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HIPER-HEURISTIK BERASASKAN GELINTARAN HARMONI UNTUK 

MASALAH PENJADUALAN

ABSTRAK

Masalah penjadualan ditemui dalam setiap bidang yang biasanya berkaitan de-

ngan perkhidmatan seperti hospital, pengangkutan, dan juga institusi pendidikan. Ma-

salah ini boleh menjadi sangat sukar apabila ia melibatkan sebilangan besar acara atau 

sumber yang perlu dijadualkan dan pelbagai kekangan yang perlu dipenuhi atau 

dipertimbangkan. Oleh itu, pelbagai pendekatan heuristik dan meta-heuristik telah 

diperkenalkan untuk menyelesaikan masalah ini. Walau bagaimanapun, sesetengah 

institusi mencari kaedah yang boleh menangani pelbagai masalah penjadualan tanpa 

perlu menggunakan banyak wang dan masa asalkan penyelesaian tersebut boleh 

diterima pakai. Atas sebab ini, pendekatan hiper-heuristik telah diperkenalkan. 

Motivasi menggunakan hiper-heuristik adalah untuk menghasilkan kaedah umum 

yang boleh digunakan untuk menyelesaikan masalah penjadualan yang berbeza. Oleh 

itu, kajian ini mencadangkan satu rangka kerja hiper-heuristik baru yang dinamakan 

sebagai Hiper-heuristik berasaskan Gelintaran Harmoni (HSHH). Idea asal adalah 

untuk melaksanakan satu urutan heuristik peringkat rendah pada sesuatu penyelesaian 

bagi menghasilkan penyelesaian yang lebih baik dan berkualiti. Oleh itu, tiga operator 

utama dalam algoritma gelintaran harmoni (HSA) iaitu pertimbangan memori, 

pertimbangan rawak dan pelarasan nada digabung dan digunakan sebagai heuristik 

peringkat tinggi untuk memilih dan menjana urutan heuristik peringkat rendah. 

Prestasi HSHH yang dicadangkan, diuji dengan tiga masalah penjadualan dimana dua 

masalah adalah dari penjadualan peperiksaan dan satu masalah dari penjadualan 

jururawat. Keputusan yang dihasilkan oleh HSHH dibandingkan dengan kaedah
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pilihan perturbatif hyper-heuristik yang lain. Hasil ujikaji mendapati bahawa HSHH 

boleh mencapai keputusan yang setanding dan dalam beberapa kes HSHH dapat 

menghasilkan keputusan yang kompetitif dengan kaedah hyper-heuristik yang lain.
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HARMONY SEARCH-BASED HYPER-HEURISTIC FOR SCHEDULING 

PROBLEMS

ABSTRACT

Scheduling problems are encountered in every field which are typically 

related to services such as in hospital, transportation, and also educational 

institutions. These problems can be extremely difficult when its involves a large 

number of events or resources to be scheduled and a wide variety of constraints 

which need to be satisfied or taken into consideration. Hence, many heuristic and 

meta-heuristic approaches have been introduced to solve these problems. However, 

some institutions look for a method that can deal with a wide range of scheduling 

problems without spending a lot of money and times as long the solutions produced 

are acceptable. For this reason, the hyper-heuristic approach have been introduced. 

The motivation of using hyper-heuristics is to produce a general method that can be 

used to solve different scheduling problems. Therefore, this research proposes a new 

alternative heuristic selection mechanism in a hyper-heuristic framework named 

Harmony Search-based Hyper-heuristic (HSHH). The original idea was to apply a 

sequence of low-level heuristics to a selected solution in order to produce good 

quality solutions to a given problem. Three main op-erators in harmony search 

algorithm: memory consideration, random consideration, and pitch adjustment 

were combined as high-level heuristics in order to select and generate a sequence of 

improvements low-level heuristics. To demonstrate the effectiveness of the method, 

the proposed method was tested with three different scheduling problems (two 

examination timetabling problems and one nurse rostering problem) taken from the 

real world. The results produced by the proposed methods were compared with those 
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of other selection perturbative hyper-heuristic methods working on the same datasets. 

