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ALGORITMA KUASA-DUA TERKECIL REKURSI KABUR TERTURUN

UNTUK PENGANGGARAN MASA NYATA

ABSTRAK

Penapisan adaptif merupakan salah satu teknik pemprosesan isyarat dimana ia mengang-

garkan parameter yang bertujuan mencirikan suatu sistem masa nyata. Penganggaran tersebut

melibatkan peminimuman min ralat kuasa-dua di antara output suatu sistem dan output pena-

pisan adaptif. Fungsi pindahan suatu sistem adalah tidak diketahui dan penganggaran struktur

fungsi pindahan adalah berdasarkan andaian struktur turas FIR, turas IIR, ataupun turas tidak

linear dimana ketiga-tiga struktur turas yang dinyata adalah struktur turas yang lazim dalam

penapisan adaptif. Akan tetapi, setiap turas adalah berbeza sesama lain dan ia mempunyai isu

yang tersendiri. Turas FIR adalah terhad kepada sistem linear; turas IIR mempunyai prestasi

baik dalam sistem suap balik linear tetapi menghadapi masalah ketakstabilan apabila struktur

direalisasikan; dan turas tidak linear melibatkan peringkat persamaan yang tinggi dan mempu-

nyai kecenderungan ke sistem bersuasana tak sihat. Didorong oleh pendekatan kabur, tesis ini

menyiasat keupayaan sistem kabur dan membentangkan satu pendekatan yang boleh mengatasi

masalah-masalah turas yang disebut tadi. Untuk merealisasikan pendekatan tersebut, hubung-

an antara penapisan adaptif dan sistem kabur dibentuk melalui generalisasi fungsi pindahan

dimana pemetaan kabur digunakan untuk menerang hubungan input-output yang diberi oleh

penapisan adaptif tanpa andaian struktur turas. Tesis ini melanjutkan kajian atas algoritma

kuasa-dua terkecil rekursi kabur (FRLS) Wang dan Mendel (1993a) dan memperkenalkan satu

algoritma yang mempunyai struktur pengiraan yang lebih ringkas iaitu algoritma FRLS ter-

turun. Berikutan dengan algoritma FRLS terturun, fungsi asas kabur terturun didefinasikan

sebagai input kabur yang mengaplikasikan fungsi keahlian segi tiga. Dalam rujukan literasi,
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fungsi keahlian segi tiga menghadapi masalah ketakrifan ruang metrik disebabkan kemung-

kinan berlakunya kekosongan ruang pemetakan sistem kabur. Akan tetapi, masalah ketakrifan

ruang metrik dapat diselesaikan dengan pemetakan Ruspini dan fungsi asas kabur terturun ada-

lah dibukti sebagai kaedah yang lengkap serta mempunyai pemetakan kabur yang kuat. Yang

paling penting, fungsi asas kabur terturun dibukti dari segi teori dimana ia juga merupakan

penganggar umum sepertimana yang dibukti untuk fungsi asas kabur dalam algoritma FRLS

Wang dan Mendel. Kaedah-kaedah penilaian yang lazim untuk algoritma penapisan adaptif te-

lah digunakan untuk menguji dan menilai prestasi algoritma FRLS terturun. Pelbagai simulasi

telah dijalankan dan algoritma FRLS terturun menunjukkan kadar penumpuan serta tingkah

laku ralat yang baik dimana min ralat kuasa-dua yang minimum dapat dicapai. Dalam penge-

nalan sistem tidak linear, prestasi algoritma FRLS terturun adalah setanding dengan algoritma

FRLS tetapi bilangan operasi titik apungan algoritma FRLS terturun adalah lebih kurang dan

ia telah ditunjukkan melalui masa pengiraan yang lebih kurang. Selain itu, algoritma FRLS

terturun juga diuji dengan aritmetik kepersisan yang terhingga untuk menyiasat prestasi algo-

ritma dalam sistem bersuasana tak sihat. Keputusan simulasi menunjukkan prestasi algoritma

FRLS terturun adalah lebih baik daripada algoritma SOV-RLS dan setanding dengan algori-

tma yang berdasarkan penguraian QR dimana kestabilan matriks korelasi input telah dijaga.

Dalam pengenalan sistem IIR yang melibatkan suap balik, algoritma FRLS terturun juga me-

nunjukkan prestasi yang setanding dengan algoritma Bilinear RLS malahan lebih baik apabila

melibatkan ketaklinearan. Akhir sekali, algoritma FRLS terturun dalam penganggaran ma-

sa nyata ditunjukkan dengan aplikasi pengenalan sistem suara. Keputusan ekperimen adalah

memberansangkan dimana algoritma FRLS terturun berupaya mensintesiskan semula ujaran

yang dicemar teruk dengan hanya menggunakan bilangan sample ujaran lepas yang kurang,

padahal model pengenalan sistem suara yang sedia ada telah gagal.
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REDUCED FUZZY RECURSIVE LEAST-SQUARES ALGORITHM FOR

