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ξi Displacements of the node in the directions of the Cartesian ξ axes 

η Local coordination in the directions of the Cartesian y axes 

http://en.wikipedia.org/wiki/Poisson's_ratio
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ηi Displacements of the node in the directions of the Cartesian η axes 

ζ Local coordination in the directions of the Cartesian z axes 

ζi Displacements of the node in the directions of the Cartesian ζ axes 
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LIST OF ABBREVIATIONS 

 

ASTM American Society for Testing and Materials 

CMOD Crack Mouth Opening Displacement 

Cr Concrete with replacement of sand volume by percentage of crumb 

rubber 

CrT Hybrid concrete beams in case of casting the top layer of the beam by  

rubberized concrete with percentage of crumb rubber 

EN European Union standard 

Fr Concrete with replacement of sand volume by percentage of fine 

crumb rubber 

FrT Hybrid concrete beams in case of casting the top layer of the beam by  

rubberized concrete with percentage of fine crumb rubber 

ITZ Interfacial Transition Zone 

MS Malaysian Standard 

OPC Ordinary Portland Cement 

Pr  Concrete with replacement of sand volume by percentage of rubber 

powder 

PrT  Hybrid concrete beams in case of casting the top layer of the beam by  

rubberized concrete with percentage of rubber powder 

SEM Scanning Electron Microscopy 
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KESAN PENAMBAHAN CEBISAN GETAH TERHADAP SIFAT RASUK 

KONKRIT DI KENAKAN BEBAN HENTAMAN   

ABSTRAK 

Konkrit yang mengandungi cebisan getah di dalamnya telah diketahui umum 

menambahbaik sifat keanjalannya serta kemampuan untuk menyerap tenaga. Walau 

bagaimana pun, tenaga lentur sebenar di bawah beban hentaman masih dipertikai dan 

diperdebatkan. Tambahan pula tingkah laku hibrid (getahan di atas-konkrit biasa 

dibawah) struktur konkrit hibrid di bawah beban hentaman atau dalam keadaan 

beban statik masih dikaji.  Oleh itu dalam kajian ini, eksperimen dan analisis tak 

linear dinamik konkrit dengan penambahan cebisan getah dikaji. Penambahan 

cebisan getah (5%, 10% dan 20%) berasaskan isipadu pasir atau simer dilakukan 

terhadap konkrit. Tiga saiz cebisan getah yang berbeza digunakan cebisan getah (1 

mm), cebisan getah halus (0.4-0.9 mm) dan serbuk cebisan getah (0.15-0.6 mm). 

Tiga jenis spesimen iaitu konkrit biasa, konkrit berlapis getah,  dan konkrit lapisan 

berganda disediakan dan dilakukan ujian hingga gagal menggunakan mesin 

hentaman beban jatuh seberat 20 N dari ketinggian 300 mm, dan tiga lagi spesimen 

yang sama telah digunakan untuk ujian beban statik. Dalam kedua-dua ujian, beban-

pesongan dan keretakan setiap spesimen telah dikaji. Simulasi unsur terhingga telah 

juga dilakukan untuk mengkaji tingkah laku dinamik sampel dengan menggunakan 

perisian LUSAS V.14. Rasuk dimodelkan sebagai elemen heksagon dan mempunyai 

lapan nod. Bahan elastoplastik telah digunakan untuk memodelkan kedua-dua 

struktur konkrit biasa dan konkrit bergetah tersebut. Skim dinamik tak tersirat telah 

digunakan untuk menentukan peningkatan pesongan dengan masa. Secara umum 

keputusan menunjukkan beban impak semakin meningkat dengan peningkatan dalam 
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peratusan getah. Pemerhatian menunjukkan bahawa kesan ini adalah lebih ketara 

untuk spesimen lapisan berganda. Secara umum, kekuatan dan tenaga keupayaan 

menyerap konkrit berlapis getah adalah lebih baik di bawah pembebanan hentaman 

daripada pembebanan statik. Beban simulasi terhadap tingkah laku pesongan semua 

sampel telah disahkan oleh keputusan eksperimen. 
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EFFECT OF CRUMB RUBBER INCORPORATION ON THE 