Experimentally, the HSHH approach had achieved comparable re-sults and in several 

instances was able to produce competitive results.
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CHAPTER 1

INTRODUCTION

1.1 Background

Scheduling is the arrangement of a set of objects (e.g., events or resources) to a set of

time or spaces subject to some goal and constraints (Wren, 1996). The main purpose of

producing a schedule is to organize people’s lives, activities, and work without being

interrupted while still being able to perform them timely. Scheduling problems are

encountered in every field or domain which are typically related to services such as in

hospital or clinics, transportation, and also educational institutions. These problems

can be extremely difficult when its involves a large number of events or resources (can

be hundreds or thousands) to be scheduled and a wide variety of constraints which

need to be satisfied or taken into consideration. Therefore, scheduling problems can

be classified as hard and complex problems (Lewis, 2008; Noronha and Sarma, 1991).

Over the years, various techniques and approaches have been studied and intro-

duced in order to solve scheduling problems. All the techniques and approaches can

be classified into several categories which are heuristics, meta-heuristics, and hyper-

heuristics. The classification of scheduling techniques and approaches are shown in

Figure 1.1.

Heuristic is a ’rule of thumbs’ algorithm on finding a good quality solution in

a reasonable time-frame for the given problem. Although they cannot guarantee to
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Figure 1.1: Classification of scheduling problems techniques

provide an optimal solution, a number of the studies and researches have shown that

these algorithms are able to find near-optimal solution in a fast manner.

Meta-heuristic is a new type of heuristic used to explore the search space more

efficiently and effectively. Most meta-heuristic algorithms are inspired from existing

processes of nature’s behaviour. For example, an artificial bee colony (Bolaji et al.,

2012; Alzaqebah and Abdullah, 2011) had been designed based on the bees’ behaviour

in finding food. Generally, the strategy of meta-heuristic techniques is to balance the

intensification and diversification process during the search.

Hyper-heuristic (HH) was introduced by Cowling et al. (2001). The term ’hyper-

heuristic’, basically describes the heuristics to choose heuristics in the context of com-

binatorial optimisation problems. Even though the term ’hyper-heuristic’ is new, the

idea has been applied since the 1960s (Ross et al., 2002). Generally, hyper-heuristic

is known as a heuristic(s) or meta-heuristic(s) which selects an appropriate low-level

heuristics for a particular problem in order to solve it. In hyper-heuristic framework
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the low-level heuristics are referred as an algorithm that will be used to operates in the

problem domain in order to construct or improve the complete solution.

Hyper-heuristic approach is more towards a general method that can solve not

only a single problem but many problems. According to the initial definitions, hyper-

heuristic is a method that operates on the search space of heuristics or heuristic compo-

nent rather than directly on the search space of the solution (Burke et al., 2003). This is

the main difference between hyper-heuristic and meta-heuristic. Figure 1.2 illustrates

the aforementioned general concept of hyper-heuristic.

In addition, hyper-heuristic could be regarded as an ’off-the-peg’ method compared

to a ’made-to-measure’ bespoke meta-heuristic (Burke et al., 2009). In other words,

hyper-heuristic is a standard method that can be used to solve problems and not a spe-

cific method used to solve a specific problem domain (e.g., meta-heuristic). Therefore,

the aim of hyper-heuristic method is not necessarily to ’beat’ the best methods that have

been introduced before but to produce a method that is "cheap enough - good enough

- soon-enough" across a wide-range of problems and domains (Burke et al.,2003).

1.2 Problem Statement

As mentioned before, hyper-heuristic method is more towards generality of which fo-

cus is to resolve not only single combinatorial optimization problem (COP) but many.

Since its introduction in 2000, innumerable studies have been conducted in order to

investigate the potential of this approach. Based on the extant literature, the hyper-

heuristic approaches are able to generate a good and even better solution in solving

COPs including the scheduling problems.
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Figure 1.2: Hyper-heuristic general concept

Various types of hyper-heuristics have been introduced such as random, greedy,

tabu search, choice function, reinforcement learning, scatter-search, and many others

as discussed in Burke et al. 2003, Burke et al. 2009, Pillay (2014). Some of these

hyper-heuristic methods are based on random selection and some are based on memory.

