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PERANAN DAN HUBUNGAN SINTESIS, SAIZ DAN MORFOLOGI 
TERHADAP SIFAT MAGNET NANOSTRUKTUR  HIERARKI KOBALT 

DAN KOBALT/EMAS DWILOGAM 
 
 

ABSTRAK 
 
 

Kobalt adalah bahan feromagnet dan partikel kobalt-emas dwilogam dijangka 

mempunyai modulasi sifat magnet. Selain itu, nanostructur emas juga merupakan 

bahan plasmonik yang baik. Walau bagaimanapun, kobalt mudah mengalami 

pengoksidaan dalam persekitaran berair. Lapisan yang mengalami pengoksidaan 

boleh merosakkan sifat-sifat magnetnya. Oleh itu, untuk mengelakkan pengoksidaan 

kobalt, kerja ini menumpukan kepada sintesis partikel kobalt hierarki dan partikel 

kobalt-emas dwilogam hierarki dengan menggunakan kombinasi kaedah polyol dan 

tindak balas penggantian galvani. Keadaan sintesis yang berlainan telah digunakan 

untuk menyiasat kesannya terhadap morfologi partikel kobalt hierarki yang 

dihasilkan. Parameter yang dikaji termasuk masa tindak balas, natrium hidroksida, 

kepekatan garam kobalt, suhu tindakbalas, ejen penurunan dan surfaktan. Pelbagai 

morfologi telah berjaya disediakan seperti mikrosfera hierarki, bentuk polyhedra 

hierarki, bentuk raspberi hierarki, bentuk bipyramid heksagon dipenggal, bentuk 

bunga, partikel berbentuk panjang dan quasi kiub. Semua partikel hierarki ini 

mempamerkan sifat-sifat magnet yang unik. Sampel yang disediakan daripada 

1mmol kobalt klorida, 2 mmol natrium hidroksida, 5 mmol hidrazin hidrat dan 3.0% 

(w/v) natrium sulfat dodesil mempunyai campuran partikel berbentuk kubus dan 

kuasi memanjang. Ia mempunyai koerciviti tertinggi kira-kira 290 Oe. Partikel kobalt 

emas dwilogam dengan struktur hierarki juga telah disediakan melalui tindak balas 

penggantian galvanik yang mana kobalt bertindak sebagai templat pengorbanan. 

Partikel dwilogam dengan struktur hierarki berongga dan beberapa bentuk lain yang 
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arbitrari telah dihasilkan dengan keadaan sintesis yang berbeza. Secara umumnya, 

partikel dwilogam luhur/magnetik didapati mempunyai sifat magnet yang 

dipertingkatkan berbanding partikel kobalt tulen. Peratusan baki kandungan kobalt 

dalam sampel kobalt/emas telah ditentukan menggunakan spektroskopi serapan atom. 

Partikel kobalt dalam sampel kobalt/emas disintesis dengan kepekatan HAuCl4 yang 

berbeza pada suhu bilik menunjukkan nilai Ms yang dipertingkatkan berbanding 

dengan kobalt tulen. Nilai Ms untuk semua partikel kobalt selepas penggantian 

galvanik  semuanya lebih tinggi daripada 124 emu/g untuk partikel kobalt tulen. 

Sampel yang disediakan pada 100°C dengan 5ml HAuCl4 (5mM) dengan bentuk 

arbitrari mempamerkan koerciviti tertinggi dan dipertingkatkan iaitu 523 Oe.  
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ROLE AND CORRELATION OF SYNTHESIS, SIZE AND MORPHOLOGY 
TO THE MAGNETIC PROPERTIES OF COBALT AND COBALT/GOLD 

BIMETALLIC HIERARCHICAL NANOSTRUCTURES 
 
 

ABSTRACT 
 

Cobalt is a ferromagnetic material while cobalt-gold bimetallic particles are 

expected to have modulated magnetic properties. Besides, gold nanostructure is also 

a good plasmonic material. However, cobalt is susceptible to oxidation in aqueous 

environment. The oxidised layer can harm the magnetic properties. Therefore, in 

order to avoid oxidation of cobalt, this work was devoted to the synthesis of cobalt 

and cobalt-gold bimetallic hierarchical particles using polyol method cum galvanic 

replacement reaction. A number of synthesis conditions were experimented in order 

to investigate their impacts on the morphologies of the cobalt particles produced. The 

parameters studied including reaction time, sodium hydroxide, concentration of 

cobalt salt, reaction temperature, reducing agent and surfactants. Various 

morphologies were successfully prepared such as hierarchical microspheres, 

hierarchical polyhedral shape, hierarchical raspberry like, truncated hexagonal 

bipyramid, flower-like, elongated and quasi cubic-like particles. All of these 

hierarchical cobalt particles exhibited their own unique magnetic properties. Sample 

prepared from 1mmol cobalt chloride, 2 mmol of sodium hydroxide, 5 mmol of 

hydrazine hydrate and 3.0% (w/v) of sodium dodecyl sulfate has a mixture of quasi 