REAL TIME ESTIMATION

ABSTRACT

Adaptive filtering is an online signal processing application that is capable of estimating

parameters for the characterization of a real time system. The estimation is done based on the

mean-square error (MSE) minimization of the difference between some desired output and the

output of the adaptive filter. The unknown transfer function is assumed to be a known structure

and is realized by three different structures which are commonly used in conventional adaptive

filtering: (i) the finite-duration impulse response (FIR) filter, (ii) the infinite-duration impulse

response (IIR) filter, and (iii) the nonlinear filter. However, there are limitations on each struc-

tures: (i) the FIR filter is limited for linear and almost linear system, (ii) the IIR filter works

well with linear feedback system but encounters some instability issue when implementing the

structure in practice, and (iii) the nonlinear filter requires higher order to describe the unknown

nonlinearity and it is prone to ill-conditioned system. Motivated by the fuzzy approach, this

thesis seeks to investigate the capabilities of the fuzzy system in overcoming the limitations

above. By formulating the adaptive filter as a generalized transfer function to include both

feedforward and feedback mechanism, an interesting connection between adaptive filtering

and fuzzy system is established. It is discovered that fuzzy mapping can be used to realize the

unknown input-output relationship in adaptive filtering without prior assumption on the adap-

tive filter structure. This thesis extends the fuzzy recursive least-squares (FRLS) algorithm

proposed by Wang and Mendel (1993a) to develop a more computational simplified algorithm

which is the reduced FRLS algorithm. The reduced fuzzy basis function associated with the

reduced FRLS algorithm is defined based on the Triangular-shaped membership function. In
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literature, the Triangular-shaped membership function may not be well-defined in the metric

space due to the possibility of zero total partitioned space. However, this issue is resolved using

Ruspini partitioning and the resulting reduced fuzzy basis function is proven to be a complete

rule base method and has a strong fuzzy partitioning. Most importantly, a theoretical proof is

provided to show that the reduced fuzzy basis function also shares the universal approxima-

tion property that characterizes the fuzzy basis function used in the FRLS algorithm by Wang

and Mendel. Performance of the reduced FRLS algorithm is tested against a set of standard

performance measures which is commonly used to test the performance of adaptive filtering

algorithm. Simulations support that the reduced FRLS algorithm has good convergence and er-

ror behavior in which the minimum MSE is achievable. In nonlinear system identification, the

reduced FRLS algorithm is able to provide comparable performance with the FRLS algorithm

but requires less number of floating-point operations and also shown to have less computation

time. Particularly in quantized environment where the system is ill-conditioned, the reduced

FRLS algorithm gives a more stable performance compared to the SOV-RLS algorithm and

it is shown comparable with the QR decomposition based algorithm whereby the condition

number of the inputs correlation matrix remains stable throughout the iterations. The reduced

FRLS algorithm also shows good performance in IIR system identification involving feedback

mechanism where it provides comparable performance with the Bilinear RLS algorithm yet

producing a better performance when nonlinearity is involved. Lastly, the reduced FRLS al-

gorithm in real time estimation is presented by speech system identification. The experimental

results are promising in which the reduced FRLS algorithm demonstrates the reconstruction

of a seriously corrupted speech with only a limited number of past speech samples, while the

conventional predictive coding model has failed.
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There are ways to perform real time estimation and one of the techniques is based on the en-

gineering perspective: signal processing. Here, a signal is a representation of the intelligence

to be conveyed to a receiver, while signal processing is a technical tool for the transforma-

tion and the manipulation of such representation (Moura et al., 2013). In regard to the real

time data, these signals are often acquired from the real time operation such as biomedical

systems, speech processing, control systems, communications, computing, geographical mon-

itoring systems, and etc. Although these signals take many different forms, it is recorded as

data sequences or in time series representation and serve as the real time data to their respective

real time operation. Depending on the user of such signals, the aim and objective of signal pro-

cessing vary according to the application: from the extraction of useful information contained

in the real time system to the estimation and the identification of the unknown system.

Table 1.1: Table of differences between statistical estimation and real time estimation.

Statistical Estimation Real Time Estimation
Number of data is finite due to specific
data operation

Number of data is infinite due to real time
data operation

Data are stored for its statistical informa-
tion

Data are continuously collected and only
the most recent are temporary stored

Unlimited storage space for limited
amount of data

Limited storage space for unlimited
amount of data

Stationary processes and data are time-
invariant

Dynamic or nonstationary processes and
data are time-variant

Statistical information is known by large
number of data realization

Statistical information is impossible to
know due to the dynamic of real time op-
eration

Perform in an off-line manner Perform in an on-line manner
Sample data are available for estimation
training

Sample data are not available and irrele-
vant for estimation training

Accurate estimation based on known sta-
tistical information

Fast estimation on arbitrary accuracy to
capture the fast dynamic of time varying
environment

Extensive computation to have accurate
estimation

Limited computational load to have fast
estimation
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1.1.1 Adaptive Filtering as a Real Time Estimation Technique

In the case of digital signal processing, one of the techniques used for estimation is by using

filters. Here, filter is a device in software form that is used to extract information about a

prescribed quantity of interest from a set of noisy data (Haykin, 1996). From the recording

of signals from the sensor, to the transmission of signals through a channel, noise may arise

and corrupts the signals, causing the failure in signals interpretation. Therefore, filtering is

performed in order to get the information we need in the signals. In other words, filtering is

a signal processing operation which objective is to process a signal in order to manipulate the

information contained in the signal (Diniz, 2008).

Basically, filters can be classified into two categories: linear filter and nonlinear filter. As

the word linear suggests, a filter is classified into linear filter if the output of the filter is a

linear function of the observations applied to the filter input; otherwise, the filter is nonlinear

(Haykin, 1996). In practice, the signals are often assumed to be a linear filtering problem,

whose objective is to provide a solution that is optimum in the mean-square sense. With the

availability of the signal and noise’s statistical parameters, we want to design a linear filter so

that a certain objective function of the error between the desired output (the actual signal out-

put) and the filtering output is minimized. In the case of stationary data, where the specification

of the signal and noise are fixed or known, a time-invariant filter can be designed to facilitate

the statistical parameters. For this, a common approach which provides an optimum solution in

the mean-square sense is the Wiener filter. Mean-square approach is alike to the least-squares

approach with the difference of being stochastically implemented. In the error performance

surface, Wiener filter gives a point in which the mean-square error (MSE) is minimum and the

solution giving that point is called the Wiener solution.
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For the design of time-invariant filter, the fixed specification or the statistical characteris-

tics of the signal and noise are needed. In other words, the a priori information of the signal

and noise are processed to obtain an optimum solution. However, the fixed specification of the

signal is unknown in real time processing, especially when the signal is corrupted by noise.

