

BIOLOGICAL ACTIVITIVIES OF <u>ACANTHOPHORA SPICIFERA</u> (VAHL) BORGESEN FROM PULAU GEDUNG, PENANG

by

NURUL AILI BINTI ZAKARIA

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

June 2011

ACKNOWLEDGEMENTS

(In the name of Allah, The Most Merciful and The most Gracious)

Upon completion of this research, I would like to express my gratitude to many parties. My heartfelt thanks go to my supervisor, Prof Darah Ibrahim and my co-supervisor, Assoc. Prof. Dr. Shaida Fariza Sulaiman for their unending guidance, supports and encouragements. Without their precious critics and scientific advises, I may not be able to complete this thesis on time.

I would also like to address my thankful to the University Sains Malaysia for giving me the USM fellowship as financial support throughout my study. I am also grateful to En. Hamid from School of Chemistry, En. Razak and En. Hilman from Drug Center and all staffs of Electron Microscopy (EM) Unit, USM for their great guidance and assistances. Not to forget all the lab members of Industrial Biotechnology Research Laboratory (IBRL) and Phytochemistry Laboratory, USM for their endless support in any respect during the completion of this research. Lastly, I am heartily thankful to Him for giving me such a wonderful family. I am indebted to my lovely parents, Ayahanda Zakaria Endut, Ibunda Nooriah Idris and my siblings for their loves, prayers and trust. Thank you for always being there to support me through hard and joyous times.

Nurul Aili Binti Zakaria

TABLE OF CONTENTS

ACK	KNOWL	EDGEMENTS	ii
TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES		iii	
		viii	
		X	
LIST	Г OF AB	BBREVIATIONS	xii
ABS	TRAK		xiii
ABS	TRACT		XV
CHA	APTER 1	1 INTRODUCTION	1
1.1	Acant	hophora spicifera (Vahl) Borgesen	1
	1.1.1	Morphological description	1
	1.1.2	Utilization and therapeutic values	2
	1.1.3	Phytochemical constituents and bioactivity	3
1.2 The needs of drugs from natural products		4	
1.3 Potential drugs from natural products		6	
	1.3.1	Seaweeds as source of drugs	7
1.4	Proble	em statement	9
1.5	Objec	tives of study	10
CHA	APTER 2	2 LITERATURE REVIEW	11
2.1	Fading	g miracle: The needs for new antibiotics	11
	2.1.1	Declining of antibiotics in pipeline	11
	2.1.2	Antibiotic resistance	12
	2.1.3	The emergence of diseases and infections	13
2.2	Histor	ry of antibiotic discovery	15
2.3	Types	s of antibiotics and mechanisms of action	16
	2.3.1	Antibacterial drugs	17
2.4	Antio	xidant activity	22
	2.4.1	Oxidative damage and diseases	22
	2.4.2	Natural antioxidant from algae	25

2.5	Bioactive compounds from nature	27
	2.5.1 Bioassay-guided technique for natural products	27
	2.5.2 Secondary metabolites from algae	28
2.6	Previous studies on A. spicifera	37
CHA	APTER 3 MATERIALS AND METHODS	42
3.1	Algal material	42
3.2	Preparation of algal material	43
3.3	Proximate chemical composition analysis	43
3.4	Extraction procedures	47
	3.4.1 Soxhlet extraction	48
	3.4.2 Maceration	49
3.5	Antioxidant study	51
	3.5.1 DPPH free radical scavenging activity	51
	3.5.1.1 Preparation of DPPH solution	51
	3.5.1.2 Preparation of sample	51
	3.5.1.3 DPPH free radical scavenging activity assay	51
	3.5.2 Follin- Ciocalteau phenol reagent assay	53
	3.5.3 Correlation between total phenolic contents and free radical	54
	scavenging activity	
3.6	Antimicrobial study	54
	3.6.1 Test microorganism and culture condition	54
	3.6.2 Preservation of stock cultures using agar slants	55
	3.6.3 Test for antimicrobial activity	57
	3.6.3.1 Preparation of microbial suspension	57
	3.6.3.1.1 Bacterial suspension	57
	3.6.3.1.2 Yeast suspension	57
	3.6.3.1.3 Fungal suspension	58
	3.6.3.2 Preparation of microbial seeded agar plates	58
	3.6.3.3 Preparation of sample extracts	59
	3.6.3.4 Preparation of disc extracts	59
	3.6.3.5 Disc diffusion test	59
	3.6.4 Minimum Inhibitory Concentration (MIC) assay	60

	3.6.5	Minimum Bactericidal Concentration (MBC) assay	63
	3.6.6	Determination of mechanisms of antibiosis (bacteriostatic or	63
		bactericidal)	
	3.6.7	Effect of crude methanol extract on the morphology of	64
		bacterial cells	
	3.	6.7.1 Determination of Time-kill growth curve	64
	3.	6.7.2 Structural degeneration and morphological changes of	65
		bacterial cell	
		3.6.7.2.1 Scanning Electron Microscopic (SEM) study	67
		3.6.7.2.2 Transmission Electron Microscopic (TEM) study	68
	3.6.8	Fractionation of crude methanol extract	68
	3.	6.8.1 Thin-Layer Chromatography (TLC)	68
		3.6.8.1.1 Detection of monoterpenoids	70
		3.6.8.1.2 Detection of diterpenoids	70
		3.6.8.1.3 Detection of triterpenoids	71
	3.	6.8.2 Antibacterial activity of crude methanol extract on TLC	71
		plate	
	3.	6.8.3 Column Chromatography (CC) technique	72
		3.6.8.3.1 Column packing	72
		3.6.8.3.2 Column development	73
	3.	6.8.4 Purification of fractions	74
	3.	6.8.5 Identification of active compounds	74
		3.6.8.5.1 LC-MS analysis	74
		3.6.8.5.2 GC-MS analysis	75
3.7	In-viti	ro Toxicity study	76
	3.7.1	Preparation of growth medium	76
	3.7.2	Preparation of extract	76
	3.7.3	Hatching of brine shrimp (Artemia salina)	77
	3.7.4	Brine Shrimp Lethality Test (BSLT)	78
	3.7.5	Determination of 50 % Lethality concentration (LC ₅₀)	79
3.8	Statist	tical Analysis	79

