
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



TECHNICAL UNIVERSITY OF CATALONIA

Doctorate Program:

ADVANCED AUTOMATION AND ROBOTICS

PhD Thesis

SLIDING MODE CONTROL OF THE STAND ALONE
WOUND ROTOR SYNCHRONOUS GENERATOR

Raúl Santiago Muñoz Aguilar

Advisers:

Enric Fossas Colet

Arnau Dòria Cerezo

Institute of Industrial and Control Engineering

May 26, 2010

http://rsmunoza.co.nr


II



To my family

III



IV



Acknowledgments

Unas cuantas líneas es poco para agradecer la compañía, apoyo, formación y guía de

tantas personas que me han ayudado a alcanzar esta meta.

Primero quiero dar gracias a Dios, Señor y dador de vida por todos los regalos y

bendiciones recibidas. A mi familia por su formación, apoyo y preocupación en cada

momento. A mi esposa por estar siempre a mi lado y soportar todas las restricciones que

imponen la dedicación a una tesis; por la compañía y el apoyo en todo sentido.

Pasando al ámbito profesional, diversas personas han marcado mi vida y me han hecho

enamorar de la ciencia. Inicialmente, en la Universidad Nacional de Colombia varios pro-

fesores me han mostrado la belleza de las máquinas eléctricas (Jorge Fernando Gutiérrez),

la electrónica de potencia (Eduardo Antonio Cano) y el Control (Fabiola Angulo), gracias

por mostrarme éste lindo camino, creer en mí y proyectarme hacia un futuro. Durante la

Maestría, Fabiola me dió la oportunidad de hacer una estancia en España, en el grupo de

investigación ACES, ahí conocí a Enric Fossas que me apoyó para seguir el doctorado y

me ayudó a conseguir la beca. Gracias por la oportunidad.

Más adelante, Enric Fossas y Arnau Dòria me enseñaron la importancia de argumentar

matemáticamente el comportamineto de los sistemas, el por qué se presentan diferentes

fenómenos y el cómo analizarlo. Pero no solo eso, también cosas básicas como escribir

adecuadamente, que no es nada fácil para un ingeniero. Además, me apoyaron en los

momentos difíciles y se preocuparon por mi. Muchas gracias por todo, por soportarme,

confiar en mí, darme esta oportunidad y valorar mi trabajo. Gracias por aceptar mis

errores y corregirme.

En el IOC y en Barcelona han habido profesores, compañeros, amigos, personas que

me han dado una palabra, un consejo, o simplemente la compañía en el momento opor-

tuno. Son tantas que si las quisiera mencionar a todas seguro olvido a alguien. Así, que

V



solo mencionaré algunos, gracias a: Robert, Domingo, Rafel, Enric, Henry, Alex, Nacho,

Guille,....

Quiero agradecer a Rafel Cardoner y Enric Miró por su gran ayuda en el montaje de

la parte experimental de la tesis.

También quiero darle muchas gracias a Kasia, por su ayuda con las n correcciones del

Inglés.

En el Departamento de Ingeniería Eléctrica me dieron la oportunidad de entrar como

profesor ayudante y de pertenecer a SEER, en especial gracias a Pedro por dejarme

pertenecer al grupo. A los consejos de Iñaki, y la compañia de Alvaro, Joan, Gerardo,

Daniel y Juan Ramón.

I would like to express my gratitude to Prof. Vadim I. Utkin for its comments during

the controller design and experimental steps.

VI



Abstract

The control of the stand-alone the wound rotor synchronous generator has been analyzed

in this dissertation. For this islanded configuration, the mechanical speed determines

the frequency, and the rotor voltage is used to set the stator voltage amplitude. Due to

the electrical time constant is so fast compared with the mechanical time constants, the

mechanical speed was considered constant and externally regulated and the research was

focused on the stator voltage amplitude regulation.

Four different controllers based on sliding mode control techniques were designed in

the dq reference frame. The obtained control laws regulate the stator voltage amplitude

irrespectively of the load value. Furthermore, only voltage and rotor position measures (to

compute the dq transformation), are required. The stability of the obtained equilibrium

points was proved at least using small-signal analysis.

Simulation and experimental validation of each controller containing several scenarios

were carried out. The obtained results validate the designs and show the main advantages

and disadvantages of each closed loop system.
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Chapter 1

Introduction

1.1 Motivation and antecedents

The electrical energy is widely studied around the world due to the advantages of trans-

mission possibilities, flexibility and control capacity among others. Electrical energy is

mainly generated interconnecting electric generators driven by prime-movers which are

basically wind, hydro, steam turbines or internal combustion engines.

The standard power systems are composed mainly by Wound Rotor Synchronous Ge-

nerators (WRSG) connected in parallel setting up a theoretical infinite bus. Hence, this

kind of machine uses to be studied connected to an infinite bus called “power grid” [2], [7].

Thus, the own grid determines the stator voltage and frequency, while the rotor voltage

helps to improve the power factor and to compensate the reactive power at the connection

point. Usually, the stator transients can be neglected [39].

The power grid is stabilized by the rotational inertia of WRSG, but nowadays re-

newable energy generation is replacing the synchronous power generation capacity, de-

creasing the total rotational inertia in the system and causing frequency variations on the

grid. This problem can be avoided using virtual inertias as a energy storage in the power

converters. This is called a “Virtual Synchronous Generator” that contribute to the grid

frequency stabilization [18], [30].

The synchronous machine is controlled by several techniques, in industry the most

common are linear techniques [45], [70], [73], or hysteresis regulators [34]. However,

decoupling methods [31], [9], which are widely employed for asynchronous machines,

are also extended to the synchronous case. Modern control techniques such as passivity-

based control [4], fuzzy control [42], or predictive control [60], [56] are also used for a

WRSG regulation.

1
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This machine can be employed in wind energy systems controlled by field oriented

control [10] or classical PI controllers [27]. The synchronous machine can also be found

in automotive applications [23], [68], controlled by rotor flux oriented control [74], Lya-

punov-based designs [48], Robust LPV control [29] or sliding mode control [25]. In

ship and aircraft applications, stator voltage regulation has been governed through model

inversion principles [63] or H∞ control [51], [50], [26].

The implementation of control algorithms for the synchronous machines using FPGA,

DSP and PC-based controllers were studied using linear and nonlinear techniques as hys-

teresis control, P-PI control [58], torque control, [57], sliding mode control [59], [43],

adaptive fuzzy control [41], predictive control among others [34], [60], [63].

The control of the machine connected to an infinite bus using H∞ techniques [12], ad-

vanced linear control techniques [44], feedback linearization [3], passivity based control

[62] and variable structure model reference adaptive control [22] were also studied.

A significantly different scenario is when the WRSG is isolated from the grid. This

dissertation is focused in the stand-alone case of the wound rotor synchronous generator

where neither the stator amplitude, nor frequency are fixed. For this insulated configura-

tion, the mechanical speed determines the frequency, and the rotor voltage is used to set

the stator amplitude. Normally, industry applications use linear controllers which can-

not ensure stability. Additionally, in literature examples for the stand-alone case are not

so extensive, the control of the synchronous generator supplying an active dc load was

studied with classical controllers in [38].

Another difference in the analysis is that, in the grid-connected operation the stator

transients of the machine can be neglected while in the stand-alone case it is not possible.

Therefore, in the last case it is necessary to design a different controller depending of the

load characteristics.

In this dissertation the WRSG is regulated in the Sliding Mode Control framework.

This approach is particularly attractive for its robustness and easy implementation [33].

In general, sliding mode technique is appropriate for variable structure systems (VSS) as

power converters [5], [79]. Even though electrical machines are not VSS, Sliding Mode

Control has been suggested as appropriate for their control [75], [76] mainly because to

the use of power converters when applying the electrical machine control voltages and the
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discrete values taken by control voltage. The sliding mode control techniques can also be

used in the pulse width modulation design for the power converters control [79].

Sliding mode controllers combined with singular perturbation theory [69], [72], [71]

and the block control approach [46], [7] has been proposed for a synchronous machine

connected to the power grid. Other examples of sliding techniques can be found in multi-

machine systems [32] and in motor applications as well [59] [43].

The main contribution of this dissertation is the design and implementation of sliding

mode control algorithms for a stand alone wound rotor synchronous generator feeding

isolated loads. In this Thesis two different scenarios are studied: a pure resistive load and

an inductive load. The controllers we obtained are robust in front of machine and load

parameter variations and they also provide a good performance and a fast response. The

control laws (which only require voltage measurements and are easily implementable)

are experimentally tested in a real plant. Local stability of the closed loop dynamics are

proved using small-signal models.

1.2 Sliding mode control

In this Section a brief introduction to the Sliding Mode Control and Variable Structure

Systems is presented. Firstly, a short historical background based on Utkin’s review [77]

is explained. Then, the math basis, equivalent control and stability analysis are shown.

The term “Variable Structure Systems” (VSS) was introduced by Emel’yanov in the

sixties, although some previous works in the fifties had show the basic idea. The VSS

study began with the analysis of second order linear and non-linear systems. Emel’yanov

and his colleagues showed that the feedback gains could take several values depending

on the system state. Each system consist of a set of linear structures supplied with a

switching logic altering the structure of the resulting scheme with behavior not inherent

in any of the structures [77].

The resulting state trajectories are oriented to the switching line (or surface) s =

h(x, ẋ) = 0, called sliding surface. It means that the switching logic is in charge of

approaching trajectories to the sliding surface and, when it is reached, trajectories remain

on the sliding surface. This motion, called Sliding Mode, plays the dominant role in VSS

[77].
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Some characteristics of Sliding Mode Control are [77],

• the order of the motion equation is reduced,

• the dynamics in sliding mode is selected by the designer; in particular it can be

linear,

• the parameters of the linear sliding dynamics are defined by the designer as well,

• the sliding modes are insensitive to the plant dynamics.

The ideal sliding dynamics exists while the system states satisfies s = 0 presumed

infinitely fast switching. In actual plants the latter cannot be assumed and trajectories

oscillates around the sliding surface. This oscillation is called “chattering” [11].

1.2.1 Mathematical remarks

The system under study is defined by,

ẋ = f(x, t, u)

u =

{
u+(x, t) if s(x) > 0

u−(x, t) if s(x) < 0
,

where f , u+, u− and s are continuous functions of their arguments and u−(x, t) 6=
u+(x, t). Since the control action is discontinuous, the closed loop system differential

equation is discontinuous respect to the states, and the conventional theorems on exis-

tence and uniqueness of solutions are not applicable since Lipschitz constant does not

exist for discontinuous vector fields [19].

Filippov proposed a solution for equations with discontinuous right hand sides which

constructs a solution tangential to the sliding surface. A parallel approach developed by

V. Utkin is called “Equivalent Control Method”. It makes s = 0 an invariant manifold

[19]. Considering a linear system

ẋ = f(x, t) + g(x, t)u.

The equivalent control ueq is such that the vector field f + gueq is tangent to s. This

results in
∂s

∂x
(f + gueq) = 0,
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hence

ueq = −
(

∂s

∂x
g

)−1
∂s

∂x
f. (1.1)

The ideal sliding dynamics is obtained replacing the equivalent control in the system

equation and assuming trajectories are in the sliding surface. That results in,

ẋ = f − g

(
∂s

∂x
g

)−1
∂s

∂x
f,

s = 0.

The stability of the switching surface can be shown using the second method of Lya-

punov. Considering a Lyapunov function, V (x, t), which is positive definite and has a

negative time derivative in the region of attraction. This is known as the existence condi-

tion of the sliding modes [11].

A necessary and sufficient condition for the existence of control functions u+ and u−

that makes s be a sliding surface is

< ∇s, g >6= 0,

which is known as the transversality condition. Otherwise, sliding mode exists on the

submanifold of s = 0 defined by min{u−, u+} < ueq < max{u−, u+}.

1.3 Thesis objectives

The main objectives of this dissertation are,

• To model the wound rotor synchronous generator feeding a resistive and an induc-

tive load and the linear approximations of the whole systems.

• To design several controllers based on the sliding mode control approach for re-

gulating the stator voltage amplitude of the stand-alone wound rotor synchronous

generator feeding static and dynamic loads.

• To analyze the stability of the closed-loop systems obtained with the different de-

signed controllers.
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• To bear out the controllers behavior in a simulator platform and in an actual experi-

mental plant containing several scenarios, with reference change and load variations

evaluated for each controller.

1.4 Main contributions of the Thesis

The main contributions of this Thesis are summarized as follows,

• The WRSG has been analyzed in the stand-alone case where neither frequency nor

stator voltage amplitude are fixed externally. Due to the mechanical speed is nor-

mally regulated by an external prime-mover, and the electrical time constant is so

fast compared with the mechanical time constants, the mechanical speed is consid-

ered externally regulated and the research was focused on the stator voltage ampli-

tude regulation. Normally, in the literature the main research results are pointed on

the grid connected generation which simplifies the problem from the machine side

due to its dynamical equations are reduced.

• Four different controllers based on sliding mode control techniques were designed

in the dq reference frame. The obtained control laws regulate the stator voltage

amplitude irrespectively of the load value. Furthermore, only voltage and rotor

position measures (to compute the dq transformation), are required.

• The error of the square voltage amplitude (V 2
ref − V 2

s ) against the voltage ampli-

tude difference discussed along the text shows the advantage of avoiding the root

computation at the voltage calculus which is a hard task for digital control imple-

mentations and uses a lot of hardware resources. When a quadratic function is used

as a switching function, an undesirable sliding motion may arise. A simpler alterna-

tive consists in a nested control with an inner SMC loop regulating the d-component

of the stator voltage and a PI outer loop regulating its reference.

• This selection introduces the use of the d-voltage component sign in the control

switching policy, which allows to stabilize the system in the two possible equili-

brium points. This, cannot be achieved with a simple PI controller where one of the

two equilibrium points becomes unstable.

• The implementation of the designed control schemes is quite simple, and some of

them do not require any gain tunning.
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• The stability of the closed-loop system were proved at least using a small-signal

analysis. In some cases a local asymptotic stability was discussed.

• The problem of a zero relative degree output when dynamical loads are used was

overcome introducing a dynamic extension of the system. This implies a fictitious

control action which is integrated to obtain the real field voltage to be applied to the

generator.

• Simulation and experimental validation of each controller was carried out. The ob-

tained results validate the designs and show the main advantages and disadvantages

of each one.

1.5 Publications

The publications related to the thesis are,

Conferences

1. A. Dòria-Cerezo, E. Fossas, R.S.Muñoz-Aguilar, and V.I. Utkin.

Sliding mode control of an isolated wound rotor synchronous generator.

In Proc. of the European Control Conference, Budapest, 2009.

2. A. Dòria-Cerezo, V.I. Utkin, R.S. Muñoz-Aguilar and E. Fossas.

Two sliding mode control approaches of the stator voltage amplitude regulation of

a stand-alone WRSG.

In Proc. of the International Workshop on Variable Structure Systems, Mexico City,

2010.

3. R.S. Muñoz-Aguilar, A. Dòria-Cerezo and E. Fossas.

A sliding mode control for a wound rotor synchronous generator with an isolated

RL load.

In Proc. of the American Control Conference, Baltimore, 2010.

4. A. Dòria-Cerezo, E. Fossas and R.S.Muñoz-Aguilar.

Analysis of the closed loop dynamics of a sliding mode controlled stand alone syn-

chronous generator.

Submitted to Conference on Decision and Control, 2010.
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Journals

1. R.S. Muñoz-Aguilar, A. Dòria-Cerezo, E. Fossas and R. Cardoner.

Sliding mode control for a stand alone wound rotor synchronous generator.

Submitted to IEEE Transactions on Industrial Electronics.

2. R.S. Muñoz-Aguilar, A. Dòria-Cerezo and E. Fossas.

Stator voltage regulation of a stand-alone wound-rotor synchronous generator using

sliding mode control techniques.

Submitted to IEEE Transactions on Power Electronics.

3. A. Dòria-Cerezo, V.I. Utkin, R.S. Muñoz-Aguilar and E. Fossas.

Control of a stand-alone wound rotor synchronous generator: sliding mode control

via regulation the d-voltage component.

