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BIOLOGI PERKEMBANGAN DAN KEPELBAGAIAN GENETIK 

NERITIDAE TERPILIH DI MALAYSIA  

DENGAN TUMPUAN KEPADA Nerita balteata  

 

ABSTRAK 

 

Gastropoda dalam kajian ini adalah dari genus Nerita yang dijumpai di kawasan 

berbatu dan berlumpur dalam zon pasang surut sepanjang pinggir pantai Malaysia. 

Kepelbagaian spesis dianalisis, ciri-ciri morfologi diterangkan, dan “barcode” 

sitokrom oksida I dihasilkan untuk setiap satu daripada 12 spesis yang dijumpai. Dua 

puluh satu populasi spesies yang difokus dalam kajian ini, iaitu N. balteata, dijujuk 

untuk sebahagian gen 16S rRNA untuk mengenalpasti struktur populasi nerite yang 

dapat dijumpai di kawasan ini. Walaupun wujud halangan geografik dan 

oseanografik dan sempadan habitat, nerita masih berupaya mengekalkan struktur 

homogen di antara Semenanjung Malaysia, Sarawak, dan Sabah. Jarak genetik di 

antara populasi-populasi adalah rendah, pohon filogenetik tidak mempunyai klad 

khusus yang menunjukkan populasi tunggal, dan gambarajah rangkaian 

menghasilkan dua haplotip utama yang merangkumi kebanyakan populasi yang 

dikaji.  

 

Corak sebegini membawa kepada kajian terperinci ontogeni awal N. balteata untuk 

memahami dengan lebih mendalam keupayaan penyebaran spesies ini yang difahami 

memainkan peranan yang mustahak dalam keluasan taburan. Kaedah 

stereomikroskopi yang digunakan sebelum ini tidak dapat menjelaskan banyak ciri-

ciri terperinci manakala mikroskopi pengimbasan elektron berjaya memberi imej 
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definasi tinggi untuk pengembangan dalam kapsul. Nerita balteata yang plantrotrofik 

dilihat mempunyai peringkat veliger dengan velum yang lebih terperinci dan tempoh 

larva yang lebih panjang jika dibandingkan dengan Nerita japonica—spesies yang 

berkembang terus, hanya mempunyai velum semasa pengembangan dalam kapsul 

dan tidak mengalami fasa veliger pelagik.  
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DEVELOPMENTAL BIOLOGY AND GENETIC DIVERSITY OF 

SELECTED NERITIDAE IN MALAYSIA  

WITH AN EMPHASIS ON Nerita balteata 

 

ABSTRACT 

 

The gastropods in this study are from the genus Nerita found in the rocky and muddy 

intertidal zones along the coasts of Malaysia. The species diversity was analyzed, 

morphological descriptions were made, and barcodes of cytochrome oxidase I were 

generated for each of the 12 species of nerites found. The nuclear gene, ATPS-α, 

successfully determined the phylogenetic status of each species. Twenty-one 

populations of the focal species of this study, N. balteata, were sequenced for 16S 

rRNA gene fragments to determine the population structure of nerites found in this 

region. Despite geographic and oceanographic barriers and habitat boundaries, the 

nerites managed to maintain a homogeneous structure between Peninsular Malaysia, 

Sarawak, and Sabah. Genetic distances between populations were low, phylogenetic 

trees did not exhibit distinct clades which denoted singular populations, and network 

diagrams produced two major haplotypes with most populations accounted for in 

each.  

 

Such patterns led to the in-depth study of the early ontogeny of N. balteata in efforts 

to understand their dispersal ability thought to play a crucial role in their wide-spread 

distribution. While stereomicroscopy used previously was unable to capture many 

minute details of the egg and larvae structure, scanning electron microscopy was able 

to provide high-definition images of the intracapsular development. The 



xx 
 

planktotrophic N. balteata was seen to possess a veliger stage with more elaborate 

velum and longer larval period compared to Nerita japonica—a direct developer in 

which velum only existed as long as larvae development was intracapsular, and 

pelagic veliger stage was absent.  
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CHAPTER 1: 

INTRODUCTION 

1.1 Introduction 

Neritidae, or more commonly known as nerites, is a family of gastropods which 

inhabit freshwater, brackish water, and marine environments. Nerites found in 

freshwater are from genera such as the Neritina and those found in seawater are from 

genera such as Nerita. The genera Theodoxus can be found in both freshwater and 

brackish water. The Neritidae became recognizable during the Cretaceous period 

(about 145-65 million years ago)—a period considered biologically significant as it 

plays an important role in the transition from early life-forms of the Paleozoic Era to 

the advanced diversity of the current Cenozoic Era. It was during this era that 

molluscs started to develop distinctively modern characteristics before the mass 

extinction which ended the period. 

