defined hard constraints stated in Sect. 2. Furthermore, the solution cost is measured by the
defined soft constraint violations as described in (10).

5.2 Empirical study of the impact of different parameter settings on convergence behavior
of MHSA

The main aim of this section is to study the features of MHSA operators during the search
process on different settings of five parameters (i.e., HMS, HMCR, PAR1, PAR2, and

3See http://iridia.ulb.ac.be/~msampels/tt.data/ (27-Sep-2009).

http://iridia.ulb.ac.be/~msampels/tt.data/


20 Ann Oper Res (2012) 194:3–31

Table 3 Different MHSA
convergence scenarios HMS HMCR PAR1 PAR2 PAR3 Scenario No.

1 100% 0% 0% 0% 1

2% 4% 6% 2

99% 0% 0% 0% 3

2% 4% 6% 4

20% 40% 60% 5

10 99% 0% 0% 0% 6

2% 4% 6% 7

20% 40% 60% 8

50 100% 0% 0% 0% 9

2% 4% 6% 10

99% 0% 0% 0% 11

2% 4% 6% 12

20% 40% 60% 13

PAR3). Our discussion takes in consideration the exploration and exploitation search as-
pects. Generally, any successful metaheuristic can explore the not-yet-visited search space
regions when it is necessary (i.e., exploration). It can also make use of the already visited
search space regions (i.e., exploitation). Exploration and exploitation are contradictory and
thus a suitable balance between them should be made to reach a high quality solution.

In particular, we designed 13 convergence scenarios at different parameter settings to
show the convergence behavior of the proposed MHSA method as shown in Table 3. Each
designed scenario was run 10 times with iteration numbers fixed to 100,000 for all runs. We
experimented each scenario on the Socha benchmarks.

In Table 4, the best, average, worst, and standard deviation of the solution costs (see (10))
are recorded together with the computational time for each scenario. The best result among
all scenarios on a particular problem instance is highlighted in bold.

Scenarios 1 to 5 are meant to show the behavior of the MHSA when the HMS = 1. In
these scenarios, the MHSA behaves similar to local search-based methods. Scenario 1 shows
that the MHSA does not have exploration and exploitation source. In each iteration, a new
harmony solution is constructed by inheriting the locations of courses from a single solution
stored in HM. The locations of courses and new harmony cost do not change during each
search. In Scenario 2, the MHSA works similar to the Iterative Local Search Algorithm with
the three defined neighborhood structures. The new harmony solution is always accepted if
its cost is better than or equal to the solution cost stored in HM. Here the MHSA is concerned
with exploitation rather than exploration which causes it to easily get stuck in local optima.

It can be observed from Scenario 3 that the MHSA behaves like Iterative Local Search but
without neighborhood structure definition (i.e., pitch adjustment procedures). The ability of
this scenario to improve the new harmony solution is based on constructing a new harmony
solution in each iteration that selects most of the locations of the courses from a single
solution stored in HM and few locations of the other courses randomly selected. We believe
that this scenario may lead to new research trends for adapting the ability of existing local
search-based methods in the exploration power discipline.

To assess the above observation, in Scenario 4 the MHSA behaves like Iterative Local
Search with three defined neighborhood structures and random consideration as an auxiliary



Ann Oper Res (2012) 194:3–31 21

Table 4 MHSA convergence scenarios (Scenarios 1 to 13)