Submitted to IEEE Transactions on Control Systems Technology.

4. E. Fossas, A. Dòria-Cerezo and R.S.Muñoz-Aguilar.

Stability analysis of the closed loop dynamics of a sliding mode controlled stand-

alone wound rotor synchronous generator.

Submitted to International Journal of Control.

Book Chapters

1. E. Fossas, D. Biel, A. Dòria-Cerezo, R.S. Muñoz-Aguilar and R. Ramos-Lara.

Two applications of Sliding Mode Control in Energy Generation and Power Elec-

tronics.

Submitted to Lecture Notes in Control and Information Sciences.

Other publications not directly related with the thesis are,

• Raúl S. Muñoz-Aguilar, Arnau Dòria-Cerezo, and Paul F. Puleston.

Energy-based modelling and simulation of a series hybrid electric vehicle propul-

sion system.

In Proc. of the European Conference on Power Electronics and Application, Barcelona,

2009.

• D. Biel, E. Fossas, C. Meza and R.S Muñoz-Aguilar.

Robust Exact Differentiation via Sliding Mode Technique applied to a Fixed-Frequency
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Quasi-Sliding Control Algorithm.

Institute of Industrial and Control Engineering. Technical University of Catalonia.

Report. 2008

1.6 Thesis organization

Chapter 2 covers the modeling issues of the wound rotor synchronous machine. From

the general three-phase dynamical equations, and using the Park transformation, the dq-

model of the stand-alone wound rotor synchronous generator feeding both a resistive and

an inductive load are obtained. Equilibrium points of the obtained systems are analyzed

and, after defining the control objective, the desired equilibrium points are computed.

Finally, linear approximated models are obtained and their transfer functions are also

presented..

PI controllers are the most used in the industry because they offers good performance

and are easily implementables. In Chapter 3 we obtain the tuning rule for the PI controller,

and we analyze these results in order to propose new controllers which improve the classic

PI approach.

The sliding mode control scheme for the WRSG connected to a resistive load is de-

signed in Chapter 4. It also includes a complete stability analysis of the closed loop

system. The main results of this Chapter are contained in [15], [55], [14], [13].

Chapter 5 presents two sliding mode designs to regulate the stator voltage amplitude

for a stand alone wound rotor synchronous generator. Both use the stator voltage d-

component error in the switching function. The first case is a nested controller, where

an outer PI loop is added to provide the proper d-voltage component reference. In the

second approach an integral term is added to the switching function. The main results of

this chapter are contained in [17], [16].

The case of feeding an inductive load is studied in Chapter 6. The controller introduces

a dynamic extension because the stator voltage amplitude is a zero relative degree output.

As result, a robust controller, which neither depends on the machine parameters nor on

the load values, is obtained. The main results of this Chapter are contained in [54], [53].

In Chapter 7 the simulation and the experimental results of the designed controllers for

the stand-alone wound rotor synchronous generator are presented. Firstly, a complete des-
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cription of the bench is provided. It also includes details of the data acquisition stage and

the used DSP card. Secondly, the description of the simulation procedure is commented.

Then, the simulation and experiments which contains several scenarios, with reference

change and load variations evaluated for each controller are presented. The main results

of this chapter are contained in [55], [16], [53].



Chapter 2

Modeling of a stand-alone wound rotor

synchronous generator

Resume

In this Chapter the dynamical equations of the stand-alone wound rotor synchronous ma-

chine feeding both a resistive and an inductive load are obtained. From the well known

three-phase equations, and by using the dq-transformation, the reduced system is intercon-

nected to the load. Equilibrium points of the closed loop systems are computed. Finally,

linear approximated models are obtained and their transfer functions are also presented.

2.1 Generalized model of an electrical machine

Electrical machines are highly non linear electromechanical systems. In general the elec-

trical part is an n-phase system which depends on the rotor position, and its dynamics is

given by the Kirchhoff laws [40],

v(t) = Ri(t) +
dλ(t)

dt
, (2.1)

where v(t) ∈ R
n, i(t) ∈ R

n and λ(t) ∈ R
n are the voltages, currents and fluxes; R ∈

R
n×n is the machine dissipative matrix. Neglecting saturation effects, the fluxes, λ, are

11
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related to the currents, i, through the inductances matrix, L(θ) ∈ R
n×n,

λ = L(θ)i,

where θ is the rotor position. The inductance matrix form depends on the machine physi-

cal structure.

Mechanical dynamics is described by the Newton’s second law,

J
dωm

dt
= −Bωm + τe + τ, (2.2)

where J is the rotor inertia, B is the damping coefficient, ωm is the mechanical speed,

τ is the external torque provided to the machine and τe is the electromechanical torque

generated by the machine, which can be written as,

τe =
1

2
iT

∂L(θ)

∂θ
i. (2.3)

Along this Thesis the following assumptions are considered:

• Symmetrical phases with uniform air-gap and sinusoidally distributed phase win-

dings.

• Infinite permeability of the fully laminated cores.

• Saturation iron losses, end winding and slot effects are neglected.

• Only linear magnetic materials are considered.

• The three-phase variables are balanced and equilibrated.

2.2 Three-phase model of a wound rotor synchronous ma-

chine

A three-phase wound rotor synchronous machine1 is composed by a set of three-phase

stator and a field windings feed with a DC voltage at the rotor side (Figure 2.1). In this

Figure, and along the dissertation, convention of positive incoming current is adopted

for both stator and field currents. In synchronous machines, the stator frequency, ω, is

1A cylindrical rotor type, without damping windings is considered.
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WRSG

τE ,ωm

Figure 2.1: Three-phase synchronous machine scheme.

directly given by the mechanical speed, ωm (ωm = npω, where np is the number of the

pole pairs). At the stator side, the voltages, currents and fluxes are three-phase variables,

while the rotor variables, indicated with the F subindex, are one dimensional [40].

v(t)T =
(

vsa, vsb, vsc, vF

)
= [vT

s , vF ] ∈ R
4,

i(t)T =
(

isa, isb, isc, iF

)
= [iTs , iF ] ∈ R

4,

λ(t)T =
(

λsa, λsb, λsc, λF

)
= [λT

s , λF ] ∈ R
4.

Considering that the three-phase variables are balanced and equilibrated,

vs(t)
T = [vsa, vsb, vsc] = Vs

(
cos(θ + φv), cos

(
θ + φv −

2π

3

)
, cos

(
θ + φv +

2π

3

))
,

is(t)
T = [isa, isb, isc] = Is

(
cos(θ + φi), cos

(
θ + φi −

2π

3

)
, cos

(
θ + φi +

2π

3

))
,

λs(t)
T = [λsa, λsb, λsc] = Λs

(
cos(θ + φλ), cos

(
θ + φλ −

2π

3

)
, cos

(
θ + φλ +

2π

3

))
,

where Vs, Is and Λs are the amplitudes of the stator voltages, currents and fluxes, res-

pectively, and φv, φi and φλ are their phases respect to the rotor position. The electric

dissipation is represented by

R =




Rs 0 0 0

0 Rs 0 0

0 0 Rs 0

0 0 0 RF




,
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where Rs and RF are the stator and field resistances, respectively. The inductance matrix,

L(θ), is defined as,

L(θ) =




Ls Lls Lls Lm cos θ

Lls Ls Lls Lm cos
(
θ − 2π

3

)

Lls Lls Ls Lm cos
(
θ + 2π

3

)

Lm cos θ Lm cos
(
θ − 2π

3

)
Lm cos

(
θ + 2π

3

)
LF




,

where Ls, Lm and LF are the stator, magnetization and field inductances, respectively.

Using the inductance matrix, the electrical torque (2.3) yields,

τe = −LmiF

(
ia sin θ + ib sin

(
θ − 2π

3

)
+ ic sin

(
θ +

2π

3

))
. (2.4)

2.3 The dq-transformation

The dq-transformation, also known as a Park or Clare-Park transformation, allows to sim-

plify the study of power systems [40] [78]. Under the standard assumptions listed previou-

sly, this transformation eliminates the θ-dependent coefficients of the inductance matrix

and reduces the three-phase system into a two-phase system. This transformation is also

used for control purposes to describe a tracking problem as a regulation one.

In this subsection, the dq-transformation is shortly presented. Let us define a three-

phase variables vector as

fT
abc = F

(
cos(ωt), cos

(
ωt − 2π

3

)
, cos

(
ωt +

2π

3

))
,

where F is the amplitude of the sinusoidal waves and ω is its frequency.

The dq-transformation can be split in two parts. First, the three-phase system is trans-

formed into the α, β, γ framework by means of

fαβγ = Tfabc (2.5)
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where

T =




√
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3


 .

This transformation, for balanced systems, equals zero for the homopolar term (fγ).

This fact allows to reduce the original system to a two-phase one, fαβ = [fα, fβ].

The second part consists of a rotating reference framework, which in some cases re-

duces the sinusoidal functions into constants values. The new variables fdq = [fd, fq]
T ∈

R
2 are given by

fdq = K−1fαβ, (2.6)

where

K = eJδ =

(
cos(δ) − sin(δ)

sin(δ) cos(δ)

)
,

δ is an arbitrary function of time.

2.4 Model of a wound rotor synchronous machine in αβ-

coordinates

Using the first part of the transformation presented in the previous Section, and assuming

that the system is balanced, the dynamics of the wound rotor synchronous machine is

reduced to only the αβ coordinates in the stator part. Starting from the original system

2.1, the stator dynamics can be rewritten in αβγ coordinates, together with the rotor

variable, as

vαβγF =
dλαβγF

dt
+ RαβγF iαβγF ,

where

RαβγF = T RT −1 = R

and T contains the transformation introduced in 2.5

T =

(
T O1×3

O3×1 1

)
∈ R

4.



16 2.4. Model of a wound rotor synchronous machine in αβ-coordinates

Fluxes and currents are now related by

λαβγF = LαβγF iαβγF ,

where LαβγF = T LT −1.

Assuming a three-phase equilibrated system (fa + fb + fc = 0), the three-phase varia-

bles in the αβγF coordinates yield,

vT
αβγF = [vα, vβ, vγ , vF ] = (V cos(θ + φv), V sin(θ + φv), 0, vF ) ,

iTαβγF = [iα, iβ, iγ, iF ] = (I cos(θ + φi), I sin(θ + φi), 0, iF ) ,

λT
αβγF = [λα, λβ, λγ , λF ] = (Λ cos(θ + φλ), Λ sin(θ + φλ), 0, λF ) ,

where V =
√

3√
2
V , I =

√
3√
2
I and Λ =

√
3√
2
Λ. Note that the third component, γ, is zero and,

under the equilibrated three-phase variables assumption, the electrical part of the system

dimension is reduced and can be written as,

vαβF =
dλαβF

dt
+ RαβF iαβF (2.7)

where fluxes and currents are related by

λαβF = LαβF iαβF . (2.8)

For the WRSG, the dissipation and inductance matrices in αβ-coordinates, are

RαβF =




Rs 0 0

0 Rs 0

0 0 RF


 ,

LαβF =




Ls 0 Lm cos θ

0 Ls Lm sin θ

Lm cos θ Lm sin θ LF


 .

Finally, the electrical torque, τe, expressed in the αβ coordinates,

τe = LmiF (iα sin θ − iβ cos θ) .
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2.5 The dq model

In this section the dq model of the wound rotor synchronous machine is presented. This

model will be used in the next Chapters for control design. This is obtained rotating the αβ

reduced model by means of the transformation presented in (2.6). Then, the relationship

between fluxes and currents can be rewritten by replacing (2.6) in (2.7) and (2.8)

vdq = e−JθRαβeJθidq + e−Jθ d

dt
eJθλdq +

dλdq

dt
,

λdq = e−JθLαβeJθidq = Ldqidq.

Finally dθ
dt

= ω,

e−Jθ d

dt
(eJθ) = e−Jθω

(
− sin θ − cos θ

cos θ − sin θ

)
= ω

(
0 −1

1 0

)
= ωJ2,

and

e−JθRαβeJθ = Rαβ = Rdq.

The dq-model is described by

vdq = Rdqidq + Jωλdq + λ̇dq.

The mechanical dynamics also follows (2.2), and the electromechanical torque is de-

rived from (2.3), and it depends on the topology of the electrical machine.

Notice that, assuming an equilibrated system, the three-phase variables are in the dq

coordinates,

vT
dqF = [vd, vq, vF ] = (V cos φv, V sin φv, vF ) ,

iTdqF = [id, iq, iF ] = (I cos φi, I sin φi, iF ) ,

λT
dqF = [λd, λq, λF ] = (Λ cos φλ, Λ sin φλ, λF ) .
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For the WRSG, the L and Jω matrices are,

L =




Ls 0 Lm

0 Ls 0

Lm 0 LF


 ,

Jω =




0 −ω 0

ω 0 0

0 0 0


 .

Note that the inductance matrix, L does not depend on θ.

The mechanical dynamics is kept as in (2.4) where now the electrical torque is

τe = −LmiF iq.

2.6 Dynamical model of the WRSG with a resistive load

In this Section the dynamical model of the stand-alone WRSG interconnected with a

resistive load is obtained. From the well-known dq-dynamical equations of the WRSG

obtained in previous Section, and taking into account the physical interconnection rules

with a pure resistor load, the dynamical equations of the whole system are found. The

system, considering an externally regulated mechanical speed, becomes a linear system.

However, the system output, i.e. the stator voltage amplitude, is a nonlinear function.

The equilibrium points of the system are obtained and the control objective is pointed

out. The desired equilibrium points are computed replacing the equilibrium point of the

system into the subspace defined by the control objective. The whole system dynamics,

allows to determine the equilibrium points that can be parametrized in terms of the rotor

voltage vF , which will be used as a control input.

Also, the transfer function of the WRSG with resistive load is calculated. At the end

of this Section, a linear approximation of the output function is computed and it is used

to obtain a transfer function which relates vF to Vs.

Figure 2.2 shows the proposed scenario: a primary mover drags, at a constant speed,

a WRSG which acts as a generator to fed an isolated resistive load.
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Figure 2.2: Scheme of a stand alone WRSG connection with a resistive load.

As explained in the previous Section, this system differs from the typical grid connec-

tion, where the frequency and the voltage amplitude are fixed by the electrical network.

For a stand-alone connection the frequency is given by the mechanical speed, ωm, (pro-

vided by a primary source, for instance an internal combustion engine), while the voltage

amplitude must be assured by the rotor field voltage.

From the dq model obtained in Section 2.5, the electrical part of a wound rotor syn-

chronous machine can be described using the state space form as

L
dx

dt
=




−Rs ωLs 0

−ωLs −Rs −ωLm

0 0 −RF


 x +




vd

vq

vF


 (2.9)

where xT = (id, iq, iF ) ∈ R
3 are the dq-stator and field currents, respectively.

Let us obtain the complete model of a WRSG connected to a resistive load RL. The

interconnection scheme is depicted in Figure 2.2 where, vT
L = (vLd, vLq) ∈ R

2 and iTL =

(iLd, iLq) ∈ R
2 are the load voltages and currents in dq coordinates, which are related by

(
vLd

vLq

)
= RL

(
iLd

iLq

)
, (2.10)

where RL is the resistance value. The interconnection rules, according to Figure 2.2 are

vs = vL

iL = −is
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where, vT
s = (vd, vq) ∈ R

2 and iTs = (id, iq) ∈ R
2, are the stator voltages and currents in

the dq-framework. Now, putting together (2.9) and (2.10), the system can be written in an

affine form as

L
dx

dt
= Ax + BvF , (2.11)

where L is the inductance matrix defined before,

A =




−(Rs + RL) ωLs 0

−ωLs −(Rs + RL) −ωLm

0 0 −RF


 ,

and

B =




0

0

1


 .

2.6.1 Equilibrium points

The equilibrium points can be parametrized by the control input vF , this results in

x∗ = −A−1BvF ,

which yields a straight line defined by

x∗T (vF ) =

(
−ω2LsLm

RF |Zs|2
,−ωLm(Rs + RL)

RF |Zs|2
,

1

RF

)
vF (2.12)

where |Zs|2 = ω2L2
s + (Rs + RL)2.