The hyper-heuristic based on random selection (e.g., simple random) will choose the

heuristic from the heuristic set randomly. On the other hand, hyper-heuristics which are

based on the memory (e.g., tabu search, genetic algorithm, scatter search and etc.) will

choose the heuristic based on their previous performances. In addition, some of these

hyper-heuristic methods are combine with learning mechanism (e.g., random decent,

reinforcement learning, and etc.) in order to increase the capability of the methods

during the search process.
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The combination of different ways of heuristic selection can produce different

effects in a hyper-heuristic development. For example, in the basic hyper-heuristic

framework, a simple random selection is used in order to choose a heuristic from the

heuristics set. Even though random can be an effective method to avoid a local optima,

in certain conditions it can also lead to the worst outcome. Therefore, some other meth-

ods can be inserted in order to guide this randomness. By combining different ways of

heuristic selection, it might increase the capability of the hyper-heuristic approach to

select the most appropriate set of low-level heuristics.

Besides, studies on the hyper-heuristic approach are done towards applying a heuris-

tics combination instead of using a single heuristic at a time. This is because applying

different combinations of heuristics (i.e., heuristic sequence) to different solutions can

generate different effects to the solutions. This has been proven by several works re-

lated to this idea such as in Cowling et al. (2002); Han et al. (2002); Han and Kendall

(2003); Pillay and Banzhaf (2009); Pillay (2010a).

The Harmony Search algorithm (HSA), basically permits the combination of dif-

ferent operators for which in this algorithm three operators are commonly used namely

memory consideration, random consideration and pitch adjustment. All of these op-

erators in HSA will be triggered based on parameter settings (rate of probability).

Moreover, HSA also allows the implementation of heuristics combination in it frame-

work. Even though HSA has been tailored successfully for numerous optimization

problems including scheduling problems (Mohd Alia and Mandava, 2011; Manjarres

et al., 2013), not much research have been done to investigate the uses of HSA for

selecting and generating the heuristic combination within hyper-heuristic framework.
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Therefore, the motivation of this thesis is to further investigate whether the use of HSA

as a high level heuristic in a hyper-heuristic framework could be beneficial in solving

scheduling problems. Pursuant to that, the main reason of choosing the scheduling

problems such as examination timetabling problems and nurse rostering problem lies

in the fact that although these problems are not critical (in most situation) but it is im-

portant to produce a good schedule in order to organize people’s lives, activities, and

work without being interrupted. Furthermore, for some organizations, it is imperative

that they look for a method that can be used for solving various problems without hav-

ing to spend a lot of money and times as long as the solution produced are acceptable

quality (Burke and Soubeiga, 2003).

1.3 Research Questions

In order to clarify the purpose of the research, several research questions are high-

lighted based on the problem statement such as:

- How is the performance of harmony search algorithm when it is applied as a high-

level heuristic in hyper-heuristic framework in term of: i) How harmony search al-

gorithm select and generate a heuristic sequences by using its operators? ii) What is

the suitable length for heuristic sequence in the suggested hyper-heuristic algorithm?

- Original harmony search algorithm use random selection when it select value in its

memory. How the performance of harmony search algorithm as heuristic selection

if different selection mechanisms such as learning mechanisms are used?

- The aim of hyper-heuristic is to produce with a general method. How the suggested

HH algorithm performance when it is tested with different scheduling problems.
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1.4 Research Objectives

The aim of this research is to present an alternative hyper-heuristic approach that com-

bines different selection mechanism as high level heuristic in order to select and gen-

erate a heuristics combination for solving scheduling problems. The main objectives

of the research are:

1. To introduce an alternative hyper-heuristic method by adapting the harmony search

algorithm within a hyper-heuristics framework.

2. To enhance the performance of harmony search hyper-heuristic by employing a

different selection mechanism to control the selection of low-level heuristic.

3. To test the generality of the proposed hyper-heuristic framework using three differ-

ent scheduling problems.

