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Penyelesaian Berangka dan Hampiran Analisis untuk Persamaan
Pembezaan Separa dengan Syarat Sempadan Tak Setempat

ABSTRAK

Banyak masalah saintifik dan kejuruteraan boleh dimodel oleh persamaan pem-

bezaan separa parabolik dengan syarat sempadan tak setempat. Contoh masalah

seperti ini boleh didapati dalam bidang penyebaran kimia, keanjalan haba, proses

konduksi haba, dinamik reaktor nuklear, masalah songsang, teori kawalan dan se-

bagainya. Sepanjang dua dekad yang lalu, pembangunan teknik berangka dan

teknik hampiran analisis untuk menyelesaikan persamaan-persamaan ini telah

menjadi bidang penyelidikan penting kerana keperluan untuk lebih memahami

fenomena asas fizikal. Terdapat keperluan untuk membangunkan teknik baru yang

lebih tepat dan perkara ini adalah tumpuan tesis ini. Dalam tesis ini, kami men-

cadangkan kaedah baru beza terhingga baru dan mengkaji kaedah analisis hampi-

ran untuk menyelesaikan persamaan pembezaan separa parabolik linear dan tak

homogen dengan syarat sempadan tak setempat. Kami memperkenalkan kacdah

beza terhingga tak tersirat yang baru dan kaedah rumus Crandall (3,3) yang baru

serta membincangkan keputusan berangka yang diperoleh. Di samping itu, kami

juga telah mengkaji beberapa kaedah analisis hampiran iaitu kaedah pengura-

ian Adomian, kaedah lelaran perubahan, kaedah pengusikan homotopi, kaedah

analisis homotopy, Kaedah homotopi optimum asimptot dan telah menggunakan

pendekatan piawai dan diubahsuai untuk menyelesaikan persamaan pembezaan

separa parabolik linear dan tak homogen dengan syarat sempadan tak setempat.

Adalah diketahui kaedah analisis hampiran menyelesaikan persamaan pembezaan

dengan menggunakan syarat awal sahaja. Oleh itu, kami juga mencadangkan pen-

gubahsuaian baru kaedah penguraian Adomian untuk menyelesaikan persamaan

pembezaan parabolik linear dan tak homogen dengan syarat sempadan tak setem-

xiv



pat dengan menggunakan syarat tak setempat. Kami telah menunjukkan bahawa

kaedah beza terhingga yang dibangunkan dan kaedah hampiran analisis yang diper-

timbangkan mampu menyelesaikan persamaan pembezaan separa parabolik linear

dan tak homogen dengan syarat sempadan setempat dengan jitu.
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The Numerical and Approximate Analytical Solution of Parabolic
Partial Differential Equations with Nonlocal Boundary Conditions

ABSTRACT

Many scientific and engineering problems can be modeled by parabolic partial dif-

ferential equations with nonlocal boundary conditions. Examples of such problems

can be found in chemical diffusion, thermoelasticity, heat conduction processes,

nuclear reactor dynamics, inverse problems, control theory and so forth. In the

last two decades, the development of numerical and approximate analytical tech-

niques to solve these equations has been an important area of research due to the

need to better understand the underlying physical phenomena. There is a need

to develop new and more accurate techniques and this is the area of focus of this

thesis. In this thesis, we propose new finite difference methods and study approxi-

mate analytical methods for solving linear and nonhomogeneous parabolic partial

differential equations with nonlocal boundary conditions. We have introduced a

new explicit finite difference method and a new (3,3) Crandall- formula method

and have discussed the obtained results. In addition, we have also studied sev-

eral approximate analytical methods- Adomian Decomposition Method, Variation

Iterative Method, Homotopy Perturbation Method, Homotopy Analysis Method,

Optimal Homotopy Asymptotic Method and have applied the standard approach

and modifications to solve linear and nonhomogeneous parabolic partial differential

equations with nonlocal boundary conditions. It is known that the approximate

analytical methods solve differential equations by using the initial condition only.

Thus, we also proposed a new modification of Adomian Decomposition Method to

solve linear and nonhomogeneous parabolic partial differential equations with non-

local boundary conditions by using nonlocal boundary conditions. We also show

that the finite difference methods developed and approximate analytical methods

xvi



considered are capable of accurately solving linear and nonhomogeneous parabolic

partial differential equations with nonlocal boundary conditions.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

Many problems in science and engineering require the solution of partial differen-

tial equations where the independent variables are space and time coordinates. To

fully understand the underlying physical problems, a relationship between the inde-

pendent and dependent variables need to be established and this effectively means

the equations must be ”solved”. In general, the complexity of these equations

and the auxiliary conditions are such that analytical solution methods (yielding

exact analytical solutions) cannot be used and numerical or approximate analyt-

ical techniques are required. The focus of this thesis is the study of numerical

and approximate analytical techniques for the solution of parabolic partial differ-

ential equation with nonlocal boundary conditions. In this chapter, we give an

introduction to our study.