 

This family of gastropods have unique developmental modes. Besides hatching 

directly from their eggs into their adult forms like freshwater snails, some species of 

nerites also have a planktotrophic phase which involves a larval form called the 

veliger. The planktotrophic stages lasts for weeks and sometimes months enabling 

the nerites which possess this developmental mode to disperse large distances and, at 

times, across extensive boundaries. With the aid of genetic markers, patterns of 

dispersal, connectivity, or disjunctions can be explained and this, in turn, would 

provide insights on how behavioural and morphological adaptations propel the 

survival of nerites over such wide-spread geographical distances. Besides that, the 

understanding of palaeogeographic and oceanographic activities that significantly 
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influence the dispersal patterns of nerites would also help shed light on the 

population structures of these snails. 

 

The early ontogeny of nerites merits attention for several reasons. Studying early 

ontogeny is essential in order to reveal important aspects of the structural basis of an 

organism as the structural biology of organisms can hardly be understood exclusively 

from their adult forms. The anatomical and functional needs of nerites contribute to 

their success in differentiation, growth, and survival. Description of the ontogenic 

transformations is essential for understanding the patterns behind the body plan 

formations and knowledge of intracapsular development is a necessity in 

understanding the functions of the different developmental stages. Such observations 

can be useful in the reconstruction of phylogenies and, together with genetic 

analyses, could provide useful information on evolutionary changes. Nevertheless, 

even with the advent of technology, detailed early ontogeny activity of nerites has 

seldom been reported. 

 

In this project, one of the Nerita spp., Nerita balteata, was chosen based on its 

availability and ease to sample, to define the population structure of planktotrophic 

nerites in Malaysia using 16S rRNA gene fragments (Chapter 3). It was hypothesized 

that significant palaeogeological activity in the vicinity of the Isthmus of Kra would 

cause a distinct separation between populations from the two sides of the Malay 

Peninsula. This chapter will answer the question as to whether that scenario applies 

to N. balteata. Representative specimens from Thailand and Australia will also be 

included in this study for comparison. This project also focused on barcoding all the 

nerites which can be found in the intertidal zones of Malaysia. Two genetic markers 
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were chosen for this purpose. The mitochondrial DNA cytochrome oxidase I was 

chosen based on its barcoding properties whereas the nuclear marker ATPS-α was 

chosen for its paternal and maternal inheritance. The morphological characters and 

barcodes of sampled Nerita and Neritina species will be presented in Chapter 4. 

 

The early ontogeny of N. balteata, N. albicilla, and N. japonica was studied for 

different developmental modes and morphological formations which aid the survival 

of nerites intracapsular and then, extracapsular (Chapter 5). Scanning electron 

microscopy was used to obtain high definition images of each developmental stage 

focusing on minute morphological changes in the eggs and veliger/larvae. This is 

novel as detailed images of stage by stage development have never been captured 

before.  

 

1.2 Objectives 

 

The objectives of this study were: 

(i) to characterize the population genetics and dispersal patterns of nerite 

populations using planktotrophic species Nerita balteata; 

(ii) to DNA barcode all Neritidae species found in the intertidal zones of 

Malaysia; and 

(iii) to study the early ontogeny of different intracapsular developmental 

modes which affect nerite dispersal using Nerita balteata, Nerita 

albicilla, and Nerita japonica. 
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CHAPTER 2: 

LITERATURE REVIEW 

 

2.1 Introduction to Neritidae  

2.1.1 Classification 

Nerites in this study are from the family Neritidae and genera Nerita and Neritina. 

The following is the scientific classification of this gastropod: 

 Kingdom:  Animalia 

  Phylum:  Mollusca 

   Class:  Gastropoda 

    Clade: Neritomorpha 

     Superfamily:  Neritoidea 

      Family:  Neritidae 

       Genus:  Nerita / Neritina  

Nerites are small in size usually measuring less than one inch in diameter. Most 

species possess patterned, glossy shells that make them ornamental in the aquarium 

industry. These shells are used as initial identification traits in species recognition. 

However, to an untrained eye, some conspecifics may be classified as different 

species and some congenerics may be classified as the same species. Under most 

circumstances, an expert is unavailable and chances of erred identifications are high. 