This is because the characteristic of noise is rather hard to estimate due to its randomness. In

order to capture the unknown underlying dynamic of the signal, a time-variant filter in which

can adaptively adjust to have optimum solution in the mean-square sense is needed. By assum-

ing that the signal sequences are ergodic (Diniz, 2008) where the statistical characteristics of

the signal can be estimated by a large number of time instant averaging, adaptive filter can be

designed to facilitate the statistical parameters. As the word adaptive suggests, adaptive filter

is a self-modifying filter that adjusts its coefficients in order to minimize the objective function

of the error between the desired output and the filtering output (Apolinario and Netto, 2009).

By utilizing real time data, real time estimation via adaptive filtering can be done using

the stochastic approach or the deterministic approach. Since the characteristic of these signals

is unknown due to the infeasible of large number of signal realizations, ergodicity is assumed

in adaptive filtering to perform the estimation. With the assumption of the unknown signal

sequences are stationary and their time averages are identical, stochastic approach used the time

averages of the signal to resolve the real time estimation. This can be done by the instantaneous

estimation where the MSE is approximated by the instantaneous squared error. While for the

deterministic approach, real time estimation is based on the recursive estimation which utilizes

the method of least-squares in minimizing the formulated objective function.

1.2 Adaptive Filter Structure

Either the design of the filter is linear, nonlinear, adaptive, or nonadaptive, the objective of

filtering is to minimize certain objective function. Let d(k) be the desired output and y(k) be
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the filtering output at time instant k, if the input x(k) is available, then the objective of filtering

is to minimize

ξ = E[e2(k)] , (1.1)

where e(k) = d(k)− y(k) is the error between the desired output and the filtering output and

E[.] denotes the statistical expectation of the given equation. From (1.1), we denote the per-

formance function, ξ as the mean-square error (MSE). To measure the MSE, large number of

signals realization is required and it is impractical for real time estimation. In practice, the

performance function is approximated by using several different adaptive filtering approach

which will be discussed in Chapter 2. Depending on the adaptation approach, the error sig-

nal e(k) is used by the adaptive filter to produce the filter coefficients in which it is updated

according to some performance measure. In other words, adaptive filtering will produce the

filter coefficients that aims to minimize the objective function, forcing the filtering output to

approximate the desired output in a statistical sense (Apolinario and Netto, 2009). Figure 1.1

shows the configuration of adaptive filtering. Referring to the configuration, only two types of

data mattered in adaptive filtering: (i) the input x(k), which is collected from the environment,

is used to drive the adaptive filter and it can be time varying; and (ii) the desired output d(k),

which is also collected from the environment, is the estimation target and its nature depends on

the type of adaptive filtering application.

Figure 1.1: The configuration of adaptive filtering.
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1.2.1 Finite-duration Impulse Response (FIR) Filter

Let x(k) be the input column vector and realized through a transversal structure such that

x(k) =
(

x(k) x(k−1) . . . x(k−n+1)

)T

, where it consists of the current input, x(k) at

time instant k and the previous inputs, x(k− i) at time instant k− i for i = 1,2, . . . ,n−1. The

finite-duration impulse response (FIR) filter is a linear filter where the filtering output, y(k)

(refer Figure 1.1) is given by

y(k) =
n

∑
i=1

wi(k)x(k− i+1)

=

(
w1(k) w2(k) . . . wn(k)

)


x(k)

x(k−1)

...

x(k−n+1)


= wT (k)x(k) , (1.2)

in which w(k) =
(

w1(k) w2(k) . . . wn(k)

)T

is the column vector consists of the unknown

filter coefficients, wi(k) at time instant k for i = 1,2, . . . ,n. The FIR filtering output given by

(1.2) is having filter order of n−1, with the filter length of n. By the means of adaptive filtering,

these filter coefficients are produced to minimize the objective function given by (1.1). From

(1.2), the FIR filter is a feedforward and non-recursive filter, where the filtering output does

not involve any feedback mechanism (i.e. the computation does not involve previous filtering

outputs). Due to this non-recursive structure which only involves feedforward mechanism, FIR

filter has a quadratic MSE function with only one minimum point; in which convergence to the

global minimum point is ensured. This is the reason why FIR filter is more commonly adopted

(Farhang-Boroujeny, 1998).
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1.2.2 Infinite-duration Impulse Response (IIR) Filter

Let y(k) be the column vector consists of the previous filtering outputs such that y(k) =(
y(k−1) y(k−2) . . . y(k−n+1)

)T

. If the filtering output involves the feedback mech-

anism, then the filtering output, y(k) of an infinite-duration impulse response (IIR) filter is

given by

y(k) =
n

∑
i=1

ai(k)x(k− i+1)−
n−1

∑
i=1

bi(k)y(k− i)

=

(
a1(k) a2(k) . . . an(k)

)


x(k)

x(k−1)

...

x(k−n+1)



−
(

b1(k) b2(k) . . . bn−1(k)

)


y(k−1)

y(k−2)

...

y(k−n+1)


= aT (k)x(k)−bT (k)y(k) , (1.3)

where a(k) =
(

a1(k) a2(k) . . . an(k)

)T

is the unknown feedforward filter coefficient col-

umn vector, and b(k) =
(

b1(k) b2(k) . . . bn−1(k)