cubic and elongated particles. It has the highest coercivity of about 290 Oe. Cobalt-

gold bimetallic hierarchical particles were prepared by galvanic replacement reaction 

where cobalt acted as sacrificial template. Bimetallic particles with hollow 

hierarchical structure and arbitrary shapes were produced under different synthesis 

conditions. Generally, these noble/magnetic bimetallic particles were found to have 
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enhanced magnetic properties compared to the pure cobalt particles. After galvanic 

replacement, percentages of remaining cobalt contents in the cobalt-gold samples 

were determined by atomic absorption spectroscopy. Cobalt particles in the cobalt-

gold bimetallic samples synthesised with different HAuCl4 concentration at room 

temperature shows enhanced Ms values compared to the pure cobalt. The coercivity 

values of the cobalt particles after galvanic replacement are all higher than that of the 

pure cobalt particles before the replacement reaction. Cobalt/gold bimetallic sample 

prepared at 100°C with 5ml HAuCl4 (5mM) with arbitrary shape exhibited highest 

and enhanced coercivity of 523 Oe.  
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CHAPTER 1 
 

INTRODUCTION 
 
 
 
1.1 Nanomaterials  

Nanomaterials are the essential building block to allow development of 

nanotechnology. According to ISO TS 80004-1:2010, the word “nanomaterials” is 

referred to the materials with any external dimension in the nanoscale or having 

internal or surface structure in the nanoscale. Nanoscale according to ISO/TS 

27687:2008 is defined as the size range from approximately 1 nm to 100 nm. 

Nanomaterials usually exhibit different properties and behaviour as compared to bulk 

materials with similar chemical composition. This is mainly due to the size effect. 

 

Nanomaterials can be classified into two main categories: (i) compact 

materials and (ii) nanodispersions. The first type includes so-called nanostructured 

materials. Nanostructured materials are materials isotropic in the macroscopic 

composition and consisting of contacting nanometer-sized units as repeating 

structural elements.  Nanodispersions on the other hand include a homogeneous 

dispersion medium (vacuum, gas, liquid, or solid) and nanosized inclusions dispersed 

in this medium and isolated from each other (Gubin, 2009). Nanomaterials can be 

classified into 0 Dimension (0D) like nanoparticles, 1 Dimension (1D) like nanorods 

or nanowires and 2 Dimension (2D) like nanofilm and nanosheets.  

 
 
1.2  Hierarchical nanostructures 
 

A ‘hierarchical structure’ means a higher dimension of a micro- or 

nanostructure composed of many, low dimensional, nano-building blocks such as 0 
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D nanoparticles, 1D nanowires, nanorods, and nanotubes, and 2D nanosheets. The 

various hierarchical structures can be classified according to the dimensions of nano-

building blocks and the consequent hierarchical structures, referring to the 

dimensions, respectively, of the nano-building blocks and of the assembled 

hierarchical structures (Lee, 2009). The nomenclature of the hierarchical structures 

will be discussed in Chapter 2. There are various materials that can be synthesised to 

yield to the hierarchical structure. Metal particles for instance will show novel 

properties when made in hierarchical structure and they also possess authentic beauty.     

 
 
1.3  Background study and problem statement 
 

In the past decades, cobalt magnetic nanomaterials have been successfully 

synthesised and their size dependent unique properties have been explored. 0D 

nanoparticls, 1D nanowires and 2D nanoplates of cobalt have been produced. Cobalt 

hierarchical nanostructures assembled from these lower dimensional nanomaterials 

have however only attracted attention in the recent years. Reports on successfully 

synthesised cobalt hierarchical structures include snowflake-like, cauliflower-like 

and ball-like particles (Liu et al., 2009c),  hexagonal microspheres with ultrathin 

nanoflakes (Yang et al., 2009a),  flower-like structures (Zhang et al., 2008a), rice 

ear-like microstructures (Li et al., 2010), pine-tree-leaf like (Li and Zeng, 2010), 

chain-like (Wang et al., 2011) and dendritic structures (Sivasubramanian and 

Sangaranarayanan, 2012). Of all these structures, dendritic structure is the most 

successfully synthesised hierarchical structure for cobalt.  

 

Since cobalt is a ferromagnetic material, the study on how its magnetic 

behaviour would be affected by the hierarchical structure is very interesting to be 
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explored. Understanding this would open up possibilities of the use of cobalt in 

various industries. Modulating magnetic properties of the cobalt has also been 

investigated by many researchers. Shape anisotropy is one of the many factors that 

can modulate the magnetic properties (Cowburn, 2000, Liu et al., 2008). Bimetallic 

or combination of magnetic/noble metals can induce modulating magnetic properties 

as reported by Ely and Fromen groups (Ely et al., 2000, Fromen et al., 2002). Noble 

or gold nanoparticles possess sensitive adsorption in optical wavelength. Combining 

cobalt and gold has been speculated to produce bimetallic particles with unique 

properties. In this case, gold is more electronegative than cobalt and the interactions 

between the two components will influence on the neighbouring atoms leading to 

novel properties which cannot be observed when the components are in its individual 

element (Pal et al., 2006). It is obvious that combining cobalt and gold to produce 

bimetallic particles to modulate the magnetic properties is feasible. There are only 

very few reports on cobalt-gold bimetallic hierarchical structures in the literatures 

(Wetz et al., 2007, Lu et al., 2010, Min et al., 2011).  