BEHAVIOUR OF CONCRETE BEAM SUBJECTED TO IMPACT 

LOAD 

 

ABSTRACT 

It is well known that concrete containing crumb rubber would enhance the elastic 

properties of concrete as well as ability to absorb energy.  However, the actual 

flexural energy under impact load is still questionable and debatable.  Moreover, the 

behavior of hybrid (rubberized top-plain bottom) concrete structures under impact or 

static load conditions are yet to be investigated. In this study, experimental and 

nonlinear dynamic analysis of rubberized concrete under impact load was 

investigated. Rubberized concrete samples were prepared by partial substitution (5%, 

10% and 20 % replacements by volume) of sand or cement by two size of crumb or 

powder rubber respectively, and tested under impact three-point bending load, as 

well as static load. Three types of specimens namely, plain concrete, rubberized 

concrete, and double layer concrete were loaded to failure in a drop-weight impact 

machine by subjecting to 20N weight from a height of 300mm, and another three 

similar specimens  were used for  the static load test. In both tests, the load-deflection 

and fracture energy of each specimen were investigated. Finite-element simulations 

were also performed to study the dynamic behaviours of the samples, by using 

LUSAS V.14 software. The concrete beam was modeled to be built with eight node 

hexahedron elements and elasto-plastic material was used to model both plain and 

rubberized concrete structures. Explicit nonlinear dynamic scheme was used to 

determine the deflection increments for each time step.In general the result was 

noticed that, the impact loads increased with the increase in the percentage of rubber. 

It was interesting to observe that these effects were more significant in the double 

layer specimen. In general, the strength and energy absorbing capability of 
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rubberized concrete was better under impact loading than under static loading. The 

simulated load against deflection behaviours of all the samples were validated by the 

experimental results.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 General introduction  

Concrete is the most commonly used construction material. In the context of the current 

construction requirements, the properties of concrete in terms of its flexibility, 

toughness, energy absorption and impact resistance needs further improvement (Topcu, 

1995 and Wang et al., 2000). On the other hand disposal of waste rubber is a serious 

environmental issue all around the globe, on account of its health hazard and difficulty 

in land filling. The high cost of disposal and the requirement of large landfill area often 

result in random and illegal dumping of waste rubber (Siddique and Naik, 2004) and 

over 281 million scrap tires are generated in United States every year (Baker et al., 

2003). According to "Markets for Scrap Tires"1991 edition, published by the US 

Environmental Protection Agency (EPA), only 7% of the tires are recycled into new 

products and about 11% are converted into energy. Over 77.6%, or about 218 million 

tires per year, are land filled, stockpiled, or illegally dumped and the remaining 5% are 

exported. In Malaysia, a number of project involving a huge investment in waste rubber 

recycling has been monitored. For instance, in 2002 a project totaling RM4.47 billion 

was approved by Malaysian Industrial Development Authority (MIDA) to proceed with 

the recycling project of scrap tires to manufacture synthetic rubber powder and 

thermoplastic elastomer (TPE) (Awang, 2008). 

Figure 1.1 shows one such dump yard in Thailand reflecting the gravity of the problem. 

Figure 1.2 shows that the flow chart detailing the distribution of the scrap tire. 
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Landfilling of scrap tires in open piles causes a number of problems such as degradation 

of the landscape, health diseases vectored by mosquito, and serious open tire fires which 

is difficult and need long time to extinguish (See Figure 1.3). Moreover it has serious 

impact on health and the environment due to dangers of air emissions via black and 

carbon smoke and also contamination of water and soil due to the run-off water and 

pyrolytic oil released from the burning tires (EPA, 1991 and Siddique and Naik, 2004). 