1.2 Partial Differential Equation

Partial differential equations are a type of differential equation, i.e, a relation in-

volving an unknown function (or functions) of several independent variables and

their partial derivatives with respect to those variables. Partial differential equa-

tions appear frequently in all areas of physics and engineering. In recent years, we

have seen a dramatic increase in the use of these equations in areas such biology,

chemistry, chemical engineering, computer science (partially in relation to image

processing and graphics) and economics. In this section, we introduce the general

form of the these equations. The general form of partial differential equations are

n+1∑

i,j=1
ai,j

∂2u

∂xi∂xj
− q(x1, x2, ..., xn, xn+1, u,

∂u

∂x1
, ...,

∂u

∂xn
,

∂u

∂xn+1
) = 0, (1.1)

1



where q(.) ∈ R [206]. We assume that t = xn+1 if the equations involve the

variable t. ai,j may depend on x1, x2, ..., xn, xn+1, u,
∂u

∂x1
, ..., ,

∂u

∂xn
,

∂u

∂xn+1
. It is

often assumed that ai,j = aj,i and thus the matrix A = [ai,j ] is a symmetric

matrix. If all eigenvalues of A have the same sign, then the equations are called

elliptic PDEs. If at least one eigenvalue is zero, then the equations are parabolic

PDEs. If n of the eigenvalues have the same sign, and the remaining one has

opposite sign, then the equations are called hyperbolic PDEs.

Equations in the form of (1.1) can be very complicated. It is difficult to deal with

equations which have many variables. Also, if the coefficients ai,j are complicated

functions, then the equations are usually difficult to solve. Many PDEs in real

applications contain fewer variables, or even have constant coefficients, such as

Laplace’s equation, Poisson’s equation, and the heat equation. Typical second

order PDEs are [206]

a1
∂2u

∂x2
1

+ a2
∂2u

∂x2
2

+ · · ·+ an
∂2u

∂x2
n
− q = 0, (1.2)

a1
∂2u

∂x2
1

+ a2
∂2u

∂x2
2

+ · · ·+ an
∂2u

∂x2
n
− q − ∂u

∂t
= 0, (1.3)

a1
∂2u

∂x2
1

+ a2
∂2u

∂x2
2

+ · · ·+ an
∂2u

∂x2
n
− q − ∂2u

∂t2
= 0, (1.4)

where in (1.2), q = q

(
x1, x2, ..., xn, u,

∂u

∂x1
, ...,

∂u

∂xn

)
, and in (1.3) and (1.4),

q = q

(
x1, x2, ..., xn, u, t,

∂u

∂x1
, ...,

∂u

∂xn

)
. The equation (1.2) are elliptic PDEs, the

equation (1.3) are parabolic PDEs, and the equations (1.4) are hyperbolic PDEs.

a1, a2, ..., an are nonnegative constants. For elliptic PDEs of the form (1.2), at

least two of ai, i = 1, 2, ..., n cannot be zero. For the parabolic and hyperbolic

equations defined in (1.3) and (1.4), at least one of ai, i = 1, 2, ..., n cannot be

zero. The equations discussed in the present thesis are parabolic PDEs, which are

used to describe phenomena that are time-dependent.
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For introducing a new class of finite difference method and approximate analyti-

cal methods for parabolic PDEs in this thesis, we consider equations which have

variable coefficients. Also, the equations considered in this thesis only contain one

dependent variable with two independent variables u(x, t), and the equations are

linear.

The general form of parabolic PDEs can be written as [207]

∂u

∂t
= ∆u− q(X, t, u,∇u), X ∈ Ω ⊂ Rn, t ∈ [t0, t1] ⊂ R, (1.5)

where u(x, t) ∈ R, ∆ is Laplace’s operator of u with respect to X, ∇u is the

gradient of u with respect to X, q(X, t, u,∇u) ∈ R; i.e,

∆ =
n∑

i=1

∂2

∂x2
i

, ∇ =

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

)∗
, (1.6)

where ∗ denotes transpose, ∇u is a vector and ∆ = ∇.∇.