Dataset Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5 Scen. 6 Scen. 7

Small 1 best 178 4 7 0 0 5 1

average 209.67 5.4 9.4 2.5 0.1 7.9 2.3

worst 256 7 11 4 1 10 4

std.dev. 32.6 1.34 1.42 1.17 0.31 2.33 1.15

time(s) 45 160 70 155 750 93 178

Small 2 best 165 1 9 0 0 7 1

average 221.1 2.6 10.4 2.5 1.1 8.7 2.4

worst 270 4 12 4 2 1 1 4

std.dev. 43.826 0.966 0.966 1.269 0.737 1.337 0.966

time(s) 145 145 64 153 830 74 176

Small 3 best 198 4 7 3 0 9 2

average 242.75 5.6 9.7 4.5 0.8 10.4 3

worst 301 7 12 6 2 12 5

std.dev. 35.098 0.966 1.418 1.080 0.788 1.074 1.054

time(s) 38 155 53 126 870 84 195

Small 4 best 188 4 7 4 0 5 2

average 235.4 5.3 9.6 5.8 1.2 6.3 3.8

worst 265 7 12 8 3 8 5

std.dev. 28.675 0.948 1.577 1.316 0.918 0.948 1.229

time(s) 52 150 81 168 904 83 168

Small 5 best 196 0 4 0 0 1 0

average 229.7 2.1 5.4 0.4 0 2.6 0.4

worst 284 4 7 2 0 4 2

std.dev. 28.075 1.911 1.074 0.699 0 1.173 0.699

time(s) 42 140 45 155 760 85 172

Medium 1 best 735 220 273 191 169 277 207

average 806.33 239.9 281.6 209.3 180.1 288.4 220.3

worst 873 256 290 215 196 300 236

std.dev. 51.090 13.682 5.125 8.193 8.672 8.235 8.680

time(s) 850 2133 1129 2712 7645 1574 3185

Medium 2 best 712 238 251 182 161 235 168

average 758.8 252.67 260.22 200.11 169.78 254 182.22

worst 803 274 273 209 188 271 198

std.dev. 36.437 12.531 8.714 9.293 8.899 13.564 11.997

time(s) 860 2036 1204 2644 8566 1873 3455

Medium 3 best 679 214 290 190 177 273 209

average 758.5 256.4 303.3 216.4 189.6 293.9 221.2

worst 855 279 324 234 206 311 233

std.dev. 72.633 19.224 10.853 12.946 9.143 13.219 8.791

time(s) 889 2150 1316 2734 8259 1634 3177



22 Ann Oper Res (2012) 194:3–31

Table 4 (Continued)

Dataset Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5 Scen. 6 Scen. 7

Medium 4 best 760 247 234 164 159 238 166

average 787.33 260.3 255 180.1 173.4 253.1 178.1

worst 813 275 268 198 187 276 189

std.dev. 22.983 9.638 12.640 10.660 10.101 12.187 7.445

time(s) 765 2054 1198 2577 7543 1544 3265

Medium 5 best 688 97 208 120 73 203 133

average 759.5 114.6 216.8 135.5 94.5 222.6 143

worst 834 130 225 157 108 237 156

std.dev. 51.149 10.731 5.788 10.834 9.144 12.624 8.485

time(s) 967 1930 1334 2756 8792 1769 3320

Large best 1634 563 694 514 432 661 516

average 1720.5 621.3 726.5 565.5 502.1 708.37 547.8

worst 1812 666 770 655 579 771 582

std.dev. 66.416 33.243 31.0385 42.675 40.355 33.866 25.646

time(s) 1878 2955 2059 2959 13256 2533 3539

operator to diversify the new harmony solution. In each iteration, the MHSA selects few ran-
dom locations to some courses through the improvisation process. Similarly, in Scenario 5,
the MHSA behaves similar to Scenario 4, but there is a greater use of the pitch adjustment
operator. Therefore, the MHSA is able to fine-tune the search space region of the new har-
mony solution more rigorously. Although the MHSA in Scenarios 4 and 5 is able to find a
suitable trade off between exploration and exploitation, it still works as a local search-based
method.

In the remaining Scenarios 6 to 13, The MHSA makes use of the strength of the modi-
fied memory consideration by means of selecting better locations of the most courses from
the best solutions, so far stored in HM, to generate the new harmony solution. It can be
seen from Scenarios 6 and 11 that the MHSA is able to generate the new harmony solution
based on modified memory consideration and random consideration. However, MHSA does
not concentrate on the search space region of the new harmony solution to which it con-
verges. That is, the pitch adjustment procedures are not used. Although the MHSA is able
to recognize the promising search space regions, it is not able to precisely fine-tune any of
them.

Scenarios 7 and 12 are designed to show the ability of the MHSA to improvise a new har-
mony solution using the modified memory consideration and random consideration which
recognize the promising search space region and pitch adjustment procedures to fine-tune.
Scenarios 8 and 13 are likewise meant to show the ability of MHSA to rigorously fine-tune
the search space region of a new harmony solution by using the pitch adjustment procedures
with larger PAR values. Basically, in scenarios (7, 8, 12 and 13), the MHSA is able to strike
a balance between exploration and exploitation in addition to its ability to scan many search
space regions at the same time, thus leading to the most desired results from these scenarios
(see Table 4).

Finally, Scenario 9 is set to show the ability of MHSA to improvise a new harmony so-
lution based on modified memory consideration only. Since the HMCR = 1 (i.e., random
consideration is not used), the MHSA concentrates on exploitation rather than exploration.