Even though classical taxonomy has been used to identify species for two centuries 

now, the number of taxonomists is dwindling and the limited accuracy of this 

descriptive method has hampered conservation and management of morphologically 

similar species. Therefore, it is useful to have an alternative. 
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Nerites are hardy creatures. They cope with pounding waves, harsh sun, fluctuating 

tides, wind, salt, and rapid temperature changes. Those which live in higher parts of 

the rocky shore are out of water for a long time, and must deal with being dried out 

by the sun, wind, and salt, but are able to survive by using a combination of 

adaptations. Their strategy of grouping together helps to retain the little water left 

after the last high tide. The operculum acts as a trap door to the entrance of the shell 

and this aids retention of water inside the shell between high tides. Nerites found 

living in the lower reaches needs to be able to cope with pounding waves. They adapt 

to this by having a very strong muscular foot that helps them clamp firmly to the 

rocks. The egg capsules of the nerites which are sometimes enforced with spherulites 

also have part of their egg shells attached to the rocks to avoid loss of eggs due to 

strong wave action. 

 

2.1.2 Morphology 

2.1.2.1 Shell  

The calcareous shell of a nerite (Figure 2.1) has a coating of conchiolin known as the 

periostracum or epidermis. This protects the shell from harmful solvents and 

chemicals commonly found in the habitat of nerites. The shell is usually thick and is 

covered by a layer of bristles in some species. Living specimens have simple to 

elaborate colours and patterns which aids in species identification. The pigments of 

colours are thought to have come from secretions of metabolic waste and play a part 

in natural selection (Kobluk & Mapes, 1989). The shell basically functions as a 

protective structure covering the visceral mass and providing a retreat for the foot 

and head which is extruded from the shell when active. In nerites, 
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Figure 2.1: Nerite morphology. (a) Dorsal view of the shell. (b) Ventral view of the shell. (c) Lateral view with parts protrusible from the shell.  
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the shell is typically a globular tube which is closed at its apical end and opened at 

the other, where growth increments are added. The opened end is known as the 

aperture.  

 

A complete coil on the shell is known as a whorl (Figure 2.1a). Each whorl connects 

with the one preceding it at a line called the suture. The parietal is found on the 

ventral side of the shell, mostly flattened (Figure 2.1b). This is one of the most useful 

identification features of nerites as it may be smooth, pustulose, or grained. Spire 

refers to the adapical visible part of all the whorls except the last. The outer lip refers 

to the termination of the outer side of the shell at the aperture or the abaxial part of 

the peristome. Opposite this side is the inner lip consisting of two parts (i) the 

columellar lip (which is formed by the columellar) and (ii) the parietal lip (extending 

from the columellar to the suture). The columellar edge is useful in species 

identification because of the unique projections of teeth each species of nerite 

possesses. 

 

2.1.2.2 Parts protrusible from the shell 

In nerites, part of its body remains permanently in the shell while part of it is 

protruded when the nerite is active. The protruded part which consists of the head 

and foot can be retracted into the shell (Figure 2.1c). Retraction happens by means of 

the columellar or retractor muscles—the only muscles attached to the shell of the 

nerite. When this happens, an operculum partly or completely closes the aperture of 

the shell. The operculum is attached to the metapodium—the posterior part of the 

foot. The anterior part of the foot is known as the propodium whereas the middle part 

is known as the mesopodium. The foot is broad, flattened dorso-ventrally, tough, and 
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contains mucous glands. The head of the nerite has sensory organs. Nerites have a 

pair of cephalic tentacles which point obliquely forward. They also have two eyes at 

the base of these tentacles. The mouth, which is a simple opening, could be a blunt 

snout or a long retractable proboscis in the head. In some cases, the length of the 

proboscis exceeds the length of the head and foot. 

 

2.1.2.3 Solid structure associated with the shell 

Usually, the operculum is the only solid accessory to the shell (Figure 1b). This 

structure is present in most prosobranch families including Neritidae. The primary 

purpose of the operculum is to close the aperture when the head-foot structure 

retreats into the shell. Majority of opercula are made of light and horny material, can 

sometimes be calcareous, and conform to the shape of the aperture. Opercula can be 

categorized into three classes depending on whether their structure is spiral, lamellar, 

or circular. The colour, pattern, and projections on the operculum are important clues 

to a species’ identity.   

 

2.1.3 Life cycle 

2.1.3.1 Egg capsules of Neritidae 

The egg capsules are lens-shaped, oval or circular, and generally less than 2 mm in 

diameter. The egg capsules are often arranged in rows or in patches, which may be 

produced by a single or several female(s). Many species tend to select depressions in 

the substratum for depositing their egg capsules. This gives them protection against 

desiccation. Some species deposit their egg capsules on the shell of the congeners. 

Majority of nerite egg capsules comprise a shallow, thin-walled tambour (Andrews, 

1935), covered by a thick-walled cap, enclosing the embryos within. The lower 
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tambour is mostly a thin membrane that adheres to the substratum, but has a distinct 

thickened, raised rim. The upper cap, which also has a thickened rim, is a more 

robust structure with a substantially thicker wall (8–40 µm) throughout. The external 

surface of the cap is structurally complex, with reinforcement material comprising of 

either calcium carbonate spherulites manufactured internally or material derived 

from consumed items such as grains of sand, diatoms, and foraminifera. Cap and 

tambour are firmly attached to each other along their rims. They separate partially or 

completely when the larvae are ready to hatch. A thin membrane surrounds the 

insides of the capsule. The eggs and larvae are surrounded by a fluid which is, in 

most cases, albumen.  