 

In this study, such structure was synthesised. Various approaches were 

employed to synthesise hierarchical nanostructures especially by hydrothermal 

method. This method has been use widely with water often used as solvent.  

However, cobalt is susceptible to oxidation hence will oxidise in water. Therefore, 

organic solvent is thought to be a better choice as solvent. In this project, polyol 

process was used. Polyol process is a simple and versatile non-aqueous route 

developed by Fievet and coworkers (Fievet et al., 1989b) to synthesise various metal 

particles. Solvents such as ethylene glycol, diethylene glycol and triethylene glycol 

are classified as polyol. Compared to aqueous methods, nanoparticles synthesised 
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from polyol process are protected by surface absorbed polyol molecules, thus 

minimising the chances of oxidation of the particles. This non aqueous solvent, also 

further reduced the problem of hydrolysis of fine metal particles as often occurred in 

the aqueous case (Willard et al., 2004). Besides functioning as solvent, polyol such 

as ethylene glycol can also act as capping agent in some cases (Ningthoujam et al., 

2008, Vinod et al., 2011). Because of this, the formation of anisotropic particles in 

the polyol are possible. Polyol is also a more environmentally friendly and 

economical method (Yang et al., 2008, Kim et al., 2009). It does not need an 

expensive reactor unlike the hydrothermal and chemical vapour deposition (CVD) 

processes. CVD also requires high temperature and toxic corrosive gases normally 

employed in the process. Considering all these, polyol process was chosen to 

synthesise cobalt hierarchical particles in this work. 

 

From the theoretical consideration, metal ions with higher reduction potential 

can accept electrons from a solid metal with lower reduction potential, that is, more 

noble metal ions can be reduced into a solid by taking electrons from a less noble 

metal solid. Therefore, another synthesis route based on this theory or so called 

galvanic replacement reaction has recently become a key and novel means toward 

syntheses of diverse nanomaterials of hollow, porous and bimetallic hierarchical 

nanostructures. The replacement reaction between metal particles (sacrificial 

template) and noble salt precursor containing a relatively less active metal plays a 

crucial role in this type of reaction. No additional reducing agents are needed in the 

reaction. Another added advantage of this method is various types of hierarchical 

anisotropy materials which can be synthesised even without incorporation of 
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surfactant. Therefore, this electrochemical process open the door to the preparation 

of various novel nanomaterials (Moon et al., 2011).  

 

In the past, cobalt hierarchical nanostructures were mostly prepared by 

hydrothermal or solvothermal process. Very little works are reported using polyol 

process. Those limited works on producing hierarchical cobalt particles using polyol 

process are presented in the Table 1.1. From Table 1.1, it can be observed that the 

polyol process employed addition of nucleating agent (Yang et al., 2010) or external 

magnetic field is being applied (Dakhlaoui et al., 2008, Zhang et al., 2011a). In this 

work, no nucleating agent or external field is applied. Ethylene glycol (EG) is chosen 

as solvent because of its high boiling point (190˚C) and it is a polar solvent which 

can dissolved different ionic compounds, for instance, cobalt chloride hexahydrate 

which is used in our case. 

 

Table 1.1 Cobalt hierarchical particles synthesised via Polyol process in the past. 
 
Chemical in used /reaction 
condition 

Morphology/ shape References 

Solvent: EG 
Co(Ac), NaOH, N2H4 
External magnetic field of 
500 Oe 
 

Fibre (wire-like) (Dakhlaoui et al., 2008) 

Solvent: EG 
Co(Ac), PVP,  
Nucleating agent: 
palladium chloride 
 

Hollow spheres and 
hemispheres 

(Yang et al., 2010) 

Solvent: EG 
CoCl2, N2H4,NaOH 
External magnetic field of 
4000 Oe 
 

Wire -like (Zhang et al., 2011a) 
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Meanwhile, works on the synthesis of cobalt/gold bimetallic hierarchical 

particles by galvanic replacement reaction in the past are listed in the Table 1.2. As 

can be seen from the Table 1.2, none of the reactions was conducted in polyol 

solvent. Thus, polyol was chosen as medium for replacement reaction in this work as 

it can prevent the oxidation of cobalt during the replacement reaction. 

 

Table 1.2 Co/Au hierarchical bimetallic particles produced from galvanic 
replacement reaction in the past. 
 