Ann Oper Res (2012) 194:3–31 23

Table 4 (Continued)

Dataset Scen. 8 Scen. 9 Scen. 10 Scen. 11 Scen. 12 Scen. 13

Small 1 best 0 88 1 6 2 0

average 0.3 91.2 4.2 8 3.3 0

worst 1 95 6 10 5 0

std.dev. 0.483 2.936 1.619 1.490 1.159 0

time(s) 873 301 353 328 387 1093

Small 2 best 0 97 2 5 1 0

average 0.9 101.4 3.7 7.9 2.4 1

worst 2 109 6 10 4 2

std.dev. 0.737 4.452 1.337 1.595 0.966 0.816

time(s) 858 275 325 284 365 982

Small 3 best 0 90 2 7 2 0

average 1.2 97.4 3.9 9.3 3.6 0.4

worst 2 105 6 11 5 2

std.dev. 0.788 5.601 1.370 1.567 0.966 0.699

time(s) 916 259 326 298 365 1065

Small 4 best 0 111 5 6 0 0

average 0.8 120.7 6.5 7.2 2.9 0.3

worst 2 133 8 10 4 2

std.dev. 0.788 7.498 0.971 1.316 1.449 0.674

time(s) 1012 297 312 302 343 1163

Small 5 best 0 95 0 3 0 0

average 0.2 98 1.7 4 0 0

worst 1 101 4 7 0 0

std.dev. 0.421 2.108 1.702 1.333 0 0

time(s) 958 286 342 312 356 1094

Medium 1 best 180 646 234 274 196 168

average 191.1 659.7 254.3 282.7 210.4 179.7

worst 204 675 266 290 227 200

std.dev. 7.430 10.985 12.552 5.396 10.002 10.296

time(s) 13456 3460 4938 3870 5281 17357

Medium 2 best 175 659 211 252 169 160

average 182.67 666.11 234.89 269.22 187.56 178.67

worst 190 676 257 288 200 188

std.dev. 4.5 5.988 15.551 14.889 11.147 9.772

time(s) 12578 3515 4947 3964 5232 18185

Medium 3 best 189 651 217 275 194 176

average 205.1 680.8 236.3 283.8 210.3 182.8

worst 220 718 254 296 222 196

std.dev. 9.949 28.326 11.450 9.461 8.380 7.699

time(s) 14672 3845 5019 3905 5316 18452



24 Ann Oper Res (2012) 194:3–31

Table 4 (Continued)

Dataset Scen. 8 Scen. 9 Scen. 10 Scen. 11 Scen. 12 Scen. 13

Medium 4 best 144 631 206 238 173 152

average 153.4 653.9 219.9 255 186.1 166

worst 161 689 229 278 204 177

std.dev. 7.471 17.381 8.849 14.204 9.643 10.697

time(s) 13655 3684 4874 3872 5143 17954

Medium 5 best 90 612 114 204 139 71

average 106.7 628.2 130 221.4 144.8 80.2

worst 113 641 144 244 150 92

std.dev. 6.111 9.919 10.392 11.871 3.735 8.521

time(s) 13786 3540 5112 4094 5364 18536

Large best 468 1409 558 633 534 417

average 530.7 1453.6 620.4 675.2 556.9 476.6

worst 563 1513 655 712 605 530

std.dev. 36.514 48.724 34.644 31.336 33.238 37.322

time(s) 14865 4253 6322 4653 6848 23716

As such, the method is easily gets stuck in local optima. In Scenario 10, the MHSA is
able to improve the new harmony solution based on modified memory consideration and
pitch adjustment procedures. The search does not concentrate on exploration since random
consideration is not used. Therefore, the MHSA might easily get stuck in the local min-
ima.

In short, larger HMS allows the MHSA to explore multiple search space regions simul-
taneously. Also, the larger the PAR values are, the more rigorous is the fine-tuning of the
search space region to which the MHSA converges. In addition, the larger HMCR, the less
exploration and the greater exploitation. In UCTP, the value of HMCR should be large to
avoid the large exploration and thus the algorithm will not behave like a pure random search.
It is to be noted that in some problem instances the repair process may increase the diversity
of the MHSA.

The computational time of MHSA is influenced by two factors: the HMS and PAR values.
The larger the HMS and PAR values is, the longer the computational time. In other words,
a large HMS means that the memory consideration requires more computational time to
find feasible locations for each course to be scheduled in the new harmony solution from
many solutions stored in HM. The larger PAR1, PAR2, and PAR3 values cause the MHSA
to make considerable local changes using the pitch adjustment operator which increases
computational time.