Due to the high cost of disposal and the requirement of large landfill area for waste 

rubber, the issue of random and illegal dumping is alarming (Siddique and Naik, 2004).  

 

 

Fig. 1.1: Piling yard of abandoned tires in Thailand (Sukontasukkul and Chaikaew, 

2006) 
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Fig. 1.2: Flow chart of destination of scrap tires (EPA, 1991). 

 
 

Fig. 1.3: Fire accident due to wasted tires in Stanislaus County, CA. (Sukontasukkul and 

Chaikaew, 2006) 
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Driven by this situation, efforts are on, to identify alternative solutions to reuse the 

waste rubber, and its use in concrete as partial substitutes for sand. This partial 

replacement of rubber in cement has been proven to be one of the promising options.  

1.2 Classification of scrap-rubber 

According to Siddique and Naik (2004), scrap-rubber can be classified into four types 

with regard to their particle size: 

1.2.1 Slit tires  

The tires are produced by separating the sidewalls from the thread of the tires or cutting 

the tire into two halves. This process was carried out in large amount of scrap tires in the 

factory (Siddique and Naik, 2004). 

1.2.2 Shredded/chipped tires  

It is produced by shredding tire into shreds or chips that vary from 300 to 460 mm long, 

100 to 230 mm wide, and 100–150 mm length in the primary process. Production of tire 

chips, usually sized from 76 to 13 mm requires both primary and secondary shredding to 

achieve reduction of volume. Figure 1.4 shows the appearance of shred tire (Khaloo et 

al., 2008). 

 

  Fig. 1.4: Shredded/chipped tires (Khaloo et al., 2008) 
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1.2.3 Ground rubber 

The two process involved in ground rubber are magnetic separation and screening 

process. Normally the size of ground rubber varies from 19 mm to 0.15 mm depending 

on the size of reduction, equipment and envisioned usage. Figure 1.5 shows the 

appearance of ground rubber (Khaloo et al., 2008). 

 

  Fig. 1.5: Ground rubber (Khaloo et al., 2008) 

 

1.2.4 Crumb rubber 

The typical process in making crumb as in Figure 1.6 involves three stages. First, the 

scrap tire is reduced to particles ranging from 5 to 0.075 mm size shreds by reducing the 

size of tire rubber. This is generally accomplished by passing the material between 

rotating corrugated steel drums or the cracker mill process which tears it apart. Second, 
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the screen and gravity separators are used to remove metal. And finally, aspiration 

equipment is used to remove fibers (Son et al., 2011). 

 

  Fig. 1.6: Crumb rubber (Son et al., 2011) 

 

In this research three different sizes of crumb rubber which are crumb rubber of 1 mm 

particle size, fine crumb rubber of particle size 0.4–0.9 mm and powder crumb rubber of 

particle size 0.15–0.6 mm will be added to concrete. The mechanical properties of the 

concrete will then be investigated. 

 

 

 

 

 



 

 

7 

 

1.3 Cement and concrete history  

Cement is defined as adhesive and cohesive material having capability to bond fragment 

or masses of solid material (Lea and Hewlett, 1998). The use of cementing materials can 

be dated back to very ancient times. The ancient Egyptians used lime mortar in the 

pyramid construction. The Greeks and Etruscans also used cement limestone. The first 

concrete in history was developed by Romans who improved the mortar properties by 

adding sand and crushed stone or brick and broken tiles to lime and water (Neville, 

1995). One of the most remarkable examples of the concrete works is the Pantheon 

dome as seen in Figure 1.7 (Wilkins, 2004). 

 

Fig. 1.7: Romans Pantheon dome (Wilkins, 2004) 

The Romans discovered that lime mortar does not harden under water, so they milled 

lime and volcanic ash or finally ground burnt clay tiles to produce pozzolanic cement 
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referring to village of Pozzuoli, near Vesuvius. Modern concrete technology took shape 

in the late 18th century. In 1756, it was discovered that the best mortar could be 

produced by mixing limestone with pozzolana which contains high production of clayey 

material. It was only in 1824, Joseph Aspdin discovered the Portland cement. This 

cement is formed by heating finely divided clay with ground limestone in a furnace until 

CO2 has been driven off. Isaac Johnson in 1845 discovers the prototype of modern 

cement by burning its raw materials to clinkering temperatures in order to satisfy the 

reaction necessary for creating strong cementing compounds (Neville, 1995). 