Chemical in used  
 

Morphology/ shape References 

Solvent: Dicholobenzene  
Cobalt and HAuCl4 
 

Core-shell particles (Mandal and 
Krishnan, 2006) 

Solvent: Toulene 
Cobalt and AuCl(tht) 
(tetrahydrothiophene) 
 

Hybrid nanorods (Wetz et al., 2007) 

Solvent: Aqueous 
Cobalt and HAuCl4 
 

Yolk-shell spheres (Lu et al., 2010) 

Solvent: Aqueous 
Cobalt and HAuCl4 
 
 

Microwire with 
nanoflakes 

(Min et al.2011) 

 

Therefore, this work is directed towards synthesis of cobalt and cobalt-gold 

bimetallic with hierarchical nanostructures with different morphologies using 

modified polyol process and galvanic replacement reaction (polyol as solvent) 

respectively. The parameters that we modified in the polyol process include different 

synthesis conditions (shown in scope of work) and addition of various types of 

surfactants during the synthesis. It is hoped that new morphologies obtained (with 

shape anisotropy) can lead to some enhanced or novel properties which are useful 

and rendered them some potential applications.  
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1.4 Objectives of work 
 

1. To synthesise cobalt particles with varying hierarchical structures by polyol 

method. 

2. To investigate the magnetic properties of synthesised cobalt formed with 

different sizes and morphologies. 

3. To produce cobalt/gold hierarchical bimetallic particles by galvanic 

replacement and characterise their magnetic properties.  

 
 
1.5 Scope of work 
 

This thesis is divided into 2 parts. First part is the synthesis of the cobalt 

particles with different hierarchical nanostructures by polyol process. Cobalt 

hierarchical nanostructures were synthesised with different synthesis conditions, 

including: reaction time, sodium hydroxide (NaOH), concentration of cobalt salt: 

CoCl2.6H2O, reaction temperature, reducing agent: (i) Hydrazine hydrate and (ii) 

Sodium Borohydride, surfactants (i) Polyvinylpyrrolidone K30 (PVPK30), (ii) Cetyl 

trimethylammonium Bromide (CTAB) and (iii) Sodium dodecyl sulphate (SDS). 

 

Second part was to produce bimetallic cobalt/gold particles with hierarchical 

nanostructures through galvanic replacement reaction with selected spherical cobalt 

particles acting as sacrificial template and HAuCl4 as the gold salt. Different 

synthesis conditions have been set such as amount of gold salts (HAuCl4), effect of 

temperature and effect of NaOH. All the samples produced were characterised by 

various tools and their magnetic properties are investigated based on their size and 

morphology. 

 

http://www.google.com.my/url?sa=t&rct=j&q=pvp%20k30%20polyvinylpyrrolidone%20sigma&source=web&cd=1&sqi=2&ved=0CDEQFjAA&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Ffluka%2F81420%3Flang%3Den%26region%3DUS&ei=pdCPT6qrMozJrAfRpcHuBA&usg=AFQjCNGjPxMnxtVkGE1cbYCXbX2KSKtjqA&cad=rja�
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 
 
2.1  Introduction to nanomaterials  
 

A general definition of the nanomaterials state that nanomaterials are 

materials where the sizes of individual building blocks are less than 100 nm, at least 

in one dimension (Vollath, 2008) This definition is well applicable for many research 

proposals where nanomaterials have a high priority. Nanomaterials is an area which 

requires interdisciplinary basic knowledge from physics, chemistry and material 

science in order to understand the properties and behavior of nanomaterials. Many 

applications of nanomaterials are related to biology and medicine, therefore the 

knowledge of these areas are required as well (Vollath, 2008). This can be well 

understood and visualized from Figure 2.1. 

 

 
Figure 2.1 Nanomaterials lie at the intersection of materials science, physics, 

chemistry and biology or medicine (Vollath, 2008).  

 

 
Nanomaterials could exist in zero dimension (0D), one dimension (1D), two 

dimension (2D) and three dimension (3D) (Pokropivny and Skorokhod, 2007). Zero 
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dimensional (0D) materials normally referred to spherical nanoparticles and is 

“isotropic” nanomaterials. On the other hand, 1D, 2D and 3D nanomaterials are 

called “anisotropic” nanomaterials. Various anisotropic nanomaterials are reported in 

the literature. Table 2.1 summarizes some of the anisotropic materials according to 

their dimensionality. 

 
 
Table 2.1 Different anisotropic nanomaterials group with different dimensionality 

(Rotello, 2004b). 
 

Anisotropic materials Examples 
1 dimension (1 D) Nanorods, nanowires, nanotubes 

 
2 dimension (2 D) Nanoplates, nanosheets 

 
3 dimension (3 D) Nanocubes, nanoboxes, nanorice 

 
 
 

After the discovery of carbon nanotubes by Iijima (Iijima, 1991), the 1D 

nanostructured nanomaterial has been considered as a standard example which 

exhibits unique physical and chemical properties. Numerous works were devoted to 

the shape-dependent synthesis of diverse nanomaterials. This is partly due to the fact 

that particle anisotropy offers different physical and chemical properties that are 

difficult to obtain simply by size-tuning of spherical nanoparticles.  