2.6.2 Control objective

As mentioned before, this machine must ensure stator voltage amplitude and frequency.

For a synchronous generator, the stator frequency is directly given by the mechanical

speed, which, in this dissertation is assumed to be constant and externally regulated. Then,

the system output is the stator voltage amplitude Vs, which can be easily obtained, in a

dq-framework as

Vs =
√

v2
d + v2

q . (2.13)
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Last equation can be expressed in current terms using (2.10), which yields

Vs = RL

√
i2d + i2q, (2.14)

and the control input is the field voltage vF .

Note that, a fix value of Vs in (2.14), namely Vs = Vref ,

Vref
2 = R2

L(i2d + i2q), (2.15)

defines a cylinder in the state space, x, see Figure 2.3.

Then, the desired equilibrium are in the intersection of the straight line (2.12) and the

cylinder (2.15). Using cylindrical coordinates (Is, δ, iF )

id = Is cos δ

iq = Is sin δ

where, Is = Vs

RL
, is easy to obtain

i∗d =
Vref

RL

cos δ∗ (2.16)

i∗q =
Vref

RL

sin δ∗ (2.17)

i∗F = −Vref

RL

Ls

Lm cos δ∗
(2.18)

where

δ∗ = arctan

(
Rs + RL

ωLs

)
.

Note that the δ∗ value2 does not depend on the stator voltage amplitude. It only con-

tains the load value and the stator parameters of the machine. In fact, two possible solu-

tions exist, as it is shown in Figure 2.3 where the intersection of the cylinder defined by

(2.15) and the equilibrium point distribution (2.12) is depicted.

2This δ∗ angle, as the field magnetomotive force is in the q axis, can be seen as the load angle, which is

largely studied for a grid connection to ensure remaining in synchronism. However, in this case of isolated

generation with only one generator, the synchronism issue is not present.
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Furthermore, the value of the field voltage in equilibria is

v∗
F = − RF Ls

RLLm cos δ∗
Vref .

0

0

0

i
d
 [A]

i
q
 [A]

i F
 [
A

]

(2.15)

(2.12)x∗

Figure 2.3: Intersection of the control goals and the equilibrium points distribution of the

system.

2.6.3 Linear approximation

The system composed by the stand-alone WRSG and connected to resistive load is linear.

A nonlinearity is introduced in the desired output, setting the amplitude of the stator

voltage as a desired variable to be regulated. For a linear analysis and synthesis, the

transfer function relating the control input (rotor voltage, vF ) to the desired output, the

stator voltage amplitude, Vs is needed. From the linear state space description of each

subsystem (2.11), a set of transfer functions which relate vF to the currents, id, iq and iF

can be computed. Namely,

Gi(s) = (sI3 − L−1A)−1L−1B
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where I3 is a 3 × 3 identity matrix, and Gi(s) results in

Gd(s) = − a2s
2 + a1s + a0

d3s3 + d2s2 + d1s + d0

(2.19)

Gq(s) = − b0

d3s3 + d2s2 + d1s + d0

(2.20)

GF (s) =
c2s

2 + c1s + c0

d3s3 + d2s2 + d1s + d0

(2.21)

where Gd(s) = Id(s)
VF (s)

, Gq(s) = Iq(s)

VF (s)
, GF (s) = IF (s)

VF (s)
, and

a2 = LmLs

a1 = Lm(Rs + RL)

a0 = ω2LmLs

b0 = ωLm(Rs + RL)

c2 = L2
s

c1 = 2Ls(Rs + RL)

c0 = ω2L2
s + (Rs + RL)2

d3 = µLs

d2 = (µ + LsLF )(Rs + RL) + L2
sRF

d1 = µω2Ls + LF (Rs + RL)2 + 2Ls(Rs + RL)RF

d0 = RF (ω2L2
s + (Rs + RL)2)

µ = = LF Ls − L2
m

Let us to consider, Vs as the output variable. Then, from (2.14), and linearizing around

a desired point (i∗d, i
∗
q), which corresponds to V ∗

s

Vs ≃ V ∗
s +

RLi∗d√
i∗2d + i∗2q

(id − i∗d) +
RLi∗q√
i∗2d + i∗2q

(iq − i∗q)

and using (2.14) around the operation point, V ∗
s = RL

√
i∗2d + i∗2q , yields

Vs ≃
R2

L

V ∗
s

(i∗did + i∗qiq). (2.22)
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Replacing the dynamics of id and iq (Equations (2.19) and(2.20)), in (2.22),

Vs(s) = −R2
L

V ∗
s

i∗d(a2s
2 + a1s + a0) + i∗qb0

d3s3 + d2s2 + d1s + d0

VF (s) (2.23)

Finally, taking into account (2.16) and (2.17), the transfer function G(s) = Vs(s)
VF (s)

is

G(s) = RL

cos δ∗(a2s
2 + a1s + a0) + sin δ∗b0

d3s3 + d2s2 + d1s + d0

.

where we used that we are only interested in the absolute value of the stator voltage

amplitude. Note that, since

δ∗ = arctan

(
Rs + RL

ωLs

)
.

(2.23) is approximated for any operation point, V ∗
s .

2.7 Dynamical model of the WRSG with an inductive load

In this Section the dynamical model of the stand-alone WRSG connected to a inductive

load is obtained. Using a similar procedure to the one presented in previous Section,

the whole dynamical system is obtained. Also, the equilibrium points and the transfer

function of the WRSG with inductive load are calculated.

Figure 2.4 shows the proposed scenario that is quite similar to the presented in the

previous Section: a primary mover drags, with a constant speed, a WRSG which acts as

a generator to feed an isolated inductive load. In the similar way that it was presented in

the previous Section, the WRSG, is connected, in this case, to an inductive load.

Assuming that the mechanical speed is externally regulated by the primary mover,

the electrical part of the wound rotor synchronous generator is the same described in the

previous Section, represented by equation (2.9).

Let us obtain the complete model of a WRSG connected to an inductive load, which

is modeled with a pure resistive element, RL, in series with a pure inductive element, LL.

The interconnection scheme is depicted in Figure 2.4, where vT
L = (vLd, vLq) ∈ R

2 and
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Figure 2.4: Scheme of a stand alone WRSG connection with an inductive load.

iTL = (iLd, iLq) ∈ R
2 are the dq load voltages and currents, which are related by

vL = (RLI2 + ωLLJ2)iL + LL

d

dt
iL, (2.24)

where

I2 =

(
1 0

0 1

)
J2 =

(
0 −1

1 0

)
.

According to Figure 2.4, the interconnection rules are the same that in the resistive

case,

vs = vL

iL = −is. (2.25)

Now, putting together (2.9), (2.24) and (2.25), the system can be written in an affine

form as

L̂
dx

dt
= Âx + BvF , (2.26)

where L̂ is a new inductance matrix,

L̂ =




Ls + LL 0 Lm

0 Ls + LL 0

Lm 0 LF
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and the homogeneous dynamics Â and the input vector B are given by

Â =




−(Rs + RL) ω(Ls + LL) 0

−ω(Ls + LL) −(Rs + RL) −ωLm

0 0 −RF




and

B =




0

0

1


 ,

respectively.

2.7.1 Equilibrium points

As proceeded for the load resistive case, the equilibrium points can be parametrized by

the control input vF , this resulting in

x∗ = −Â−1BvF ,

which again yields a straight line, in this case, defined by

x∗T =

(
−ω2(Ls + LL)Lm

RF |Ẑs|2
,−ω(Rs + RL)Lm

RF |Ẑs|2
,

1

RF

)
vF (2.27)

where |Ẑs|2 = ω2(Ls + LL)2 + (Rs + RL)2.

The desired equilibrium point is defined by Vs = Vref .

2.7.2 Control objective

As mentioned before, the system output is the stator voltage amplitude, Vs, which in this

case can be written as

Vs =
√

v2
d + v2

q . (2.28)

Using (2.24), in (2.28), the stator voltage amplitude yields

V 2
s =

(
−RLid + ωLLiq − LL

did
dt

)2

+

(
−RLiq − ωLLid − LL

diq
dt

)2

(2.29)
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where, from (2.26), the id and iq current derivatives result in

µd

did
dt

= LF (−(Rs + RL)id + ω(Ls + LL)iq) − Lm(−RF iF + vF ) (2.30)

µq

diq
dt

= −ω(Ls + LL)id − (Rs + RL)iq − ωLmiF . (2.31)

where µd = LF (Ls + LL) − L2
m and µq = Ls + LL.

Notice that, while the system dynamics is linear, as equation (2.26) indicates, Vs, is a

tedious highly nonlinear function, which can be obtained replacing (2.30) and (2.31) in

(2.29).

From (2.29), with (2.30) and (2.31), and taking into account that two solutions are

possible, the value of vF at the desired regulation point is

v∗
F = ± |Ẑs|

|ZL|
RF

ωLm

Vref , (2.32)

where |ZL|2 = ω2L2
L + R2

L. Finally replacing vF = v∗
F from (2.32) in (2.27), i∗d, i∗q and i∗F

can be obtained.

At this point, as in the previous Section, using the cylindrical coordinates id = Is cos δ,

iq = Is sin δ, where now the stator current amplitude in steady state is I∗
s =

Vref

|ZL| , it is easy

to obtain

i∗d =
Vref

|ZL|
cos δ∗ (2.33)

i∗q =
Vref

|ZL|
sin δ∗ (2.34)

i∗F = −Vref

|ZL|
Ls + LL

Lm cos δ∗
(2.35)

where

δ∗ = arctan

(
Rs + RL

ω(Ls + LL)

)
.

Furthermore, the value of the field voltage in equilibria is

v∗
F = ±RF (Ls + LL)

|ZL|Lm cos δ∗
Vref .
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2.7.3 Linear approximation

A transfer function, resulting from the linear approximation of the output, can also be

obtained for the inductive load case. Using the standard procedure to obtain a set of

transfer functions from a linear system

Ĝi(s) = (sI3 − L̂−1Â)−1L̂−1B

which results in a transfer function for each current id, iq and iF ,

Ĝd(s) = − â2s
2 + â1s + â0

d̂3s3 + d̂2s2 + d̂1s + d̂0

(2.36)

Ĝq(s) = − b̂0

d̂3s3 + d̂2s2 + d̂1s + d̂0

(2.37)

ĜF (s) =
ĉ2s

2 + ĉ1s + ĉ0

d̂3s3 + d̂2s2 + d̂1s + d̂0

(2.38)

where

â2 = Lm(Ls + LL)

â1 = Lm(Rs + RL)

â0 = ω2Lm(Ls + LL)

b̂0 = ωLm(Rs + RL)

ĉ2 = (Ls + LL)2

ĉ1 = 2(Ls + LL)(Rs + RL)

ĉ0 = ω2(Ls + LL)2 + (Rs + RL)2

d̂3 = µd(Ls + LL)

d̂2 = (µd + (Ls + LL)LF )(Rs + RL) + (Ls + LL)2RF

d̂1 = µdω
2(Ls + LL) + LF (RL + Rs)

2 + 2(Ls + LL)(Rs + RL)RF

d̂0 = RF (ω2(Ls + LL)2 + (Rs + RL)2)

Let us consider Vs as the output variable. From (2.29), and linearizing around a desired
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operating point V ∗
s , Vs can be approximated by

Vs ≃
Z2

L

V ∗
s

(i∗did + i∗qiq) (2.39)

Replacing the dynamics of id and iq (Equations (2.36) and(2.37)), in (2.39),

Vs(s) = −Z2
L

V ∗
s

i∗d(â2s
2 + â1s + â0) + i∗q b̂0

d̂3s3 + d̂2s2 + d̂1s + d̂0

VF (s).

Finally, taking into account (2.33) and (2.34), the transfer function Ĝ(s) = Vs(s)
VF (s)

results

in

Ĝ(s) = ZL

cos δ∗(â2s
2 + â1s + â0) + sin δ∗b̂0

d̂3s3 + d̂2s2 + d̂1s + d̂0

where, as proceeded for the pure resistive case, only the absolute value of the amplitude

is considered. Note that in the particular case, LL = 0, the transfer function is the same

as in the resistive load case.
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Figure 2.5: Stator voltage amplitude of the actual and the linearized model.

In order to validate the linearized model Figure 2.5 shows the stator voltage ampli-
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tude of the actual and linearized model using the parameters of the machine presented in

Chapter 7 and the load values RL = 128Ω and LL = 20mH.



Chapter 3

Linear analysis of the stand-alone

WRSG

Resume

PI controllers are the most used in the industry because they offer good performance and

are easily implementables. In this chapter we obtain the tuning rule for the PI controller,

and we analyze these results in order to propose new controllers which improve the classic

PI approach.

3.1 Obtained linear model

The linear approximation of the stand alone wound rotor synchronous generator, pre-

sented in Section 2.7 shows that the resistive load case is a particular case of the resistive-

inductive one, setting LL = 0. In this Chapter, the general resistive-inductive load case

will be analyzed. The transfer function that approximates the behavior of a stand-alone

WRSG with an inductive load (see Chapter 2 for more details) is

Ĝ(s) = ZL

cos δ∗(â2s
2 + â1s + â0) + sin δ∗b̂0

d̂3s3 + d̂2s2 + d̂1s + d̂0

31
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where,

â2 = Lm(Ls + LL)

â1 = Lm(Rs + RL)

â0 = ω2Lm(Ls + LL)

b̂0 = ωLm(Rs + RL)

d̂3 = µd(Ls + LL)

d̂2 = (µd + (Ls + LL)LF )(Rs + RL) + (Ls + LL)2RF

d̂1 = µdω
2(Ls + LL) + LF (RL + Rs)

2 + 2(Ls + LL)(Rs + RL)RF

d̂0 = RF (ω2(Ls + LL)2 + (Rs + RL)2)

µd = LF (Ls + LL) − L2
m

ẐL =
√

ω2L2
L + R2

L

The stator voltage amplitude is defined as (2.13). This implies that there exist two

possible equilibrium points. From a practical point of view, due to there is no constraint

in the phase of the three phase stator voltages, both solutions satisfy the control goal.

In the following, our choice corresponds to a positive gain for Ĝ(s) in order to obtain

directly the amplitude value of Vs, as a positive value.

Figure 3.1 shows the bode plot of Ĝ(s). In this case, the load values are varying from

RLmin = 64Ω to RLmax = 10kΩ, and LLmin = 0H to LLmax = 600mH. The numeri-

cal computations obtained in this Chapter use the parameters of the machine presented

in Chapter 7. In Figure 3.1 only the extreme cases are plotted. These diagrams do not

necessarily correspond to the minimal/maximal values of the parameters, i.e., the bode di-

agrams for any considered load lie between these curves. Note that the cut-off frequency

oscillates from 100 Hz to 400 Hz approximately, that means that for implementation pur-

poses a switching frequency of two orders of magnitude the cut-off frequency is more than

enough. This yields a switching frequency of 10kHz for the implementation purposes.

3.2 Stability analysis, Kp and Ki ranges

In this Section, the stability of the PI controller is presented. Figure 3.2 shows the pro-

posed control scheme.
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Figure 3.1: Bode diagram of the WRSG with resistive-inductive load.

The resulting open loop system transfer function adding a proportional-integral con-

troller is

G̃(s) =
Kps + Ki

s
ZL

cos δ∗(â2s
2 + â1s + â0) + sin δ∗b̂0

d̂3s3 + d̂2s2 + d̂1s + d̂0

which does not have poles in the right-half plane because d̂i > 0 ∀i ∈ {0, 1, 2, 3} and

d2d1 > d3d0. Then, using Nyquist stability criterion, the system is stable if there is not

encirclement around point −1 [61]. Figures 3.3 and 3.4 shows the Nyquist diagram using

a Proportional and a Proportional-Integral Control, respectively. Both figures, cut the

negative real axis at the origin, then the system is stable for each Kp and Ki positive 1.