CHAI	PTER 4	RESULTS	81
4.1	Proxin	nate Chemical Composition Analysis	81
4.2	Yield of extracts		82
4.3	3 Antioxidant activity		83
	4.3.1	Total phenolic content of various A. spicifera extracts	83
	4.3.2	DPPH Free radical scavenging activity of various A.	85
		spicifera extracts	
	4.3.3	Correlation between total phenolic content and antioxidant	90
		Activity	
4.4	Antim	icrobial activity of crude extract and fraction extracts of	92
	A. spice	ifera	
	4.4.1	Determination of Minimum Inhibitory Concentration (MIC)	98
		and Minimum Bactericidal Concentration (MBC)	
4.5	Effect	of crude methanol extract on the morphology of bacterial	105
	cells		
	4.5.1	Time-kill study of bacterial cells treated with A. spicifera	105
		extract	
	4.5.2	Structural and morphological study on P. aeruginosa ATCC	108
		27853 treated with crude methanol extract of A. spicifera	
	4.5	5.2.1 Scanning Electron Microscopic (SEM) studies	108
	4.5	5.2.2 Transmission Electron Microscopic (TEM) studies	111
4.6	Bioass	ay-guided fractionation of crude methanol extract of A.	113
	spicifer	ra	
	4.6.1	Fractionation of crude methanol extract	113
	4.6	5.1.1 Thin-Layer Chromatography (TLC)	113
	4.6	5.1.2 Antibacterial activity of TLC chromatograms of	119
		crude methanol extract	
	4.6.2	Column chromatography technique	121
	4.6.3	Minimum Inhibitory Concentration (MIC) of fractions of	124
		crude methanol extract	
	4.6.4	Re-fractionation of active fractions	126
	4.6.5	Identification of active compounds	127
	4.	6.5.1 LC-MS analysis	127

	4.6.5.2 GC-MS analysis	130
4.7	In-vitro toxicity test	136

CHA	PTER 5	5 DISCUSSION	140
5.1	Proxir	nate Chemical Composition Analysis of A. spicifera	140
5.2	Extrac	ction and Yield of extracts	143
5.3	Antio	xidant activity	148
	5.3.1	Total phenolic content of various A. spicifera extracts	148
	5.3.2	DPPH radical scavenging activity of A. spicifera extracts	151
	5.3.3	Correlation between Total phenolic content and Antioxidant	156
		activity of A. spicifera	
5.4	Antim	icrobial activity of A. spicifera extracts	159
	5.4.1	Disc susceptibility test of A. spicifera extracts	159
	5.4.2	Minimum Inhibitory Concentration (MIC) and Minimum	165
		Bactericidal Concentration (MBC)	
5.5	Morpl	nological and structural effect of P. aeruginosa ATCC 27853	168
	cells t	reated with A. spicifera crude methanol extract	
	5.5.1	Time-Kill Curve study	168
	5.5.2	Scanning Electron Microscope (SEM) and Transmission	170
		Electron Microscope (TEM) study	
5.6	Bioas	say-guided fractionation of crude methanol extract of	173
	A. spi	cifera	
5.7	GC-N	IS analysis of the active compounds	176
5.8	In-vitr	ro toxicity of crude methanol extract of A. spicifera	178
CHA: FUTU	PTER URE RI	6 CONCLUSION AND RECOMMENDATION FOR ESEARCH	181
REFI	ERENC	ES	184

APPENDICES	210
PUBLICATION FROM THIS RESEARCH	216

LIST OF TABLES

Page

Table 1.1	Taxonomy of A. spicifera	2
Table 1.2	Phytochemical constituents and bioactivity of A. spicifera	4
Table 1.3	Drugs derived from algae	8
Table 2.1	Discovery of antibiotics	15
Table 2.2	Summary of antibiotics type, action and classes	18
Table 2.3	Important physiological functions that involve free radicals or	24
	their derivatives	
Table 2.4	Antioxidant evaluation of A. spicifera	27
Table 2.5	Secondary metabolites from algae	31
Table 2.6	Secondary metabolites of red algae from family,	34
	Rhodomelaceae	
Table 2.7	Previous studies on A. spicifera	37
Table 3.1	List of microorganisms used in the present study	56
Table 3.2	Summary of serial dilutions for MIC determination of crude	61
	extract	
Table 3.3	Medium and extract preparation for MIC test for fraction	62
	using micro-well broth dilution test	
Table 3.4	Parameter for GC-MS and oven for GC-MS analysis	76
Table 3.5	Summary of preparation of extract for toxicity test	77
Table 4.1	Total yield of extracts of A. spicifera from Soxhlet extraction	82
Table 4.2	Total yield of extracts of A. spicifera from maceration and	82
	solvent partition extraction	
Table 4.3	Total phenolic content of various A. spicifera extracts	84
Table 4.4	Antimicrobial activity of methanol crude extract and fraction	94
	extracts from solvent partition of A. spicifera	
Table 4.5	Antimicrobial activity of various Soxhlet extraction extracts	95
	of A. spicifera	

- Table 4.6Minimum Inhibitory Concentration (MIC) and Minimum 103Bactericidal Concentration (MBC) and mode of antibiosis of
various A. spicifera extracts against selected bacterial strains
studied
- Table 4.7
 Detection of terpenoids of crude methanol extract of A.
 114

 spicifera
- Table 4.8Retention factor (Rf) values of detected spots of crude117methanol extract
- Table 4.9Retention value (Rf) of fractions from crude methanol extract122fractionated using column chromatography technique
- Table 4.10Minimum Inhibitory Concentration (MIC) values of fractions126derived from crude methanol extract tested againstP.aeruginosa ATCC 27853^a
- Table 4.11Sub-fractions of af14 developed using hexane: ethyl acetate127(1:19,v/v) as solvent system
- Table 4.12Characteristic features of compound isolated from aff2 of A.132spicifera by GC-MS
- Table 4.13Structure of compounds identified from aff2 of A. spicifera133using GC-MS