 

1.4 Rubberized concrete and impact load 

Recently many researchers have carried out investigations on the ability of tire rubber in 

concrete as a replacement for sand or aggregates to improve the properties of concrete 

and to reduce the waste material dumping problems by utilizing these waste materials as 

raw material. 

The ability to reuse rubber as partial replacement in concrete was studied by Eldin and 

Senouci (1993), in which they used two groups of rubberized mixes. In the first group, 

part of sand was substituted by crumb rubber in the range of 25, 50, 75 and 100 

percentages. In the second group, a portion of coarse aggregate was substituted by chip 

rubber in similar percentage as in the first group. The result observed using 100% of 

crumb rubber as sand replacement leads to losses of up to 65% of the compressive stress 

and up to 50% of the tensile stress in the first group. However the study also concludes 

that the ductility of concrete was improved which makes rubberized concrete suitable 

for structure subjected to dynamic or impact loading. Topcu (1995) also demonstrated 
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that using waste tire in concrete improves the toughness value and the plastic energy 

capacities. He concluded that high ductility of rubberized concrete leads to high strains 

under static and impact load. 

The impact resistance of rubberized concrete was studied by Topcu and Avcular (1997) 

for highway barriers. They determined that the presence of rubber tire particles yields 

significant enhancement in the impact resistance. Similarly,Taha et al. (2008) observed 

enhancement in the impact resistance of concrete beams by adding crumb or chipped 

tire rubber particles. Nevertheless, almost all the previous studies investigated the 

impact resistance of rubberized concrete qualitatively by counting the numbers of blows 

that result in cracking or failure of the structure. However, this method was improved by 

Banthia (1985) method which is not followed by Taha et al (2008) to measure the load, 

deflection and acceleration of concrete beam under impact energy. 

 

1.5 Finite element analysis 

There are several difficulties in analyzing normal or rubberized concrete structures 

under dynamic load because of the nonlinear behaviour of structure and the nonlinear 

dynamic load with time. New approaches of nonlinear structural analysis have been 

introduced in the recent times owing to the development of powerful computers, where 

the structural response can be investigated in terms of the total loading range. The finite 

element approach is one of such important method which solves the numerical equations 

that govern the problems found in nature. The finite element method improved in the 

field of structural engineering where dimensional element to analyzed the stresses in 

continuous bars and beams was developed. Then the shape functions defined over 
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triangular regions in the applied mathematics was developed. Then treatment of two-

dimensional elements was developed by derived the stiffness matrix for triangular and 

rectangular elements in plane stress. After that matrix structural analysis was driven 

from the stiffness matrix of a plane stress rectangular panel. The formulations of 

element stiffness matrices by early investigators were not based on the field equations of 

the entire elastic continuum (Huebner et al. 2008).  

In 1967 Zienkiewicz published the first book describing applications of the method in 

the analysis of material behaviour. After that the finite element method became one of 

the most important methods used in the engineering analysis and design. And it has 

become indispensable to analyzing structural problems with complex material 

behaviours and complicated boundary conditions (Oñate, 2009).  