5.3 Comparing results between basic HSA and MHSA

This section discusses the results obtained by the basic HSA and MHSA. Scenarios 4, 7
and 12 (Table 3) are used to compare both methods where the number of iterations is fixed
to 100,000. These scenarios are chosen because they use all available operators. Each sce-
nario runs 10 times. In Table 5, the best, average, worst, and standard deviation of the solu-



Ann Oper Res (2012) 194:3–31 25

Table 5 Comparison results between basic HSA and MHSA

Dataset Basic HSA MHSA

Scen. 4 Scen. 7 Scen. 12 Scen. 4 Scen. 7 Scen. 12

Small 1 best 5 5 3 0 1 2

average 7.5 7.1 5 2.5 2.3 3.3

worst 10 9 8 4 4 5

std.dev. 1.433 1.197 1.632 1.178 1.159 1.159

time(s) 66 115 269 155 178 387

Small 2 best 14 8 4 0 1 1

average 18.5 10.2 6.3 2.5 2.4 2.4

worst 22 15 9 4 4 4

std.dev. 2.368 2.347 1.494 1.269 0.966 0.966

time(s) 72 132 278 153 176 365

Small 3 best 10 8 2 3 2 2

average 13.2 10.5 3.7 4.5 3 3.6

worst 17 13 5 6 5 5

std.dev. 1.932 1.58 1.059 1.080 1.054 0.966

time(s) 69 125 261 126 195 365

Small 4 best 11 6 3 4 2 0

average 13.2 7.3 3.4 5.8 3.8 2.9

worst 16 9 5 8 5 4

std.dev. 1.549 1.159 0.843 1.316 1.229 1.449

time(s) 73 145 283 168 168 343

Small 5 best 5 3 1 0 0 0

average 6.5 4 2.8 0.4 0.4 0

worst 8 6 4 2 2 0

std.dev. 1.080 1.054 1.032 0.699 0.699 0

time(s) 82 155 301 155 172 356

Medium 1 best 296 314 308 191 207 196

average 307.3 340 317 209.3 220.3 210.4

worst 318 366 326 215 236 227

std.dev. 8.602 36.769 12.727 8.192 8.680 10.002

time(s) 1540 2469 4320 2712 3185 5281

Medium 2 best 248 278 236 182 168 169

average 255.1 291.7 245.1 200.111 182.222 187.556

worst 267 312 256 209 198 200

std.dev. 5.087 10.242 6.573 9.293 11.997 11.147

time(s) 1354 2351 4258 2644 3455 5232

Medium 3 best 312 308 255 190 209 194

average 344.3 327 274.3 216.4 221.2 210.3

worst 363 344 286 234 233 222

std.dev. 13.960 11.803 11.294 12.946 8.791 8.380

time(s) 1428 2532 4492 2734 3177 5316



26 Ann Oper Res (2012) 194:3–31

Table 5 (Continued)

Dataset Basic HSA MHSA

Scen. 4 Scen. 7 Scen. 12 Scen. 4 Scen. 7 Scen. 12

Medium 4 best 275 253 231 164 166 173

average 286.8 265.9 244.7 180.1 178.1 186.1

worst 312 274 265 198 189 204

std.dev. 10.881 7.093 10.371 10.660 7.445 9.643

time(s) 1242 2531 3987 2577 3265 5143

Medium 5 best 251 221 207 120 133 139

average 265.8 235.3 214.7 135.5 143 144.8

worst 276 245 222 157 156 150

std.dev. 7.375 7.930 4.945 10.834 8.485 3.735

time(s) 1429 2423 4145 2756 3320 5364

Large best – – – 514 516 534

average – – – 565.5 547.8 556.9

worst – – – 655 582 605

std.dev. – – – 42.675 25.646 33.238

time(s) – – – 2959 3539 6848

tion costs for each scenario are recorded together with the computational time upon Socha
benchmarks. The best results obtained from the experimented scenarios are highlighted in
bold.

It is apparent from Table 5 that the basic HSA is able to find feasible solutions for small
and medium problem instances but not for large ones. The MHSA is able to obtain feasible
results for all Socha benchmarks. The solution costs of the obtained results from MHSA
outperforms those obtained by basic HSA in all the scenarios.

It is worth mentioning that the basic HSA cannot converge to the optimal solution with
larger PAR values, mainly because the number of random local changes in the new harmony
will be large, leading to a high diversity. Thus, the basic HSA will behave like a pure random
search. For this reason, the Scenarios 5, 8, and 13 are poor choices for the basic HSA.