LIST OF FIGURES

Page

Figure 1.1	Acanthophora spicifera (Vahl) Borgesen	1
Figure 1.2	Chemical structure of phycocyanin bilin chromophore	7
Figure2.1	Formation of reactive oxygen species (ROS) and its derivatives	23
Figure 3.1	Sampling site of Acanthophora spicifera	42
Figure 3.2	Diagrammatic representation of Soxhlet extractor	48
Figure 3.3	Diagram of solvent partitioning extraction	50
Figure 3.4	Overall flow chart of analysis of <i>A. spicifera</i> carried out in the present study	80
Figure 4.1	Gallic acid standard curves for determination of total phenolic content of <i>A. spicifera</i> using Folin-Ciocalteau assay	84
Figure 4.2	DPPH free radical scavenging activity of various A. spicifera extracts	87
Figure 4.3	EC ₅₀ of chloroform extract	89
Figure 4.4	Linear correlations between total phenolic content and antioxidant activity of <i>A. spicifera</i> extracts	91
Figure 4.5	Antibacterial activity of crude methanol extract on MRSA	93
Figure 4.6	Minimium Inhibitory Concentration (MIC) assay of <i>A. spicifera</i> crude methanol extract on <i>P. aeruginosa</i> ATCC 27853	100
Figure 4.7	Comparison of turbidity of MICs test tubes of crude methanol extract of <i>A. spicifera</i> against <i>P. aeruginosa</i> ATCC 27853 with positive and negative control	101
Figure 4.8	Minimum Bactericidal Concentration (MBC) of <i>P. aeruginosa</i> ATCC 27853 treated with crude methanol extract	102
Figure 4.9	Killing curve of <i>P. aeruginosa</i> ATCC 27853 treated with crude methanol extract at various concentration from 250-500 μ g mL ⁻¹	105
Figure 4.10	SEM micrograph of <i>P. aeruginosa</i> ATCC 27853 cells after treated with crude methanol extract of <i>A. spicifera</i>	109
Figure 4.11	TEM micrograph of <i>P. aeruginosa</i> ATCC 27853 cells after treated with crude methanol extract of <i>A. spicifera</i>	112

- Figure 4.12 Chromatograms of methanolic extract of *A. spicifera* 116 developed using various hexane: ethyl acetate ratio
- Figure 4.13 Antibacterial activities of TLC chromatogram of crude 120 methanol extract using hexane:ethyl acetate (12:8) as solvent system against the selected bacteria
- Figure 4.14 Minimum Inhibitory Concentration (MIC) of fractionated 125 crude methanol extract using micro-well dilution assay
- Figure 4.15 LC-MS chromatogram of the active subfraction of aff2 (a) 128 and positive ion ESI mass spectrum of its compounds (c,d)
- Figure 4.16 Gas chromatogram of sub-fraction aff2 of *A. spicifera* 131 separated using HP-5MS column
- Figure 4.17 Toxicity of *A. spicifera* methanol extract against brine 138 shrimps (*A. salina*)

LIST OF ABBREVIATIONS

AOA	Antioxidant activity
BHT	Butylatedhydroxy toluene
CC	Column Chromatography
CFU	Colony Forming Unit
DMSO	Dimethyl sulfoxide
DPPH	Diphenylpicryl hydrazil
EARSS	European Antimicrobial Resistance Surveillance System
ECDC	European Center for Disease Prevention and Control
EC_{50}	50% efficient concentration
ESI	Electron spray ionization
ESCMID	European Society of Clinical Microbiology and Infectious Diseases
EUCAST	European Committee for Antimicrobial Susceptibility Testing
GAE	Gallic acid equivalent
HMDS	Hexamethyldisilazine
IDSA	Infectious Diseases Society of America
INT	Tetrazolium salt
L-ASC	L-Ascorbic acid
LC-MS	Liquid chromatography mass spectrometry
LC ₅₀	50% lethal concentration
MBC	Minimum Bactericidal Concentration
MIC	Minimum Inhibitory Concentration
MOA	Mechanism of Antibiosis
NA	Nutrient Agar
NIAID	National Institute of Allergy and Infectious Disease
PDA	Potato Dextrose Agar
TLC	Thin Layer Chromatography
TPC	Total phenolic content
WHO	World Health Organization