According to [207], equation (1.5) is called semi-linear parabolic equation. If

q(X, t, u,∇u) = b(X, t)∗∇u + c(X, t)u + f(X, t), (1.7)

where b(X, t) ∈ Rn, c(X, t), f(X, t) ∈ R, then equation (1.5) is called a linear

parabolic PDE. Thus we can write a linear parabolic PDE as [205]

∂u

∂t
= ∆u− b(X, t)∗∇u− c(X, t)u− f(X, t). (1.8)

In the two dimensional case, this becomes

∂u

∂t
= ∆u− b1(x, y, t)

∂u

∂x
− b2(x, y, t)

∂u

∂y
− c(x, y, t)u− f(x, y, t), (1.9)

where b1, b2 ∈ R.
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The general form of the second order nonlinear parabolic PDEs are [204]

∂u

∂t
= F (t,X, u,∇u,∇2u), DT = (0, T )× Ω, (1.10)

where

F ∈ C[DT ×R×Rn ×Rn2
, R],

∇u = (ux1 , ux2 , . . . , uxn),

∇2u = (ux1x1 , ux1x2 , . . . , uxnxn),

and Ω is a bounded domain in Rn and X = (x1, x2, . . . , xn).

1.3 Parabolic Partial Differential Equations

According to [200], parabolic partial differential equations are one of the most

challenging areas in the field of partial differential equations. The variety of meth-

ods and applications is growing more and more in this field of research. Several

new problems that arise in applications in natural sciences and engineering can-

not be addressed by existing mathematical and numerical methods. At the same

time, these problems turn out to require the development of new mathematical

techniques. Parabolic PDE, arise from a variety of diffusion phenomena which

appear widely in nature. They are suggested as mathematical models of physical

problems in many fields, such as filtration, phase transition, biochemistry and dy-

namics of biological groups. In many cases, these equations possess degeneracy or

singularity. The appearance of degeneracy or singularity makes the study more

involved and challenging. Many new ideas and methods have been developed to

overcome the special difficulties caused by the degeneracy and singularity, which

enrich the theory of partial differential equations [200].

In this thesis, we are interested in solving linear second-order parabolic partial
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differential equations (PDEs) in one space dimension. A typical example of such

a problem is given by the heat equation. Various phenomena in the engineer-

ing, science and other branches of mathematical sciences require the solution of a

parabolic partial differential equation which include integral terms which appear in

the boundary conditions. In this case, the boundary conditions is called nonlocal

boundary conditions. Let us define a spatial differential operator ∆ by

∆ ≡ A(x, t)
∂2

∂x2 + B(x, t)
∂

∂x
+ C(x, t),

where A, B and C are given functions.

The problem we want to solve is described by parabolic PDE of the form

∂u

∂t
= ∆u + D(x, t), 0 < x < 1, 0 < t ≤ T, (1.11)

subject to the initial condition

u(x, 0) = f(x), (1.12)

and the boundary conditions

B ≡ {u(0, t) = β0(t) + g0(t), u(1, t) = β1(t) + g1(t)}, (1.13)

where D, f , β0 and β1 are given functions, and u is the unknown function to be

determined or approximated. We study the parabolic PDE problem with nonlocal

boundary conditions in (1.13) where the functions of β0(t) and β1(t) are defined

as

β0(t) =

∫ 1

0
φ(x, t)u(x, t)dx,

β1(t) =

∫ 1

0
ψ(x, t)u(x, t)dx,
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and where φ(x, t) and ψ(x, t) are known functions.

Parabolic partial differential equations with nonlocal boundary conditions are also

classified as homogeneous and nonhomogeneous. In general, a PDE of any order is

called homogeneous if every term of PDE contains the dependent variable u(x, t)

or one of its derivatives, otherwise, it is called nonhomogeneous PDE. Thus the

equation (1.11) is homogeneous if D(x, t) = 0 else is called nonhomogeneous.

1.4 Motivation

Non-local mathematical models play an important role in physical phenomena. For

example, the diffusion equation with non-local boundary conditions can be used

to model various physical phenomena in the context of thermoelasticity, control

theory, heat conduction process and population dynamics. Recently, there has

been growing interest in developing computational methods for the numerical and

approximate analytical solution solution of these equations [18, 53, 54, 55, 166,

188, 189, 208]. Most of the studies and papers that deal with problems of this

type are concentrated to one-dimensional equations [53, 54, 188, 189, 208]. The

presence of the integral term in boundary conditions can greatly complicate the

application of standard numerical schemes such as finite difference schemes, finite

element schemes and etc. Therefore it is important to be able to convert nonlocal

boundary condition to a more suitable form. The use of approximations in these

equations are not without their difficulties. The accuracy of the approximation

must be compatible with that of the discretization of the differential equation. As

it has been introduced in section 1.3, the nonlocal boundary conditions cannot be

solved because the integrals in boundary conditions include an unknown function

u(x, t). Thus there is no suitable method to obtain the exact solution.