 

1.6 Problem statement  

Disposal of waste rubber is a serious environmental issue all around the globe, on 

account of its health hazard and difficulty in land filling. The high cost of disposal and 

the requirement of large landfill area often result in random and illegal dumping of 

waste rubber (Siddique and Naik, 2004). This serious environmental and health issues 

associated with rubber demands urgent attention to develop alternative solutions for 

their reuse in other applications. In Malaysia, a number of projects involving a huge 

investment in waste rubber recycling have been observing. For instance, in 2002 a 

project total RM 4.47 billion was approved by Malaysian Industrial Development 

Authority to proceed with the recycling project of scrap tires to manufacture synthetic 

rubber powder and thermoplastic elastomer (Awang, 2008). On the other hand, normal 
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concrete exhibits limited properties such as small resistance to cracking, low ductility, 

and low impact energy absorption (Wang et al., 2000). However, it was established that 

adding the waste tire to concrete would enhance its ability of crack resistance ductility 

and energy absorption (Topcu 1995).  

According to the literature, no study has been reported on the static fracture toughness 

of concrete with assessment of crack resistance for rubberized concrete using crack 

mouth opening displacement (CMOD).  

However, only Reda-Taha et al. (2008) investigated the effect of crumb and fine crumb 

rubber in the bending impact resistance to a rectangular beam. In this work, the impact 

energy was reported qualitatively by calculating the impact energy from a number of 

drops until failure. It was noted that there is no instrumented impact test using load cell 

and accelerometer to investigate the accurate impact load causing the failure or 

deformation of the rubberized concrete beams. Furthermore, previous investigations did 

not measure the actual fracture energy of the rubberized concrete beam under impact 

bending load.  

Moreover, the nonlinear finite element dynamic analysis of rubberized concrete 

structures which is a promising contribution to facilitate realistic predictions the 

behaviour of rubberized concretes beams. Also, investigations into the behaviour of 

hybrid (rubberized top-plain bottom) concrete structures under impact or static load 

conditions are yet to be accomplished by any researcher. Thus, there are several gaps in 

the previous research, which needs to be addressed to arrive at a mix of concrete having 

best possible impact properties of concrete. 
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1.7 Objectives 

The overall objective of the project is to investigate the feasibility of improving the 

impact resistance of concrete bream. This research will investigate the feasibility of used 

of waste rubber tire in concrete subjected to impact load and to investigate its properties 

of energy absorption and ductility. 

Thus the main objectives of this work are: 

i. To study the suitable size of rubber, its mixed proportion and material 

properties of rubberized concrete.  

ii. To determine the static fracture toughness of rubberized concrete with 

assessment of crack resistance using crack mouth opening displacement 

(CMOD).  

iii. To investigate the effect of crumb rubber incorporation on the impact tup, 

inertial load and bending load of rubberized concrete and hybrid beam 

experimentally. 

iv. To analyze the impact energy and behaviour of rubberized concrete and 

hybrid structure beam subjected to impact load. 

v. To verify finite element model for simulating the behaviour of rubberized 

and hybrid concrete beams based on the measured data. 
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1.8 Scope of work 

In the present work, the impact load and displacement, and dynamic fracture energy are 

investigated for concrete beams containing fine crumb rubber, crumb rubber and powder 

rubber. The crumb rubber particle size 1 mm and fine crumb rubber particle size 0.4–0.9 

mm are used in replacement ratio of 5%, 10%, and 20% by volume of sand and the same 

proportions of powder rubber 0.15–0.6 mm is added to the concrete with proportional 

decrease in the volume of cement. 

Alongside this, double layer beam with rubberized top and plain bottom (hybrid 

structure), are tested under impact three-point bending load to investigate its impact 

behaviour and to improve its ability to absorb the impact energy. Numerical simulations 

are carried out to study the dynamic behaviour of all the samples. LUSAS V.14 tool is 

used to simulate the behaviour of rubberized concrete beams under impact load. In order 

to determine the properties of rubberized concrete, experiments has been carried out to 

study the material behaviour under compressive and tensile loadings. The concrete beam 

is assumed to be made of eight node hexahedron elements. And to substantiate the 

present finite element model, the predicted impact behaviour is compared with the 

experimental results. 