AKTIVITI BIOLOGI <u>ACANTHOPHORA</u> <u>SPICIFERA</u> (VAHL) BORGESEN DARI PULAU GEDUNG, PULAU PINANG

ABSTRAK

Lapan ekstrak daripada Acanthophora spicifera yang diperolehi dari dua kaedah pengekstarakan menggunakan pelarut yang bebeza kekutuban telah digunakan. Ekstrak tersebut di uji untuk menentukan aktiviti antimikrob, antioksidan, ketoksikan in-vitro dan juga kandungan sebatian fenolik. Kebanyakan ekstrak menunjukkan aktiviti antibakteria ke atas bakteria kajian. Tiada aktiviti antikulat ditunjukkan terhadap kulat kajian. Ekstrak kasar metanol mempamerkan aktiviti antibakteria yang menarik terhadap bakteria Gram-negatif, Pseudomonas aeruginosa ATCC 27853 dengan zon perencatan sebanyak 11.0 mm, nilai MIC 250 μg mL⁻¹ dan nilai MBC 500 μg mL⁻¹. A. spicifera juga menunjukkan aktiviti antioksidan. Ekstrak kloroform menunjukkan aktiviti antioksidan tertinggi dengan 50% penyingkiran radikal bebas sebanyak 789.0 μg mL⁻¹, manakala piawai yang digunakan iaitu quercetin sebanyak 3.361 μ g mL⁻¹. Manakala untuk kandungan total fenolik, ekstrak etil asetat menunjukkan kandungan fenolik tertinggi sebanyak $(40.58 \pm 1.16 \ \mu g \ GAE \ mg^{-1} \ ekstrak \ kering)$. Kesemua ekstrak yang diuji juga menunjukkan korelasi linear positif di antara aktiviti antioksidan dan kandungan fenolik. Ekstrak kasar methanol juga mempamerkan aktiviti ketoksikan yang signifikan terhadap anak udang, Artemia salina dengan nilai kepekatan maut 50% akut pada 635.47 µg mL⁻¹dan kronik pada 275.72 µg mL⁻¹. Ekstrak ini kemudiannya, difraksi menggunakan kromatografi turus gel silika dengan menggunakan campuran pelarut heksana dan etil asetat sebagai fasa bergerak dan menghasilkan 15 fraksi (af1-af15) keseluruhannya. Hanya tiga fraksi (af14, af15, af7) didapati aktif terhadap *P. aeruginosa* ATCC 27853 dengan nilai MIC di antara 125-250 μ g mL⁻¹. Oleh kerana kekurangan hasil fraksi af15 dan af7, hanya fraksi aktif af14 sahaja yang dilakukan pemfraksian lanjut. Hasil sub-fraksi (aff2) daripada pemfraksian fraksi af14 yang aktif terhadap *P. aeruginosa* ATCC 27853 dengan nilai MIC 75 μ g mL⁻¹ kemudiannya dianálisis dengan LC-MS dan GC-MS. Hasil análisis GC-MS mendapati kehadiran sebatian hidrokarbon, asid lemak, ester asid aromatik dikarbosilat, sebatian benzena dan lain- lain. Walau bagaimanapun, sebatian aktif yang terpisah dari aff2 tidak dapat dikenalpasti berdasarkan analisis LC-MS.

BIOLOGICAL ACTIVITIES OF <u>ACANTHOPHORA SPICIFERA</u> (VAHL) BORGESEN FROM PULAU GEDUNG, PENANG

ABSTRACT

A total of eight extract of Acanthophora spicifera extracted using two different methods using solvents of different polarity, were used throughout this study. These extracts were assayed to determine the antimicrobial activities, antioxidant activities, in-vitro cytotoxicity and total phenolic contents. Most of the extracts exhibited antibacterial activity against the tested bacteria. Meanwhile, no antifungal activity was observed on tested fungi. Among the extract, crude methanol extract demonstrated promising antibacterial activity against Gram-negative Pseudomonas aeruginosa ATCC 27853 with inhibition zone of 11.0 mm, MIC values of 250 µg mL⁻¹ and MBC value of 500 µg mL⁻¹. A. spicifera also exhibited antioxidant properties. Chloroform extract was found to exhibit the highest DPPH free radical scavenging activity with LC_{50} of 789 µg mL⁻¹, while standard quercetin used is 3.361 µg mL⁻¹. Meanwhile, for total phenolic contents, ethyl acetate extract gave the highest phenol contents (40.58 \pm 1.16 µg GAE mg⁻¹ dry extract). All extracts also showed good positive linear correlation between the antioxidant activities and total phenolic content, proving the role of phenolics as the main compounds for antioxidants. Crude methanol extract also exhibited significant toxicity effects on brine shrimp, Artemia salina with LC₅₀ value obtained for acute and chronic was 635.47 μ g mL⁻¹ and 275.72 μ g mL⁻¹, respectively. The crude methanol extract was later fractionated using silica gel column chromatography using a mixture of hexane and ethyl acetate as the mobile phase, yielding a total of 15 fractions (af1-af15). Only three fractions (af14, af15 and af7) were found active against *P. aeruginosa* ATCC 27853 with the MICs ranging from 125-250 μ g ml⁻¹. However, due to inadequate amount of fractions collected (af15 and af7), only active fraction of af14 was further fractionated. Sub-fraction (aff2) of the active fraction of af14 which active against *P. aeruginosa* ATCC 27853 with the MIC of 75 μ g mL⁻¹ was analyze using LC-MS and GC-MS. The GC-MS analysis has identified the presence of hydrocarbons, fatty acids, aromatic dicarboxylate acid ester, benzene compounds and others. However, the active compounds were not being able to be identified based on mass spectral data from LC-MS analysis.

CHAPTER 1

INTRODUCTION

1.1 Acanthophora spicifera (Vahl) Borgesen

1.1.1 Morphological description

Figure 1.1 Acanthophora spicifera (Vahl) Borgesen

Acanthophora spicifera (Vahl) Borgesen is a common tropical and subtropical red alga (Kilar and McLachlan, 1986). It is an erect marine plant with growing height up to approximately 25-40 cm tall. It is also known as spiny seaweed due to the presence of numerous spines on its branches. The spines are arranged in radial order at all the branches except the main axes. The branches (2-3 mm in wide) are solid with a cylindrical and sharp tip ends. This algal has a wide spread distribution as it can grow either in a scattered clump as free floating algae or attached to other substrates using the holdfast, such as on reefs and intertidal habitat area. *A. spicifera* also have a high tolerance against strong wave and water motion in which influences the size and morphology (colours and length of thalli). It can appear to be as shades of red, yellow, orange and brown. In intertidal and high water motion areas, the colours are normally darker, while lighter in shallow areas with low water motion (University of Hawaii, 2001). This alga belongs to the largest Rhodophyta family, Rhodomelaceace (Table 1.1).