 
 
2.2  Size and surfaces in nanomaterials 
 
 
 Nanostructures and nanomaterials possess a large fraction of surface atom per 

unit volume. This can be seen from Figure 2.2 which presented the percentage of the 

surface atoms changes with the palladium cluster diameter (Nutzenadel et al., 2000). 

Such a drastically changed in percentage of the surface atoms when a particle/cluster 

getting smaller in nano-region can lead to great changes in physical and chemical 
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properties of the nanomaterials (Cao, 2004). These properties include optical 

(Ploschner et al., 2012), magnetic (Watari and Ohnishi, 1998), melting points (Nanda, 

2009), oxidation temperature (Montiel et al., 2011) to name but a few.  

 
Figure 2.2 The percentage of surface atoms changes with the palladium cluster 

diameter (Nutzenadel et al., 2000). 
 
 

For instance, the noble metal platinum is a non-magnetic element in the bulk. 

However, as reported by Watari and Ohnishi (1998), when the size of Pt clusters 

decreased and consisting of 13±2 atoms, it exhibit extraordinary magnetic 

polarisation with up to 8 unpaired electrons on a cluster, corresponding to a magnetic 

moment of 0.65 µB per atom. In another report (Montiel et al., 2011), bulk cobalt 

start to oxidise in air at roughly 350˚C. However, nanoparticles with size range of 20 

to 57 nm start to oxidise in air at the temperature as low as 150˚C. This shows that 

size and surface area play a crucial role in determine the properties of nanomaterials. 

 
 The surface energy is related to surface area and increases as the overall 

surface area increased when size of particles getting smaller (Cao, 2004). Therefore, 

nanostructured materials normally possess a large surface energy. For the 

thermodynamic consideration, the surface energy per mol of material is the essential 
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quantity (Vollath, 2008). The equation derived for surface energy per mol (Usurface) is 

shown in equation 2.1 (Vollath, 2008). 

               (2.1) 

Where M is the molar weight, γ is the specific surface energy, ρ is the density of 

material, D is the particle diameter. As can be seen from equation 2.1, the surface 

energy per mol increases with . In the other words, when the particles getting 

smaller, the increasing surface energy is significance especially in the nano region. 

Nanomaterials with high surface energy are not stable. Therefore, the system tend to 

reduce the overall surface energy in order to reach a stable stage. 

 

 Generally, reduction of the overall surface energy can be achieved through (i) 

combining the individual nanomaterials together in order to form a larger structures 

and (ii) agglomeration/ aggregation of individual nanomaterials without altering the 

individual nanomaterials (Cao, 2004). There are two ways of combining individual 

nanomaterials to form larger structures which are sintering and Ostwald ripening. In 

the sintering process, the individual nanomaterials are packed in such a way that 

there is no gap among solid nanomaterials. Whereas in Ostwald ripening process, 

two individual nanomaterials becomes single one. Smaller one will feed the larger 

one until it was totally disappeared. In agglomerate/aggregation, many nanomaterials 

are associated with one another through chemical bonds and physical attraction 

forces. The smaller the individual nanomaterials are, the stronger they are formed 

and more difficult to separate.  

 

 Since nanomaterials possess high surface energy are not stable, minimisation 

of the surface energy has been reported as an important factor or driving force for the 
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self assembly of nanomaterials (Zhang et al., 2011b, Wang et al., 2010c, Song and 

Colfen, 2010, Zhang et al., 2005b, Wang and Feng, 2003). Wang and Feng (2003) 

have investigated the formation of the polyhedral shape of CeO2 Nanoparticles. 

During the aggregation process, the particles tend to share common faces in order to 

maximise the packing density. This is a general principle in forming a self-assembled 

nanostructure. When two particles are in contact, they tend to rotate themselves in 

order to achieve a position with minimal energy and least lattice mismatch. Therefore, 

a coherent interface is formed as presented in Figure 2.3.  

 
Figure 2.3. Two particles with face-to-face contact and coherent interfacial matching 

(Wang and Feng, 2003). 
 
 

A very interesting and excellent work related to surfaces of nanoparticles has 

been reported by Vollath (2008). In this work, the mechanism of aggregation of two 

single gold nanoparticles has been observed through high resolution transmission 

electron microscopy from the very beginning until the aggregate formed. From the 

observation, when the two nanoparticles are in contact, they rotate until their 

orientation is equal (with parallel lattice fringes). This is similar to the report of 

Wang and Feng (2003) where a coherent interface with minimal energy was 

achieved. After this, the aggregation begins as the larger particles engulf the smaller 

one.  The energy required for this process occurred actually provided by the 

reduction of the surface area.  