 

2.1.3.2 Planktotrophic larvae 

Most gastropods have planktonic larvae that are potentially dispersive (Thorson, 

1950). These larvae are termed planktotrophic and feed on smaller organisms than 

themselves to survive. The nutrition is essential to build complex structures of the 

gastropod which will later function in locomotion and feeding while the larvae 

remain planktic. In some species, the swimming veliger larvae stage can persist for 

weeks or sometimes, months. This is an important factor in the dispersal of gastropod 

species because many benthic marine animals move very little in adulthood. These 

complex structures are normally resorbed during metamorphosis before the larvae 

settles and continues with a sessile mode on land. There is little expenditure per egg 

parents as eggs are laid with little yolk content but many of them are produced at one 

time—up to 85000 eggs per spawning in the gastropod Littorina irrorata (Bingham, 

1972).  
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According to Scheltema (1976), the planktic stage of planktotrophic species is 

divided into two-phases. The (i) growth and development phase is followed by a (ii) 

delay phase in which development is essentially completed. It is the delay period that 

gives dispersal flexibility and determines how long each species is able to remain 

planktic. Because planktotrophic species can survive on planktic food, it does not 

need the supply of yolk for its survival during the delay phase. Therefore, they can 

remain planktic for a long period of time and disperse further. Long-distance marine 

dispersal is considered an important biogeographical process which prevents the 

tendency of populations to become genetically isolated (Myers et al., 2000). 

According to Wright (1931), the dispersal of one individual per generation between 

populations is enough to offset genetic disjunction that could happen because of 

genetic drift and localized selection. 

 

2.1.3.3 Direct developers 

Besides planktotrophic larvae, there are direct developing or crawl-away larvae. The 

gastropods with this developing mode produce eggs which later hatch into larvae 

which crawls away from the egg masses. In this developmental mode, supplementary 

food source in the form of nurse eggs is laid together with viable eggs. The ratio of 

nurse eggs to viable eggs may vary considerably within a species. For example, the 

gastropod Buccinum undatum lays up to thousands of eggs per capsule but only tens 

of these develop into juveniles (Portmann, 1925).   

 

The larvae of direct developers are generally believed to have the lowest dispersal 

potential compared to the planktotrophic larvae but contradictions exist. A study 

conducted by Martel and Chia (1991), showed that the common belief that larvae 
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which go through direct development have poor dispersal abilities is unlikely for 

their species of study. On the contrary, the invertebrates in their study such as the 

small gastropod, Barleeia sp., have alternative dispersal mechanisms that were 

equally effective as the mechanisms of free-swimming larvae. According to Martel 

and Chia (1991), frequent drifting excursions in the gastropod may enhance rafting 

opportunities and this may favour long distance dispersal. Their project also proved 

that post-metamorphic drifting does occur in marine bivalves and gastropods and the 

mode of development does not always affect dispersal abilities.  

 

2.1.3.4 Early ontogeny studies of Neritidae 

Several studies have been conducted regarding the description of the larvae of 

Neritidae even though they are limited. Some descriptions are brief like those of 

Lewis (1960) on the size and length of the veliger larvae of Nerita peloronta, N. 

tessellata, and N. versicolor. Other descriptions are more detailed as in the study of 

the egg masses and larval development of some prosobranchs conducted by 

Natarajan (1957). This study described that the newly-hatched veliger of N. albicilla 

has a shell of one whorl which is slightly pitted in appearance and measured 0.150–

0.167 mm across the shell. The velum of the veliger larvae is bilobed, colourless and 

is bordered with long cilia. The eyes are black and prominent and tentacles were not 

observable. The foot of the veliger is ciliated and greenish in colour. It also has 

reddish brown pigments on either side at the base of the foot.  Operculum is present 

but the otocysts are not clear. Similar characteristics of the N. albicilla larvae were 

also described in great detail by Risbec (1932). 
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Risbec (1932) documented significant information of N. reticulata larvae. The 

number of larvae contained in an egg capsule is highly variant but generally reduced 

and much smaller when compared to the larvae of N. albicilla. The development 

which takes place inside the eggs demands a long period of time. Many larvae fill the 

egg capsules and therefore, restrict their movement. They have small eyes. The 

velum is reduced while the foot is notably large. This latter organ is flattened dorso-

ventrally and the anterior region has many small transparent ballonets fused together 

but easily disappear when burst.   