1.5 Research Scope

This research aims to produce a general framework called hyper-heuristic for solving

scheduling problems. This framework is about building a method that is able to select

and apply an appropriate low-level heuristic at each decision point. Through this abil-

ity, hyper-heuristic is easily reused to different scheduling problems by having only

to change the set of heuristic and the evaluation function (depending on the problem

domains). Hyper-heuristic can be classified under many classifications and categories

such as selection constructive, selection purturbative, generation constructive and gen-

eration (Burke et al., 2010). In this research, the selection perturbative hyper-heuristic

will be studied.
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In order to test the general applicability of the proposed hyper-heuristic, three

different datasets will be considered in this research i.e., Carter dataset Carter et al.

(1996), the Second International Timetabling Competition in 2007 (or ITC2007) dataset

(McCollum et al., 2007), and the International Nurse Rostering Competition 2010

(or INRC2010) dataset (Haspeslagh et al., 2014). The Carter’s dataset (Carter et al.,

1996) is an Examination Timetabling Problem (ETP) which can be categorized as Un-

Capacitated Examination Timetabling Problem (Uc-ETP). In this problem, the capac-

ity of the room is not considered. However, the ITC2007 dataset for the examination

track is used in order to test the proposed method with different category of ETP for

which is, in this category the capacity of rooms will be putted into consideration during

the construction of the solution. The third dataset is from a different problem domain

which is a nurse rostering problem (NRP). The NRP involved producing a periodic

duty roster for nursing staff subject to a set of constraints. For this research, the first

standard dataset for NRP established by the organizers of the International Nurse Ros-

tering Competition in 2010 will be used.

1.6 Research Methodology

This section provides a brief discussion on the methodology used for this research. It

involves three stages. The methodology employed is modelled as in Figure 1.3.

The first stage involves studying and exploring the hyper-heuristic framework. Dur-

ing this research a simple hyper-heuristic framework was developed. Apart from that,

the problem domains (for scheduling problem) that would be considered was also de-

termined in this stage. In this thesis, three datasets from two different problem domains

8



Figure 1.3: Research methodology

were used in order to test the efficiency of the proposed method. As aforementioned,

the first dataset is a Carter dataset which is an examination timetabling problem. In the

same problem domain, the proposed method were also tested with the ITC2007 dataset

(for examination timetabling track). The third dataset is from a different problem do-

main which is a nurse rostering problem. A detail discussion for each dataset used

in this research will be presented in Chapter 3. Subsequently, in this step, potential

low-level heuristics for each problem domain were determined and implemented.

In the next stage (second stage), the proposed method known as the Harmony

Search based hyper-heuristic (HSHH) will be developed. At the first step, only two

main operators of HSA i.e., memory consideration and random consideration were

used to select an appropriate low-level heuristics. The basic adaptation of HSA which

is named Basic-HSHH (or B-HSHH) were tested with the three scheduling datasets
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as mentioned before, in order to evaluate the performance of the proposed method.

The next step includes enhancing the B-HSHH by applying different selection meth-

ods through the pitch adjustment operator in HSHH. This enhanced method known

as HSHH with Modified Pitch Adjustment (or HSHH-MPA) were also tested with the

same datasets in order to evaluate the performance of the method.

In the last stage, the results of the proposed HSHH methods (i.e., B-SHAH and

HSHH-MPA) were compared with each other. Furthermore, the best results achieved

by the HSHH were compared with results obtained by other hyper-heuristic methods

that are used on the same datasets.

1.7 Research Contributions

The contributions of this research are:

1. Adaptation of the Harmony Search algorithm (HSA) in a hyper-heuristic framework

named as Basic Harmony Search Hyper-Heuristic (B-HSHH):

i. Using two main operators: memory consideration and random consideration

in HSA as a heuristic selection mechanism in order to select and generate a

sequence of low-level heuristics.

ii. Combining two different types of harmony memory: heuristics harmony mem-

ory and solutions harmony memory. In the original HSA, only one harmony

memory will be constructed and applied, meanwhile in the B-HSHH, two

different harmony memory (i.e., HHM and SHM) will be applied during the

search process.
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2. Modification of the Harmony Search Hyper-heuristic which incorporates the B-

HSHH with other heuristic selection techniques (HSHH-MPA) in selecting a low-

level heuristics.

i. Adding pitch adjustment operator.

ii. Implementing three different types of heuristic selection.