)T

is the unknown feedback filter coef-

ficient column vector. From (1.3), the IIR filter is a recursive filter that consists of the feedback

mechanism and this distinguishes it from the FIR filter. The impulse response duration of the

IIR filter is infinitely long due to the feedback mechanism, where the computation of current

filtering output involves previous filtering outputs. Different from the quadratic MSE function

of a FIR filter, the performance function of an IIR filter has many local minima points; in which

it may result in local minima convergence (i.e. not the desired global minimum point) and this

is the reason why IIR filter is limited in use (Farhang-Boroujeny, 1998).
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1.2.3 Discrete-Time Signal Representation and Transfer Function

Consider the IIR filtering output which is given by (1.3), where the FIR filtering output given

by (1.2) is a special case of (1.3) when b(k) is the zero column vector. Rearranging the IIR

filtering output as the sequence of delayed input signals, then (1.3) becomes

y(k)+b1(k)y(k−1)+b2(k)y(k−2)+ . . .+bn−1(k)y(k−n+1)

= a1(k)x(k)+a2(k)x(k−1)+a3(k)x(k−2)+ . . .+an(k)x(k−n+1) . (1.4)

Let z−1 be the unit-delay operator, so that it operates on x(k) resulting x(k− 1), and also op-

erates on y(k) resulting y(k− 1). In the z-transform domain (Farhang-Boroujeny, 1998), then

(1.4) becomes1

Y (z)+b1(k)z−1Y (z)+b2(k)z−2Y (z)+ . . .+bn−1(k)z−n+1Y (z)

= a1(k)X(z)+a2(k)z−1X(z)+a3(k)z−2X(z)+ . . .+an(k)z−n+1X(z) . (1.5)

By collecting the coefficients of X(z) and Y (z), then

Y (z) =
a1(k)+a2(k)z−1 +a3(k)z−2 + . . .+an(k)z−n+1

1+b1(k)z−1 +b2(k)z−2 + . . .+bn−1(k)z−n+1 X(z) . (1.6)

From (1.6), the input-output filtering operation is given by

Y (z) = H(z)X(z) , (1.7)

where

H(z) =
Y (z)
X(z)

=
a1(k)+a2(k)z−1 +a3(k)z−2 + . . .+an(k)z−n+1

1+b1(k)z−1 +b2(k)z−2 + . . .+bn−1(k)z−n+1

1The z-transform properties that used to transform (1.4) to (1.5) are shown in the Appendix A.
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is known as the transfer function2. Considering the filtering output, y(k) is a linear combination

of the filter coefficients and the inputs, (1.7) can be realized through the structure of a FIR filter

or an IIR filter. By minimizing the objective function, filter coefficients are produced in the

sense that the z-transform of filter coefficients resembles the transfer function, Z{w(k)}=H(z).

1.3 Adaptive Filtering Configuration for System Identification

Based on the configuration of adaptive filtering in Figure 1.1, adaptive filter produces a fil-

ter coefficient column vector, w(k) such that the filtering output, y(k) closely approximates

the desired output, d(k). Basically, adaptive filtering is categorized into four classes of ap-

plication; namely, modeling, inverse modeling, linear prediction, and interference cancelation

(Farhang-Boroujeny, 1998). Although these four classes of application are different in the set

up, nevertheless they share one common feature: the error resulted from the difference of the

desired output and the filtering output is used to adjust the filter coefficients so that it is updated

according to some performance measure. Under the category of modeling, system identifica-

tion will be the core application in this thesis among the other applications. The set up of

system identification is depicted by Figure 1.2.

Figure 1.2: The flow diagram for system identification.

2The details of input-output characterization using impulse response, h(k) and its z-transform, Z{h(k)}= H(z)
are shown in the last paragraph of Appendix A.
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In literature, system identification is a diverse field that can be presented in various ways.

Generally, it consists of three basic entities: (i) the data set, (ii) the model structure, and (iii)

the model validation (Ljung, 1999). First of all, the input-output data of the system to be

identified are collected, stored, and analyzed. The reason for doing so is to make these data

maximally informative so that it could provide a priori information and increase the accuracy of

estimation. If necessary, data is preprocessed to remove the deficiencies. A model is proposed

after careful modeling. At this step, the proposed model is a tool which realize the unknown

input-output mapping and it should be fit with the data set. At last, model validation takes

place where the performance of the proposed model is monitored when the measured data is

being reproduced. Succeeding these three entities, the model is arrived for system identification

where it is ready for field run and perform the estimation.

Referring back to Table 1.1, there are differences in between statistical estimation and

real time estimation. Similarly, these differences distinguish adaptive system identification (by

adaptive filtering) from what is commonly regarded in literature. Under real time estimation,

adaptive system identification performs as an on-line model. Instead of collecting, storing,

and analyzing for its statistical information, the data are temporary stored and the distant past

will be discarded. This is because the data are real time and keep coming in, therefore it

is impossible to store all, not to mention to analyze it. In addition, the real time system is

dynamic and the analysis is irrelevant due to the data are time-variant. On top of these, fast

estimation with minimal computational load is also a concern to capture the fast dynamic of

time varying environment.

Based on the configuration in Figure 1.2, a set of filter coefficients is estimated to charac-

terize the unknown system model. Driven by a common set of inputs x(k), the unknown system

supplies the desired output, d(k) while the adaptive filter produces a set of filter coefficients

in the sense that the filtering output, y(k) closely resembles the desired output, d(k). In other
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words, the filter coefficients produced by the adaptive filter should provide a good model that

converges to the unknown system.