In order to further accomplish the objectives of the present study, the fracture properties 

such as stress intensity factor (KIC), Young’s modulus (E), critical energy release rate 

(GIC), and crack resistance using crack mouth opening displacement (CMOD) are 

investigated as preliminary test for the three group of rubberized concrete.  
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1.9 Thesis Outline 

The present thesis is organized into five chapters. A brief outline of each chapter is 

given hereunder: 

 Chapter one presents general information about the problems due to waste tire 

rubber, concrete, rubberized concrete and effect of rubber on the impact behaviour of 

the concrete. And also general finite element history is presented. This chapter also 

focuses on the problem statement, objectives, and the scope of work.  

 The review of literature is presented in chapter two. This review focuses on the 

previous study that has been carried out on the rubberized concrete and discusses its 

properties. It also presents the most relevant studies with respect to the impact 

loading and its effect on the concrete behaviour.  

 Chapter three is divided into two main parts. Part one covers the methodology for 

experimental works and describes the materials and laboratory investigations that are 

carried out to fulfill the objectives of the research. Part two describes the finite 

element formulation model of material and scheme of analysis for plain, rubberized 

and hybrid concrete beams subjected to bending impact load. 

 Chapter four presents the analysis and discussion on the results obtained from the 

experimental tests. Comparisons between three types of rubberized concrete, between 

rubberized and hybrid structure and also between static and dynamic results were 

studied.  
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 Chapter five nonlinear analysis model of concrete subjected to impact load by using 

finite element method. Comparison is carried out between experimental and 

computational results. 

 Chapter six provides the conclusions drawn from the result of both experimental 

work and finite element model. Finally the recommendations for the future work are 

also presented in this chapter. 
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CHAPTER TWO 

LITERATURE SURVEY 

 

2.1 Introduction  

Cement consumption is increasing day by day owing to its wide use as construction 

material. The increased use of cement poses an environmental challenge because 5% to 

8% of the global anthropogenic CO2 emissions originate from cement production 

(Scrivener and Kirkpatrick, 2008). Another major problem haunting environmentalist is 

the increased generation of waste rubber all over the world. For example, in the United 

States alone, every year more than 281 million scrap-tires are produced, out of which 

over 77%, are landfilled, stockpiled, or illegally dumped (Baker et al., 2003). In 

Malaysia, a number of projects involving a huge investment in waste rubber recycling 

have been observing. For instance, in 2002 a project total RM4.47 billion was approved 

by Malaysian Industrial Development Authority to proceed with the recycling project of 

scrap tires to manufacture synthetic rubber powder and thermoplastic elastomer 

(Awang, 2008). The problem with this indiscriminate accumulation of waste tires is that 

it is dangerous and hazardous on account of its potential fire risks which generally 

demands longer time to extinguish. These fires are major source of the air, soil, and 

water pollution and have direct bearing on the surrounding communities (Sukontasukkul 

and Chaikaew, 2006).  

This serious environmental and health issues associated with rubber demands urgent 

attention to develop alternative solutions for their reuse in other applications, and in this 

regard concrete has been identified as one of the feasible options. 
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2.2 Rubberized concrete 

Recently many researchers have carried out experimental studies to identify the best 

suitable application of recycled rubber in the field of concrete technology. The primary 

objective of their study was to reduce the waste material dumping problems by utilizing 

these materials as raw material in concrete mixes and thereby improve their properties. 

In this chapter the works related to utilization of waste tire rubber in concrete is 

reviewed. 

 

2.2.1 Properties of fresh rubberized concrete 

2.2.1.1 Concrete Density 

Concrete density is one of the important properties of concrete. The fresh and hardened 

dry unit weight of aerated cement composites containing shredded rubber waste was 

determined by Benazzouk et al. (2006). Aerated cement composites mixes were 

prepared with replacements of cement volume in the range of 0% to 50% using shredded 

waste rubber. The absolute density of the shredded waste rubber is approximately 430 

kg/m
3
. They found that addition of shredded waste rubber will cause significant 

reduction in the fresh and hardened dry unit weight of the mixtures. In a similar work 

carried by Khaloo et al. (2008), they investigated the effect of replacing coarse 

aggregate and sand with chips and crumb rubber on the properties of concrete. They 

found that addition of waste tire in concrete significantly reduced the density of the 

concrete (see Figure 2.1). 