Table 1.1 Taxonomy of A. spicifera

Kingdom	Plantae
Subkingdom	Biliphyta
Phylum	Rhodophyta
Subphylum	Eurhodophytina
Class	Florideophyceae
Order	Ceramiales
Family	Rhodomelaceae
Genus	Acanthophora
Species	Acanthophora spicifera

(Source: Jong *et al.*, 1999)

1.1.2 Utilization and therapeutic values

In Fiji, *A. spicifera* is widely used in diets (Payri *et al.*, 2000; South, 1993) as it generally exhibited non-starch polysaccharides, minerals and vitamins (Devi *et al.*, 2009). While, in some part of Philippines (Trono, 1999), and Indonesia (Chorus and Bartram, 1999), *A. spicifera* are collected and eaten either as fresh raw vegetables or blanched in salads. In India, *Acanthophora* sp. is used as flavors in preparation of porridge (Dhargalkar and Pereira, 2005). Trono (1999) stated that, young shoots of *A. spicifera* serve as food thickening and flavouring agent in cooking, mainly in

soups. It was also reported that *A. spicifera* contain carrageenan, which is a suitable ingredient to be used in foods and non-foods products (Devi *et al.*, 2009).

As for this local alga, little is known due to the limited research performed. According to Burkhill (1966), the consumption of *A. spicifera* as foods has been recorded in Philippine and Java (Indonesia) but not in Malaya. Also, none of the previous research outlined the usage of this local red alga for traditional medicine. Despite the lack of information regarding the utilization of this algae as foods and traditional medicine, various studies conducted in other countries have recognized the therapeutic values of *A. spicifera* for its antibiotic properties against various microorganisms (Gupta *et al.*, 1991; Tuney *et al.*, 2006), antiviral (Duarte *et al.*, 2004) and as an anti-fertility agent (Wahidulla *et al.*, 1986). *A. spicifera* is also used as feeding material for abalone (Phang, 2006).

1.1.3 Phytochemical constituents and bioactivity

Although study of *A. spicifera* on its chemical constituents is still a few in Malaysia, various previous study have reported the chemical constituents of *A. spicifera* studied in other countries. This bioactive compound was also evaluated using bioassays to investigate the biological properties. Some of the previous studies conducted on the phytochemical constituents and bioactivity of *A. spicifera* is shown in Table 1.2

Bioactive compounds	Bioactivity	References
Sterols: 6-hydroxycholest-4-ene- 3-one, cholest-4-ene-3, 6-dione, 5 alpha-cholestane-3, 6-dione	Cytotoxicity against human cancer cell line	Han <i>et al</i> . (2009)
Flavonoids: kaempferol $3-O-\alpha$ - <i>L</i> -fucopyranoside and quercetin $3-O-\alpha$ - <i>L</i> -fucopyranoside	Antibacterial activity, antioxidant activity	Zheng et al. (2010)
Sulfated agaran	Antiviral activity	Duarte et al. (2004)

 Table 1.2 Phytochemical constituents and bioactivity of A. spicifera

1.2 The needs of drugs from natural products

The uses of medicinal plants and herbs for therapeutic purposes have long started before the discovery of antibiotics by ancient peoples. The ancient peoples relies on their immune system and also organic and inorganic natural remedies namely, honey, molds, wine, vinegar, copper and others to treat infections and wounds (McKenna, 1998). The uses of the herbs and plants for medicinal purposes were widely practiced especially in rural area, where 65-80% of the world's population relies on it to treat ailments such as open wounds and others (WHO, 2002). Unfortunately, not all infections can be cured using the traditional medicines, thus the needs of antibiotics take place.

The rise of antibiotic resistance bacteria also added to the crucial needs of drugs from nature. According to Sorum (2006), one of the major outbreaks of the emergences of resistance strains was marked by *Shigella* sp. during the epidemics outbreak of bacillary dysentery in Japan. In 1950s, plasmid that contained the resistant gene, known as R-plasmid was found residing in the dysentery agent, *Shigella* sp. which was reported to be resistant to sulfonamide antibiotics. Sulfonamides are the most common antibiotics used to treat dysentery during that time. The capability of *Shigella* sp. to transfer the R-plasmid to other, made the treatment with sulfonamides failed and hence resulted in increasing the resistant strains. Later, the resistance of *Shigella* sp was widespread in Japan whereby, they were found resistant against four types of antibiotics, namely sulfonamides, chloramphenicol, tetracycline and streptomycin. As a consequent, the choices of effective treatments become narrow. This rapid increased of the resistant strains may overhead the drug discovery itself. Thus, it has alarmed researchers in continuous searching for alternative and novel antibiotics especially form natural products for the better future.

Moreover, the health concerns regarding toxicity, carcinogenicity and potential hazards of synthetic antibiotics and antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) to living organisms, have triggered the search for new compounds from natural derivatives as a replacement which is naturally safer than the chemically synthesized compounds (Safer and al-Nughamish, 1999).

1.3 Potential drugs from natural products

Natural products from plants, microorganisms and algae are undoubtedly the most important sources in drug discoveries. United States Food and Drug Administration (FDA) reported in Annual Reports of Medical Chemistry from 1983-1994, that 60%-75% drugs in infectious diseases and cancer were derived from natural origin (Newman *et al.*, 2003). Among the natural products, algae have become the interest of current trends in drugs research as they exhibited numerous active compounds with promising biological activities. This remarkable active compounds secreted by the algae are known as secondary metabolites as they are not involved in the basic or primary functions of life (Cimino and Ghiselin, 2001). Marine algae secreted wide varieties of secondary metabolites such as peptides, terpenes, indoles, polyketides, volatile halogenated hydrocarbons and others (Butter and Sandy, 2009). Various studies have been conducted over the past decades to validate the biological properties of these secondary metabolites such as antimicrobial, antioxidant, antifouling, antiproliferative, antitumor and cytotoxic activity of the algae crude extracts (Blunt *et al.*, 2009).