For a particular time instant, a desired output is obtained in response to the unknown sys-

tem driven by a common set of inputs. In practice, the procedure of system identification3 is

iterative, not just for a particular time instant but continuous until a satisfactory model is built

(or to some satisfactory performance measure). Therefore, the unknown system is dynamic

and time varying and it is continuously be driven. The desired output will continuously be

produced and as a result of discrete time measurements, a set of real valued data is formed in

which it is a collective of desired outputs from a continuously driven system. Up to this point,

adaptive filter serves as an online model and the produced filter coefficients are keep updated to

the convergence of a good model (this is the reason why we term it as "real time estimation").

Let x(k) be a set of inputs up to the iteration of time instant k such that x(k) = {x(k),x(k−

1), . . . ,x(k− n+ 1)}, where n is the number of filter coefficients used in the adaptive filter.

Driven by this common set of inputs, the unknown system supplies the desired output, d(k)

while the adaptive filter produces the filtering output, y(k) with the estimated filter coefficients.

The filtering output can be either the FIR filtering output given by (1.2) or the IIR filtering

output given by (1.3). The difference between the desired output and the filtering output,

d(k)− y(k) defines the error signal, e(k).

Referring to Figure 1.2, system identification is often constituted by the corruption of noise,

n(k) to the desired output. This noise, n(k) is regarded as the measurement noise and often it is

uncorrelated with the input signal. In the case where the order of the adaptive filter is sufficient

to model the unknown system, the convergence leads to a zero MSE if there is no measurement

noise. However, the measurement noise is unavoidable in practical applications. Under the

3Starting from here, all the system identification discussed is adaptive where the estimation is performed via
adaptive filtering.
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circumstance where the noise is uncorrelated with the input, the convergence of a good model

leads to a minimum MSE in which it is the variance of noise, υn.

1.4 Literature Review

Let f be a mapping function such that

d = f (x1,x2, . . . ,xn) , (1.8)

where xi for i = 1,2, . . . ,n are the inputs and d is the desired output. In adaptive filtering,

the mapping function, f is realized through the implementation of either FIR or IIR filter.

The implementation of filters is straightforward in conceptual manner, but the numerical issue

takes place in practice. In literature, various analysis have been done to study the numerical

properties of the adaptive filtering algorithm (Eleftheriou and Falconer, 1986; Ardalan, 1986;

Cioffi, 1987; Bottomley and Alexander, 1991; Liavas and Regalia, 1999), as well as to develop

a more stabilized variant algorithm (McWhirter, 1983; Alexander and Ghirnikar, 1993).

With the simplicity of the filter structure, the identification using a linear FIR filter are use-

ful when the unknown system is completely characterized by the impulse response. However,

the limitation occurs when the system itself is nonlinear in nature. To name a few, digital satel-

lite channels equalization (Im, 1996), acoustic echo cancelation (Stenger et al., 1999), elec-

trocardiogram signal extraction (Shadaydeh et al., 2008), and dynamic system identification

(Chen et al., 2010) are the applications that require a nonlinear filter to describe the underlying

dynamic and yield a better result. Due to the possibility of higher degree and dimensional-

ity, the analytical nonlinear model is often unavailable and the generalization of its structure

is difficult in practice. As a result, various forms of nonlinear adaptive filter exist (Pitas and

Venetsanopoulos, 1990) and it is modeled according to the given system.
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On the other hand, IIR filter characterizes the unknown system as the pole-zero system4,

where the transfer function involves both feedforward and feedback mechanism. Compared to

the FIR filter, additional feedback mechanism is involved for the IIR filter where the present

filtering output is dependent on the past filtering outputs. Due to this pole-zero property, IIR

filter requires fewer coefficients than the FIR filter to achieve a similar performance. However,

IIR filter encounters some issues which do not arise in the FIR filter. Analyses show that, IIR

filtering may have biased estimation of coefficients, convergence to local minima, and unstable

if the strictly positive real condition of the transfer function is violated (Johnson, 1984; Shynk,

1989; Netto et al., 1995).

1.4.1 Fuzzy System Modeling

In conventional modeling process, specific mathematical model is used to describe the system

and numerical data are employed for verification in order to yield a desired result. In contrast to

the conventional modeling, fuzzy system modeling is a new modeling paradigm that can utilize

both quantitative and qualitative information. While the quantitative information is regarded as

the numerical data, the qualitative information is given by human’s expertise and knowledge

(i.e. the linguistic information). By using fuzzy set, fuzzy logic, and fuzzy rules, fuzzy system

incorporates the linguistic information and models them in an implicit linguistic form rather

than in an analytical form compared to the conventional modeling (Ying, 2000). As a matter of

fact, human expertise and knowledge are powerful where most of the daily life processes are

done without any specific mathematical model. All the actions are intuitive but not numerical

and fuzzy system modeling provides a platform to incorporate it.

The earliest fuzzy system development can be traced back as early as 1965 in the paper of

Fuzzy Sets by Zadeh (1965). Compared to the classical set in which an element either belong

4The poles and zeros of the transfer function are shown in the Appendix B.
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or not belong to a set, fuzzy set theory relieves the restriction by setting the degree of belonging

of an element in the closed interval of [0,1]. Due to this transition from 0 to 1, an element can

either not belong, sort of belong, partially belong, and etc. until totally belong to a particular

set. Taking an example of using linguistic information to describe fast: intuitively it can be a

little bit of fast, sort of fast, kind of fast, and very fast. By using the transition from 0 to 1, it

can be represented by fuzzy sets and incorporated into the modeling.