3. Adaptation of the Harmony Search Hyper-Heuristic approach for solving two types

of examinations timetabling problem (i.e., Carter and ITC2007 dataset) and nurse

rostering problem (i.e., INRC2010).

1.8 Overview of Thesis

This thesis includes seven chapters organized as follow:

Chapter 2 presents a detailed discussion of the main components for this thesis. It

divided into two parts. In the first part of the chapter, a hyper-heuristic framework and

it classification will be explained. Subsequently, in the second part of the chapter, the

harmony search algorithm and the steps in this algorithm are described.

Chapter 3 is the introduction to the proposed methods. The hyper-heuristic frame-

work proposed in this study will be elaborated and discussed in detail together with

the problem domain used in this thesis.

Chapter 4, and 5 present all the steps in the proposed methods that will be elaborated

and discussed in detail. Furthermore, all experiments and results with detailed analysis

done in order to study the performance of the proposed hyper-heuristic methods are

also reported in these chapters.

Chapter 6 provides a comparison analysis among the proposed methods together with
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other hyper-heuristic methods using the same datasets studied in this thesis.

Chapter 7 presents the summary of the research as well as some directions for future

research that will be mentioned in this last chapter.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides a detailed explanation on the hyper-heuristic framework. The

structure of this chapter is based on the classification of the hyper-heuristic (i.e., selec-

tion and generation). Subsequently, the chapter continues with a brief discussion on the

selection mechanisms that will be used for this thesis (i.e., harmony search algorithm).

2.2 Hyper-Heuristic

The initial hyper-heuristic definitions describe it as a method which is performed at a

higher level to select an appropriate heuristics for solving a particular problem. The

definition of hyper-heuristic has been extended to be more sophisticated and more gen-

eral where the method is not only used for selecting appropriate low-level heuristics

but also for automatically generating low-level heuristics (Burke et al., 2010). Below

is the new definition for hyper-heuristic defined by Edmund Burke.

’A hyper-heuristic is an automated methodology for selecting or generating heuristics

to solve hard computational search problems.’

Burke et al. (2010)
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Based on these definitions, hyper-heuristic can be divided into two categories called

Selection hyper-heuristic and Generation hyper-heuristic. Selection hyper-heuristic

can be defined as a method for choosing or selecting existing low-level heuristics while

generation hyper-heuristic refers to a method for generating a new low level-heuristic

from the component of existing heuristics (Burke et al., 2009; 2010; 2013).

Furthermore, these two categories of hyper-heuristics (i.e. selection and gener-

ation) are classified based on the nature of the low-level heuristics. As mentioned

before, the low-level heuristics are referred as a simple algorithm that will be used to

operates in the problem domain in order to construct or improve the complete solution.

These low-level heuristics natures can be classified into two different classes namely

constructive and perturbative. Constructive low-level heuristics are used to construct

a complete solution gradually from an empty solution. Basically, these heuristics will

determine the next events to be scheduled according to the consideration factor (or dif-

ficulty). Constructive heuristics are commonly used in the initial phase of sequential

methods during the construction of an initial solution. In most cases, the solution pro-

duced by these heuristics are feasible. Nevertheless, perturbative low-level heuristics

are also used to improve the initial solutions. It can be a simple heuristic strategy such

as move and swap or shift. Each low-level heuristic can be considered as improvement

heuristics that return a move and a change in the penalty function. The categorisations

of these hyper-heuristics are shown in Figure 2.1.

Apart from the nature of the low-level heuristics search space, hyper-heuristic has

also been classified according to the feedback mechanisms (see Figure 2.2). The

three categories of feedback mechanisms in hyper-heuristic are online learning, of-
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Figure 2.1: Hyper-heuristic classification according to the nature of the heuristic search
space