Algae also produced halogenated compounds that play various roles such as, a defense mechanism against grazer and pathogens, against microorganism infections, for competing for space, mate recognition and prey detection (Goodwin *et al.*, 1997; Duarte *et al.*, 1999; Paul and Ritson-Williams, 2008; Hay, 2009). Studies on the importance of these secondary metabolites as a defense mechanism might be useful in searching for new drugs against pathogenic microorganism. Besides, it might become a platform to the development of potential novel drugs.

1.3.1 Seaweeds as source of drugs

Seaweeds have been known as one of the richest and most promising sources of bioactive secondary metabolites from sea which represent about 9% of compounds found from the sea (Baslow, 1969; Smith, 1977). These bioactive compounds with various structures and novel mechanisms of action exhibited wide range of biological functions namely, antimicrobial, antioxidant, antifouling, anti-inflammation and others. Thus, the search for new and natural alternative drugs with the algae as the focused of studies have been the interest among researchers worldwide. Several example of drugs derived from algae was shown in Table 1.3

An example of an interesting drugs discovered from algae is Phycocyanin (Pc) (Figure 1.2). Phycocyanin is a phycobiliprotein that is found as major pigment in *Spirulina* sp. (blue green algae) which have been reported to exhibit various pharmacological properties such as antioxidant activity, anti-inflamatory, neuroprotective and hepaprotective effects (Romay *et al.*, 2003). Finding by Romay *et al.* (2003) reported that, Pc was effective in scavenging alkoxyl, peroxyl and hydroxyl radicals and also able to react with other oxidants like peroxinitrate. Pc also reduces inflammatory effects by reducing edema and prostaglandin level in the inflamed tissues. Due to its nutritional and therapeutical values, Pc is used as dietary supplements.

Figure 1.2 Chemical structure of phycocyanin bilin chromophore

Table 1.3 Drugs derived from algae

Drug	Structure	Pharmacological function	Derivatives
Phenethylamine	NH ₂	Antidepressants, Stimulants, hallucinoges	Gracilaria bursa-pastoris, Ceramium rubrum
Tyramine	HO NH ₂	Stimulants for central nervous system	Laminaria sacclarina, Chondrus crispus
Dopamine	HO OH NH2	Hormon, neurotransmitter, tread cardiovascular and kidney disorder	Monostroma fuscum
Martensine A	CH H CON	Antibacterials	Martensia fragilis
Fragilamide		Antioxidants	Martensia fragilis

(**Source:** Guven *et al.*, 2010)

1.4 Selection of Acanthophora spicifera

In Malaysia, there is a few study conducted on the nutritional value compositions and biological properties of *Acanthophora spicifera* namely proximate composition analysis, antimicrobial activity, antioxidant activity and *in-vitro* toxicity on *Artemia salina*. Studies conducted in Malaysia are more focusing on the ecological study (Phang, 1984; Phang, 1998; Mijan Uddin *et al.*, 2007). Whereby, other biological studies of *A. spicifera* have been reported from other countries like Brazil (Ballantine *et al.*, 1987; Zubia *et al.*, 2007), and India (Wahidulla *et al.*, 1986; Ganesan *et al.*, 2008). Therefore, the initiative is taken to study the biological properties of *A. spicifera* from Malaysian water. Findings of this study will add new information on the proximate compositions, antimicrobial activity, antioxidant activity, phenolic content and *in-vitro* toxicity on *A. salina* of the algae.

1.5 Objectives of study

The aims of the present study are as follows:

- 1. to extract bioactive compounds from *Acanthophora spicifera* with two different extraction methods; Soxhlet and maceration followed by solvent partition using various solvents, and also to screen antimicrobial and antioxidant activities, as well as total phenolic contents of the extracts.
- to study the *in-vitro* toxicity on *Artemia salina*, as well as the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extracts.
- to study the structural and morphological degeneration of the selected bacterial strain treated with the active extract using spectroscopy methods: Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM).
- 4. to fractionate the active extract using bioassay guided fractionation.
- 5. to identify the active compound using LC-MS and GC-MS.

CHAPTER 2

LITERATURE REVIEW

2.1 Fading Miracle: The Needs for New Antibiotics

2.1.1 Declining of antibiotics in pipeline

Despite the glory of the antibiotic discovery over the past 60 years, rapid outgrowth of drug resistance pathogens to most commercialized antibiotics have slowly overshadowed the success. The on going raised of the resistance has faded the effectiveness of antibiotics which gave difficulty in treating infectious diseases (Levy, 1992; Walsh and Amyes, 2004). Tenover (2006) also reported that, there is a rapid increased in the number of resistant bacteria and diversity of mechanism of resistance throughout the years which demanded the needs for new antibiotics especially for clinical fields.

Unfortunately, the development of new and effective antibiotics is declining. This scenario can be seen as reported by FDA database, where there was a decremented of 56% (from 16 to 7) of new antibacterial agent over the past 20 years (1998-2002 compared to 1983-1987). Since 1998, only 2 out of 9 new classes of antibacterial drugs (Linezoid, approved in 2000 and Daptomycin approved in 2003) possessed novel mechanism of actions (ECDC, 2009). Besides, in 2004, only 5 (1.6%) of the drugs developed by 15 major pharmaceutical companies were antibiotics in which none of them were novel class and ineffective against Gram-negative infections (Spellberg *et al.*, 2004). Thus, continuous search for effective and novel antibiotics

is essential to compliment and to keep pace with the drying up of antibiotics in the current pharmaceutical industry.