 

Hulings (1986) reported on the early development of N. forskali and N. polita. In N. 

forskali, various stages of embryonic development from uncleaved ova, averaging 

0.15 mm in diameter, to veligers with eyes, averaging 0.20 mm long, were found 

enclosed within the membrane that lines the capsule. The average number of ova-

veligers per capsule was 117. Hatched veligers have eyes and operculum that 

averaged 0.21 mm in length. In N. polita, uncleaved ova are about 0.19 mm in 

diameter and veligers 0.25 mm in length. Hatched veligers averaged 0.25 mm long. 

 

2.1.3.5 Larval dispersal 

The movement of larvae is affected by various factors such as oceanic currents and 

water temperatures. At a finer geographic scale, regions of upwelling and coastal 

heterogeneity are long recognized as influencing the transport and settlement of 

larvae (Wing et al., 1995), and proven as notable barriers to population connectivity 

(Banks et al., 2007; Nicastro et al., 2008). The velocity of the oceanic current also 

affects the movement of nerite larvae (Crandall et al., 2010). The current velocity, in 

turn, is affected by climatic fluctuations which makes the currents move faster. This 
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would shorten the time larvae take to move across oceans. On the other hand, 

occurrences of mesoscale eddies would entrain larvae and restrict their movement 

and net transport (Kinder et al., 1985; Lessios et al., 1984). 

 

Dispersal or lack thereof, in marine species is also affected by body size. Many 

small-bodied marine species make up a large part of mangrove fauna. Small body 

size is considered an asset to population mixing when regarding motion due to water 

movement and potential rafting (Donald et al., 2005). Extreme tides, surf, or wind 

may contribute to large-scale dispersal events and facilitate population connection.  

The ability to cling to drifting debris is an important part of dispersal. There is 

evidence that dispersal of marine species can and does take place by rafting. Rafting 

on macroalgae has been reported for the pelagic larvae of Cellana strigilis limpet 

compex (Reisser, 2012), sea horses (Teske, 2005), trochid gastropods (Donald et al., 

2005), and ascidians (Jackson, 1986). Rafting also serves as a primary means of 

initial colonization to new land masses (Benzie, 1999; Palumbi, 2004). 

 

Direct methods of studying dispersal involve tracing the movement of individuals 

either through observation or by tagging and recapture, and subsequent estimates of 

reproductive success. While these methods are applied to some species, it cannot be 

applied to planktonic larvae of marine organisms. Indirect methods such as the use 

geographic patterns of genetic variation to infer the amount of migration that must 

have occurred to produce the existing pattern are better. Indirect methods also assess 

the cumulative effect of gene flow among populations and return higher estimates of 

gene flow than direct methods. 
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Indirect methods usually use frequency or sequence markers. Frequency markers 

derive their power from frequency arguments: alleles that are relatively rare but 

common in a few populations suggest these populations are connected by gene flow 

(Hellberg, 2009). Microsatellites are the primary codominant frequency markers 

commonly used. On the other hand, sequence markers derive their power from the 

ability to infer relationship between alleles (Hellberg, 2009). MtDNA sequences 

usually serve as sequence markers to date whereas single-copy nuclear sequences are 

emerging as another form of these markers. These markers produce enough variation 

or divergence to lend power, but not so much that every individual is unique or that 

sequence alignments become ambiguous (Hellberg, 2009). 

 

2.1.4 Habitat and distribution 

Nerites can be found attached to crevices of rocks, inside rotten branches, and on top 

the roots of mangrove trees. Juveniles are usually found in the high intertidal zones 

further from the reaches of marine predators and high-energy wave action. As they 

grow and reach adulthood they move into the mid intertidal zone where they will 

encounter predation and wave pressure but food abounds. 

 

Nerites can be found all over the world along the equator where temperatures are 

warm enough for their survival (Frey & Vermeij, 2008). In Malaysia, intertidal nerite 

species inhabit rocky shores whilst others inhabit mangrove areas (particularly with 

Rhizophora and Bruguiera trees). They attach themselves in crevices of rocks and 

walls along waterfronts, in tyre rings at jetties, and in nutrient-rich areas. 

Occasionally, an individual species can be found having its own microhabitat along
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the tropical rocky shores. At other times, two or three species can be found 

occupying the same microhabitat. For example, in a study which involved N. 

tessellata, N. versicolor, and N. peloranta of St. Ann’s Bay, Jamaica, it was 

discovered that there was strong correlation between nerite distribution and the 

microhabitats found within the grey and black zones of rocky shores (Cairns & 

Wagner, 2000). Nerita peloranta was found in areas with major physical stress due 

to water loss by extreme heat and sun exposure. Nerita tesselata existed in areas 

subjected to frequent submersion and consequently, lower oxygen levels while N. 

versicolor was found in intermediate areas. It was concluded that the separation of 

these species was due to physical adaptations to their environment rather than 

interspecific competition. 