13 
 

 
2.3  Hierarchical nanostructures 

 
Currently there is a new kind of nanostructured materials that has attract a lot 

of attention – hierarchical nanostructures. A ‘hierarchical structure’ means the higher 

dimension of a micro- or nanostructure composed of many, low dimensional, nano-

building blocks. Generally, various hierarchical structures are classified according to 

the dimensions of the nano-building blocks and the consequent hierarchical 

structures (Lee, 2009). For instance, “0-3 hollow” means 0D nanoparticles are 

assembled into a 3D hollow spherical shape. This type of 0-3 hierarchical particles 

normally has a smooth surface (Lee, 2009). The nomenclature of various hierarchical 

structures is shown in Figure 2.4. 

 

Self-assembly of nanomaterials into hierarchical structures largely depends 

on their shape, surface properties, charge, magnetic dipole forces and so on. Hence, 

from the same building blocks, organisations having different properties can be 

created depending on the dimensionality as well as the nature of interaction between 

the nano-building blocks (Sajanlal et al., 2011). 

 

These hierarchical nanostructures bring novel properties which are entirely 

different from the properties of individual and bulk counterpart (Pileni, 2001). For 

example, hierarchical magnetite (Fe3O4) microspheres nanostructures which were 

self-assembled from 45nm nanoparticles holds an unique microwave electromagnetic 

properties compared to the conventional magnetite microspheres (Zhao et al., 2010a). 

The hierarchical magnetite microspheres exhibited a microwave magnetic loss peak 

at high frequency region which is never observed in the conventional microspheres. 
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The authors had confirmed the high frequency magnetic loss peak is attributed to the 

hierarchical structure through a simulation using Matlab software.  

 

 
Figure 2.4 Nomenclature of hierarchical structures according to the dimensions of 

the nano-building blocks (the former number) and of the consequent 
hierarchical structures (the latter number)(Lee, 2009). 

 

The novel or unique properties of the hierarchical materials is attributed to 

the restricted motion of electrons, holes, phonons and plasmons which is related to 

the physical shape of the nanomaterials (Sajanlal et al., 2011). For instance, a 

spherical shape particle, the electrons are confined to the same extent in all the three 

dimensions. Therefore, the properties will be roughly the same regardless of 

directions. Tuning the properties of these particles will be difficult if compared to 

other materials with anisotropic shape. In addition to the novel properties, such 
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hierarchical structures also possess both authentic beauty and novel functionalities 

which can further link with other bio-molecules (Li and Zeng, 2010).  

 

2.4 Synthesis approaches of various type of nanomaterials/nanostructures 
 
 

Many techniques, including both top-down, intermediate and bottom-up 

approaches, have been developed and applied for the synthesis of nanomaterials. The 

preparation method of nanomaterials represents one of the most important challenges 

that will determine the particle size, shape, structure and surface chemistry of the 

particles (Tartaj et al., 2003). Consequently, properties of the nanomaterials will be 

affected as well. Generally, the most favourable synthesis approaches of 

nanomaterials are chemical (bottom up) and physical (top down) approach. For the 

synthesis of nanomaterials, chemical approach is proven to be the more efficient 

route. Some of the typical chemical methods such as hydrothermal or solvothermal 

process, polyol process and galvanic replacement reaction have been summarized 

and discussed in this session. Figure 2.5 shows the general approaches to synthesise 

bulk nanostructured solids.  
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Figure 2.5 Illustration showing the top down, intermediate and bottom up approaches 

to make bulk nanostructured solids (Ashby et al., 2009). 
 

 
 
2.4.1  Hydrothermal or Solvothermal process 
 

Hydrothermal process is a very popular process in the synthesis of 

nanomaterials. The term “hydrothermal” was originally first used by a British 

Geologist, Sir Roderick Murchison (1792–1871), to describe the action of water at 

elevated temperature and pressure in bringing about changes in the earth’s crust 

leading to the formation of various rocks and minerals (Byrappa and Yoshimura, 

2001). Solvothermal method is similar to the hydrothermal method except that 

organic solvents are used instead of water. This method can effectively prevent the 

products from oxidizing and has been used to synthesise a variety of non-oxides. 

Some of the hierarchical structure nanomaterials produced by this process will be 

discussed in the following section. 
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Hydrothermal synthesis refers to the synthesis by chemical reactions of 

substances in a sealed heated solution above ambient temperature and pressure. The 

autoclaves used in hydrothermal syhthesis are usually thick-walled steel cylinders 

completely sealed which can withstand high temperatures and pressures for 

prolonged period of time. Furthermore, the autoclave material must be inert with 

respect to the solvent. The closure is the most important element of the autoclave. 

Under the hydrothermal conditions, various nanomaterials and materials with 

hierarchical nanostructures were synthesised. For example, a novel nickel nanobelts 

were generated by reducing nickel tartrate complex in alkaline solution with the 

surfactant (SDBS) at temperature 110°C. This hydrothermal process was performed 

for 24 hours. The nanobelts obtained consisted of typical width of 500-1000nm. A 

thickness of about 15 nm and a length of up to 50 μm was measured. Surfactant 

SDBS has a remarkable effect on the formation of Ni nanobelt in this hydrothermal 

process (Liu et al., 2003).  