2.1.2 Antibiotic resistance

The term "antibiotic resistance" refers to the ability of microorganism to evolve or withstand the effect of antibiotics (Levy, 1997). Antibiotic resistance was not a new phenomenon, because various studies have reported the spread of the resistance. According to Martinez (2009) antibiotic resistance is an evolutionary process resulted from natural selection which is a good example of Darwinian struggle for live theory. The theory stated that, bacteria can adapt and develop resistant towards the existing antibiotics over time in order to survive in the presence of environmental stress (such as excessive used and dumping of the antibiotics), where the strong bacteria continue to grow and spread the resistant genes (Wright, 2007). These resistance genes widespread were the results of mutations during the replication process or through acquisition of DNA plasmid from other bacteria (Dzidic and Bedekovic, 2003). These genes can be acquired by transferring of DNA plasmid to others via various mean such as conjugation, transformation and transduction process (McManus, 1997). The DNA plasmids hold the key to resistance as it encodes the genes or traits responsible for mechanism of resistance. The resistance in bacteria can evolved naturally over times due to certain factors such as, their naturally high growth rate (fast replication time), ability to acquire resistance from other bacteria (Overbye and Barrett, 2009), alteration of target site for the antibiotics and pumping out the antibiotics from the cells (Mendonco-Filho, 2006).

In certain case, multi-drug resistance can occur. This situation occurs as bacteria become resistance to more than one class of antibiotic introduced, which resulted from the transfer of the resistance genes between bacteria (ECDC, 2009). Hence, the risen of these mutants bacteria with the enhance ability to survive will continuously be emerging (IDSA, 2004; Cars, 2008). Some examples of the frequent antibioticresistance Gram-positive bacteria are methicillin-resistance *Staphylococcus aureus* (MRSA) and vancomycin-resistant *Staphylococcus aureus* (Woodford, 2005). *Pseudomonas aeruginosa* is an example of antibiotic-resistance Gram-negative bacteria which was found to be resistant to most antibiotics such as β -lactams and carbapenem (Slama, 2008).

According to Dzidic and Bedekovic (2003), multiple drugs resistance has become a global concern especially in treating nosocomial related infections. It becomes the major concern in patients with weak immune systems such as HIV/AIDS patients, critical care unit patients and also severely ill patients. Beside, European Antimicrobial Resistance Surveillance System (EARSS) (2007) also reported that, it was estimated in 2007 that approximately 25 000 patients died from infections resulted from the frequent antibiotic-resistant bacteria in Norway, Iceland and Europe.

2.1.3 The emergence of diseases and infections

Relationship between emergence of new diseases and antibiotic resistance bacteria can be viewed as liner and in dependable manner, wherein the increased number of resistance bacteria towards antibiotics has resulted in the emergence of new diseases and pathogens (Levy, 1997). Thus, the fight between human and pathogens have never been resolved. Today, increasing infections caused by the resistant pathogens have become one of the major public threats. According to WHO (2004), infectious diseases are the second major caused of death worldwide following cardiovascular diseases which accounted for 26% of 57 million deaths worldwide in 2002. The word "emergence" can be defined as newly appeared or already existed disease and infections in population and which are gradually increasing (Morse and Schluederberg, 1990; Morse, 1993). Some examples of current leading killing infectious diseases worldwide are HIV/AIDS, malaria and tuberculosis. Whereby, new infections currently reported were the Severe Acute Respiratory Syndrome (SARS), West Nile virus and influenza viruses (NIAID, 2007).

There are numerous factors that contributed to their emergence such as, biotic and abiotic factors. Biotic factors that might involves are the microbial adaptation and evolution to acquire the resistant genes via gene transfer (D' Agata *et al.*, 2008) and also immune response of the host cell while, misuse and uncontrolled usage of antibiotics in the treatment of human infections are the abiotic factors that leads to the emergence of the resistance strains and infections (Idomir *et al.*, 2009).

The rise of resistance and emergence of new diseases and infections worldwide, leads to the higher health care costs especially in treating the nosocomial infections. This is because, more new and expensive drugs are required as well as longer treatment and diagnosis needed in which results in prolonged stays in the hospital. Thus, there is a crucial need for continuous research. Understanding the mechanism of reaction between the host and pathogens as well as collecting the valuable data are required in order to develop and improve the treatments, vaccines and diagnostics.

2.2 History of antibiotic discovery

In a broad term, antibiotics are a type of antimicrobial drug which are effective in small concentration to inhibit or kills the growth of microorganism including bacteria, viruses, fungi, yeasts, protozoa, and parasites (IDSA, 2004). The development of antibiotics throughout the years is shown in Table 2.1.

Year	Antibiotic discovery
1930s	Sulfonamides
1940s	Aminoglycosides
	Beta-lactams
1950s	Chloramphenicol
	Tetracyclines
	Macrolides
	Glycopeptides
1960s	Strepogramins
	Quinolones
	Lincosamides
1970s	Trimethoprim
1980s	-
1990s	-
2000s	Lipopeptides
	Oxazolidinones

Table 2.1 Discovery of the antibiotics

Source: ECDC (2009).

The golden age of antibiotics started with the discovery of sulfonamides, penicillin and streptomycin in 1930s-1940s. Penicilin was the first beta-lactams (β -lactam) discovered by Alexander flaming in 1940s, from *Penicillium* sp.. This success was then followed by the development of chloramphenicol, tetracylines, macrolides and glycopeptides in 1950s. The development of antibiotics was stable enough between 1930s to 1970s, as most of the antibiotics were discovered (Jagusztyn-Krynicka and Wyszynska, 2008). The antibiotic era started to enter declining phase at late 1970s to early 2000s, where only two classes of antibiotics (daptomycin and linezolid) were discovered. Daptomycin, was a cyclic lipopeptide derived from *Streptomyces roseosporus* while, linezolid was a synthetic antibiotic belongs to oxazolidinones. Both drugs were found effective against bacteria that were resistant against methicilin or vancomycin antibiotics (Pucci, 2006; Wright, 2007).

2.3 Types of antibiotics and mechanisms of action

There are three source of origin where antibiotics are derived from, which are natural, semi-synthetic and synthetic. The chemically modified natural antibiotics (semi-synthetic and synthetic) are done to enhance its efficacy (Madigan *et al.*, 2009). Most of the antibiotics produced today are derived from natural products (Newman and Cragg, 2007). These types of antibiotics can be classified into different classes according to their mode of actions, which varies between classes. Some of the major classes of antibiotics are β -lactams, tetracyclines, macrolides, and aminoglycosides.