 

2.1.5 Diversity of the family Neritidae 

In the family Neritidae, 110 were estimated to be freshwater species (Strong et al., 

2008), while some are brackish water species and others are fully marine species. 

Yeung (2004) previously estimated more than 100 species in the genus Nerita but 

later, Reisser et al. (2012) estimated a modest 70 species. Apparently, diversity 

evaluation for these taxa is problematic because of the absence of global revisions at 

the family level and unstandardized generic concepts applied locally and between 

regions. Only some of these fauna are well-researched and have gone through 

systematic revision using the latest molecular and morphological methods while 

others seem to be neglected. This gives rise to older and broader concepts of tropical 

genera which are more likely to be polyphyletic when counterparts in temperate 

areas tend to be narrowly defined (Strong et al., 2008). At times, the number of 

species is overestimated but this is presumably made up for by fauna yet to be 
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inventoried and thousands waiting to be discovered either from cryptic or entirely 

new taxa (Lydeard et al., 2004).   

 

2.1.6 Importance of nerites  

Nerites play an important role in the food web (Alfaro et al., 2006; Abrantes & 

Sheaves, 2009). They are gregarious herbivores that graze on green or brown algae 

commonly found on their substrates. In wetland food webs, they are the primary 

consumers of algae, water plants, and some insects. Nerites help reduce the 

abundance of foliose algae and young stages of other sessile invertebrates, and alter 

the relative abundance of encrusting algae. They are important in the conversion of 

plant matter into animal material besides themselves being food for carnivorous and 

omnivorous animals.  

 

Their natural predators are crustaceans such as crabs and swamp-inhabiting 

mammals such as otters, fish, and birds. They are even consumed by other nerites 

from the genera Clithon and Vittina which feed facultatively but extensively on the 

eggs of various confamilial species after breaking the capsule wall by means of 

intensive radular rasping (Kano & Fukumori, 2010). Freshwater slugs of the genus 

Strubellia (Heterobranchia: Acochlidia) also feed on nerite eggs in Melanesian 

streams. Predation on marine nerite eggs has been reported for some muricid species 

in the Indian Ocean and southwestern Pacific (Taylor, 1976; Fairweather, 1987; 

Fairweather & Underwood, 1991).   

 

Besides playing their role in the food web, nerites are used by fishermen and fishing 

enthusiasts as bait for catching fish. Humans consume these snails as delicacies or as 
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traditional cures for several ailments. For East Malaysians, nerites are a common 

dish in everyday meals and can be bought off the stalls set up on roadsides at 

RM2.00 per packet (Figure 2.2). In Vietnam, several species of nerites can be found 

served in restaurants. These nerites are a source of protein, vitamins and minerals 

(Aminoz, 2012). 

 

Nerites have also been used as biomonitors of heavy metal pollution in many studies 

(Cubadda et al., 2001; Gay & Maher, 2003; Conti & Cecchetti, 2003; Foster & 

Cravo, 2003; Liang et al., 2004; Hamed & Emara, 2006; Devagi & Arfiziah, 2009). 

This is because these gastropods are sedentary, abundant, of relative longevity, and 

are easily collected and weighed (Yap & Cheng, 2009). Yap and Cheng (2009) 

demonstrated how levels of heavy metal such as plumbum, ferum and zinc can be 

quantified from areas of land reclamation, urbanization, shipping, and other 

industrial activities, using nerites. This study inferred the safety levels of the aquatic 

environment in those areas and its potential threats to human health.    

 

2.1.7 Molecular markers in phylogenetics and population studies of gastropods 

Molecular methods have been used in phylogenetics and species recognition for 

more than fifty years. In the beginning, allozymes were used (Avise, 1975). This was 

followed by the introduction of mtDNA examination—a method widely used today 

to identify species (Avise, 1994). Its maternally-inherited, non-recombinant, and 

rapidly-evolving traits make mtDNA a valuable marker in phylogeographic and 

population studies. Commonly used mtDNA genes for species identification are 

cytochrome b (Parson et al, 2000; Hsieh et al., 2001) and cytochrome oxidase I  
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Figure 2.2: Nerita balteata sold at a roadside stall in Sabah. 
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(COI) (Hebert et al., 2004; Ward & Holmes, 2007; Dawnay et al., 2007). Besides 

these, markers such as ATPS (Jarman et al., 2002; Frey & Vermeij, 2008), ITS1 

(Nilsson et al., 2008; Li & Dao, 2011; Schoch et al., 2011), 28S (Park & Chung., 

2003; Cepeda et al., 2012), and microsatellites (Routtu et al., 2007; Vanhaecke et al., 

2012) have also been used. 