There are several well recognized phenomena in electrical drive systems that the con-

trol designer does not uses to account for. Among them are: parameter variations caused

by winding temperature variation, switching effects and saturation. Additionally, the li-

near control methodology for inherent nonlinear high-order multivariable plants such as

AC machines is insufficient. The use of pulse width modulation involves working with

1The singularity at ω = 0 caused by the integral term has been considered when counting the index of

the Nyquist curve around −1.
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Figure 3.2: Proportional-Integral control scheme for a wound rotor synchronous genera-

tor.

−5 0 5 10 15 20 25 30 35 40
−20

−15

−10

−5

0

5

10

15

20

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

Figure 3.3: Nyquist diagram using a proportional controller.

averaged models that are smooth. It has been found interesting turning to algorithms with

discontinuous control actions, more appropriated to power converters because of its own

discontinuous nature. Actually, sliding mode control approach has taken a great interest

of researchers because its features of order reduction, disturbance rejection, and strong

robustness with a minimum of implementation complexity by means of power converters

[75].

Moreover, using a PI controller one of the two equilibrium points becomes unstable,

while the use of the d-voltage component sign in the control switching policy in sliding

control mode will allow to stabilize the system at the two possible equilibrium points, as

it will be shown in the next Chapters.



3. Linear analysis of the stand-alone WRSG 35

−2 0 2 4 6 8 10
−200

−150

−100

−50

0

50

100

150

200

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

Figure 3.4: Nyquist diagram using a proportional-integral controller

3.3 Simulations

This Section shows the PI simulation results. The numerical experiment is done by va-

rying the load resistance from RL = 120Ω to RL = 64Ω at t = 0.05s. The Kp and Ki

values were calculated in order to guarantee the stability at the experiment and the VDC

value where saturated at VDC = 35V .

Figure 3.5 shows the stator voltage amplitude regulation. Even if the RL value is

suddenly modified, the steady state value of the output is the desired one, and also the

time convergence is small.

Figures 3.7 and 3.6 show the field voltage, vF , which acts as a control action, and the

error.

The dq stator voltages and the currents (the stator and the field ones) are displayed in

Figures 3.8 and 3.9, respectively.
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Chapter 4

Control of a stand-alone wound rotor

synchronous generator with a resistive

load

Resume

This chapter presents a sliding mode controller for a wound rotor synchronous machine

acting as a generator for an isolated resistive load. A switching function is defined in order

to fulfill control objectives, and the Ideal Sliding Dynamics is proved to be stable. From

the desired surface, the standard sliding methodology is applied, and a robust controller is

obtained. The presence of sliding modes in a second (and non-desired) surface motivates

a deeper analysis of the ideal sliding and the full dynamics. Both are complex. Saturation

effects in the actuator are also considered. Numerical simulations illustrate the complexity

of the encountered behavior.

4.1 System description

Figure 4.1 shows the proposed scenario: a primary mover drags, at a constant speed, a

WRSG which acts as a generator to fed an isolated load.

For an isolated configuration the frequency is determined by the mechanical speed,

ωm, (provided by the primary source), while the voltage amplitude must be assured by the

39
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iabc

vabc

iLabc

vLabc

RL

WRSM

iF

vF

ωm

Figure 4.1: Scheme of a stand alone WRSG with resistive load.

rotor field voltage.

4.1.1 Dynamic model

The dynamic model of the the WRSG interconnected with a pure resistor load, was found

in Section 2.6. The whole system dynamics can be written in an affine form as

L
dx

dt
= Ax + BvF , (4.1)

where,

L =




Ls 0 Lm

0 Ls 0

Lm 0 LF


 ,

A =




−(Rs + RL) ωLs 0

−ωLs −(Rs + RL) −ωLm

0 0 −RF


 ,

and

B =




0

0

1


 .
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The load equation is, (
vLd

vLq

)
= RL

(
iLd

iLq

)
. (4.2)

4.2 Control design

In this Section the Sliding Mode Control technique is applied to regulate an isolated

wound rotor synchronous generator. The switching surface is directly derived from the

stator voltage amplitude and, assuming a bang-bang control action, the switching policy

is defined in order to guarantee sliding modes. Then, the equivalent control is used to

prove local stability of the Ideal Sliding Dynamics. Finally, the controller is obtained.

4.2.1 Switching function and equivalent control

According to the control goals we define switching function s(x) as follows,

s(x) = V 2
s − V 2

ref .

Note that the switching function contains the error of the square of the voltage am-

plitude, V 2
s , instead of the classical error difference. As it is shown below, this choice

implies that both equilibrium points are achievable. Using (2.14) the switching function

can be written in state variables as

s(x) = R2
L(i2d + i2q) − V 2

ref . (4.3)

The equivalent control is defined so that ṡ = 0, (i.e. the fictitious control that makes

the sliding surface flow invariant). Hence,

∂s

∂x

dx

dt
= 0.

Then, from (4.1)
∂s

∂x
L−1 (Ax + Bueq) = 0,

now, solving for ueq we obtain

ueq = −
(

∂s

∂x
L−1B

)−1
∂s

∂x
L−1Ax. (4.4)
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Replacing the matrices and the switching function in (4.4) gets,

ueq = RF iF − LF

Lm

(Rs + RL)id + ωLmiq −
µ

Ls

(
(Rs + RL)

Lm

iq + ωiF

)
iq
id

, (4.5)

where µ = LsLF − L2
m, which is always positive.

In the three dimensional space (id, iq, iF ), the sliding surface is a cylinder. Sliding

motion can be expected only in the cylinder subset defined by id 6= 0 where transversality

condition holds. The closer to zero id, the higher the equivalent control; hence a closed

subset of the sliding domain must be taken in order to get a bounded control effort ueq.

4.2.2 Sliding mode controller

The Sliding Mode Controller must ensure trajectories go to the sliding surface and, when

they reach the surface, it remain there. In this case, the desired sliding surface was defined

in (2.14).

Consider the following Lyapunov function

V =
1

2
s2, (4.6)

it is positive. To stabilize the closed loop system, the derivative of (4.6) must be negative,

V̇ < 0, which is equivalent to,

s
∂s

∂x
L−1 (Ax + BvF ) < 0.

Adding and subtracting Bueq the latter equation yields

s
∂s

∂x
L−1 (Ax + BvF − Bueq + Bueq) < 0.

Now, taking into account (4.4),

s
∂s

∂x
L−1B (vF − ueq) < 0. (4.7)
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Therefore, from (4.7), the control action defined by

vF = ueq − k sign

(
s
∂s

∂x
L−1B

)
, (4.8)

holds the stability condition , |V̇ ≤ 0

V̇ = −k

∣∣∣∣s
∂s

∂x
L−1B

∣∣∣∣ ≤ 0.

Evaluating
(
s ∂s

∂x
L−1B

)
in (4.8), the control law yields

vF = ueq − k sign

(
−s

2R2
LLm

LsLF − L2
m

id

)
,

and taking into account that
2R2

LLm

LsLF−L2
m

> 0 the sign term can be simplified to

− k sign (−sid) . (4.9)

4.2.3 Switching control policy

In this system, the control action vF is implemented using a DC-DC power converter

which commutes between two discrete signal values, −VDC and VDC . Thus, the latter

control law should be modified as follows.

From (4.9) the stability condition is simplified to

sid(vF − ueq) < 0. (4.10)

Since, the actual controller is a bang-bang actuator and taking into account equation

(4.10), the control law defined by

vF =

{
u− if s ∂s

∂x
L−1B > 0

u+ if s ∂s
∂x

L−1B ≤ 0
,

assures V̇ ≤ 0 presumed that u− < ueq < u+.
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Hence the field voltage

vF =

{
VDC if sid < 0

−VDC if sid > 0
(4.11)

provides sliding modes in the subset of s = 0 defined by −VDC < ueq < VDC .

For robustness purposes, since voltages are accessible variables and they are used to

compute the switching function, the switching policy is given in voltage terms. Using

(4.2) in (4.11) one gets,

vF =

{
VDC if svd < 0

−VDC if svd > 0
.

The proposed control scheme, that in the sequel we will refer as CSMC (Classical

Sliding Mode Control), is depicted in Figure 4.2. θ is the rotor position (required to

compute the dq-transformation) and vabc is the three-phase stator voltages. An hysteresis

block is added to limit the switching frequency. It is worth noticing that this control action

depends on the voltages measurements and the rotor position only. Therefore, since the

switching function, written as a function of the voltages, is parameter independent, the

closed loop system is robust presumed that −VDC ≤ ueq ≤ VDC .

+

−

 

 

V 2
s

V 2
ref

vabc

vd

vq

v2
d + v2

q

vF−s

θ

WRSG

abc-dq

Figure 4.2: Control scheme implementation of a sliding mode controller for a stand-alone

WRSG with a resistive load.

4.3 Analysis of the closed loop dynamics

This section deals with the closed loop dynamics for a sufficiently large value of VDC , i.e.

there are no constrains on the control action vF . The ISD is analyzed and local stability of
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the equilibrium points is proved thanks to the Poincaré-Bendixon and Bendixon theorems.

Additionally, the basin of attraction is computed. Then, we point out that, because of

the use of a quadratic switching surface, the control algorithm designed in the previous

Section involves two sliding surfaces: the cylinder defined by s = 0, and also the plane

id = 0 for s > 0. This second surface implies that the system can slide on s = 0 and

id = 0 alternatively.

The Ideal Sliding Dynamics (ISD), or zero dynamics, is the dynamics defined when

sliding motion occurs (s(x) = 0) and, is given by the dynamical system (4.1) when the

equivalent control, ueq, (4.5) is used as control input. The ISD is given in local variables

that parametrize the cylinder. Namely, iq and iF . Notice that this dynamics is well defined

in the subset of s(x) = 0 where transversality condition holds.

Taking cylindrical coordinates in R
3, (I, δ, iF ) where id = I cos δ, iq = I sin δ, and

replacing vF by the equivalent control (4.5) in (4.1), the invariant dynamics on s = 0

results in

dδ

dt
= − 1

cos δ

(
ωLmRL

VrefLs

iF +
Rs + RL

Ls

sin δ

)
− ω

diF
dt

= − 1

cos δ

(
ωiF sin δ +

Rs + RL

LmRL

Vref

)
.

For ease reading, let us define the positive parameters â = ωLmRL

Vref Ls
, b̂ = Rs+RL

Ls
and

ĉ = Rs+RL

LmRL
Vref . Then previous dynamics can be rewritten as

cos δ
dδ

dt
= −âiF − b̂ sin δ − ω cos δ (4.12)

cos δ
diF
dt

= −ωiF sin δ − ĉ. (4.13)

Remarks

• The dynamics is not defined in δ = ±π
2

(which corresponds to id = 0), where the

transversally condition fails.

• There is a symmetry in the system. The sliding domain, i.e. the complementary of

the planes id = ±π
2

in the cylinder, has two connected components. The diffeo-

morphism φ(δ, iF ) = (δ + π,−iF ) transforms the dynamics on the subset of the

cylinder defined by δ ∈ (−π
2
, π

2
) into the dynamics on the subset of the cylinder
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defined by δ ∈ (π
2
, 3π

2
). Hence, from now on, only the dynamics on the subset of

the sliding surface defined by (−π
2
, π

2
) will be analyzed.

Solving (4.13) for iF , replacing the solution in (4.12) and using some algebra yields

b̂ cos δ∗ − ω sin δ∗ = 0.

Thus,

δ∗ = arctan

(
b̂

ω

)
= arctan

(
Rs + RL

ωLs

)
(4.14)

which has a unique solution δ∗ in (−π
2
, π

2
). Then, the field current equilibrium values are

i∗F = − Vref

ωLmRL

(ωLs cos δ∗ + (Rs + RL) sin δ∗), (4.15)

The phase-portrait of the ISD on the cylinder is shown in Figure 4.3. The cylinder is

obtained by identifying the straight lines of the border of the strip −π
2

< δ < 3π
4

. The slid-

ing domain has two connected components, namely −π
2

< δ < π
2

and π
2

< δ < 3π
4

. The

normalized vector field, two trajectories, each one reaching the corresponding equilibrium

point and the basin of attraction of the dynamical system defined by (4.14) and (4.15) are

depicted. Parameters used in numerical simulations are: Rs = 3.06Ω, Ls = 0.48H,

Lm = 0.31H, RF = 2.48Ω, LF = 0.24H, ω = 2π50 rad
s

. The initial conditions of trajec-

tory are (δ(0), iF (0)) = (1rad, 5A), and (δ(0), iF (0)) = (4rad,−5A). The equilibrium

points coordinates are (δ∗, i∗F ) = (0.13πrad,−8.24A) and (δ∗, i∗F ) = (1.13πrad, 8.24A).

Clearly, each initial condition reaches one of these stable, equilibrium points. Note that

the symmetry already reported. Also, the vector field shows that there exist a subspace

of the sliding domain where trajectories do not converge to the equilibrium points (these

two areas are delimited by gray lines).

id
did
dt

= id
1

µ
(−LF (Rs + RL)id + ωLsLF iq + LmRF iF − LmVDCsign(ids)) <

≤ id
1

µ
Lm

[∣∣∣∣−
LF (Rs + RL)

Lm

id +
ωLsLF

Lm

iq + RF iF

∣∣∣∣− VDC

]
< 0. (4.16)

Ωd = {(id, iq, iF ) s.t. i2d + i2q > 0 and

∣∣∣∣
ωLsLF

Lm

iq + RF iF

∣∣∣∣ < VDC} (4.17)



4. Control of a stand-alone WRSG with a resistive load 47

δ(t)

iF (t)

γ−
p

γ−
p̄

p p

p̄

q

q̄

Figure 4.3: State space: vector field and two trajectories for a given initial conditions:

δ(0) = 1rad, iF (0) = 5A, and δ(0) = 4rad, iF (0) = −5A.

Basin of attraction

Small signal analysis shows that the equilibrium points are locally stable. The basin of

attraction is discussed in this subsection.

Let p and p̄ the points on the cylinder defined in (δ, iF ) coordinates by

p =

(−π

2
,
Vref (Rs + RL)

ωLmRL

)

and

p̄ =

(
π

2
,−Vref (Rs + RL)

ωLmRL

)
,

which are also marked in Figure 4.3.

At these points, the right-hand side of equations (4.12)-(4.13) cancels. They will be

key points in obtaining the basin of attraction. When δ converges to −π
2

from right (see

Figure 4.3), the normalized ISD points towards the second quadrant above p while, below

p, it points towards the fourth quadrant. Respectively, when δ converges to π
2

from left,
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the ISD points towards the third quadrant above p̄ and to first quadrant below.

Let γ−
p and γ−

p̄ the curves in the sliding domain defined in δ ∈
[
−π

2
, π

2

]
that reach p

and p̄ respectively. Simulation results show that γ−
p̄ starts at p.

Finally, let Ωs be the subset of the sliding domain limited by γ−
p , γ−

p̄ and δ = π
2
, Ωs is

an invariant set with respect to the ideal sliding dynamics. Moreover,

cos(δ) ·
(

dδ

dt
,
diF
dt

)
6= 0

in the interior of the sliding domain limited by γ−
p , γ−

p̄ and δ = π
2
. Hence, using Dulac’s

criterium [64] it can be stated that there are no periodic orbits in Ωs. Finally, the Poincaré-

Bendixon theorem proves that this domain is the basin of attraction of the equilibrium

point.

Remarks

• Let γφ be the trajectory in the (π
2
, 3π

2
) domain given by φ · γ−

p̄ , where φ is the

diffeomorphism defined in section 4.3. Note that trajectory γ−
p̄ , which starts at p,

finish at p̄, where trajectory γφ starts. The path obtained joining both trajectories

seems to be a limit cycle, but it is broken at δ = ±π
2

because the transversality

condition does not hold at it.

• This behavior in not possible in a real application due to the physical VDC−limit,

as it will be shown in the next Section.

• Unfortunately, due to the nonlinearity of the dynamical system, it is not possible to

get analytical expressions of γ−
p and γ−

p̄ .