 

In another work, nickel hierarchical nanostructures with urchin and sisal-like 

morphologies also had been successfully prepared employing hydrothermal process 

(Wang et al., 2007b). The electron micrographs of these unique morphologies are 

shown in the Figure 2.6.  The addition of surfactant (CTAB), hydrazine hydrate and 

the present of glycine play a crucial role in influencing the morphologies of the final 

products. The magnetic properties measured for these nickel hierarchical 

nanostructures were enhanced compared to their bulk counterpart. 
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Figure 2.6 SEM images of nickel hierarchical nanostructures with (a) urchin like and 

(b) sisal like morphologies (Wang et al., 2007b). 
 
 
 

In another work by Jing and Wu (Jing and Wu, 2004), monodisperse 

rhombohedral α-Fe2O3 particles have also been synthesised by hydrothermal method 

with the incorporation of four surfactants, i.e. SDS, DBS, CTAB and HPC, using 

FeC2O4 and NaOH as starting precursors. All the samples after modified with 

surfactant transformed from rod-like to rhombohedral shape, and the particle size of 

each sample has clearly changed. Particle shape induced by the surfactants resulted 

in shape anisotropy, and furthermore coercivity of the samples after modification 

were enhanced (Jing and Wu, 2004). Uniform hematite nanocubes with an average 

size of 15 nm have been also prepared using this method. It was revealed that the 

molar ratio of iron chloride to sodium oleate and hydrothermal temperature had a 

crucial influence on the morphology of hematite nanopaticles produced in the 

synthesis (Wang et al., 2007a). 

 

Hierarchical Co nanoflowers composed of nanorods were fabricated through 

a solvothermal process. 1,2-propanediol was used as solvent instead of water (Liu et 

al., 2009a). Well-defined nanoflowers of about 500 nm having petals with lengths of 
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about 500 nm and diameters of 50 nm were obtained (Figure 2.7). In this case, 

hexadecylamine, the structure-directing agent plays an important role in regulating 

the growth of the flowery nanostructure through its strong adsorption onto the cobalt 

nanocrystals, leading to a hierarchical growth mode. Cobalt nanofibres with pine-

tree-leaf hierarchical superstructures also have been synthesised through this 

solvothermal process in which diethylene glycol was used as solvent. The 

solvothermal temperature was kept at 200°C for all the reactions in preparing the 

cobalt fibres (Li and Zeng, 2010).  

 
 

 
Figure 2.7 (a,b) SEM and (c,d) TEM images of the Co nanoflowers (Liu et al., 
2009a). 
 
 
 
 Besides the magnetic materials with nanostructures, diversity of other 

materials also have been successfully prepared through this method. Zhu and co-

workers (Zhu et al., 2009) have demonstrated that PbTe with various hierarchical 
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nanostructures, including hopper cubes, flower-like structures, and dendritic 

structures were synthesised via this simple hydrothermal process (Figure 2.8). 

Different synthesis parameters such as reaction time, temperature, concentration of 

sodium hydroxide, and surfactants, were systematically investigated. Sodium 

hydroxide was proposed to play a crucial role in the formation process. The authors 

suggested that the formation of hierarchical PbTe nanostructures is due to the 

deviation of the formation conditions from the thermodynamic equilibrium. Near the 

equilibrium conditions, specific polyhedral forms are created through a kinetic 

controlled reaction. Under far equilibrium conditions, the instability of the growing 

fronts of crystals leads to the formation of dendritic morphology (due to increased 

contribution of mass or heat diffusion).  Hopper cubic structures are formed due to 

the non-uniformity of the solute distribution over the crystal faces.  

 

 
Figure 2.8 (a) Typical SEM image of PbTe hierarchical nanostructures. Inset: unit 

cell of PbTe. (b) Magnified image of a hopper cubic crystal. (c) 
Magnified image of a flower-like crystal. (d) EDX spectrum of PbTe 
superstructures (Zhu et. al., 2009) 
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 Recently, a very interesting ZnO hierarchical nanostructure was synthesised 

via this hydrothermal route (Figure 2.9). The hierarchical nanostructure has 

morphology similar to the natural pine tree forest. Thus, the artificial hierarchical 

nanostructure was named “nanoforest”. The “nanoforest” grew with high density, 

long branched “treelike” with multi-generation hierarchical ZnO nanowires which 

can significantly increase the dye-sensitized solar cells (DSSC) power conversion 

efficiency. (Ko et al., 2011). 

 
 

 
Figure 2.9 SEM pictures of ZnO NW nanoforest: (a) tilted view, (b) crosssection 

view, (c) TEM picture and selected area electron diffraction pattern of a 
ZnO NW (Ko et al., 2011). 

 
 
 

Hydrothermal or solvothermal are very popular methods among materials 

scientists or researchers. A variety of materials have been synthesised through this 

method. Table 2.2 below shows the various materials with hierarchical 

nanostructures synthesised via this method. 
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Table 2.2 Various materials with hierarchical structure synthesised via hydro/ 
solvothermal in the recent years. 