Our purpose in this research is to study techniques to obtain accurate approximate

solutions for parabolic PDE with nonlocal boundary conditions. We are motivated
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by the observation that the methods proposed in the literature are quite abundant

and there is a need to consolidate and conduct a comparative study. According to

[53, 188], the development of numerical techniques for the solution of the parabolic

partial differential equation with nonlocal boundary conditions is an important

research topic in many branches of science and engineering. Various researchers

have proposed modifications to approximate analytical methods. It is important

that the effectiveness to these various modifications be studied and compared. One

of the new approximate analytical methods which has recently been introduced is

the Optimal Homotopy Asymptotic Method (OHAM). This method has yet to be

extensively applied in solving various ordinary and partial differential equations.

1.5 Objective

The objective of this study is

1. To conduct a comparative study of existing finite difference and approxi-

mate analytical methods for linear and nonhomogeneous parabolic partial

differential equation with nonlocal boundary conditions.

2. To develop a new and accurate finite difference method and to apply to

linear nonhomogeneous parabolic partial differential equation with nonlocal

boundary condition. To investigate the accuracy of the new finite difference

method.

3. To apply modified approximate analytical techniques to linear nonhomoge-

neous parabolic partial differential equation with nonlocal boundary condi-

tion. To investigate the accuracy of the modified methods.

4. To apply a new approximate analytical method called the Optimal Homotopy

Asymptotic Method (OHAM) to nonhomogeneous parabolic partial differen-

tial equation with nonlocal boundary conditions. To investigate the accuracy
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of OHAM.

5. To apply a new modification of Adomian Decomposition Method (MADM)

to nonhomogeneous parabolic partial differential equations with nonlocal

boundary conditions by using boundary conditions. We also aim to investi-

gate the accuracy of this MADM.

1.6 Methodology

The methodology of this study is

1. Detailed literature survey on linear and nonlinear finite difference and ap-

proximate analytical methods of solution. Method which will be studied are

chosen.

2. A comparative study of finite difference methods will be conducted via nu-

merical experiments using Mathematica. A new method will be developed

and it’s performance in relation to other methods gauged. Test problem with

known solutions will be used. The theoretical properties of the new method

will be established using standard analysis techniques.

3. A comparative study of approximate methods will be conducted via com-

putational experiments using Mathematica. Modification of approximate

analytical methods will be made and the performance of the modification

assessed. Test problem with known solutions will be used.

4. An in-depth study of a new approximate analytical method (OHAM) will be

made and it will then be applied to linear and nonhomogeneous parabolic

partial differential equation with nonlocal boundary conditions. Computa-

tional experiments will be conducted using Mathematica.
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5. A new modification of ADM (MADM) will be made and applied to nonho-

mogeneous parabolic partial differential equations with nonlocal boundary

conditions by using boundary conditions. Computational experiments will

be conducted using Mathematica.

1.7 Thesis outline

An outline of the remainder of this thesis is as follows

Chapter 2 provides a review of basic concepts, basic methods and theory. In

this chapter, we discuss the basic concepts and issues related to the solution of

parabolic partial differential equations with nonlocal boundary conditions. At the

end of this chapter, we have given a literature review on the uniqueness and global

existence of the solution of semi-linear and nonlinear parabolic equations with

nonlocal boundary conditions.

In chapter 3, we review the numerical and approximate analytical methods which

has been introduced by many authors and researchers. We divide the discussion

into two cases

1. Finite difference methods

2. Approximate analytical methods

In chapter 4, we apply the finite difference methods, for example, BTCS, FTCS,

Crank-Nicolson, Dufort-Frankel and (3,3) explicit Crandal formula method to

numerically solve linear and nonhomogeneous parabolic equation with nonlocal

boundary conditions.

Chapter 5 is devoted to approximate analytical methods and we will conduct

a comparative study. These methods include Adomian Decomposition Method

(ADM), Variational Iteration Method (VIM), Homotopy Perturbation Method

(HPM) and Homotopy analysis Method (HAM). We use these methods for solv-
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ing linear and homogeneous parabolic partial differential equation with nonlocal

boundary conditions.