4.3.1 Dynamics on id = 0

In this subsection it is shown that, although the control law is designed to slide on s = 0,

the switching control law defined in (4.11) gives rise to two discontinuity surfaces: s = 0

and id = 0.

To answer whether id = 0 is a sliding surface, let us check the reachability condition.
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The calculation of id
did
dt

yields

id
did
dt

= id
1

µ
(−LF (Rs + RL)id + ωLsLF iq))

+id
1

µ
(LmRF iF − LmVDCsign(ids)) . (4.18)

Let us first consider the outer of the cylinder, i.e. {id = 0} ∩ {s > 0}. In the subset

defined by ∣∣∣∣−
LF (Rs + RL)

Lm

id +
ωLsLF

Lm

iq + RF iF

∣∣∣∣ < VDC , (4.19)

the right-hand side of equation (4.18) is negative, as equation (4.16) shows.

Following the same argument, it can be found a repulsive subset of {id = 0}∩{s < 0}.

Hence, there are sliding motions on the subset Ωd of id = 0 defined by (4.17), see Figure

4.4.

0
0

0

i
d
 [A]

i
q
 [A]

i F
 [
A

]

id=0

s=0

Figure 4.4: Sliding surfaces, s = 0 and id = 0, defined by the designed control law.

Finally, computing the equivalent control and replacing it on (4.1), the ISD on id = 0

is obtained. It results in the linear dynamics

Ls

diq
dt

= −(Rs + RL)iq − ωLmiF

Lm

diF
dt

= ωLsiq.
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which has a stable, virtual1 equilibrium point at (0, 0, 0). This implies that, if the sliding

condition on id = 0, see (4.19), holds, ISD-trajectories go to the equilibrium point which

lies inside the cylinder but they start sliding on the cylinder when they try to cross it.

Actually, trajectories can switch between both sliding surfaces, as the numerical example

in Figure 4.5 shows. Initial conditions are selected so that the corresponding trajectory

goes to the cylinder, reaching it out of the attraction area defined in Subsection 4.3, (in

the figure depicted with a red line). The trajectory goes on to the intersection of s = 0

and id = 0 and starts to slide on id = 0. This behavior is repeated closer and closer to

the cylinder till it reaches the cylinder inside one of the basins of attractions. Then, it

converges to the corresponding equilibrium point.
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Figure 4.5: Sliding surfaces, s = 0 and id = 0, and one possible trajectory.

A picture of Vs and the states variables (id, iq, iF ) as functions of time is shown in

Figure 4.6. Note that Vs reaches the reference value and id is zero in alternative time

periods (first and second sub-figures) till t = 0.08s. Then it remains on Vs = Vref .

Nevertheless, the required VDC values to slide on id = 0 in an actual plant are over the

applicable range. For instance, the required VDC voltage to slide on id = 0 would be

higher than 104V for the real WRSG used in the simulations of the previous Section,

while the maximum value it can take is 35V.

1The equilibrium point is called virtual because it does not belong to the sliding domain.
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Figure 4.6: Simulation results taking a VDC sufficiently large.

4.4 Analysis of an actual plant dynamics

In a real application, the VDC values are restricted by a voltage source, the voltage grid,

or the nominal values of the power converter. Usually electrical engineers take the VDC

value depending on the WRSG specifications and requirements.

The main consequence of saturated VDC values is that the sliding condition is fulfilled

in a strict subset of the switching surface s(x) = 0, actually a small subset.

When the control output values are in the set {−VDC , VDC} (VDC > 0), the sliding

domain is the strict subset of s(x) = 0 defined by

∣∣∣∣
µ

2LmR2
L

1

id

(
∂s

∂x
L−1Ax

)∣∣∣∣ < VDC . (4.20)

In this Section we numerically analyze the influence of saturation in the VDC va-

lues. All computations and simulations are done using the same WRSG parameters of the

previous Section.

Figures 4.7 and 4.8 show the sliding domains in the (δ, iF ) and 3D representation of
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the cylinder for a WRSG and two different values of VDC . Note that the higher the VDC

value, the wider the sliding domain.

Figure 4.7: Sliding zones for VDC = 35V (blue line) and VDC = 350V (red dotted line).

Figure 4.9 shows, in a 3D plot, a trajectory simulated using a small VDC-value. Con-

trol parameters are set to Vref = 220
√

2V, VDC = 35V, and initial conditions are

id(0) = −8A, iq(0) = 7A and iF (0) = 5A. The sliding domain on the cylinder is

also drawn, note how narrow it is.

Stator voltage amplitude, Vs, and the switching function s(x) are displayed in Figure

4.10. State variables are depicted in Figure 4.11. In general, there is no sliding on id =

0 in a real case. This is due to the fact that condition (4.19) fails for WRSG realistic

parameters and small VDC values.

As previous simulations show, trajectories can lose the sliding surface. The question

is how to prove that they finally will reach the desired equilibrium point. To obtain an

analytical result became an impossible task. In order to verify that for any (reasonable)

initial condition the system achieves the desired regulation value, a set of simulations are

done in a box defined by the maximum values of the state variables (corresponding to the

maximal admissible currents to the WRSG). Figures from 4.12 to 4.14, show trajectories
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Figure 4.8: Sliding zones for VDC = 35V (blue line) and VDC = 350V (red line), on the

cylinder s = 0.

for initial conditions in the range id, iq ∈ (−8A, 8A) and iF ∈ (−20A, 20A), which

are twice their nominal values. For all initial conditions, the system reaches the desired

equilibrium point.

4.5 Simulations

The CSMC simulation results are depicted in this Section. In order to implement the

discrete time controller we add an hysteresis block at the (4.2.3) condition. The numerical

experiment is done by varying the load resistance from RL = 120Ω to RL = 64Ω at

t = 0.05s.

Figure 4.15 shows that the stator voltage amplitude is regulated. Even if the RL value

is suddenly modified, the steady state value of the output is the desired one, and also the

time convergence is short.

Figures 4.17 and 4.16 show the field voltage, vF , which acts as a control action, and

the switching function, s, defined in (4.3). Note that vF commutes between ±VDC , and

that the the switching function oscillates around zero.

The dq stator voltages and the currents (the stator and field ones) are displayed in

Figures 4.18 and 4.19, respectively.
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Figure 4.9: State evolution of a trajectory and sliding domains on s = 0.
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Figure 4.10: Stator voltage amplitude, Vs, and switching function, s(x).
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Figure 4.11: Stator and field currents, id, iq and iF .
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Figure 4.12: Set of trajectories of the stator voltage amplitude, for values in the box

defined by the maximal currents.
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Figure 4.13: Set of trajectories of the state, for values in the box defined by the maximal

currents.
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Chapter 5

Control of a stand-alone wound rotor

synchronous generator via the

vd-component

Resume

This chapter presents two new sliding mode designs to regulate the stator voltage ampli-

tude for a stand alone wound rotor synchronous generator. Both use the stator voltage

d-component error in the switching function. The first case is a nested controller, where

an outer PI loop is added to provide the proper d-voltage component reference. In the

second approach an integral term is added to the switching function. Experimental results

will show that the second algorithm is not suitable for a real application.

5.1 System description

The dynamical model of an isolated wound rotor synchronous generator with a resistive

load was obtained in Section 2.6. The whole system dynamics can be written in an affine

form as

L
dx

dt
= Ax + BvF , (5.1)
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where,

L =




Ls 0 Lm

0 Ls 0

Lm 0 LF


 ,

A =




−(Rs + RL) ωLs 0

−ωLs −(Rs + RL) −ωLm

0 0 −RF


 ,

and

B =




0

0

1


 .

The load equation is, (
vLd

vLq

)
= RL

(
iLd

iLq

)
. (5.2)

5.2 Nested loop PI-sliding mode control

In this Section a nested loop control algorithm (NSMC) is proposed. The inner-loop based

on the Sliding Mode Control approach (SMC) is in charge of stabilize the system and fix

the d−component of the stator voltage, vd. The outer loop provides the reference of the

d-component value of the stator voltage, vref
d , to reach the stator voltage reference, Vref .

Roughly speaking, the PI loop moves the switching function and place it at the desired

regulation point. Figure 5.1 shows the proposed control algorithm.

+

−+

−

 

vF

vd

vq

s

v2
d + v2

q

vref
d

vabc

abc-dq

PI

Vs

VsVref
WRSG

θ

Figure 5.1: Nested loop PI-SMC scheme for a wound rotor synchronous generator.

The whole stability is based on the assumption of a fast inner-loop, with respect to the

PI dynamics. This assumption is valid due to the high speed dynamics of the SMC.
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5.2.1 Inner-loop: a sliding mode controller

The Sliding Mode Controller (SMC) enforces the system trajectories to reach and keep

the switching function

s(x) = vd(x) − vref
d

where vref
d is defined by the outer-loop PI controller. From (5.2),

s(x) = RLid − vref
d .

Note that the surface, s(x) = 0, defines the plane id =
v

ref
d

RL
. This case differs from the

controller presented in Chapter 4, where the sliding surface was a cylinder. The equivalent

control, ueq, is the solution of

∂s

∂x
L−1(Ax + Bueq) = 0, (5.3)

and, computing the last expression,

ueq =
1

Lm

(−LF (Rs + RL)id + ωLsLF iq + LmRF iF ).

In order to guarantee sliding motion on s(x) = 0, the reachability condition, s· ds
dt

< 0,

must be held. From (5.1)

s · ds

dt
= s

∂s

∂x
L−1(Ax + BvF ) < 0 (5.4)

taking into account (5.3), (5.4) results in

s
∂s

∂x
L−1B(vF − ueq) < 0,

and after some algebra

−s
RLLm

µ
(vF − ueq) < 0,

finally, as RL, Lm, µ > 0, the reachability condition yields

s(ueq − vF ) < 0.

In a real application the rotor voltage is applied trough a power converter using a bang-



64 5.2. Nested loop PI-sliding mode control

bang controller (vF = ±VDC). This action must bound the equivalent control action so

that, −VDC < ueq < VDC . Then, the control law becomes the following switching policy

vF =

{
VDC if s > 0

−VDC if s < 0

which fulfills the stability condition given by s · ds
dt

< 0.

The Ideal Sliding Dynamics (ISD), is given by the dynamics of (iq, iF ) in (5.1) where

vF is replaced by ueq and s = 0 has been taken into account. It results in the following

linear system

diq
dt

= −Rs + RL

Ls

iq −
ωLm

Ls

iF − ω

RL

vref
d (5.5)

diF
dt

=
ωLs

Lm

iq −
Rs + RL

LmRL

vref
d , (5.6)

which is stable since its characteristic equation has positive coefficients due to the positive

parameters of the actual machine.

5.2.2 Outer-loop: a PI controller

As said before, the outer-loop consists in a simple PI controller that tunes the d-component

voltage reference of the SMC controller. Thanks to the SMC is faster than the outer

dynamics, in the design of the PI we may assume the plant is given by the ISD (5.5) and

(5.6). As for the output, the nonlinear function to be regulated

Vs =

√(
vref

d

)2

+ R2
Li2q (5.7)

can be linearized around (vref
d , i∗q), which satisfies

Vref =
√

(vref∗
d )2 + R2

Li∗2q , (5.8)

The linearized output results in

Vs ≃ Vref +
vref∗

d

Vref

(vref
d − vref∗

d ) +
R2

Li∗q
Vref

(iq − i∗q), (5.9)
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where,

vref∗
d = Vref cos δ∗. (5.10)

Using (5.8), (2.17) and (5.10), equation (5.9) can be rewritten as

Vs = vref
d cos δ∗ + RLiq sin δ∗. (5.11)

Note that (5.11), which results from linearizing (5.7), is a function of vref
d and iq, but

it neither depends on vref∗
d nor i∗q .

Using (5.5), (5.6) and (5.11), the transfer function G(s) = Vs(s)

v
ref
d

(s)

1 is obtained:

G(s) =
cos2 δ∗s2 + ω2

cos δ∗s2 + ω sin δ∗s + ω2 cos δ∗
.

and the closed loop transfer function results in

W (s) =
c3s

3 + c2s
2 + c1s + c0

b3s3 + b2s2 + b1s + b0

where c3 = kp cos2 δ∗, c2 = ki cos2 δ∗, c1 = kpω
2, c0 = kiω

2 and

b3 = cos δ∗(kp cos δ∗ + 1)

b2 = (ω sin δ∗ + ki cos2 δ∗)

b1 = ω2(kp + cos δ∗)

b0 = kiω
2.

Following the Routh-Hurwitz criterium, this system is stable if b3, b2, b0 and b2b1−b3b0

have the same sign. Considering that vref
d only takes its positive value (i.e., cos δ∗ > 0),

the stability condition yields

kp > − 1

cos δ∗

ki > 0

ki <
ω(kp sin δ∗ + cos δ∗)

cos δ∗ sin δ∗
.

1This transfer function takes the form G(s) = 1 + Q(s).
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5.3 Direct sliding mode controller

In this Section, a direct sliding mode controller (DSMC) scheme is presented. The switch-

ing function is still based on the error of the d-component of the stator voltage, and an

integral action is added in order to robustify the controller. Figure 5.2 shows the proposed

control scheme. The main difference between this algorithm and the previous one is the

absence of a proportional action in the controller.

+

−
+

−

+
+
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Figure 5.2: Direct sliding mode control scheme for a wound rotor synchronous generator.

5.3.1 Control design

The integral term implies that the system is extended with a new variable, z, which deriva-

tive is the error of the stator voltage amplitude,

dz

dt
= V 2

s − V 2
ref .

As it is proposed in Chapter 4, the error of the square of stator voltage amplitude is

used, to avoid square root function. Then, the switching function, sz, is

sz = vd − vref
d + kz

where vref
d is the nominal value of vd given Vref . Using the root locus of the equilibrium

points (2.16), and (5.2) the reference of the d-component voltage is obtained 2

vref
d = Vref cos δ̃∗.

2The tilde denotes that this value depends on the estimated values of RL, Rs and Ls.
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Similarly to the previous controller design, the equivalent control is computed, which

results in

uzeq = ueq +
µ

LmRL

kż.

Note that it contains the former equivalent control, ueq, plus the term coming from the

new integral variable.

Now, the control is designed with the extended system

Lz

dze

dt
= Az(ze) + BzvF (5.12)

where zT
e = [id, iq, iF , z],

Lz =




Ls 0 Lm 0

0 Ls 0 0

Lm 0 LF 0

0 0 0 1




,

Az(ze) =

(
Ax

R2
L(i2d + i2q) − V 2

ref

)

and BT
z = (0, 0, 1, 0).

Proceeding as usual, using the equivalent control definition, the reachability condition

can be obtained from,

sz ·
dsz

dt
= sz

∂sz

∂ze

L−1
z (Az + BzvF )

= sz

∂sz

∂ze

L−1
z Bz(vF − uzeq)

= −sz

RLLm

µ
(vF − uzeq)

and finally, taking into account RL, Lm, µ > 0, the reachability condition yields

sz(uzeq − vF ) < 0.
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Consequently, using again a bang-bang controller, the switching control policy is

vF =

{
Vdc if sz > 0

−Vdc if sz < 0
(5.13)

presumed that the equivalent control is bounded by the bus voltage, −Vdc < uzeq < Vdc.

Ideal sliding dynamics

The controller defined in (5.13) ensures sliding motion on the sliding surface, sz = 0. The

goal of the Ideal Sliding Dynamics is to analyze the remaining dynamics of the system.

Using sz = 0, replacing vF = uzeq in (5.12) and defining a new variable ξ = vref
d − kz,

the ideal sliding dynamics can be written as

diq
dt

= −Rs + RL

Ls

iq −
ωLm

Ls

iF − ω

RL

ξ (5.14)

diF
dt

=
kLsRL

µLm

i2q +
ωLs

Lm

iq +
kLs

µLmRL

ξ2 − Rs + RL

LmRL

ξ

− kLs

µLmRLRL

V 2
ref (5.15)

dξ

dt
= −kR2

L

µ
i2q −

k

µ
ξ2 +

k

µ
V 2

ref . (5.16)

Since this is a nonlinear system, the stability is analyzed using linear techniques. The

equilibria is also given by (2.17) and (2.18), while for the new variable ξ,

ξ∗ = Vref cos δ∗.