By definition (Zadeh, 1965), a fuzzy set A in the universal of discourse X is characterized

by a membership function µA(x) which associates with each point x in X a real number in the

interval [0,1], with the value of µA(x) at x representing the grade of membership of x in A. With

the fuzzy set that calibrates linguistic vagueness into a proper mathematical representation,

fuzzy logic comes into operation and models human’s sense of words to a decision making

process. This leads to the fuzzy algorithm in which is an ordered sequence of instructions and

upon execution yields an approximate solution to a specified problem (Zadeh, 1973).

In general, fuzzy system comprises of four principle structures: fuzzification, fuzzy rule

base, fuzzy inference engine, and defuzzification (Ying, 2000). With the incorporation of lin-

guistic information, fuzzy system modeling provides a highly approximation to the systems

which are too complex or too ill-defined to have a precise mathematical model. Unlike the

conventional modeling, the four principle structures of fuzzy system are not a fixed numerical

model, and it varies according to the system designer. To name a few, Zadeh (1965), Takagi

and Sugeno (1985), Wang (1997), and Dubois and Prade (2000) are among the major contrib-

utors in the field of fuzzy system. Modeling in a highly approximate manner, fuzzy system has

proved its credibility in various applications such as nonlinear channel equalization (Wang and

Mendel, 1993b), image coding (Yu, 1998), nonlinear system modeling (Chen and Xi, 1998),

telecommunication receiver (Hu et al., 2005), packet based voice system (Jones et al., 2006),

stock market prediction (Sheta, 2006), education grading system (Bai and Chen, 2008), cancer
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classification (Pham, 2008), and speech coding (Johnny and Mirzaee, 2012).

1.4.2 Fuzzy System Modeling and Adaptive Filtering

In literature, fuzzy system modeling is employed to highly approximate a complex or ill-

defined system using fuzzy sets. Given a set of inputs and a desired output, fuzzy system

can be designed in two ways: with or without the incorporation of linguistic information. With

the linguistic information, fuzzy rules are generated from the examples of operation handled

by a human (Wang and Mendel, 1992b), and the obtained results can highly mimic the perfor-

mance of a human operator. On the other hand, if the fuzzy system is designed without any

linguistic information (where the fuzzy rules are meant to be trained), fuzzy system is similar

to the adaptive network model (Jang, 1992, 1993), in which the data are processed numerically

to yield a highly desirable result.

Although fuzzy system can be designed in numerous ways, there are some numerical stud-

ies on the fuzzy system based on the mathematical analysis. Numerous studies lend support to

the claim that the fuzzy system are globally stable (Wang, 1993; Thathachar and Viswanath,

1997), uniformly convergent (Zeng and Singh, 1994), and approximate universally (Wang,

1992; Wang and Mendel, 1992a). In an overview study and comparison with various nonlin-

ear black-box modeling techniques, fuzzy system is shown to have the structure of a general

model, with the advantage of fuzzy rules to describe some possibly available prior knowledge

(Sjoberg et al., 1995).

The earliest development of fuzzy system with learning ability (i.e. similar to adaptive

filtering) is proposed by Takagi and Sugeno (1985), where the fuzzy consequent parameters

are identified using the Kalman filter algorithm. Following the identification, another fuzzy

system with learning ability is introduced by Wang and Mendel (1993b) where the recursive
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least-squares (RLS) algorithm is used to train the fuzzy system. Comparing with the Takagi and

Sugeno’s algorithm, Wang and Mendel’s algorithm defines and includes the so-called fuzzy ba-

sis function, where it has been proven to approximate universally (Wang and Mendel, 1992a).

It is noted that the RLS algorithm is an adaptive filtering algorithm and Wang and Mendel

(1993b) has successfully employed the fuzzy system into nonlinear channel equalization, in

which it is one of the many applications of adaptive filtering. Due to its adaptive learning capa-

bility, the RLS algorithm is also widely implemented in the applications of fuzzy consequent

parameter identification (Mendel and Mouzouris, 1997; Chen and Xi, 1998; Aliaghasarghamish

and Ebrahimi, 2011), Takagi-Sugeno fuzzy model identification (Pan et al., 2010), and interval

fuzzy model identification (Khanesar et al., 2010). Furthermore, if the RLS algorithm is ex-

tended to the neural fuzzy system, its performance is proven to be competitive compared to the

conventional backpropagation learning algorithm (Yeh et al., 2010, 2011; Yeh and Su, 2012).

1.5 Research Methodology

1.5.1 Motivation

The objective of adaptive filtering is to minimize the MSE of the difference between the desired

output, d(k) and the filtering output, y(k). The desired output, d(k) is supplied by the unknown

system that driven by a set of inputs, x(k) and adaptive filter produces a set of filter coefficients

in the sense that the filtering output, y(k) closely resembles the desired output, d(k). This

process can be view as the input-output filtering operation given by (1.7) where the transfer

function is an approximation to the unknown system. In practice, the structure of the transfer

function is unknown and prior assumption is made for the input-output filtering operation. It

is assumed that the transfer function has a known structure whereby it can be realized by three

different structures which are commonly used in conventional adaptive filtering: (i) the FIR

filter, (ii) the IIR filter, and (iii) the nonlinear filter. However, there are limitations when realiz-

ing each structures in practice, as described in previous section of literature review. Motivated
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by the fuzzy approach, this thesis seeks to investigate the capabilities of the fuzzy system in

overcoming the limitations of conventional adaptive filters. As stated in Section 1.4.2, fuzzy

system are globally stable, uniformly convergent, and able to approximate universally. Most

importantly, the structure of the fuzzy system with learning ability is similar to adaptive filter-

ing and fuzzy mapping can be used to realize the unknown input-output relationship in adaptive

filtering without prior assumption on the adaptive filter structure.