The new explicit method and new (3,3) explicit Crandal formula is introduced

and developed in chapter 6. The feasibility and accuracy of the new method was

tested on two examples used by many previous researchers. At the end of this

chapter, the theoretical properties of the method that we have developed will be

investigated.

Chapter 7 has been devoted to apply the modification of approximate analyti-

cal methods for numerical solving linear and nonhomogeneous parabolic equation

with nonlocal boundary conditions. In this chapter, we will show that the these

methods are very powerful and capable to solve parabolic PDEs. We also conduct

a comparative study.

Chapter 8 is dedicated to study and develop a new method which is called Optimal

Homotopy Asymptotic Method (OHAM) to be used for solving linear and nonho-

mogeneous parabolic equations with nonlocal boundary conditions. To illustrate of

the capability and accuracy of the OHAM, it was tested on three examples which

have been solved in chapters 6 and 7. The obtained results show that this method

is very accurate in solving parabolic partial differential equation with nonlocal

boundary condition.

Chapter 9 is devoted to introduce and apply a new modification of ADM (MADM)

to find approximate solution of parabolic partial differential equations with non-

local boundary conditions. This method solves the equations by using boundary

conditions. To illustrate the capability and accuracy of the MADM proposed in

this chapter, it will be tested on four examples which have been solved in chapter

6 and 7. By considering the obtained results, it can be concluded that the MADM

is very accurate in finding approximate solution of parabolic partial differential

equations with nonlocal boundary conditions.
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Finally, in chapter 10 we give the conclusion of our study and discuss the possi-

bilities for further work in this area.
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CHAPTER 2
BASIC METHODS, CONCEPTS, THEORY

2.1 Introduction

In this chapter, we introduce some basic methods, concepts and theory which play

an important role in the numerical and approximate analytical solution of partial

differential equations. In addition, we also describe two examples of applications

of parabolic partial differential equation with nonlocal boundary conditions.

2.2 Parabolic Equations

Parabolic partial differential equations that arise in scientific and engineering prob-

lems are often of the form [67]

ut = Lu, (2.1)

where Lu is a second-order elliptic partial differential operator which may be linear

or nonlinear. We assume U to be an open, bounded subset of Rn, and set Ut =

U × (0, T ] for some fixed time T > 0. We consider the initial boundary value

problem [67]

ut + Lu = f, Ut,

u = 0, ∂U × [0, T ], (2.2)

u = g, U × t = 0,

where f : Ut −→ R and g : U −→ R are given, and u : Ut −→ R is the unknown,

u = u(x, t). The letter L denotes for each time t a second-order partial differential

operator, having either divergence form [67]

Lu = −
n∑

i,j=1
(ai,j(x, t)uxi)xj +

n∑

i=1
bi(x, t)uxi + c(x, t)u, (2.3)
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or else the non-divergence form

Lu = −
n∑

i,j=1
ai,j(x, t)uxixj +

n∑

i=1
bi(x, t)uxi + c(x, t)u. (2.4)

For given coefficient ai,j , bi and c, the partial differential operator
∂

∂t
+ L is said

to be (uniformly) parabolic if there exists a constant θ > 0 such that [67]

n∑

i,j=1
ai,j(x, t)ξiξj ≥ θ|ξ|2, (2.5)

for all (x, t) ∈ Ut, ξ ∈ Rn. It should be noted that for each fixed time 0 ≤ t ≤
T the operator L is a uniformly elliptic operator in the spatial variable x. An

example is ai,j = δi,j , bi = c = f = 0, in which case L = −∆ and the partial

differential equation
∂u

∂t
+ Lu becomes the heat equation. The solutions of the

general second-order parabolic partial differential equation are similar in many

ways to solutions of the heat equation . General second-order parabolic equations

describe in physical applications the time-evolution of the density of some quantity

u, say a chemical concentration , within the region U . In [67], it was noted that

for equilibrium setting, the second-order
n∑

i,j=1
ai,j(x, t)uxixj describes diffusion,

the first-order term
n∑

i=1
bi(x, t)uxidescribes transport, and the zeroth-order term

cu describes creation or depletion.