The Jacobian of the ISD defined in (5.14)-(5.16), evaluated in the equilibria is

Jz =




−Rs+RL

Ls
−ωLm

Ls
− ω

RL

2kLsRL

µLm
i∗q + ωLs

Lm
0 2kLs

µLmRL
ξ∗ − Rs+RL

LmRL

−2kR2

L

µ
i∗q 0 −2k

µ
ξ∗




and the characteristic polynomial,

λ3 + a2λ
2 + a1λ + a0,
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where

a2 =
Rs + RL

Ls

+
2k

µ
Vref cos δ∗

a1 =
2k(Rs + RL)

µLs

Vref cos δ∗ + ω2

a0 =
2k(ω2L2

s + (Rs + RL)2)

µL2
s

Vref cos δ∗.

Using the Routh-Hurwitz criteria, this system will be stable if a2 > 0, a0 > 0 and

a2a1 − a0 > 0,

a2a1 − a0 =
Rs + RL

Ls

((
2kξ

µ

)2

+ ω2

)
.

Clearly, due to the fact that cos δ∗ > 0 if k > 03 these conditions fulfill.

5.4 Simulations

In this Section some simulation results using the designed controller are presented. The

used WRSG is a 2.4kW machine with the following parameters: Rs = 3.06Ω, Ls =

0.48H, Lm = 0.31H, RF = 2.48Ω, LF = 0.24H, ω = 2 · π50, Vdc = 35V.

Initial conditions are set to Vref = 200
√

2V with a resistive load RL = 120Ω. Simu-

lation test shows the response of the closed loop system for a load change to RL = 64Ω at

t = 0.05s. The controller gains are: kp = 1000, ki = 100 (of the NSMC) and k = 0.2 (of

the DSMC). Simulations have been performed using a variable step integration method,

with a zero order hold with 20kHz of sample frequency. Figure 5.3 shows the stator volt-

age amplitudes. In both case, regulation of the stator voltage amplitude is achieved. The

faster response of the first controller algorithm is thanks to the proportional action of the

PI loop.

Figure 5.4 shows the switching functions. Note that for the secondth control law, the

sliding motion is lost twice for a short time after the load change. The first time is due to

the sudden load variation, while the second time is consequence of the equivalent control

3As it was pointed out in Chapter 4, two equilibria are possible. To reach the value corresponding to

δ∗ = arctan
(

Rs+RL

ωLs

)
+ π, the stability condition also is obtained when k < 0.
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Figure 5.3: Simulation results, NSMC and DSMC: Stator voltage amplitudes.

(5.3) is out of range (|uzeq| > Vdc), see also in Figure 5.5, where the field voltage, vF is

shown, the long time where it remains saturated compared with the NSMC control law.

Response velocity can be observed in Figures 5.6 and 5.7, where the dq stator voltages

and the currents (the stator and field ones) are displayed, respectively. The faster response

of the first controller is clear.
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Figure 5.4: Simulation results, NSMC and DSMC: Switching functions.
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Figure 5.5: Simulation results, NSMC and DSMC: Field voltages.
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Figure 5.6: Simulation results, NSMC and DSMC: dq stator voltages.
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Chapter 6

Control of a stand-alone wound rotor

synchronous generator with an

inductive load

Resume

In this chapter a sliding mode controller for the stator voltage amplitude of a stand-alone

wound rotor synchronous generator with an inductive load is presented. The controller

introduces a dynamic extension to prevent the stator amplitude is a zero relative degree

output. As a result, a robust controller, which neither depends on the machine parameters

nor on the load values, is obtained.

6.1 System description

6.1.1 Dynamical model

The interconnection of a stand-alone wound rotor synchronous generator with an induc-

tive load was studied in Section 2.7. In this case, the electrical dynamics can be written

as

L̂
dx

dt
= Âx + BvF , (6.1)

73
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iabc

vabc

iLabc

vLabc

RL LL

WRSG

iF

vF

ωm

Figure 6.1: Scheme of an isolated WRSG with an isolated load.

where L̂ is a new inductance matrix,

L̂ =




Ls + LL 0 Lm

0 Ls + LL 0

Lm 0 LF




and the homogeneous dynamics A and the input vector B are given by

Â =




−(Rs + RL) ω(Ls + LL) 0

−ω(Ls + LL) −(Rs + RL) −ωLm

0 0 −RF


 ,

and

B =




0

0

1


 .

The load equation is,

vL = (RLI2 + ωLLJ2)iL + LL

d

dt
iL.

6.2 Control design

In this Section the Sliding Mode Control technique is applied to an isolated wound ro-

tor synchronous generator feeding an inductive load. First, after defining the switching

function, the equivalent control is computed and the controller is obtained. As mentioned
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before, the standard design is modified to avoid the zero relative degree output problem

if vF is used as control input. Finally, to complete the control design the Ideal Sliding

Dynamics is analyzed to ensure stability.

6.2.1 Switching function and equivalent control

According to the control goals, and taking V 2
s to avoid the square root function of stator

voltage amplitude, the switching function s(x) is defined as

s(x) = V 2
s − V 2

ref . (6.2)

where V 2
s , did

dt
and

diq
dt

are respectively given in (2.29), (2.30) and (2.31).

As did
dt

depends on vF , s(x) is relative degree zero with respect to vF . Therefore,

system (6.1) is expanded by considering vF as a state variable and taking its derivative as

a fictitious input, i.e. it is defined a new input u by

dvF

dt
= ku, (6.3)

where k is a positive constant.

Let us rewrite the extended system, with the new state vector zT = (id, iq, iF , vF ), as

Ldz

dt
= Az + Bu, (6.4)

where

A =




−(Rs + RL) ω(Ls + LL) 0 0

−ω(Ls + LL) −(Rs + RL) −ωLm 0

0 0 −RF 1

0 0 0 0




,

L =

(
L̂ 0

0 1

)

and

B =




0

0

0

k




.
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The equivalent control, ueq, is defined so that ṡ = 0,

ds

dt
=

∂s

∂z

dz

dt
= 0.

Then, from (6.4),
∂s

∂z
L−1 (Az + Bueq) = 0.

Hence

ueq = −
(

∂s

∂z
L−1B

)−1
∂s

∂z
L−1Az. (6.5)

From (4.3) and (2.28),

∂s

∂z
=

∂v2
d

∂z
+

∂v2
q

∂z
= 2

(
vd

∂vd

∂z
+ vq

∂vq

∂z

)

and taking into account that B has zeros in the first, second and third row, L−1 contains

only a non-zero term in the fourth row and vq does not depend on vF ,

∂s

∂z
L−1B = vd

∂

∂vF

(
LL

did
dt

)
k

= 2k
LLLm

µd

vd,

which implies

ueq = − µd

2kLLLm

1

vd

(
∂s

∂z
L−1Az

)
. (6.6)

Note that sliding motion can only be expected in the subspace defined by vd 6= 0.

6.2.2 Ideal sliding dynamics

The Ideal Sliding Dynamics (ISD) is defined on the sliding surface presumed that it is

invariant by the flow. Replacing u = ueq from (6.6) into (6.4) and solving vF (x) from

s(x) = 0 (6.2), the remaining dynamics can be rewritten as

ẋ = L̂−1
(
Âx + BvF (x)

)
, (6.7)

Note also, that the extended system is symmetric with respect to the origin. This is

straightforward for the linear part of the dynamics defined by matrix Â, while, for the

nonlinear part of vF (x), s(x, vF ) = s(−x,−vF ). Consequently, it is sufficient to analyze
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stability in one of the two equilibrium points given by (2.27) and (2.32).

Linearizing (6.7) around the equilibrium point one obtains

L̂ẋ =

(
∂

∂x

(
Âx + BvF (x)

)∣∣∣∣
x=x∗

)
(x − x∗).

And simplifying

L̂ẋ = Âlin(x − x∗),

where

Âlin = Â + B
∂vF

∂x

∣∣∣∣
x=x∗

. (6.8)

Stability depends on the eigenvalues of (6.8), which can be numerically computed. For

the experimental case presented in Chapter 7 (with a squirrel cage induction machine and

a resistive bank) the eigenvalues of matrix Âlin are λ = −204.03,and −35.21 ± 337.16 j,

hence the ISD is locally stable.

In order to analyze the load range values where the stability of the ISD is guaranteed,

let us compute the characteristic polynomial of Âlin

λ3 + a2λ
2 + a1λ + a0,

where

a2 = 2(Rs + RL) − d3

a1 = |Zs|2 + ωLmd2 − 2(Rs + RL)d3

a0 = ω2Lm(Ls + LL)d1 + ωLm(Rs + RL)d2 − |Zs|2d3,

and

d1 =
LF

LmLL

Φ − RL

Lm

LL

d2 = ωLm +
µd(ω

2LL(Ls + LL) + RL(Rs + RL))

ωLmLL(Ls + LL)

d3 = −µd(ω
2LL(Ls + LL) + RL(Rs + RL))

Φ(Ls + LL)

where, in turn, Φ = RLLs − LLRs. From the Routh-Hurwitz criterion, sufficient condi-
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Figure 6.2: Stability margins of the ISD as a function of RL and LL.

tions for stability are

a2, a0 > 0 (6.9)

together with

a2a1 − a0 > 0. (6.10)

Notice that a sufficient condition for (6.9) is Φ > 0, which implies

LL <
Ls

Rs

RL.

Condition (6.10) is a polynomial function which is strongly dependent on the load

parameters. Replacing the WRSG parameters it is easy to obtain the ISD stable region.

The WRSG stability range is a function that depends on RL and LL as it is depicted

in Figure 6.2. Machine parameters given in Chapter 7 have been used. The colored zone

corresponds to the unstable region. Also, the dotted line represents the RL and LL values

corresponding to the nominal power. Note that stability is guaranteed for a large range of

load values.
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6.2.3 Sliding mode controller

Sliding mode controller is in charge of approaching trajectories to the switching surface

and, when it is reached, trajectories remain on the sliding surface. In order to define the

control action for the extended system (6.4) and the switching function given in (6.2), the

following condition must be ensured

s
ds

dt
< 0 (6.11)

which, after some algebra, is equivalent to,

s
∂s

∂z
L−1 (Az + Bu) < 0.

Adding and subtracting Bueq and taking into account (6.5), this equation is equivalent

to

s
∂s

∂z
L−1B (u − ueq) < 0.

Evaluating ∂s
∂z
L−1B, and taking into account 2kLLLm

µd
> 0, the reachability condition

becomes

−svd (u − ueq) < 0.

Hence, the control action is defined as

u = ueq + sign (svd) ,

fulfills the reachability condition (6.11). Namely,

s
ds

dt
= − |svd| < 0.

If the control input u takes values in the discrete set {u1, u2}, where u1 < u2, the

control law can be defined as

u =

{
u1 if svd < 0

u2 if svd > 0
.

which also assures (6.11) in the subset of the sliding surface where u1 ≤ ueq ≤ u2. Note

that the (fictitious) control law, u, is a function that neither depends on the load values

nor the machine parameters. In turn, the corresponding switching function only depends
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on vd and vq (that are measured), hence, this control is robust to parameter variations and

load values.

A more complicated task is to determine the range of [u1, u2] analytically to ensure

sliding modes. This is not trivial because ueq is a complex function and it depends on the

state values, see equation (6.6). A simple analysis allows to show that in the equilibrium

u∗
eq = 0. Namely, from (6.6),

u∗
eq = − µd

2kLLLm

1

v∗
d

(
∂s

∂z
L−1Az∗

)
,

and taking into account the expressions of A and B in (6.4), the equilibrium point z∗ must

fulfill Az∗ = 0. There is only one condition to ensure sliding modes in a neighborhood

of the ideal sliding dynamics equilibrium point. The condition is u1 < 0 < u2.

Finally, using (6.3), the rotor voltage can be obtained from

vF = k

∫
u dt.

In the actual application, the control input vF is bounded by the power converter volt-

age. As for implementing this control action, it is just needed to measure the rotor position

(to compute the dq transformation) and the stator voltage.

Figure 6.3 shows the proposed control scheme. Note that, as a result of the control

design, the error of the square of the stator voltage amplitude is multiplied by the vd

voltage. The resulting control action, vF is a continuous signal which in a real plant

would be implemented using a pulse width modulation (PWM) applied trough a power

converter.

6.3 Simulations

The ESMC simulation results are presented in this Section. The used WRSG is also a

2.4kW machine with the following parameters: Rs = 3.06Ω, Ls = 0.48H, Lm = 0.31H,

RF = 2.48Ω, LF = 0.24H, ω = 2 · π50, Vdc = 35V.

Initial conditions are set in Vref = 200
√

2V with a resistive-inductive load RL =

120Ω and LL = 0.1H. Simulation test shows the response of the closed loop system for a
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Figure 6.3: Block scheme of a Sliding Mode Controller for a stand-alone wound rotor

synchronous generator with an inductive load.

load change to RL = 64Ω and LL = 0.05H at t = 0.05s. The control values are fixed to

k = 1, u1 = −105 and u2 = 105, and it is implemented by an hysteresis function.

In Figure 6.4, the stator voltage amplitude, Vs, is depicted. Note that, even if the RL

and LL values are suddenly modified, the steady state value of the output is the desired

one, and also the convergence-time is small.
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time [s]

Stator voltage amplitude

Figure 6.4: Simulation results, ESMC: Stator voltage amplitude.

The switching function, s, is shown in Figure 6.5. The selected values of u1 and u2

allow to keep the system on the sliding surface except in a small interval when the load

change happens.
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Figure 6.5: Simulation results, ESMC: Switching function.

Figure 6.6 shows the field voltage, vF . This is the real voltage fed to the WRSG, and

it remains in a real applicable values. Note additionally that the dynamics of the control

action stabilizes the output response. This is due to the fact that the ISD, is slower than the

output dynamics, see Figures 6.7 and 6.8, where the dq stator voltages and the currents

(the stator and field ones) are displayed, respectively.
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Figure 6.6: Simulation results, ESMC: Field voltage.
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Chapter 7

Simulation and experimental results

Resume

In this Chapter the simulation and the experimental results of the designed controllers

for the stand-alone wound rotor synchronous generator are presented. Firstly, a com-

plete description of the bench is provided. It also includes details of the data acquisition

stage and the used DSP card. Secondly, the description of the simulation procedure is

commented. Then, the simulations and experiments which contain several scenarios, in-

cluding the performance of each controller to changes in the reference and load variations

are presented.

7.1 Hardware description

The experimental setup hardware scheme is shown in Figure 7.1. The WRSG is dragged

by a DC motor (which acts as a primary mover). Using two differential sensors the WRSG

stator voltages are measured. The rotor position is obtained with a resolver coupled to

the DC motor in order to compute the voltage dq-transformation. This transformation is

required because the controllers designed previously works in this reference frame. These

measures are acquired by the DSP which is programmed from a personal computer. The

grid voltage is rectified in order to provide the DC bus voltage to the DC/DC power

converter which applies the control defined by the DSP card to the WRSG.

85
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DCMotor

iabc

vabc

RL

WRSG

iF

ωm

DC

DC

V

V

vab vbc

sin θ, cos θ

DSP PC

Figure 7.1: Interconnection scheme of the experimental setup.

The actual experimental setup used to validate the proposed controllers is shown in

Figures 7.2 and 7.3. The system (Figure 7.2 ) is composed of a wound rotor synchronous

generator dragged by a DC Motor and a resistive bank as local load. The power converters,

voltage sensors and control cards are depicted in Figure 7.3.

7.1.1 The DC motor and its control hardware

The DC motor used to provide constant speed for the WRSG which is shown in Figure

7.4. The machine is connected to an independent excitation and, the nameplate data are

shown in table 7.1.

Vexc = 220V Iexc = 15.5A P = 3kW

VF = 200V IF = 1.4A n = 1500rpm

Table 7.1: Nameplate data of the DC motor.