It can be noted that the computational time needed for basic HSA is less than the compu-
tational time needed for MHSA when both methods use the same scenario. This is because
the MHSA uses the objective function each time to accept the local changes on the new
harmony solution while basic HSA does not do so.

Practically, we notice that the modified memory consideration improves the speed of
convergence of the basic HSA as well as reduces the selection pressure of the basic memory
consideration operator. This modification basically helps the MHSA to configure a high
quality new harmony solution at each run similar to the quality of the best solutions so far
stored in HM. Also, the MHSA is able to find a feasible new harmony for large timetabling
problem instances.

5.4 Comparison with previous works

The results are compared to those in the literature that used the same Socha benchmarks
abbreviated in Table 4 as follows:



Ann Oper Res (2012) 194:3–31 27

Table 6 Comparison results with the previous methods

Sm
al

l1

Sm
al

l2

Sm
al

l3

Sm
al

l4

Sm
al

l5

M
ed

iu
m

1

M
ed

iu
m

2

M
ed

iu
m

3

M
ed

iu
m

4

M
ed

iu
m

5

L
ar

ge

basic HSA(best) 3 4 2 3 1 296 236 255 231 207 −
MHSA(best) 0 0 0 0 0 168 160 176 144 71 417

RRLS (avg.) 8 11 8 7 5 199 202.5 − 177.5 − −
MMAS (avg.) 1 3 1 1 0 195 184 284 164.5 219.5 851.5

THH (best) 1 2 0 1 0 146 173 267 169 303 1166

VNS (best) 0 0 0 0 0 317 313 375 247 292 −
FMHO (best) 10 9 7 17 7 243 325 249 285 132 1138

EGD (best) 0 0 0 0 0 80 105 139 88 88 730

GHH (best) 6 7 3 3 4 372 419 359 348 171 1068

RII (best) 0 0 0 0 0 242 161 265 181 151 −
HEA (best) 0 0 0 0 0 221 147 246 165 130 529

GD (best) 17 15 24 21 5 201 190 229 154 222 1066

NGD (best) 3 4 6 6 0 140 130 189 112 141 876

ENGD (best) 0 1 0 0 0 126 123 185 116 129 821

NGDHH-SM (best) 0 0 0 0 0 71 82 137 55 106 777

NGDHH-DM (best) 0 0 0 0 0 88 88 112 84 103 915

EMGD (best) 0 0 0 0 0 96 96 135 79 87 683

basic HSA—Proposed basic Harmony Search Algorithm.
MHSA—Proposed Modified Harmony Search Algorithm.
RRLS—Random Restart Local search (Socha et al. 2002).
MMAS—MAX-MIN Ant System (Socha et al. 2002).
THH—Tabu-search Hyper-Heuristic (Burke et al. 2003a).
VNS—Variable Neighborhood Search (Abdullah et al. 2005).
FMHO—Fuzzy Multiple Heuristic Ordering (Asmuni et al. 2005).
EGD—Extended Great Deluge (McMullan 2007).
GHH—Graph-based Hyper-Heuristic (Burke et al. 2007).
RII—Randomized Iterative Improvement (Abdullah et al. 2007b).
HEA—Hybrid Evolutionary Approach (Abdullah et al. 2007a).
GD—Great Deluge (Landa-Silva and Obit 2008).
NGD—Non-linear Great Deluge (Landa-Silva and Obit 2008).
ENGD—Evolutionary Non-linear Great Deluge (Landa-Silva and Obit 2009).
NGDHH-SM—Non-linear Great Deluge Hyper-Heuristic-Static Memory (Obit et al. 2009).
NGDHH-DM—Non-linear Great Deluge Hyper-Heuristic-Dynamic Memory (Obit et al.
2009).
EMGD—Electromagnetism Mechanism Great Deluge (Turabieh et al. 2009).

As shown in Table 6, the results obtained by basic HSA seem to be competitive with
those from other previous works. These results are the best results recorded in Table 5 of
the basic HSA. Note that in Table 6, the best recorded results are highlighted in bold. The
basic HSA algorithm is capable of producing near optimal solutions. The results also seem
to fall within the range of previous works that used the same Socha benchmarks. In addi-
tion, the MHSA is able to obtain high quality solutions for all Socha benchmarks. These



28 Ann Oper Res (2012) 194:3–31

results are the best recorded results from Table 4 on each Socha benchmark. Basically, the
solution costs obtained by MHSA outperform the solution costs obtained by previous works
in ‘Medium 5’ and ‘Large’ problem instances. The MHSA also shares the same best known
results with RII, HEA, EGD, VNS, NGDHH-SM, NGDHH-DM, EMGD and some results
introduced by MMSA, THH, NGD, and ENGD for small problem instances. In addition,
MHSA obtains the second-best result in the ‘Medium 3’ problem instance. Particularly, the
‘Medium 5’ and ‘Large’ problem instances are the hardest problem instances among the
Socha benchmarks as noted by Burke et al. (2007). The MHSA basically seems very effec-
tive to deal with complex and large problem instances which makes it more practical in real
timetabling problems.