Figure 2.2: The two dimensions of hyper-heuristic classifications i.e. source of feed-
back and nature of the heuristics search space (Burke et al., 2010)
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fline learning and no learning. The hyper-heuristics are categorized as online learning,

when the learning process takes place during the search process. Tabu search (Burke

and Soubeiga, 2003), reinforcement learning (Özcan et al., 2012) and choice func-

tion (Cowling et al., 2001) can be considered as online learning. However, when the

learning process occurs before the actual search process start, the hyper-heuristics are

categorized as offline learning. Case based reasoning (Burke et al., 2006) and learning

classifier systems (Ross et al., 2002) are works in an offline manner. In addition, some

hyper-heuristic components without any learning devices are also available such as the

simple random selection mechanism (Misir et al., 2010). Even though this method

(i.e., simple random) is a simple and naive heuristic, in certain cases it can be an ef-

fective selection method. Table 2.1 summarizes the hyper-heuristic methods that have

been developed before. This table provides the classification of each hyper-heuristic

based on the types and feedback mechanism.

Hyper-heuristic has been used in many different scheduling problems such as per-

sonnel scheduling problem (Cowling et al., 2001), course timetabling problems (Burke

et al., 2003a), examination timetabling problem (Burke et al., 2012, Kendall and Hussin,

2005, Pillay, 2010, Qu and Burke, 2005, Sabar and Ayob, 2009), nurse rostering prob-

lem (Bilgin et al., 2012, Burke et al., 2003b). Besides scheduling problems, hyper-

heuristics have also been used in other optimisation problems such as bin packing

(Burke et al., 2006; 2007, Ross et al., 2002), vehicle routing (Garrido and Castro,

2009; Mlejnek and Kubalik, 2013), sequencing problems (Ayob and Kendall, 2003),

satisfiability (SAT) problems (Barder-El-Den et al., 2007; 2008) and many others.
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Table 2.1: The classification of Hyper-Heuristic methods based on types and feedback
mechanism

Hyper-heuristic Methods Type References
Simple Random Selection Cowling et al. (2001), Misir

et al. (2010), Bilgin et al.
(2012), Ayob and Kendall
(2003), Kendall and Mohamad
(2004)

Greedy Selection Bilgin et al. (2010), Cowling
et al. (2001)

Choice Function Selection Cowling et al. (2001), Bilgin
et al. (2012)

Case-based reasoning Selection Burke, MacCarthy, Petrovic and
Qu (2003), Burke, Petrovic and
Qu (2006)

Reinforcement Learning Selection Özcan et al. (2008)

Genetic Algorithm Selection Cowling et al. (2002),Han and
Kendall (2003)

Tabu Search Selection Burke and Soubeiga (2003),
Burke, McCollum, Meisels,
Petrovic and Qu (2007), Kendall
and Hussin (2005a),Kendall and
Hussin (2005b)

Memetic Hybridisation Selection Bilgin et al. (2007), Sabar et al.
(2012), Qu, Burke and Mc-
Collum (2009), Qu and Burke
(2009)

Genetic Programming Selection Pillay (2008)
Generation Pillay and Banzhaf (2009),

Nguyen et al. (2011), Bader-El-
Den et al. (2009)

Scatter Search Selection Sabar and Ayob (2009)

Adaptive Heuristic Generation Burke and Newall (2004), Rah-
man et al. (2009)

Grammatical Evolution Generation Sabar et al. (2013)
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2.2.1 Selection hyper-heuristic framework

A traditional framework of selection hyper-heuristic consists of two main mechanisms

namely heuristic selection mechanism and move acceptance mechanism. The hyper-

heuristic search process starts with the selection mechanism for choosing the appro-

priate low-level heuristic for generating a new (partial or complete) solution in the

current optimization step. Afterwards, move acceptance mechanism will decide on

the acceptability of the new solution based on some problem-independent information

(e.g., fitness function, etc.). Figure 2.3 illustrates the traditional framework of selection

hyper-heuristic.

There are many works that are related to heuristic selection compared to heuristic

generation. Heuristic selection hyper-heuristic can be single-based (e.g., tabu search,

choice function, reinforcement learning, etc.) or population-based (e.g., genetic algo-

rithm, ant colony algorithm, etc.).

As classified by Burke et al. (2010), the heuristic selection hyper-heuristic can

be based on constructive low-level heuristics or perturbative low-level heuristics. Con-

structive hyper-heuristic will build a complete solution gradually from scratch by using

constructive heuristic such as Largest Degree (LD), Largest Enrolment (LE), Largest

Weighted Degree (LWD), Saturation Degree (SD) and others. On the other hand, per-

turbative hyper-heuristic will start with an initial solution, and then local search or

neighbourhood search will be used to improve the solution.