In Figure 7.5 the 4Q2 commercial speed controller from Control Techniques Drives

Ltd is shown. This equipment is used to control the DC motor. For more detailed infor-

mation see [47].
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WRSG

DC Motor

RL

Figure 7.2: Experimental setup: Wound Rotor Synchronous Generator, Direct Current

Motor and Resistive Load Bank.

7.1.2 The wound rotor synchronous machine and its control hard-

ware

The WRSG is a 2.4kVA, 4 poles three-phase machine, that can be connected in Y or ∆.

The machine is depicted in Figure 7.6 and its nameplate data is shown in table 7.2. Note

that the DC motor and the WRSG have similar rated power.

f = 50Hz n = 1500rpm P = 2.4kVA

3ph ∆/Y VF = 100V

IF = 2.4A Vs = 220/380V Is = 6.3/3.65A

Table 7.2: Nameplate data of the WRSG.

The WRSG parameters obtained using IEEE Std. 115-1995 [35], are shown in Table

7.31.

1The apostrophe signal indicates that the parameters are referred from the rotor to the stator, and n is

the transformation relationship
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Figure 7.3: Experimental Setup: Control Cards and power converters for the Wound Rotor

Synchronous Generator and the DC Motor.

Figure 7.4: DC motor.

The voltage sensors, its power supply, the DSP control card, and the digital to analog

converter implemented to measure internal states of the DSP (For example the switching

function or the equivalent control) are depicted in Figure 7.7.

The power converter (Figure 7.8), is a full bridge DC/DC converter, which can provide

±VDC voltages. The VDC voltage is obtained from the power grid with a diode rectifier, a

L filter and a capacitor for the DC bus. In the experimental tests the bus voltage is set to

VDC ≈ 137.5V.

Rs = 3.06Ω Ls = 0.48H RF = 39.65Ω
Lm = 0.31H LF = 3.87H n = 4
R′

F = 2.48Ω L′
F = 0.24H

Table 7.3: WRSG parameters.
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Figure 7.5: DC motor control card

Figure 7.6: Wound rotor synchronous machine.

7.1.3 Local loads

The load is composed by two interconnected resistive banks, with a half or full load values

(equivalent to RL = 128Ω and RL = 64Ω for the nominal voltage) and a 736W squirrel

cage induction machine as inductive load ( Req ≈ 64Ω Leq ≈ 1.36H).

7.1.4 Control implementation

The control algorithm is programmed into a Texas Instruments floating point 150Mhz

Digital Signal Processor (DSP TMS 320F28335). The DSP has 16 ADC channels with

12-bit resolution, with a maximum conversion speed of 12.5 MSPS, 6 PWM and 6 HRPWM

outputs and 88 GPIO pins which can be used for communication purposes [36].
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Figure 7.7: Sensors and DSP.

Real Time Workshop C code generation from Matlab/Simulink is used in order to

simplify the code implementation to the DSP without using directly a C code editor.

Texas Target support package is used to configure the ADC, PWM, SPI, GPIO ports and

interruptions.

PI and ESMC controllers are implemented through a PWM. The switching frequency

of the PWM used in our experiments is 10kHz. As for CSMC, NSMC and DSMC con-

trollers, the output is a discontinuous signal that has been implemented so that a maximum

10kHz switching frequency is allowed.

7.2 Simulation description

The simulations were performed using a co-simulation procedure with Matlab/Simulink

and Psim softwares. There are some advantages using this simulation technique. It allows

to use the same block controller, coded in Matlab/Simulink, for simulations and also

for experimental tests. Then, permits to obtain previous results of the real controllers

before programming it in the actual system (DSP controller) and provides simulation

results that are very close to the actual system performance, which is really helpful for

implementation purposes.

Practically all hardware of the real plant, DC/DC power converter, acquisition stages,

etc, are build in the Psim for simulations purposes. The reason for doing that is the
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Figure 7.8: WRSG DC/DC power converter.

computation time, the switching action in Psim is calculated faster than Matlab. The

WRSG was build using the Matlab’s Power System Blockset which have robust machine

and load models.

According to the sample time programmed into the DSP, a simulation time step of

1e−4s is used in Matlab while a time step of 1e−6s is used in Psim. Due to co-simulation

procedure, the Newton integration method (ode14x) is used in Matlab and the trapezoidal

rule integration algorithm is used in Psim.

7.3 Simulation and experimental results

A group of simulations and experiments are carried out in this Section. There are several

scenarios to validate: a load change, a load connection and a reference change, each one

with a resistive and an inductive load. In this sense, for each controller have been done

six tests. All of the controllers designed in this Thesis were tested for the same scenarios.

The following acronyms are used. Chapter 3 PI, Chapter 4 CSMC, Chapter 5 NSMC

and DSMC and, Chapter 6 ESMC. The mechanical speed is fixed at 1500rpm (which

corresponds to 50Hz stator frequency).

The first and second experiment consist in validating the controller performance with

a resistive load. The reference line voltage is set to 380Vrms (which corresponds to
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Vs = 220
√

2V), and the load is suddenly changed from no load to the half load value and

from the half to the full load value, respectively.

The third and fourth experiments are similar to the previous ones, but in this case

the closed-loop system performance is analyzed for an inductive load with a reference

line voltage set to 380Vrms. In the third experiment the generator is without load and

suddenly an induction machine is connected. Finally, in the fourth experiment the initial

load corresponds to the half load value, and after that, the induction machine is connected.

Second group of experiments consists in a stator voltage amplitude reference change.

From an initial value of 250Vrms the reference is set to 380Vrms. In the first case the

load keeps to its half value and in the second case the load is the induction machine.

Simulation results are shown in Figures from 7.9(a) to 7.14(c) for the PI, in Figures

from 7.15(a) to 7.20(c) for the CSMC, in Figures from 7.21(a) to 7.26(c) for the NSMC, in

Figures from 7.27(a) to 7.31(c) for the DSMC, and in Figures from 7.32(a) to 7.37(c) for

the ESMC. While the experimental results are shown in Figures from 7.38(a) to 7.43(b)

for the PI, in Figures from 7.44(a) to 7.49(b) for the CSMC, in Figures from 7.50(a) to

7.55(b) for the NSMC, in Figures from 7.56(a) to 7.61(b) for the DSMC, and in Figures

from 7.62(a) to 7.67(b) for the ESMC.

For each group of experiments the three-phase stator voltages, the error or the switch-

ing function (in subfigures (a)), the stator voltage amplitude, its reference value (in sub-

figures (b)), the field voltage vF and its filtered value or equivalent control, ueq ( in the

(c) subfigures) have been shown. At each experiment, the load or reference change takes

place at t = 0.5 s and the picture at top were zoomed around this time in the bottom. In

the ESMC experiments the fictitious control is also depicted. Rotor field voltage and ficti-

tious control are quite similar because u1 and u2 takes high values to guarantee a bounded

equivalent control and a fast response.

In general, the stator voltage amplitude is perfectly regulated, with a fast time re-

sponse. In the resistive load change, the controller needs less that one stator voltage cycle

to recover the reference, while in the inductive load needs between two and eight sta-

tor voltage cycles. In the reference change, the system reaches the new desired value in

about two cycles. We also noticed that the time to reach the reference depend on the VDC

voltage value.
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The actual control which lie between −1 and 1 or 0 and 1, is the DC-DC switch signal

values and is equivalent to the applied field voltage ( ±137.5V). Note that the control law

is saturated while the reference is not achieved. It shows that the recovery time does not

depend on the control algorithm. It depends on the actual VDC voltage value. The filtered

value or equivalent control achieves a new average value at the steady state. As it can be

seen, the commutation (sliding mode) is lost for a small period when the reference voltage

or the load changes. However it recovers fastly, and the equivalent control returns into the

operation strip (−VDC < ueq < VDC).

The CSMC and NSMC behavior are very similar. The main difference is presented

in the switching function which in the NSMC oscillates more than in the CSMC. The

DSMC does not work appropriately in some cases where the three-phase stator voltages

are distorted which is not desirable (Figure 7.60(a)) or definitively cannot regulate the

stator voltage amplitude (Figures 7.59(a) and 7.56(a)). Then, the stability of the DSMC

can be guarantee in a limited space. The ESMC regulates the stator voltage amplitude but

is slow compared to the other controllers, it also results in a bit distorted waves when the

generator is without load (Figures 7.62(a) and 7.64(a)).

The switching function oscillates around zero and the consequent chattering phe-

nomenon is just a little bit appreciated in simulations due to the high value of the switching

frequency. When the load is inductive, the consequent chattering phenomenon diminishes

because the inductive load acts as a filter. The chattering phenomenon affects more the

DSMC and the ESMC algorithms. In the DSMC scheme, the switching surface remains

near to zero by the absence of a proportional action. In the experimental test, the switch-

ing function oscillates around zero but, the consequent chattering phenomenon is nearly

not reflected due to the minimum sampling time of the digital to analog converter.

The table 7.4 shows a comparison of the different controllers, assigning from the

worst to the best, from zero to ten points. In this table ten points is given to the controller

if it accomplished the desired behavior, and if the punctuation is lower it means that its

behavior is not as desirable as we expect. For this comparison some design, performance

and implementation aspects were taken into account.

The stability of the CSMC algorithm is theoretical guaranteed with a deeper analysis

respect to each other, then we pointed it with eight points. In the PI, NSMC and ESMC

a local stability was guaranteed, then their have seven points. The DSMC theoretical has
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local stability but the experimental results show that the system cannot be stabilized in

some scenarios if so it is pointed with four points.

The convergence speed of the PI, CSMC and NSMC is quite similar. As an example,

Figures 7.40(a), 7.47(a) and 7.53(a) show that each controller reaches the desired opera-

tion point in about six cycles. It is a well closed loop time constant, because it depends

on the DC voltage, then we marked them with ten points in the convergence speed as-

pect. The ESMC stabilization in the same scenario can be observed in Figure 7.65(a). It

takes about eight cycles, two more than the previous one, which is no desirable, and we

assigned it with seven. The DSMC does not reach the references (Figure 7.59(a)), then it

receive three.

The computation time that needs each algorithm in the DSP is 6.42µs, 4.08µs, 5.88µs,

5.16µs,5.56µs for the PI, CSMC, NSMC, DSMC and ESMC, respectively. Then, given

ten points to the fastest, and let down the punctuation proportional as the computation

time increments, we assigned each controller with six, ten, six, nine and eight points,

respectively. The computation time is directly related to the number of operations needed

for calculate each control law. For this reason, the same points are assigned to each

controller for the required computation.

The directness implementation depends on the number of equations that must be pro-

grammed into the DSP. The CSMC just require the switching surface sign, and some

additions and products, becoming the easiest for implementing and it is marked with ten.

The DSMC and ESMC also need some additions and an integration which in discrete time

implementation is an addition, and are also pointed with ten. The PI and NSMC need ad-

ditionally a square root computation in order to obtain the stator voltage, then they take

eight points.

The CSMC, DSMC and ESMC do not need any gain tuning, then each one received

the maximum mark, while the PI and NSMC need to tune the proportional and integral

terms, then are good qualified.

Theoretically, the CSMC, DSMC and ESMC must be robust to any load and parameter

variation, but the experimental results show that actually the CSMC presents the expected

behavior and takes ten points. The DSMC does not work as we expected, because some

times it does not reach the desired output or becomes unstable (see Figures 7.59(a) and

7.56(a)), then it is discarded and pointed with one. The ESMC is robust in some situations,



7. Simulation and experimental results 95

but in some others its slower response gives distorted waves as it can be observed in

Figures 7.62(a) and 7.64(a), then, it is pointed with seven points. The PI and NSMC

present a robust performance, but it is known that the proportional-integral tuning depends

on the parameters, which we assigned eight points.

The resulting average of table 7.4, shows that the CSMC is the best algorithm, but the

NSMC, ESMC and PI algorithms can also be used for losing just a little of performance.

The DSMC is the worst as the simulation and experimental results shown.

PI CSMC NSMC DSMC ESMC

Stability guaranteed 7 8 7 4 7

Convergence speed 10 10 10 3 7

Robustness 8 10 8 1 7

Easy tunning 8 10 8 10 10

Direct implementation 7 10 7 10 10

Required computation 6 10 6 9 8

Computation time 6 10 6 9 8

Average 7.42 9.71 7.42 6.57 8.14

Table 7.4: Comparison between the designed controllers presented in this Thesis.
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Figure 7.9: Simulation results, PI: Load change from no load to half load.
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Figure 7.10: Simulation results, PI: Load change from half load to full load.
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Figure 7.11: Simulation results, PI: Load change from no load to IM connection.



7. Simulation and experimental results 99

0 0.2 0.4 0.6 0.8 1
−1000

−500

0

500

1000
Three−phase stator voltage and error

v
a
b
c
[V

],
 s

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
−1000

−500

0

500

1000

v
a
b
c
[V

],
 s

time [s]

(a) three-phase stator voltages, vs, and error, e.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400
Stator voltage amplitude

V
s
 [

V
]

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
0

100

200

300

400

V
s
 [

V
]

time [s]

(b) stator voltage amplitude, V , and its reference Vref .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
rotor field voltage and its filter value

v
F

fi
lt
 [

V
]

0 0.2 0.4 0.6 0.8 1
0

0.5

1

v
F

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
0

0.2

0.4

v
F

fi
lt
 [

V
]

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
0

0.5

1

v
F

time [s]

(c) switching control policy, vF , and its filtered value.

Figure 7.12: Simulation results, PI: Load change from half load to half load and IM

connection.
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Figure 7.13: Simulation results, PI: Voltage reference change from 250Vrms to 380Vrms

with half load.
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Figure 7.14: Simulation results, PI: Voltage reference change from 250Vrms to 380Vrms

with inductive load.
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Figure 7.15: Simulation results, CSMC: Load change from no load to half load.
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Figure 7.16: Simulation results, CSMC: Load change from half load to full load.
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Figure 7.17: Simulation results, CSMC: Load change from no load to IM connection.
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Figure 7.18: Simulation results, CSMC: Load change from half load to half load and IM

connection.
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Figure 7.19: Simulation results, CSMC: Voltage reference change from 250Vrms to

380Vrms with half load.
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Figure 7.20: Simulation results, CSMC: Voltage reference change from 250Vrms to

380Vrms with inductive load.
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Figure 7.21: Simulation results, NSMC: Load change from no load to half load.
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Figure 7.22: Simulation results, NSMC: Load change from half load to full load.
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Figure 7.23: Simulation results, NSMC: Load change from no load to IM connection.
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Figure 7.24: Simulation results, NSMC: Load change from half load to half load and IM

connection.
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Figure 7.25: Simulation results, NSMC: Voltage reference change from 250Vrms to

380Vrms with half load.
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Figure 7.26: Simulation results, NSMC: Voltage reference change from 250Vrms to

380Vrms with inductive load.
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Figure 7.27: Simulation results, DSMC: Load change from half load to full load.
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Figure 7.28: Simulation results, DSMC: Load change from no load to IM connection.
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Figure 7.29: Simulation results, DSMC: Load change from half load to half load and IM

connection.



7. Simulation and experimental results 117

0 0.2 0.4 0.6 0.8 1
−1000

−500

0

500

1000
Three−phase stator voltage and sliding surface

v
a
b
c
[V

],
 s

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
−1000

−500

0

500

1000

v
a
b
c
[V

],
 s

time [s]

(a) three-phase stator voltages, vs, and switching function,

s.

0 0.2 0.4 0.6 0.8 1
250

300

350

400
Stator voltage amplitude

V
s
 [

V
]

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
250

300

350

400

V
s
 [

V
]

time [s]

(b) stator voltage amplitude, V , and its reference Vref .

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2
Equivalent control and rotor field voltage

u
e
q
 [

V
]

0 0.2 0.4 0.6 0.8 1
−1

0

1

v
F

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
−0.6

−0.4

−0.2

u
e
q
 [

V
]

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
−1

0

1

v
F

time [s]

(c) switching control policy, vF , and equivalent control,

ueq.