The effect of addition of waste automobile tires on the unit weight of concrete  was 

experimentally investigated by Topçu and Sarıdemir (2008). They also employed the 
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artificial neural networkand fuzzy logic techniques ability to predict the unit weight of 

the concrete under study. In their study concrete without rubber and having15, 30 and 

45% rubberized concrete were developed. The results showed that unit weight of 

concrete decreased with the increasing crumb rubber content. 

 

Fig. 2.1: Effect of tire content on the unit weight of the concrete (Khaloo et al., 2008) 

 

Similarly, Pelisser et al. (2010) investigated the effect of replacing sand with recycled 

tire rubber on the density of concrete mix. The recycled rubber with maximum particles 

size of 4.8 mm was washed with sodium hydroxide ( NaOH) to increase the 

hydrophilicity of the rubber particle surface. Further, silica fume (microsilica) was 

added (15% mass fraction) to the recycled rubber as a surface modifier. 

The combination of the rubber treatment by sodium hydroxide followed by the addition 

of silica fume was favorable for the porosity reduction in the interface of these 

aggregates. This contributed to the recovery of the concrete strength and a lower 

permeability.  
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2.2.1.2 Air content  

The effect of chipped and crumbed tire rubber particles as replacement of coarse and 

fine aggregates on the air content of concrete mix have also been studied Taha et al. 

(2008). They found that increase in the content of tire waste rubber increased the air 

content of the concrete mix (Figure 2.2). Several other researchers have also 

demonstrated that using waste tire in concrete increases the level of air content in the 

mix (Benazzouk et al., 2003; Khatib and Bayomy, 1999). 

 

Fig. 2.2: Effect of aggregate replacement ratio on air content of rubberized concrete 

(Taha et al., 2008) 
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2.2.1.3 Workability 

In order to study the workability of rubberized concrete, chipped and crumbed tire 

rubber particles as replacement of coarse and fine aggregates were used in the study by 

Khatib and Bayomy (1999). The result (see Figure 2.3) showed that the presence of 

crumb or chipped tire rubber particles decreased the workability of the concrete. 

Whereas, for the concrete mix with sand replacement, the slump increased with increase 

in rubber percentage and reached a maximum value when the rubber percentage was 

15%, which on subsequent increase in rubber percentage the slump decreases.  

 

 

Fig. 2.3: Effect of rubber content on the workability of concrete (Khatib and Bayomy, 

1999) 

 

In a similar work carried out by Raghavan et al. (1998), the effect of adding shredded 

automobile and truck tires on the workability of mortar was investigated. The result 

showed that addition of rubber shreds improves the workability of the mortar. In another 
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work by Albano et al. (2005), they observed that the values of slump decreased from a 

value of 8 cm for the controlled concrete mix to a value of 1 cm (88% slump reduction) 

for the scrap rubber concrete having 5 wt% rubber with 0.29 and 0.59 mm particle sizes. 

The value for 10 wt% rubber with 0.29 and 0.59 mm particle sizes was 0.5 cm (94% 

slump reduction). This reduction is due to the decrease on blend flow, because of the 

presence of a high portion of rubber particles, which have a very low density, hence 

greater volume. 

 

2.2.2 Properties of hardened rubberized concrete 

2.2.2.1 Compressive and tensile stress 

The compressive and splitting-tensile stress in terms of different particle size and 

amount of rubber in concrete mixture was studied byTopcu (1995). Two particle 

sizes of rubber 0-1 mm (fine) and 1-4 mm (coarse) were added to concrete mixes in 

varying percentages of 15, 30 and 45 %. As shown in Figure 2.4, the compression 

stress decreased approximately by 36, 43, and 56% when fine aggregate was replaced 

with fine rubber aggregate of 15, 30, and 45% volume, respectively. Whereas, for the 

case of using chipped tire rubber particles to replace the same percentage of aggregate 

the reduction in compressive stress was 50, 69, and 80%, respectively for similar 

volumetric additions.  