1.5.2 Problem Statements

In literature, nonlinear adaptive filtering has been tackle by Wang and Mendel (1993a) in their

paper: Fuzzy Adaptive Filters, with Application to Nonlinear Channel Equalization. Although

Wang and Mendel’s work indeed provide a solution to nonlinear adaptive filtering, but at the

same time it creates a research gap to the connection in between adaptive filtering and fuzzy

system modeling. Based on the previous works by Wang and Mendel, this thesis aims to

address the following questions in which arise as the research gap of their work.

In Wang and Mendel’s works,

(i) Gaussian membership function is employed to form and define the fuzzy basis func-

tion. Can any other form of membership function such as Triangular-shaped membership

function be employed to have lower computational cost, better fuzzy partitioning, and a

good trade off in nonlinear estimation?

(ii) The proposed algorithm is in the framework of application where the work does not in-

clude in depth analysis of the mathematical properties. Can adaptive filtering with fuzzy

system be further established with numerical analysis? And its behavior be explained

mathematically using the properties of adaptive filtering?
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(iii) Fuzzy system is incorporated into adaptive filtering algorithm. Will such incorporation

address a better performance in terms of error behavior? And are the common issues of

adaptive filtering such as the tracking behavior, the quantization effect, and the nonlinear

estimation instability be tackled?

(iv) The proposed algorithm is tested on the application of nonlinear channel equalization.

Can it be extended to nonlinear or feedback system identification? And as a different

realization besides the characterization using FIR and IIR filter?

1.5.3 Objectives

Among all the various fuzzy models proposed in literature, our research direction is focus on

the fuzzy system with learning ability to identify a given unknown system. Based on the Wang

and Mendel’s algorithm, our research objective is to incorporate fuzzy system into adaptive

filtering and our research direction is in two folds: to develop a better algorithm, and perform

mathematical analysis on it. Specifically,

(i) To establish a connection between adaptive filtering and fuzzy system modeling and

address the incorporation of fuzzy system into existing deterministic approach;

(ii) To propose a reduced fuzzy basis function, which utilizes the Triangular-shaped mem-

bership function and the Ruspini partitioning to reduce computational complexity as well

as to have a strong fuzzy partitioning and a complete rule base method;

(iii) To prove the universal approximation of the proposed method by using mathematical

theorems;

(iv) To study the effect of fuzzification and fuzzy partitioning on the error behavior of the

developed algorithm; and
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(v) To test the developed algorithm in identifying different structures of adaptive filter real-

ization and compare it with existing RLS-based adaptive filtering algorithm, including

the implementation in real time applications.

1.5.4 Contributions

In this thesis, a reduced fuzzy recursive least-squares (FRLS) algorithm is developed by in-

troducing the reduced fuzzy basis function. Due to the development of the reduced FRLS

algorithm is rather general in nature, the contribution of this research can be considered as

providing an alternative to the existing literature with wide varieties of application.

To be specific in this thesis:

(i) A new reduced FRLS algorithm is proposed by developing the reduced fuzzy basis func-

tion. This new algorithm possesses lower computational complexity compared to the

existing algorithm by Wang and Mendel and proven to be no compromise on the univer-

sal approximation property. In addition, the reduced fuzzy basis function is proven to be

a complete rule base method and has a strong fuzzy partitioning.

(ii) Various analysis such as the principle of orthogonality, the error conversion factor, and

the error behavior of the algorithm are provided and the research gap left by Wang and

Mendel is filled by establishing the connection between adaptive filtering and fuzzy sys-

tem modeling.

(iii) Compared to conventional adaptive filter realization, the incorporation of reduced fuzzy

basis function in adaptive filtering is a different realization using fuzzy system. With this

special realization, the reduced FRLS algorithm is shown to have the ability to handle

the instability issue that normally encounter by a nonlinear filter or an IIR filter. Signif-

icantly, it results in a more stable condition number and its performance is comparable
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with the QR decomposition (QRD) based algorithm, in which the QRD based algorithm

is well known for its stability when dealing with finite precision arithmetic.

(iv) Triangular-shaped membership function is employed in the reduced FRLS algorithm and

it has significant advantage when dealing with low nonlinearity system. Although fuzzi-

fication by a Triangular-shaped membership function is linear, it doesn’t degrade when

dealing with high nonlinearity system and it makes no significant difference compared to

the existing algorithm by Wang and Mendel that employed Gaussian membership func-

tion.

(v) Viability of the proposed algorithm in real life application is shown where the application

of adaptive filtering in speech processing – linear predictive coding model with integrated

reduced FRLS algorithm is demonstrated.

1.6 Flow of Thesis

The objective of this thesis is to develop the reduced FLRS algorithm, perform various mathe-

matical analysis, and simulate it with real life applications. Basically, this thesis can be divided

into few phases: (i) the introductory, (ii) the methodologies, (iii) the development and analysis

of the proposed algorithm, (iv) the simulations, and lastly (v) the summary and conclusion.

In the first phase of introductory, Chapter 1: Introduction is included in this phase where

the general knowledge regarding adaptive filtering is introduced. This chapter also provides

insight on the problems faced by a nonlinear filter and a feedback filter. Motivated by Wang

and Mendel’s work, the objectives and the expected contributions of this research are stated

and lastly, the flow of thesis marks the end of the introductory phase.

Chapter 2: Adaptive Filtering and Recursive Least-Squares and Chapter 3: Fuzzy System

made up the second phase of methodologies. In Chapter 2, the RLS algorithm and its related
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methodologies are included. The derivation of the Wiener filter subsequently lead to the for-

mulation of the RLS algorithm and its properties. To address the adaptive filtering problem

when working in finite precision arithmetic, the QRD based algorithm is included; as well as

the inclusion of the SOV-RLS algorithm and the Bilinear RLS algorithm to address the insta-

bility when dealing with nonlinearity and the feedback mechanism. In Chapter 3, fuzzy system

and its methodologies are included where the fuzzy set is defined and its related axioms and

operations are shown. Comprised of four principle structures: fuzzification, fuzzy rule base,

fuzzy inference engine, and defuzzification, fuzzy system is revealed at the end of chapter on

how the crisp output can be obtained.