Figure 7.30: Simulation results, DSMC: Voltage reference change from 250Vrms to

380Vrms with half load.
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Figure 7.31: Simulation results, DSMC: Voltage reference change from 250Vrms to

380Vrms with inductive load.
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Figure 7.32: Simulation results, ESMC: Load change from no load to half load.
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Figure 7.33: Simulation results, ESMC: Load change from half load to full load.
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Figure 7.34: Simulation results, ESMC: Load change from no load to IM connection.
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Figure 7.35: Simulation results, ESMC: Load change from half load to half load and IM

connection.
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Figure 7.36: Simulation results, ESMC: Voltage reference change from 250Vrms to

380Vrms with half load.
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Figure 7.37: Simulation results, ESMC: Voltage reference change from 250Vrms to

380Vrms with inductive load.
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(a) three-phase stator voltages, vs, and error, e. (b) control policy, vF

Figure 7.38: Experimental results, PI: Load change from no load to half load.

(a) three-phase stator voltages, vs, and error, e. (b) control policy, vF

Figure 7.39: Experimental results, PI: Load change from half load to full load.

(a) three-phase stator voltages, vs, and error, e. (b) control policy, vF

Figure 7.40: Experimental results, PI: Load change from half load to IM connection.
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(a) three-phase stator voltages, vs, and error, e. (b) control policy, vF

Figure 7.41: Experimental results, PI: Load change from no load to IM connection.

(a) three-phase stator voltages, vs, and error, e. (b) control policy, vF

Figure 7.42: Experimental results, PI: Voltage reference change from 250Vrms to

380Vrms with half load.

(a) three-phase stator voltages, vs, and error, e. (b) control policy, vF

Figure 7.43: Experimental results, PI: Voltage reference change from 250Vrms to

380Vrms with inductive load.
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(a) three-phase stator voltages, vs, and switch-

ing function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.44: Experimental results, CSMC: Load change from no load to half load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.45: Experimental results, CSMC: Load change from half load to full load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.46: Experimental results, CSMC: Load change from no load to IM connection.
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(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.47: Experimental results, CSMC: Load change from half load to half load and

IM connection.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.48: Experimental results, CSMC: Voltage reference change from 250Vrms to

380Vrms with half load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.49: Experimental results, CSMC: Voltage reference change from 250Vrms to

380Vrms with inductive load.
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(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.50: Experimental results, NSMC: Load change from no load to half load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.51: Experimental results, NSMC: Load change from half load to full load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.52: Experimental results, NSMC: Load change from no load to IM connection.
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(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.53: Experimental results, NSMC: Load change from half load to half load and

IM connection.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.54: Experimental results, NSMC: Voltage reference change from 250Vrms to

380Vrms with half load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.55: Experimental results, NSMC: Voltage reference change from 250Vrms to

380Vrms with inductive load.
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(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.56: Experimental results, DSMC: Load change from no load to half load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.57: Experimental results, DSMC: Load change from half load to full load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.58: Experimental results, DSMC: Load change from no load to IM connection.
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(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.59: Experimental results, DSMC: Load change from half load to half load and

IM connection.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.60: Experimental results, DSMC: Voltage reference change from 250Vrms to

380Vrms with half load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , and equivalent

control, ueq

Figure 7.61: Experimental results, DSMC: Voltage reference change from 250Vrms to

380Vrms with inductive load.
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(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , equivalent con-

trol, ueq, and, fictitious control action, u

Figure 7.62: Experimental results, ESMC: Load change from no load to half load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , equivalent con-

trol, ueq, and, fictitious control action, u

Figure 7.63: Experimental results, ESMC: Load change from half load to full load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , equivalent con-

trol, ueq, and, fictitious control action, u

Figure 7.64: Experimental results, ESMC: Load change from no load to IM connection.
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(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , equivalent con-

trol, ueq, and, fictitious control action, u

Figure 7.65: Experimental results, ESMC: Load change from half load to half load and

IM connection.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , equivalent con-

trol, ueq, and, fictitious control action, u

Figure 7.66: Experimental results, ESMC: Voltage reference change from 250Vrms to

380Vrms with half load.

(a) three-phase stator voltages, vs, and switching

function, s.

(b) switching control policy, vF , equivalent con-

trol, ueq, and, fictitious control action, u

Figure 7.67: Experimental results, ESMC: Voltage reference change from 250Vrms to

380Vrms with inductive load.



Chapter 8

Conclusions and future work

8.1 Conclusions

In this dissertation the WRSG has been analyzed in the stand-alone case where neither

frequency nor stator voltage amplitude are fixed externally. Since the mechanical speed

is normally regulated by an external prime-mover, and the electrical time constant is so

fast compared with the mechanical time constants, the mechanical speed was considered

externally regulated and the research was focused on the stator voltage amplitude regula-

tion. Usually, in the literature the main research results are pointed on the grid connected

generation which simplifies the problem from the machine side because its dynamical

equations are reduced. The dynamical equations of the stand-alone wound rotor syn-

chronous machine in dq-coordinates feeding both a resistive and an inductive load were

obtained. As well as linear approximated models and their transfer functions.

Four different controllers based on sliding mode control techniques were designed in

the dq reference frame. The obtained control laws regulate the stator voltage amplitude

irrespectively of the load value. Furthermore, only voltage and rotor position measures

(to compute the dq transformation), were required. The first three controllers were de-

signed for resistive loads, and the fourth for an inductive load. However, simulation and

experimental results of each controller were done with both kind of loads.

The error of the square voltage amplitude (V 2
ref − V 2

s ) against the voltage amplitude

difference discussed along the text shows the advantage of avoid the root computation at

the voltage calculus which is a hard task for digital control implementations and uses a lot

of hardware resources. This selection introduces the use of the d-voltage component sign

in the control switching policy, which allows to stabilize the system in the two possible

equilibrium points. This, cannot be achieved with a simple PI controller where one of
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the two equilibrium points becomes unstable. When a quadratic function is used as a

switching function, an undesirable sliding motion may arise. This phenomenon occurs

when the cylinder is selected as switching surface, then sliding modes in the plane id =

0 can be found. A simpler alternative consists in a nested control with an inner SMC

loop regulating the d-component of the stator voltage and a PI outer loop regulating its

reference.

The problem of a zero relative degree output when dynamical loads are used was

overcome introducing a dynamic extension of the system. This implies a fictitious control

action which is integrated to obtain the real field voltage to be applied to the generator.

The stability of the closed-loop system were proved at least using a small-signal ana-

lysis. In some cases a local asymptotic stability was discussed. The closed loop dynamics

of the CSMC were described. It results in a complex dynamics which introduces sliding

modes on a surface not considered in the control design. Assuming higher enough VDC ,

system trajectories may slide on two surfaces (the cylinder defined by the desired output

and a plane where transversality condition fails). Poincaré-Bendixon and Bendixon theo-

rems allow to prove that the ideal sliding dynamics on the cylinder consists in two locally

asymptotically stable equilibrium points. The ISD on the plane is linear with a virtual

equilibrium point inside of the cylinder. A generic trajectory can slide on the cylinder and

reach one of the equilibrium points or alternatively slide on the cylinder and the plane till

it achieves the basin of attraction of one of the two equilibrium points.

The case of saturated values of VDC in the CSMC was also studied. This realistic case

reveals that the complete cylinder is not an sliding surface and the sliding condition holds

in some narrow strips only. However, these strips are wide enough to guarantee local

asymptotic stability of the equilibrium points as has been shown by numeric simulations.

Simulation and experimental validation of each controller was carried out. The ob-

tained results validate the designs and show the main advantages and disadvantages of

each one. The designed control schemes implementation are quite simple, and some of

them do not require any gain tunning. Experimental tests disadvise the so-called DSMC

for a real application. It does not works properly in some cases where the three-phase

stator voltages are distorted which is not desirable or definitively cannot regulate the sta-

tor voltage amplitude. The main lack of this approach is the absence of a proportional

gain on the output error which implies a soft performance of the controller and makes
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the switching function remain close to zero. It can be also noticed that, the DSMC can

be seen as a particular case of NSMC, by taking the error of the square (V 2
ref − V 2

s ) and

setting kp = 0 in the PI loop.

The CSMC and NSMC behavior are very similar. The main difference is presented in

the switching function which in the NSMC oscillates more than in the CSMC. The main

advantage of the CSMC is that it does not need any tuning. The ESMC regulates the stator

voltage amplitude but it is slow compared with the other controllers, it also results in a bit

distorted waves when the generator is without load.

8.2 Future works

Though three of the proposed controllers reveal a good behavior under resistive and in-

ductive loads and this kind of load is present in some applications, it is true that actual

loads are mostly nonlinear. Then, a future research line is a deep analysis for nonlinear

loads. Actually, the harmonics cannot be controlled by the machine due to its limited

bandwidth (see Figure 3.1), but its behavior under this kind of loads must be analyzed.

In three-phase systems, another trend is the study of unbalanced loads and faulty con-

ditions. The main problem in this situations is the voltage measurement, because it is

formed by positive, negative and homopolar terms. A reasonable solution is to split the

voltage in this terms and only control the positive sequence voltage [65], [66], [67]. Meth-

ods for avoiding the chattering phenomena must be included in future controller designs.

The experimental and simulation results were obtained with a switching frequency up

to 10 kHz, which in high power systems is not allowed. The restriction to low switching

frequency, for example 1 kHz, in the controller implementation can be an interesting

research line.

The stability of the designed controllers were proved at least using small-signal. In

this case, a deeper closed loop analysis should be done in order to find the basin of attrac-

tion of each equilibrium point. The CSMC analysis was done deeper in relation to each

controller, but some results have been found numerically, at the future, analytical results

must be found.
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Stand alone WRSG are not only present in the stand-alone generation emulating the

power grid for emergency and security reasons. They can be found in other applications

related to recent trends in electric vehicles and renewable energies.

To motivate the use of the presented controllers, two possible applications are pre-

sented: a particular topology for a Hybrid Electric Vehicle and a variable speed Wind

Turbine configuration. In both systems the WRSG is not directly connected to the grid,

and its goal can be the stator voltage regulation. Furthermore, in general, for these appli-

cations, the electrical time constant is sufficiently small compared with the mechanical

one, and a fixed mechanical speed can be still assumed.

8.2.1 Hybrid Electric Vehicles

Hybrid electrical vehicles (HEV) are the focus of many research interests because they

provide good performance and long operating time [20]. Basically, the HEV is composed

of an internal combustion engine, an electrical machine and a battery pack. The main goal

of the HEV is to reduce the CO2 emissions by means of the regenerative braking, using

the electrical machine both as a motor drive or as a generator, which charges or discharges

the batteries. It is also desired to keep the drivability performance of the vehicle [49].

TE
F

G P

B

M

(a) series hybrid

T
E
F

MPB

(b) parallel hybrid

Figure 8.1: HEV topologies.

Figure 8.1 shows some HEV topologies. B represents the battery, E the internal com-

bustion engine (ICE), F the fuel tank, G the electrical generator, M the electrical motor, P

the power converter and T the vehicle transmission.

Depending on the interconnection between the different parts of the HEV, this classi-

fication can be summarized in two basic configurations:
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• Series Hybrid Electric Vehicle (SHEV): In a SHEV the ICE mechanical output

drives an electric machine, which generates electrical energy. This energy supplies

another electric machine, which acts as a motor coupled to the transmission line

[8]. The main advantages of this configuration are: on the one hand, the ICE can

work at an optimal configuration point finding a compromise between fuel economy

and exhaust emissions reduction and, on the other hand, the gear shifting is not

necessary. The SHEV is suitable for city cars [21][1][24].

• Parallel Hybrid Electric Vehicle (PHEV): The mechanical power is provided si-

multaneously by the ICE and the electric motor. In this way the ICE can be used

for driving while the electric motor for acceleration [8]. There are less energy con-

version stages compared to the SHEV, and therefore, the system is more efficient

than SHEV, which is the main advantage[21].

An especial case of SHEV called DiSAC (Direct Synchronous-Asynchronous Con-

version) system, where the stators of the electrical generator and the electrical motor are

directly connected is shown in Figure 8.2. In this scheme the generator is a WRSG which

fixes the stator voltage amplitude to a Doubly-Fed Induction Machine (DFIM) that acts

as a motor. Notice that the DFIM acts either in generator or motor mode. Both machines

(WRSG and DFIM) are rotor connected to the batteries by means of DC/DC and AC/DC

converters, respectively [52].

WRSG

τE ,ω

DFIMvs,is

τ ,ωr

vF ,iF vr,ir

B

Figure 8.2: Electrical scheme of the DiSAC scheme.

This scheme defines four control inputs: the field (or rotor) voltage of the WRSG, vF ,

the two rotor dq-voltage components of the DFIM, vr ∈ R
2, and the mechanical torque
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produced by the ICE, τW . These four control variables are able to control the electrical

torque produced by the DFIM, to manage the power flow and to keep a stator voltage to

its nominal value together with a stator power factor close to one.

The presented controllers for the WRSG are suitable for this application, because the

DFIM can be seen as an inductive load. Specially, the ESMC guarantees the stability for a

large range of inductive loads. However, when the control implementation in the DiSAC

system, the effect of the varying speed must be studied.

8.2.2 Wind Turbines

Wind turbine (WT) production has grown in size from some kW to the multi MW power

range in last three decades. Since 1990’s some manufacturers have replaced in the wind

turbine design the asynchronous generator by the synchronous one, while others have

introduced the doubly-fed induction machine (DFIM). In this development the pitch con-

trol concept, advanced power electronics equipment and control under variable speed have

been introduced [28].

Multi MW wind turbines rotates at 10-15 rpm. Hence, a gear-box and a standard fixed

speed generator or a multi-pole generator are the possible solutions [37]. A technological

roadmap of possible technical solutions for wind turbines is depicted in Figure 8.3.

Taking into account this roadmap, the most common turbine designs can be summa-

rized in four wind turbine schemes:

• Fixed speed wind turbines: This scheme is based on a squirrel cage induction

machine which is directly connected to the grid. Then, it needs a capacitor bank

for reactive power compensation [37], [6]. This scheme is manufactured by NEG

Micon, Bonus and Nordex [28].

• Partial variable speed wind turbine with variable rotor resistance: This con-

figuration manufactured by Vestas and known as OptiSlip uses a DFIM connected

directly to the grid. External resistors are connected to the rotor to control the slip

an the power output [37].

• Variable speed WT with partial-scale frequency converter: This concept, co-

rresponds to a variable speed DFIM which stator is directly connected to the grid,
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Wind Energy

Input Mechanical Source

Transmission Direct Gearbox Heat Loss

Machine Type Multi-pole Synchronous Synchronous Induction Power conversion

Rotor Wound Permanent Magnet Cage Rotor Wound or Brushless

Stator Wound Wound Wound Wound

Grid connection Full Scale Converter Full Scale Converter Full Scale Converter Small Converter

Output Electrical Source

Figure 8.3: Technological roadmap for wind turbine’s technology [28]

while a partial-scale power converter (approx. 30% of nominal power) controls the

rotor frequency and mechanical speed [37]. The motivation of this concept is a va-

riable speed in a wide range compared with OptiSlip and less expensive compared

with full power converter. It is manufactured by Vestas, Gamesa, Enron Wind,

Nordex and Dewind [28].

• Variable speed WT with full-scale power converter: It corresponds to a full

variable speed controlled WT, the generator is connected to the grid trough a full-

scale frequency converter. Then, additional technical performances of the WT can

be achieved. The generator can be a DFIM, a PMSM or a WRSG. Some schemes

are gearless using a multi-pole machine. Examples of manufacturers are Siemens

Wind Power, Made, Lagerway and Enercon. In particular Lagerway and Enercon

uses a WRSG [37], [28].

As pointed out above, the WRSG can play and important role for variable speed WT

with power converter connected to the stator side, see Figure 8.4. In this configuration the

WRSG is "isolated" from the grid by the power converter. Consequently, the presented

control algorithms can help to regulate the stator voltage amplitude and keep the system

in the desired operation point.
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vF ,iF

WRSG

τE ,ω

vs,is

AC

AC

GridTransformerGearBox/
Gearless

Figure 8.4: Variable speed WT with full-scale power converter using a WRSG.
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