6 Conclusions and future work

This paper applies a harmony search algorithm to tackle the university course timetabling
problem using an 11 problem instances established by Socha et al. (2002). The main ratio-
nale for developing this algorithm for timetabling stems from its potentiality to converge to
the (near) optimal solution. It utilizes the advantages of population-based methods by means
of recognizing the promising region in the search space using the memory consideration and
randomness. It also utilizes the advantages of local search-based methods by means of fine-
tuning the search space region to which it converges using the pitch adjustment operators.

We also proposed the modified harmony search algorithm (MHSA), where two modifi-
cations to the basic HSA are proposed: (i) a memory consideration is modified, and (ii) the
functionality of the pitch adjustment operators is further improved by changing the accep-
tance rule from ‘random walk’ to ‘first improvement’ and ‘side walk’.

We have deeply studied the MHSA operators by designing thirteen convergence scenar-
ios where each of which converges to the optimal solution based on different parameter
settings. We conclude that the MHSA that used the larger HMS and a larger PAR values
with larger HMCR often obtains high quality solutions among all scenarios applied to Socha
benchmarks.

We compare the results obtained by MHSA with the basic HSA. The results of MHSA
basically outperformed those obtained by basic HSA significantly. However, the computa-
tional time needed for MHSA is longer.

The results obtained by both basic HSA and MHSA are compared to those in the lit-
erature that used the same Socha benchmarks. Generally, the basic HSA obtained results
within the range of the previous works. Interestingly, the MHSA obtained high quality solu-
tions that excel those in the previous works on two hardest Socha benchmarks. We believe
that the proposed methods are highly influential with a great potential to be very valuable to
the timetabling community.

It is highly recommendable that future work should be directed:

– To improve HSA for UCTP by introducing more advanced neighborhood structures in
pitch adjustment procedures.

– To integrate HSA with other metaheuristic algorithms like simulated annealing accep-
tance rule in step 4 of HSA.

– To tune the HSA parameters for UCTP.
– To apply harmony search for different timetable forms such as examination timetabling,

nurse rostering, etc.



Ann Oper Res (2012) 194:3–31 29

Acknowledgements The authors would like to thank Dr. Iman Yi Liao and Dr. Munir Zaman for comments
on the technical presentation. The research was partly supported by the Universiti Sains Malaysia (USM)
Fellowship awarded to the first author. We would like also to thank the anonymous referees for their insightful
comments.

References

Abdullah, S., Burke, E. K., & McColum, B. (2005). An investigation of variable neighbourhood search for
university course timetabling. In G. Kendall, L. Lei, M. Pinedo (Eds.), Proceedings of the 2nd multidis-
ciplinary international conference on scheduling: theory and applications (MISTA) (pp. 413–427). New
York, USA, 18–21 July 2005.

Abdullah, S., Burke, E. K., & McCollum, B. (2007a). A hybrid evolutionary approach to the university course
timetabling problem. In CEC 2007. IEEE congress on evolutionary computation 2007 (pp. 1764–1768).
Singapore.

Abdullah, S., Burke, E. K., & McCollum, B. (2007b). Using a randomised iterative improvement algorithm
with composite neighbourhood structures for the university course timetabling problem. In Metaheuris-
tic (pp. 153–169).

Arani, T., & Lofti, J. A. (1989). A three phased approach to final exam scheduling. IIE Transactions, 21(4),
86–96.

Asmuni, H., Burke, E. K., & Garibaldi, J. M. (2005). Fuzzy multiple heuristic ordering for course timetabling.
In Proceedings of the 5th United Kingdom workshop on computational intelligence (UKCI05) (pp. 302–
309).

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual com-
parison. ACM Computing Surveys, 35(3), 268–308.

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of the ACM, 22(4), 251–
256.

Burke, E. K., & Landa-Silva, J. D. (2005). The design of memetic algorithms for scheduling and timetabling
problems. In Studies in fuzziness and soft computing: Vol. 166. Recent advances in memetic algorithms
(pp. 289–311). Berlin: Springer.

Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal
of Operational Research, 140(2), 266–280.

Burke, E. K., Jackson, K., Kingston, J. H., & Weare, R. (1997). Automated university timetabling: The state
of the art. The Computer Journal, 40(9), 565–571.

Burke, E. K., Kendall, G., & Soubeiga, E. (2003a). A tabu-search hyperheuristic for timetabling and rostering.
Journal of Heuristics, 9(6), 451–470.

Burke, E. K., Bykov, Y., Newall, J. P., & Petrovic, S. (2003b). A time-predefined approach to course
timetabling. Yugoslav Journal of Operations Research, 13, 139–151.

Burke, E. K., de Werra, D., & Kingston, J. (2004). Applications to timetabling. In J. L. Gross, & J. Yellen
(Eds.), Handbook of graph theory (pp. 445–474). London: CRC Press.

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for
educational timetabling problems. European Journal of Operational Research, 176(1), 177–192.

Carter, M. W., & Laporte, G. (1997). Recent developments in practical course timetabling. In B. E. K.,
& M. C. (Eds.), Lecture notes in computer science: Vol. 1408. The practice and theory of automated
timetabling (pp. 3–19). Berlin: Springer.

Carter, M. W., Laporte, G., & Lee, S.Y. (1996). Examination timetabling: algorithmic strategies and applica-
tions. Journal of the Operational Research Society, 74, 373–383.

Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria, O. (2006). An effective hybrid algorithm for uni-
versity course timetabling. Journal of Scheduling, 9(5), 403–432.

Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., & Alizadeh, Y. (2008). Hybridizing harmony search
algorithm with sequential quadratic programming for engineering optimization problems. Computer
Methods in Applied Mechanics and Engineering, 197(33–40), 3080–3091.

Geem, Z. W. (2006). Optimal cost design of water distribution networks using harmony search. Engineering
Optimization, 38(3), 259–280.

Geem, Z. W. (2007a). Harmony search algorithm for solving sudoku. In B. Apolloni, R. J. Howlett, & L. Jain
(Eds.), Lecture notes in computer science (Lecture notes in artificial intelligence): Vol. 4692. KES 2007,
Part I (pp. 371–378). Heidelberg: Springer.

Geem, Z. W. (2007b). Optimal scheduling of multiple dam system using harmony search algorithm. In F. San-
doval, A. G. Prieto, J. Cabestany, & M. Graa (Eds.), Lecture notes in computer science: Vol. 4507.
IWANN 2007 (pp. 316–323). Heidelberg: Springer.



30 Ann Oper Res (2012) 194:3–31

Geem, Z. W., & Choi, J. Y. (2007). Music composition using harmony search algorithm. In M. Giacobini
(Ed.), Lecture notes in computer science: Vol. 4448. EvoWorkshops 2007 (pp. 593–600). Heidelberg:
Springer.

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony
search. Simulation, 76(2), 60–68.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading:
Addison-Wesley.

Ingram, G., & Zhang, T. (2009). Overview of applications and developments in the harmony search algo-
rithm. In Z. W. Geem (Ed.), Music-inspired harmony search algorithm (pp. 15–37). Berlin/Heidelberg:
Springer.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings IEEE international confer-
ence on neural networks (pp. 1942–1948).

Kostuch, P. (2005). The university course timetabling problem with a three-phase approach. In E. K. Burke,
& M. A. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Practice and theory of automated
timetabling (pp. 109–125). Berlin: Springer.

Landa-Silva, D., & Obit, J. H. (2008). Great deluge with non-linear decay rate for solving course timetabling
problems. In Proceedings of the 4th international IEEE conference on intelligent systems (IS 2008) (pp.
8.11–8.18). New York: IEEE Press.

Landa-Silva, D., & Obit, J. H. (2009). Evolutionary non-linear great deluge for university course timetabling.
In E. Corchado, X. Wu, E. Oja, E. Hristozov, & T. Jedlovcnik (Eds.), Lecture notes in computer science
(Lecture notes in artificial intelligence): Vol. 5572. Proceeding of 4th international conference on hybrid
artificial intelligence systems, HAIS 2009 (pp. 269–276). Berlin/Heidelberg: Springer.

Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based on the harmony search
algorithm. Computers and Structures, 82(9–10), 781–798.

Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimiza-
tion: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering,
194(36–38), 3902–3933.