Selection constructive hyper-heuristic is an approach that usually employs con-

structive heuristics (e.g., Largest Degree, Saturation Degree, Large Enrolment, etc.)
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Figure 2.3: Traditional framework of selection hyper-heuristic Burke, Kendall, Newall,
Hart, Ross and Schulenburg (2003)

19



as a low-level heuristic. In order to select or explore a search space of heuristic, sev-

eral heuristics (or meta-heuristics) have been used. For instance, Pillay (2008) used

genetic programming (GP) for the evolution on hyper-heuristics framework to solve

un-capacitated examination timetabling problems. In their study, the GP framework

has a sequence of constructive low-level heuristics and specifies their order in genetic

solution (e.g., lssll where l and s represent the largest degree and saturation degree con-

struction heuristics respectively). Note that each genetic solution contains a sequence

of low-level heuristic ordered to construct a single timetable.

Moreover, Sabar et al. (2012), investigated a new graph colouring constructive

hyper-heuristic for solving examination timetabling problems. This approach utilized

the hierarchical hybridizations of four low-level graph colouring heuristics such as

largest degree, saturation degree, largest coloured degree and largest enrolment. These

were hybridized to produce four ordered lists. In each list, the difficulty index of

scheduling the first exam was calculated by considering its order in all lists to obtain

a combined evaluation of its difficulty. The most difficult exam to be scheduled was

scheduled first (minimum difficulty index will be scheduled first). To improve the ef-

fectiveness of timeslot selection, a roulette wheel selection mechanism was included

in the algorithm to probabilistically select an appropriate timeslot for the chosen exam.

On the other hand, selection perturbative hyper-heuristics is an approach that se-

lects a low-level perturbative heuristics. Perturbative refers to a local search heuristic

or/and neighbourhood heuristic (e.g., move, swap, etc.). Basically, these approaches

try to select the most appropriate low-level heuristic (e.g., perturbative heuristics) in or-

der to improve a current complete solution. As in the case with selection constructive
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hyper-heuristics described above, these hyper-heuristics also employ heuristic tech-

niques (or meta-heuristics) to explore the search space of low-level perturbation heuris-

tics. Burke et al., 2003 used the tabu search as a high-level heuristic selection mech-

anism in a hyper-heuristic framework in order to rank the low-level heuristic. In their

approach, the ranking of the low-level heuristics was based on a reinforcement learning

mechanism that considers the change in the candidate solution. The proposed method

had been successfully applied to course timetabling and nurse rostering problems with

a comparative result.

Kendall and Hussin (2005a), developed a tabu search-based hyper-heuristic. The

process begins by generating an initial solution based on the saturation degree or largest

degree. The neighbourhood of the initial solution is then examined in order to improve

the generated timetable. Four low-level heuristics (move, swap, select and schedule,

and remove) were utilized within a tabu search framework. The heuristics that pro-

duces the best improvement in the current iteration is to be used in the following iter-

ations. The process is repeated until a time limit is reached or no improvements are

achieved for a predefined number of iterations. The same approach is also applied

in the different examination timetabling problem as discussed in Kendall and Hussin

(2005b).

Cowling et al. (2002) investigated the implementation of genetic algorithm as a

high level heuristic called hyper-GA for scheduling geographically distributed training

staff and courses. The goal of hyper-GA was to evolve a good-quality heuristic to find

good-quality solution by applying a suitable ordering from a set of low-level heuristic.

The hyper-GA approach was extended in Han et al. (2002), where in this study, adap-
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tive length chromosomes was investigated. This approach was named ALChyper-GA.

The aim of this study was to provide a more effective heuristic list. In addition, the

most optimal length for chromosomes was to be determined. The results demonstrated

that ALChyper-GA was better than hyper-GA for most of the problem instances. A

year later, Han and Kendall (2003) enhanced the work (i.e.,ALChyper-GA) by adding

the tabu method. The aim of adding a tabu list to the ALChyper-GA is to indicate the

efficiency of each gene (i.e.,low-level heuristic) within the chromosome. The experi-

mental results showed that hyper-TGA produces better solution than the previous two

versions of hyper-GA (i.e.,hyper-GA and ALChyper-GA).