2.3 Finite Difference Approximation

The Finite Difference Method (FDM) is a method of approximating the derivatives

of a function in terms of the known values of the function itself. When these

approximations are introduced into a PDE, and the derivatives are evaluated on

a set of points (usually called grid points), an approximate solution of the PDE
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at the point of the grid can be found. Formally, the domain of solution of the

given partial differential equation is first subdivided by a net with a finite number

of mesh points. The derivative at each point is then replaced by finite difference

approximation which results in an algebraic equation (or system of such equations)

which are more easily solved that the original PDE.

Let us first consider u(x, t), in which u is a continuous function of the two inde-

pendent variables x and t. The x and t is discretized into a set of points such

that

u(xi, tn) = u(ih, nk) = un
i ,

where the spacing in the x direction is h an in the t direction k. Taylor series

expansions play a very important rule in the formulation and classification of

finite difference schemes. It is necessary that we use Taylor series expansions for

the approximation of derivatives. Thus we can have

un
i+1 = un

i + h(ux)ni +
h2

2
(uxx)ni +

h3

6
(uxxx)ni +

h4

24
(uxxxx)ni + · · · .

If h is sufficiently small, the 4th and higher terms are much smaller than the 3rd

terms. Then, we can write

un
i+1 = un

i + h(ux)ni + O(h2). (2.6)

The notation O(h2) means that the absolute value of the sum of the truncation

error is at most a constant multiplier of h2. Dividing (2.6) by h and rearranging

the terms produce the following

∂u

∂x

∣∣∣∣
x=xi,t=tn

= (ux)ni =
un

i+1 − un
i

h
+ O(h).

The term
un

i+1 − un
i

h
is called the forward-difference approximation for

∂u

∂x
at the
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point (xi, tn), and it is first order accurate or O(h) accurate.

We can use the same procedure and obtain backward and central-difference ap-

proximation for the partial derivative
∂u

∂x
as follows

(ux)ni =
un

i − un
i−1

h
+ O(h), Backward-difference

(ux)ni =
un

i+1 − un
i−1

2h
+ O(h2). Central-difference

For the second order derivative, we can obtain

∂2u

∂x2

∣∣∣∣
x=xi,t=tn

= (uxx)ni =
un

i+1 − 2un
i + un

i−1
h2 + O(h2).

The term
un

i+1 − 2un
i + un

i−1
h2 is called the central-difference approximation to

∂2u

∂x2

at (xi, tn) and it is second-order accurate.

2.4 Finite Difference Methods for Parabolic Equation

In this section, we describe the Forward Time Central Space (FTCS) scheme,

Backward Time Central Space (BTCS) scheme and Crank-Nicolson scheme.

2.4.1 Explicit Method (FTCS)

Consider the dimensionless initial boundary value problem in one space variable

[15, 181, 187]

ut = uxx + q(x, t), 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = f(x), 0 < x < 1, (2.7)

u(0, t) = g1(t), t > 0,

u(1, t) = g2(t), t > 0.
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The exact solution to equation (2.7), denoted by u(x, t), is assumed to exist and to

have four continuous derivatives with respect to x and two continuous derivatives

with respect to t that is, u ∈ C4,2. Let M ≥ 1 be a given integer and define

the grid spacing in the x-direction by h =
1

M
. The grid points in the x-direction

are given by xi = ih for i = 0, 1, ..., M . Similarly, define tn = nk for integer

n ≥ 0, where k denotes the time step. Finally, let un
i denote an approximation of

u(xi, tn). We use forward-difference for ut and central-difference for uxx evaluated

at (xi, tn) in (2.7). Thus we can obtain [15, 181, 187]

un+1
i − un

i

k
=

un
i+1 − 2un

i + un
i−1

h2 + qn
i . (2.8)

By using the boundary conditions of (2.7), we put

un
0 = g1(nk), un

M = g2(nk),

for all n ≥ 0. The scheme is initialized by

u0
i = f(ih), i = 1, 2, ..., M − 1.

Let s =
k

h2 , then the scheme can be written in a more convenient form [15, 181, 187]

un+1
i = sun

i−1 + (1− 2s)un
i + sun

i+1 + kqn
i , (2.9)

where i = 1, 2, ...,M − 1 and n = 0, 1, ..., N − 1. When the scheme is written

in this form, it should be observed that the values on the time level tn+1 are

computed using only the values on the previous time level ( in this case tn). Thus

the FTCS scheme is an explicit method. The scheme is first order accurate in time

(O(h) accurate) and second order accurate in space (O(h2)). Numerical schemes

can be unstable in that the accumulated rounding errors become unbounded and
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overwhelm the solution. Stable explicit methods are usually conditionally stable in

that there is a maximum time-step which is allowed. If the time-step is exceeded,

the scheme becomes unstable.