Lee, K., Geem, Z. W., Lee, Sh., & Bae, Kw. (2005). The harmony search heuristic algorithm for discrete
structural optimization. Engineering Optimization, 37(7), 663–684.

Lewis, R. (2008). A survey of metaheuristic-based techniques for university timetabling problems. OR Spec-
trum, 30, 167–190.

Lewis, R., & Paechter, B. (2004). New crossover operators for timetabling with evolutionary algorithms.
In A. Lofti (Ed.), The fifth international conference on recent advances in soft computing RASC2004
(pp. 189–194). Nottingham, England.

Lewis, R., & Paechter, B. (2005). Application of the grouping genetic algorithm to university course
timetabling. In G. Raidl, & J. Gottlieb (Eds.), Evolutionary computation in combinatorial optimization
(EvoCop) (pp. 144–153). Berlin: Springer.

Lewis, R., Paechter, B., & McCollum, B. (2007). Post enrolment based course timetabling: a description of
the problem model used for track two of the second international timetabling competition. Tech. rep.,
Cardiff University, Cardiff Business School, Accounting and Finance Section.

Malim, M. R., Khader, A. T., & Mustafa, A. (2006). Artificial immune algorithms for university timetabling.
In E. K. Burke, H. Rudova (Eds.), Proceedings of the 6th international conference on practice and
theory of automated timetabling (pp. 234–245). Brno, Czech Republic.

McCollum, B. (2006). University timetabling: bridging the gap between research and practice. In Proceedings
of the 5th international conference on the practice and theory of automated timetabling (pp. 15–35).
Berlin: Springer.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A., Di Gaspero, L., Qu, R., &
Burke, E. K. (2009). Setting the research agenda in automated timetabling: the second international
timetabling competition. Informs Journal on Computing, DOI:10.1287/ijoc.1090.0320.

McMullan, P. (2007). An extended implementation of the great deluge algorithm for course timetabling. In
ICCS ’07: Proceedings of the 7th international conference on computational science, Part I (pp. 538–
545). Berlin/Heidelberg: Springer.

Obit, J., Landa-Silva, D., Ouelhadj, D., & Sevaux, M. (2009). Non-linear great deluge with learning mecha-
nism for solving the course timetabling problem. In Proceedings of the 8th metaheuristics international
conference (MIC 2009).

Qu, R., Burke, E. K., McCollum, B., Merlot, L. T. G., & Lee, S.Y. (2009). A survey of search methodologies
and automated system development for examination timetabling. Journal of Scheduling, 12(1), 55–89.

Socha, K., Knowles, J.. & Samples, M. (2002). A max-min ant system for the university course timetabling
problem. In Springer lecture notes in computer science: Vol. 2463. Proceedings of the 3rd international
workshop on ant algorithms, ANTS 2002 (pp. 1–13). Berlin: Springer.

http://dx.doi.org/10.1287/ijoc.1090.0320


Ann Oper Res (2012) 194:3–31 31

Tuga, M., Berretta, R., & Mendes, A. (2007). A hybrid simulated annealing with kempe chain neighborhood
for the university timetabling problem. In 6th IEEE/ACIS international conference on computer and
information science (ICIS 2007), icis (pp. 400–405).

Turabieh, H., Abdullah, S., & McCollum, B. (2009). Electromagnetism-like mechanism with force decay rate
great deluge for the course timetabling problem. In Proceeding rough sets and knowledge technology
(RSKT 2009).

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transaction on
Evolutionary Computation, 1(1), 67–82.

Yang, X. S. (2009). Harmony search as a metaheuristic algorithm. In Z. W. Geem (Ed.), Music-inspired
harmony search algorithm (pp. 1–14). Berlin/Heidelberg: Springer.


	A harmony search algorithm for university course timetabling
	Abstract
	Introduction
	The university course timetabling problem
	Fundamentals of the harmony search algorithm
	Optimization in musical context
	The basic harmony search algorithm
	Memory consideration.
	Random consideration.
	Pitch adjustment.


	The harmony search algorithm for UCTP
	Initialize the HSA and UCTP parameters
	Initialize the HM with random feasible timetable solutions
	Improvise a new harmony solution
	Memory consideration
	Basic memory consideration:
	Modified memory consideration:

	Random consideration
	Pitch adjustment
	Repair process


	Experimental results
	The problem instances
	Empirical study of the impact of different parameter settings on convergence behavior of MHSA
	Comparing results between basic HSA and MHSA
	Comparison with previous works

	Conclusions and future work
	Acknowledgements
	References