 
No. Materials Morphology References 
1 Bi2WO6 Hierarchical microspheres 

(composed of  2D sheets) 
(Li et al., 2007) 

2 ZnO Hierarchical Brush like 
( composed of nanorods)  

(Zhang et al., 2009b) 

3 Ni Hollow Microspheres 
(composed of nanoparticles) 

(Wang et al., 2006) 

4 CdS Hierarchical dendrites (Qingqing et al., 2006) 
5 CeO2 Hierarchical flower like (Yu et al., 2008) 
6 Fe2O3 Hollow Urchin like  (Du and Cao, 2008) 
7 CuO hierarchical butterfly-like 

architectures 
(Zhang et al., 2009a) 

8 ZnO Micropsheres (composed of 
nanosheets) 

(Lu et al., 2011) 

 
 
 

The disadvantages of hydrothermal method include the need of expensive 

autoclaves. Besides, in most of the cases, steel-corroding solutions are used in 

hydrothermal experiments. In order to prevent corrosion of the internal cavity of the 

autoclave, protective inserts are generally used. Inserts may be made of carbon-free 

iron, copper, silver, gold, platinum, titanium or Teflon, depending on the temperature 

and solution used. Therefore, extra cost was needed. Moreover, high pressure and 

temperature generated during the reaction also cause a safety issue. The impossibility 

of observing the reaction process and longer reaction time needed are also the 

drawbacks of this approach. 

 

2.4.2  Polyol process 
 

Polyol process is a simple and versatile route developed by Fievet and 

coworkers (Fievet et al., 1989a) to make colloidal particles of various shapes and 

sizes. Polyols are compounds with “multiple” hydroxyl functional groups available 

for organic reactions. Therefore, alcohol contains two hydroxyl groups and above 

http://www.answers.com/topic/hydroxyl�
http://www.answers.com/topic/functional-group�
http://www.answers.com/topic/organic-reaction�
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was categorized as polyol. The examples for polyol are ethylene glycol, triethylene 

glycol, tetraethylene glycol and so forth. Currently, this method has been modified 

and developed by numerous researchers. The modifications including more additives, 

for instance surfactant, nucleating agent or assisted by extra devices such as 

microwaves device. In the polyol process, the liquid polyol acts as the solvent of the 

metallic precursor, the reducing agent and in some cases as a complexing agent for 

the metallic cations (ligand binds to metal ions and form complex). One of the 

advantages of the polyol process is that the pick up of atmospheric oxygen during the 

reaction is restricted inherently. Generally, in order to prevent oxidation, inert gases 

like nitrogen and hydrogen or a mixture of these gases is continuously bubbled 

through the reaction vessel. However, in this method, if hydrazine is used as 

reducing agent, hydrogen and nitrogen gases are evolved during the reduction of the 

hydrazine complex, which in turn help the formation of oxide free product. As a 

result, there is no need for any external blanketing. Therefore, there is no additional 

costly inert environment needed in this process as the particles can be naturally 

protected from oxidation by the organic solvent. Apart from this, temperature 

dependent reducing power and relatively high boiling points also make polyols 

suitable solvents for producing anisotropic materials. 

 

Diverse nanostructured materials with different sizes and morphologies have 

been synthesised through polyol process with the assistance of surfactants. Generally, 

polyvinylpyrrolidone (PVP) is the common surfactant used in the polyol process in 

order to prevent agglomeration of nanoparticles. Various types of nanoparticles with 

different size range have been synthesised using this surfactant, such as cobalt 

(Kalyan Kamal et al., 2009), nickel (Couto et al., 2007), CoPt (An et al., 2008), 
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CoSb3 (Yang et al., 2008) and Fe3O4 (Liu et al., 2007a). Besides controling the 

particle size and agglomeration, PVP is also used as a shape modifier in the polyol 

process. Many nano- or micro- size particles with well defined morphology and 

hierarchical nanostructures have been successfully prepared. A new form of Cu2O, 

disk-like structure with 60 nm in thickness and 2 μm in diameter, has been 

successfully synthesised in bulk quantities by polyol process in the presence of PVP 

(Chen et al., 2005c). Without incorporation of PVP, large disk-like shape was 

produced. This indicates that PVP not only control the growth process but also 

preventing Cu
2
O nanodisks from increasing in size. In another work by Wang and 

co-workers (Wang et al., 2008b), chain-like nickel structures assembled with 

submicrometer-sized hollow spheres has been also successfully prepared with the 

assistance of PVP. These hierarchical hollow microspheres were found to form 

through the assembly of small-sized nickel nanoparticles where PVP play a crucial 

role in the formation process (Figure 2.10).  

 

 
Figure 2.10 (a) SEM image of the as-synthesised Ni microspheres chain network (b) 

magnified image of single hollow microsphere with hierarchical 
structure (Wang et al., 2008b). 

 
 
 

Beside incorporation of surfactant, Xu’s group (Xu et al., 2008b) have 

modified the polyol process with the aid of microwave source in the reaction 