2.4.2 Implicit Method (BTCS)

In equation (2.7), if we were to use backward-difference for ut and central-difference

for uxx evaluated at (xi, tn+1) then we can obtain

un+1
i − un

i

k
=

un+1
i+1 − 2un+1

i + un+1
i−1

h2 + qn
i , (2.10)

for i = 1, 2, ..., M − 1. The boundary conditions gives

un
0 = g1(nk), un

M = g2(nk),

for all n ≥ 0 and the initial condition gives

u0
i = f(ih), i = 1, 2, ..., M − 1.

Thus the following recursive formula is obtained

(I + kA)Un+1 = Un, (2.11)

where I is identity matrix and A is as

A =
1

h2




2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1 2




M×M

,
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We observe that it is not possible to solve (2.11) directly even if we know all values

on the right hand side (i.e. the lower time level). In order to compute numerical

solution based on this scheme, we have to solve a linear system of the form (2.11)

which is non-singular such that Un+1 is uniquely determined by Un. This is an

example of an implicit scheme. Implicit schemes are thus not as straightforward

to solve as explicit schemes and they require more computations. However stable

implicit schemes have the advantage of being unconditionally stable. This means

there is no maximum allowable time-step. A large time-step may be useful in many

computations. The BTCS scheme is first order accurate in time and second order

accurate in space.

2.4.3 Crank-Nicolson Method

In this method, we seek to satisfy the partial differential equation at the midpoint

(ih, (n+ 1
2)k). The derivative

∂2u

∂x2 is replaced by the mean of its central-difference

approximations at the nth and (n + 1)th time level. The derivative
∂u

∂t
at the

midpoint is approximated by the use of central-difference. In other words, the

finite differences approximate the equation [15, 181]

(ut)i,n+1
2

= (uxx)i,n+1
2

+ qn
i ,

giving

−sun+1
i−1 + (2 + 2s)un+1

i − sun+1
i+1 = sun

i−1 + (2− 2s)un
i + sun

i+1 + 2kqn
i , (2.12)

where i = 1, 2, . . . ,M −1, n = 0, 1, . . . , N −1 and s =
k

h2 . (2.12) cannot be solved

directly even if all values at the lower time level are known. Thus, the Crank-

Nicolson scheme is also an implicit scheme. We will show that the Crank-Nicolson
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method is unconditionally stable. Further it is second order accurate in both time

and space. The structure of the matrix associated with equation (2.12) is such that

it is tridiagonal and thus the more economical Thomas algorithm (rather than the

Gauss-Elimination method) can be used to solve the system.

2.5 Stability

There are two methods normally used to evaluated the stability of numerical

schemes.

2.5.1 Matrix Method

Assume that the vector of solution values Un+1 = [un+1
1 , u

j+1
2 , . . . , un+1

M ] of the

finite difference equations at (n+1)th time-level is related to the vector of solution

values the nth time level by the equation [181]

Un+1 = AUn + bn, (2.13)

where bn is a column vector of unknown boundary values and zeroes, and matrix

A an (N −1)× (N −1) matrix of known elements. For a computation to be stable

(in the sense described in section 2.4.1) a norm of matrix A compatible with a

norm of u must satisfy

‖ A ‖≤ 1,

when the solution of the PDE does not increase as t increases, or

‖ A ‖≤ 1 + O(k),

when the solution of PDE increase as t increases.

In an actual computation, the time-step k and space-step h are normally kept
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constant as the solution is propagated forward time-level by time-level from t = 0

to tn = nk, and in many textbooks and papers stability is defined in terms of

the bounded-ness of this numerical solution as n −→ ∞, k fixed. In this process,

the order N − 1 of matrix A remains constant, unlike A associated with Lax

and Richtmyer’s definition. The matrix method of analysis then shows that the

equations are stable if the largest of the moduli of the eigenvalues of matrix A,

i.e. spectral radius ρ(A) of A, satisfy [181]

ρ(A) ≤ 1,

when the solution of the differential equation does not increase with increasing t.

It is to be noted that the matrix method can be only applied to linear Initial Value

Problems (IVPs) with constant coefficients.