 

In population studies, there are two schools of thought in the genetic structure of 

marine species with planktonic larval stages. A review of literature has indicated that 

most species with long larval life tend to have no genetic differentiation over long 

distances as demonstrated by gastropods Littorina scutulata (Kyle & Boulding, 

2000) and Morula marginalba (Hoskin, 1997), sea anemone Anthopleura 

elegantissima (Edmands & Potts, 1997), and sea urchin Echinothrix diadema 

(Lessios et al., 1998). In contrast, other species with long larval life history show 

significant genetic differentiation over their geographical range, such as the 

gastropod Littorina plena (Kyle & Boulding, 2000), the pearl oyster Pinctada 

margaritifera (Benzie & Ballment, 1994), and starfishes Acanthaster planci (Benzie, 

2000) and Linckia laevigata (Williams & Benzie, 1997). 

 

A previous study on California black abalone, Haliotis cracherodii Leach, 1814, 

indicated a restriction in gene flow and inferred lack of interpopulation dispersal.  

They used allozyme loci which detected significant genetic differentiation but their 

mtDNA cytochrome oxidase I (COI) sequence analysis did not reveal the same 

results. A study on the same species conducted later by Gruenthal and Burton (2008) 

using COI, AFLP, and microsatellite methods, indicated genetic structure of natural 

populations. Their microsatellite analyses detected significant pairwise population 
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divergence scattered throughout their sampled range. AFLP results provided further 

support for isolation-by-distance among samples. Even though the COI sequences 

analyses showed little evidence of restricted gene flow among natural populations, 

they concluded that the populations of H. cracherodii along the California coast are 

not panmictic and that larval dispersal is not sufficient to genetically homogenize the 

species.  

 

Diaz-Ferguson et al. (2010) tested for genetic structure of rocky shore trochid 

gastropod, Cittarium pica, using DNA sequence variation at the mitochondrial COI 

and 16S loci. They found substantial differentiation among the Caribbean sites which 

they sampled from. This genetic differentiation was contradictory to a previous 

assessment of Caribbean connectivity carried out based on larval dispersal from 

hydrodynamic models which saw one of the populations in the Bahamas exhibiting 

strong relationships with Eastern Caribbean sites in this study.   

 

Phylogeographical disjunction was also detected in abundant, high-dispersal, littoral 

gastropods (Waters et al., 2005). Analyses of mitochondrial DNA sequences 

obtained from intertidal gastropods, Nerita atramentosa, in Southern Australia 

revealed a split between the east and west populations. The two clades resulting from 

the analyses were highly divergent with little overlap in between. This 

biogeographical incongruence is not characteristic of species with a planktotrophic 

veliger phase of 5-6 months. Waters et al. (2005) explained this disjunction was due 

to a paleogeographical barrier called Wilsons Promontory which helped maintain 

discontinuity between the two parts of Southern Australia. But besides the isthmus, 
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oceanic currents (East Australian Current and Leeuwin Current) also played a part 

the differentiation of the Australian N. atramentosa. 

 

Other than palaeogeographical barriers and oceanic currents, pre- or post-zygotic 

barriers or Allee effects may also cause population divergence (Crandall et al., 

2008). This was concluded when Indian and Pacific Ocean populations of N. 

albicilla produced reciprocally monophyletic clades. This pattern has previously 

been reported in other studies (Duke et al., 1998; Williams & Benzie, 1998; Benzie, 

1999; Reid et al., 2006). Low numbers of effective females per population size pose 

as barriers to reproduction as migrants from one clade are unable to reproduce 

successfully with members of the other clade even though oceans are crossed, simply 

due to the Allee effect. 

 

A study on geographical subdivision, demographic history, and gene flow of the 

intertidal snail, N. scabricosta, from the tropical eastern Pacific also showed 

significant differences between its Panama and Gulf of California/Baja populations 

(Hurtado et al., 2007). Apparently, this is due to the longevity of the larvae and/or 

the vertical strata at which the larvae are transported. Nerita scabricosta are thought 

to have a shorter larvae life-span and these larvae are carried at the vertical range in 

which surface equatorial currents and counter-currents deflect from the coast, 

preventing connectivity between populations. Several other marine taxa also show 

genetic divergence across the Gulf of California or between the Gulf and the Pacific 

Baja peninsula. For the rocky reef blennioid fishes Axoclinus nigricaudus and 

Malacoctenus hubbsi (Riginos & Nachman, 2001; Riginos & Victor, 2001), and 

penaeid shrimps Penaues stylirostris and Penaeus californiensis (Aubert & Lightner, 
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2000; de la Rosa-Velez et al., 2000), isolation by distance and pelagic larval duration 

seem to be the explanations. 