For the splitting-tensile test, the plain concrete yielded at 3.21MPa, and it reduced to 

32, 52, and 65% when replaced with fine aggregates having 15, 30 and 45 % of fine 

rubber and, 53, 67, and 74% when replaced with the coarse rubber chips.  
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Fig. 2.4: Effect of fine (0-1mm) and coarse (1-4mm) rubber content on the compressive 

stress (Topcu, 1995) 
 

Crumb rubber of particle size 0.15–4.75 mm was used by Batayneh et al. (2008) as 

partially replacement of sand in various percentages of 20%, 40%, 60%, 80%, and 

100% to investigate the effect of rubber in the performance of concrete. The results 

indicate that the compressive stress for different rubber contents reduced from 10% 

to 75% of the control specimen, while the tensile stress decreased from 8% to 65% 

of the control specimen. 

The mechanical properties of concrete containing high volume of tire rubber was 

investigated by Khaloo et al. (2008). Chipped, crumbed, and a combination of tire 

rubber particles were used to replace coarse and fine aggregate with different volume 

replacement levels. Natural sand and coarse aggregate were substituted by fine rubber 

and coarse rubber with 25, 50, 75 and 100%, respectively. The result showed that 
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compression stress decreased by approximately 80% when sand was replaced with 25 % 

whereas, the ultimate stress for coarse replacement was slightly higher than that of sand 

replacement for rubber concentrations lower than 25%. This higher stress was attributed 

to the existence of fibers in coarse tire–rubber particles. Ultimate stresses of combined 

specimens appeared somewhere in between the ultimate stress of concrete with sand and 

coarse aggregate replacement, but it was found closer to concrete with sand 

replacement. They suggested replacement ratio not exceeding 25% of aggregate by tire 

rubber.  

A new approach to predict the effect of tire rubber on the stress of concrete using a 

mathematical model was introduced by Vieira et al. (2010). Design of the model 

depends on study of the composition stress of concrete in a multivariate form using a 

completely random experimental design. The variables of model were grouped into two 

groups of variables, mixture variables (the properties of the mixture constituents such as 

aggregates, water and cement) and process variables (Tire rubber percentage and size in 

the concrete). In this study three different particle sizes of truck tires rubber (from 1.2 to 

2.4 mm, from 2.4 to 4.8 mm, and greater than 4.8 mm) were used with the weight 

fraction of rubber 2.5–5.0–7.5%. The truck tires rubber was added to concrete mixes as 

a substitute for fine aggregate. The results show that by adding 2.5% rubber substitute 

having fine aggregate with 2.4 mm particle size, can account for the optimum stress of 

the concrete. Moreover, the result showed that a concrete having a compressive stress 

above 20 MPa for 28 days can be obtained. This indicates that these mixtures can be 

used in structures as well as pavements, dividers and other applications in civil 

engineering. 
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Another study by Ganjian et al. (2009), investigated the stress of concrete mixtures by 

incorporating 5%, 7.5% and 10% of discarded tire rubber as aggregate and cement 

replacements. Figure 2.5 shows that there is no major change in the compressive stress 

with 5% replacement of aggregate or cement by rubber. The significant reduction in 

compressive stress was with respect to 7.5-10% replacement by aggregates and cement 

leading to reduction of stress by about 10–23% and 20–40% in case of cement 

replacement.  

Moreover, tensile stress of concrete was reduced with the increase in the percentage of 

rubber replacement in concrete as shown in Figure 2.6. It was also found that the 

reduction in the tensile stress of concrete containing powdered rubber was lower than 

that of concrete containing chipped rubber.  

 

Fig. 2.5: Effect of chipped and ground rubber content on the compressive stress 

(Ganjian et al., 2009) 