2.5.2 Fourier Method

Assume we are concerned with the stability of a linear two time-level difference

equation in u(x, t) in the interval 0 ≤ t ≤ T = nk, with T finite. The Fourier series

expresses the initial value at the mesh points along t = 0 in term of finite fourier

series. Then consider the growth of a function that reduces to this series for t = 0

by a ”variables separable” method identical to that commonly used for solving

partial differential equation. To explain further, we change our usual notation un
i

to u(ph, qk) = u
q
p. In terms of this notation [181]

Ane
inπ
l x = Aneiβnph,

20



where βn =
nπ

Mh
, Mh = l and An are constant. The initial values at t = 0 are

displayed by u(ph, 0) = u0
p for p = 0, 1, ..., M . Then the M + 1 equations

u0
p =

M∑

n=0
Aneiβnph, p = 0, 1, . . . , M,

are sufficient to determine the n + 1 unknown A0, ..., AM uniquely showing that

the initial mesh values can be expressed in this complex exponential form. To

investigate the propagation of this term as t increases, put

u
q
p = eiβxeαt = eiβpheαqk = eiβphξq,

where ξ = eαk and α, in general, is a complex constant. ξ is called the amplification

factor. The finite-difference equation will be stable if u
q
p remains bounded for

all q ≤ J as h → 0 and k → 0, and for all values of β needed to satisfy the

initial condition. If the exact solution of the difference equation does not increase

exponentially with time, then a necessary and sufficient condition for stability is

that

−1 ≤ ξ ≤ 1.

If u
q
p does increase with t, then the necessary and sufficient condition for stability

is

|ξ| ≤ 1 + Kh = 1 + O(k),

where the positive number K is independent of h, k and β.

2.5.3 Stability Condition for the FTCS, BTCS and Crank-Nicolson

Method

This section is devoted to stability of FTCS, BTCS and Crank-Nicolson using the

matrix method.
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Stability of the FTCS :

The FTCS scheme for equation (2.7) can be written as [181]

un+1
i = sun

i−1 + (1− 2s)un
i + sun

i+1 + kqn
i , (2.14)

for i = 1, 2, ..., M − 1. It can be expressed in the following matrix form




un+1
1

un+1
2
...

...

un+1
M−1




=




1− 2s s

s 1− 2s s

. . . . . . . . .

s 1− 2s s

s 1− 2s




+




sun
0 + kqn

1

kqn
2

...

kqn
M−2

sun
M + kqn

M−1




,

i.e.

Un+1 = AUn + b, (2.15)

where

A =




1− 2s s

s 1− 2s s

. . . . . . . . .

s 1− 2s s

s 1− 2s




, b =




sun
0 + kqn

1

kqn
2

...

kqn
M−2

sun
M + kqn

M−1




,
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where n = 0, 1, . . . , N − 1 and s =
h

k2 . Now, we can write the matrix A as

A =




1 0

0 1 0

. . . . . . . . .

0 1 0

0 1




+ s




−2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2




= IM−1 + sTM−1,

where IM−1 is the unite matrix of order (M −1) and TM−1 an (M −1)× (M −1)

tridiagonal matrix. It can be shown the eigenvalues of Tm−1 are

λk = −4 sin2 kπ

2M
, k = 1, 2, . . . , M − 1.

Hence the eigenvalues of A are µk = 1− 4s sin2 kπ

2M
. Therefore the equations will

be stable when

‖ A ‖2= max |1− 4s sin2 kπ

2M
| ≤ 1,

i.e.,

−1 ≤ 1− 4s sin2 kπ

2M
≤ 1, k = 1, 2, . . . , M − 1.

The left hand inequality gives

0 < s ≤ 1

2
sin2 kπ

2M
.

Hence

0 < s ≤ 1

2
.
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Stability of the BTCS :

The BTCS scheme for equation (2.7) can be written as [181]

−sun+1
i−1 + (1 + 2s)un+1

i − sun+1
i−1 = un

i + kqn
i , (2.16)

for i = 1, 2, ..., M − 1. In matrix form, for known boundary values, these give




1 + 2s −s

−s 1 + 2s −s

. . . . . . . . .

−s 1 + 2s −s

−s 1 + 2s







un+1
1

un+1
2
...

un+1
M−2

un+1
M−1




=




un
1

un
2
...

un
M−2

un
M−1




+




sun
0 + kqn

1

kqn
2

...

kqn
M−2

sun
M + kqn

M−1




,

where n = 0, 1, . . . , N − 1 and s =
h

k2 . This can be written as

(IM−1 + sT
′
M−1)U

n+1 = Un + b,

from which it follows that matrix A of equation (2.16) is

A = (IM−1 + sT
′
M−1)

−1,

where IM−1 is the unite matrix of order (M −1) and T
′
M−1 an (M −1)× (M −1)
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