 

On the contrary, many cases have reported genetic congruence in populations of 

organisms isolated by distance or geographic boundaries. This includes the study 

conducted by Myers et al. (2000) who sequenced the COI gene of populations of 

nerites Clithon spinosus. The C. spinosus showed no evidence of genetic isolation at 

any of the scales tested. This indicates that the larvae of C. spinosus are most 

probably long-lived planktotrophs and can survive a 140-km trip between islands. It 

was concluded that all individuals of C. spinosus were part of a panmictic 

population.  

 

Nerita plicata sampled from the Indo-Pacific also displayed panmictic patterns for its 

populations (Crandall et al., 2008).  This species managed to remain panmictic over 

a distance of 22000 km. This is because there were no major changes in the 

geostrophic flow of the South Equatorial Current during the most recent glacial 

maximum (Thunnel et al., 1994) which could have separated or reunited lineages 

spanning such a barrier. The absence of a clear physical barrier to dispersal 

combined with relatively high coalescent estimates of gene flow in the region argues 

against allopatric divergence in the Central Pacific. 

 

Indeed, population genetic analyses can provide an indirect measure of connectivity 

among populations (Bossart & Prowell, 1998; Waples, 1998; Hellberg et al., 2002; 

Thorrold et al., 2002). The more popular ways are to measure gene flow and values 

of FST and its analogues (such as ФST). Gene flow, defined as the movement of 
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gametes or individuals from one place to another and incorporation of the genetic 

material into the recipient population, influences both the population structure and 

geographic distribution of a species, as well as the adaptation of populations to their 

local environments (Slatkin, 1987). Gene flow is usually seen as a homogenizing 

force, preventing the differentiation of populations that exchange gametes or 

individuals (Mayr, 1963; 1970).   

 

High gene flow due to pelagic larval dispersal was detected among South Pacific 

archipelagos in amphidromous gastropods Neritina canalis and Neripteron dilatatus 

(Neritomorpha: Neritidae) (Crandall et al., 2009). Although the adults of 

amphidromous species live and reproduce in streams, rivers, or estuaries, their 

planktonic larvae are released downstream to the ocean, where marine salinities are 

required for their successful development (Anger et al., 1990; Diesel & Schuh, 1998; 

Crandall, 1999; Diele & Simith, 2006). After metamorphosis and recruitment to river 

mouths, juveniles migrate upstream to freshwater habitats (Schneider & Frost, 1986; 

Blanco & Scatena, 2005; Torres et al., 2006). Their population ecology is more 

similar to that of a marine species because of their pelagically dispersing larvae. 

They colonize Central Pacific archipelagos that lie 2000 km away from the nearest 

freshwater habitat by having relatively long pelagic larval durations extending 5-6 

months (Waters et al., 2007) or even a year (Ford, 1979). These dispersal capabilities 

ensures for their widespread distribution (Scheltema, 1971).  

 

Similarly, no evidence was found for restricted gene flow between Mexican and 

Panamanian populations of N. funiculata. The populations maintained panmictic 

across the coastal areas of the tropical eastern Pacific. The larvae of this species are 
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thought to have a long life-span and move with currents at deeper strata to maintain 

connectivity between the Mexican and Panamanian sites. Long-distance dispersal 

across thousands of kilometers like this are common and have been observed in 

several species that remain genetically uniform even at whole ocean and inter-ocean 

scales (Palumbi, 1994; Lessios et al., 2003; Hurtado et al., 2004).   

 

2.2 Biogeography and physical oceanography in Malaysia 

2.2.1 Geological History 

The geological history and biogeography of Malaysia encourages population 

segregation rather than their homogeneity. This country comprises of five major 

geological terrains: (1) the Western Belt of Peninsular Malaysia (the Isthmus of Kra, 

a narrow land bridge located approximately in the middle of the Thai-Malay 

Peninsula, is situated here); (2) the Core region (also known as part of Sundaland and 

consisting of the rest of Peninsular Malaysia); (3) the Central region (northern 

Sarawak and western Sabah); (4) the Kinabalu zone (a geological suture zone here is 

considered to mark the remnant of a once-open ocean basin that became closed some 

25 million years ago), and (5) Eastern Sabah (Metcalfe, 2011) (Figure 2.3).   

 

While the Core region is considered to have been in its present position since distant 

geological past, the other terrains have more dynamic histories. Fossils suggest that 

the Western Belt was once attached to Gondwana at the northwest of Australia and, 

Eastern Sabah may have been attached to the Asian continent near Hong Kong.  

Central-northern Sarawak and western Sabah came into existence by growth of the 

Southeast Asian landmass (Metcalfe, 2011). The South China Sea (SCS), which  

 