Chapter 4: Fuzzy Recursive Least-Squares explores the combination of both approaches:

the adaptive filtering and the fuzzy system. In this chapter, the reduced FRLS algorithm is

developed and analysis based on the mathematical derivations are done to reveal its special

properties. The generalization of the transfer function is first derived and fuzzy mapping is

employed to solve the parameters in the transformed domain of fuzzy system. Fuzzification

using the Triangular-shape membership function and Ruspini partitioning lead to the introduc-

tion of reduced fuzzy basis function and as a result, the reduced FRLS algorithm is developed.

With lower computational cost, reduced fuzzy basis function is proven to be a universal ap-

proximator and possess strong fuzzy properties. Lastly, the principle of orthogonality, the error

conversion factor, and the error behavior are formulated and subsequently show the special

properties of the reduced FRLS algorithm.

Chapter 5: Simulations and Chapter 6: Real Life Applications made up the fourth phase of

simulations. Various simulations are performed in Chapter 5 to verify the theoretical analysis

of the reduced FRLS algorithm. The results are promising and agree with the mathematical

derivations where the reduced FRLS algorithm is shown comparable to existing adaptive fil-

tering algorithms. Significantly, the reduced FRLS algorithm shows stable performance under
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finite precision working environment and it is comparable with the QRD based algorithms.

Before the concluding remark, the reduced FRLS algorithm is applied using real time data set

in Chapter 6. Real life application is performed on the speech system identification where the

reduced FRLS algorithm is integrated to have the FRLS-LPC model. The algorithm is shown

viable and even more, the FRLS-LPC model is shown to perform well in the environment

where the conventional predictive coding models have failed.

Lastly, Chapter 7: Conclusion marks the final phase of summary and conclusion. All the

significant results that are developed in this thesis is summarized, followed by the algorithm

review and conclusion. Some suggestions are included in the very last part of this thesis for

future research direction and to extend current proposed algorithm.
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CHAPTER 2

ADAPTIVE FILTERING AND RECURSIVE LEAST-SQUARES

2.1 Principles of Adaptive Filtering

In Chapter 1, some important information such as the adaptive filter structure and the adapta-

tion approach are generally described to give insights into adaptive filtering. In this chapter,

the principles of adaptive filtering and the mathematical formulations are described. This in-

cludes the derivation of the so-called "Wiener filter" and its solution, as well as the principle

of orthogonality. It is important to note that, adaptive filtering evolves around the process of

minimizing the mean-square error (MSE), ξ as describe in (1.1) and the derivation of Wiener

solution gives the optimum filter coefficients which minimize the MSE. The MSE is formulated

in the form of the statistical expectation of the error, E[e2(k)] which requires a large number of

signals realization to produce its exact value. In real time processing such as adaptive filtering,

only an estimated value of the MSE is possible to achieve (refer discussion in Section 1.1). To

produce an approximation of the Wiener solution, computational methods are based on the type

of approximation used to realize the MSE. Two popular approaches (along with their proper-

ties) are outlined here: (i) the stochastic approach via the least-mean-square (LMS) algorithm,

and (ii) the deterministic approach via the recursive least-squares (RLS) algorithm. A more

stable version of the RLS algorithm, namely the QR decomposition based RLS algorithm is

also described. The LMS and RLS algorithms are primarily designed to handle linear filtering

problems. In order to draw the relevance to the nonlinear and feedback problems, extensions

of RLS algorithm to nonlinear and feedback adaptive filtering are discussed towards the end of

this chapter.
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2.1.1 Wiener Filter

In adaptive filtering, the objective is to minimize the performance function, ξ . Stochastically,

the performance function is measured using the MSE and it is given by

ξ = E[e2(k)] = E[d2(k)−2d(k)y(k)+ y2(k)] , (2.1)

where e(k) = d(k)− y(k) is the error between the desired output and the filtering output and

E[.] is the statistical expectation1 of the given equation.

Consider a FIR filter with filter length n (i.e. filter order n−1) produces a filtering output

given by (1.2), y(k) = wT (k)x(k) where the filtering output, y(k) is a linear combination of

the inputs, x(k− i+1) and the filter coefficients, wi(k) at time instant k for i = 1,2, . . . ,n. By

substituting (1.2) into (2.1), the MSE function becomes

ξ = E[d2(k)−2d(k)wT (k)x(k)+wT (k)x(k)xT (k)w(k)

= E[d2(k)]−2wo
T E[d(k)x(k)]+wo

T E[x(k)xT (k)]wo , (2.2)

where E[w(k)] = wo. Here, wo =

(
w1 w2 . . . wn

)T

is the optimum filter coefficient col-

umn vector consists of all the optimum filter coefficients in which our objective is to minimize

ξ with respect to wo. By the term of (2.2), we can see that ξ is a quadratic function with respect

to wo and the single global minimum point is achieved when the gradient is equal to zero. By

1Given a statistical variable x, the statistical expectation is defined as E[x] =
∫

∞

−∞
xpxdx where px is the prob-

ability density function of x. For the case of a discrete-time wide-sense stationary random variable x(k) in which
generated by ergodic discrete-time random real valued processes, then E[x(k)] = limN→∞

1
N ∑

N
k=1 x(k) (Zaknich,

2005).
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