Qu and Burke (2005a), implemented a hybrid variable neighbourhood search (VNS)

within the graph based hyper-heuristic framework. In their work, two sets of vari-

able neighbourhood structures were designed namely single flipped and block flipped

structures. In the single flipped structure, the algorithm randomly changes two, three,

four or five heuristics in the heuristic list. For block flipped, the algorithm randomly

changes two, three, four or five consecutive heuristics in the heuristic list. These

methods have been evaluated using the exam timetabling problem benchmark dataset.

Through the experiment, the author concludes that the method employed for the high

level search is not crucial within the graph based hyper-heuristic approach.

In Ersoy et al. (2007) a hyper-heuristic is embedded in a memetic algorithm used to

solve the examination timetabling problem. The hyper-heuristic is used to select one

of three hill-climbers to be used by the memetic algorithm. In their study, the hyper-

heuristics using either a choice function and great deluge (CF-GD) or simple random

combined with improving and equal (SR-IE), were found to perform well in Carter
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benchmark problem.

Sabar and Ayob (2009), proposed a scatter search based hyper-heuristic (SSHH)

approach for solving examination timetabling problems. The scatter search is used at a

high level of abstraction which intelligently evolves a sequence of low level heuristics

to use for a given problem. Each low level heuristic represents a single neighbourhood

structure.

Swan et al. (2012), use an evolutionary-based hyper-heuristic to solve examination

timetabling problem. In this hyper-heuristic framework, a sequence of add and delete

operations were used in order to improve the existing timetable. These operators are

represented by using binary numbers which zero for delete and one for add. The hyper-

heuristic performed well on the ITC2007 benchmark dataset.

Burke et al. (2014) employ a hyper-heuristic to improve the quality of an initial

feasible solution created using the largest degree construction heuristic. The hyper-

heuristic uses four low-level perturbative heuristics, namely, move exam, swap exam,

Kempe chain move and swap timeslot. All four heuristics aim at producing the least

penalty timetable. An adaptive component is built into the hyper-heuristic to perform

the hybridization of these two heuristics. The hyper-heuristic was used to find solu-

tions to problems from the Carter benchmark set and the benchmark set for the second

international timetabling competition. Preliminary studies indicated that Kempe chain

in combination with swap timeslot performed the best over problems of differing char-

acteristics.

There are also other work that have used harmony search algorithm as hyper-
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heuristic as discussed in Dempster and Drake (2016). In their work, the harmony

search was used to select a mixture of continuous and discrete variables forming the

components of a Memetic Algorithm. Two hyper-heuristic framework using harmony

search were investigated: i) single-point based search which maintains a single solu-

tion, and ii) population-based search which co-evolves a set of solutions to a problem

alongside a set of harmony memory. In this method, the harmony memory consisted of

three heuristics such as crossover, mutation, and hill climbing, together with the param-

eters for the heuristics. The parameters were used to indicate the values of the intensity

of mutation and depth of search. They tested the performance of their frameworks on

HyFLex and the results show that population-based approach is able to achieve signif-

icantly better results than the single-point approach.

Another major influence in a hyper-heuristic’s performance is the move acceptance

criterion. The purpose of the acceptance mechanism in the hyper-heuristic frame-

work is to determines the diversification characteristics. There are several mechanisms

which have been used as move acceptance in the hyper-heuristic framework. For ex-

ample a basic and simple mechanism such as Only Improve (OI). Besides that there

are other intelligent and complicated mechanisms which have been applied such as

simulated annealing, great deluge, monte carlo and others.

Bilgin et al. (2012) presents one general hyper-heuristic approach for addressing

two scheduling problems in the health care domain: the patient admission scheduling

problem and the nurse rostering problem. In this study, they tested thirty six hyper-

heuristic variations, a combination of three types of selection mechanism such as sim-

ple random, choice function and dynamic heuristic set strategy and four different move
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