Besides, antibiotics also can be classified according to their target group of microorganisms such as antibacterial, antifungal and antiviral agents (Sasidharan, 2006). Moreover, spectrum of activity of the antibiotics could also be used for classifications which are either broad or narrow spectrums. Broad spectrum antibiotics are able to react active against wide range of microorganisms (both Gram-positive and Gram-negative bacteria) whereas, a narrow spectrum antibiotics only target a specific group of microorganism (either Gram-positive or Gramnegative bacteria). An effective antibiotic must have a good selective toxicity, where it only causes harm to the target microbes and not the host cells.

2.3.1 Antibacterial drugs

Antibacterial drugs only exert their effect on bacteria. The antibacterial antibiotics are classified based on their mode of action either bacteriostatic or bactericidal. Bacteriostatic antibiotics act by inhibiting the growth of bacteria wherein, bactericidal antibiotics kill bacteria. Different types of antibacterial drugs have different mechanism of actions. Generally, there are five mechanisms which are inhibition of cell wall synthesis, inhibition of protein synthesis, interference in metabolic pathway, nucleic acids synthesis and also disrupting the cell membrane. The different classes of antibiotics and summary of the mechanism action are shown in Table 2.2.

Class	Drug	Derivation	Species range	Primary target	Pathway affected
<i>Fluoroquinolones</i> DNA synthesis inhibitor	Nalidixic acid, ciprofloxacin, levofloxacin and gemifloxacin	Synthetic	Aerobic Gram- positive and Gram- negative species, some Anaerobic Gram-negative species (<i>Clostridium</i> <i>perfringes</i>) and <i>Mycobacterium</i> <i>tuberculosis</i>	Topoisomerase II (DNA gyrase), topoisomerase IV	DNA replication, SOS response, cell division, ATP generation, TCA cycle, Fe–S cluster synthesis, ROS formation, and envelope and redox-responsive two-component systems
<i>Trimethoprim–</i> <i>sulfamethoxazole</i> DNA synthesis inhibitor	Co-trimoxazole (a combination of trimethoprim and sulfamethoxazole in a 1:5 ratio)	Synthetic	Aerobic Gram- positive and Gram- negative species	Tetrahydrofolic acid synthesis inhibitors	Nucleotide biosynthesis and DNA replication
<i>Rifamycins</i> RNA synthesis inhibitor	Rifamycins, rifampin and rifapentine	Natural and semi- synthetic forms of ansamycins (derived from <i>Streptomyces</i> <i>mediterranei</i>)	Gram-positive and Gram-negative species, and Mycobacterium tuberculosis	DNA-dependent RNA polymerase	RNA transcription, DNA replication and SOS response

Table 2.2 Summary of antibiotics type, action and classes (Dzidic *et al.*, 2008; Kohanski *et al.*, 2010)

Table 2.2 Continued

Class	Drug	Derivation	Species range	Primary target	Pathway affected
β-lactams*					
Cell wall synthesis inhibitors	Penicillins (penicillin, ampicillin, oxacillin), cephalosporins (cefazolin, cefoxitin ceftriaxone, cefepime) and carbapenems (imipenem)	Natural and semi- synthetic forms of carbonyl lactam ring- containing azetidinone molecules (from <i>Penicillum notatum</i> , <i>Cephalosporium</i> <i>acremonium</i> and <i>Streptomyces cattleya</i>)	Aerobic and anaerobic Gram-positive and Gram-negative species	Penicillin-binding Proteins	Cell wall synthesis, cell division, autolysin activity (regulated by LytSR–VncRS- component system), SOS response, TCA cycle, Fe–S cluster synthesis, ROS formation, and envelope and redox- responsive two- component systems
Glycopeptides,					1 5
glycolipopeptides					
Cell wall synthesis inhibitor	Vancomycin; teicoplanin	Natural and semi- synthetic forms of amino sugar-linked peptide chains (for glycopeptides) or of fatty acid-bearing, amino sugar-linked peptide chains (for glycolipopetides) derived from actinobacteria	Gram-positive species	Peptidoglycan units (terminal d-Ala-d-Ala dipeptide)	Cell wall synthesis, transglycosylation, transpeptidation and autolysin activation (VncRS two- component system)

* Drug efficacy can vary across species range based on drug generation. ‡When used as a combination of pristinamycin I and pristinamycin II.

Table 2.2 Continued

Class	Drug	Derivation	Species range	Primary target	Pathway affected
<i>Lipopeptides</i> Cell wall synthesis inhibitors	Daptomycin and polymixin B	Natural and semi- synthetic forms of fatty acid-linked peptide chains (from <i>Streptomyces</i> <i>roseosporus</i> and <i>Bacillus polymyxa</i>)	Gram-positive species (daptomycin), Gram-negative species (polymixins)	Cell membrane	Cell wall synthesis and envelope two- component systems
<i>Aminoglycosides</i> Protein synthesis inhibitors	Gentamicin, tobramycin, streptomycin and kanamycin	Natural and semi- synthetic forms of amino sugars (- mycins from <i>Streptomyces</i> spp. and-micins from <i>Micromonospora</i> sp.)	Aerobic Gram- positive and Gram- negative species, and Mycobacterium tuberculosis	30S ribosome	Protein translation (mistranslation by tRNA mismatching), Electron transport chain, SOS response, Tricarboxylic acid cycle, Fe–S cluster synthesis, Reactive oxygen species formation, and envelope and redox-responsive two-component systems
<i>Tetracyclines</i> Protein synthesis inhibitors	Tetracycline and doxycycline	Natural and semi- synthetic forms of four-ringed polyketides (from <i>Streptomyces</i> <i>aureofaciens</i> and <i>Streptomyces</i> <i>rimosus</i>)	Aerobic Gram- positive and Gram- negative species	30S ribosome	Protein translation (through inhibition of aminoacyl tRNA binding to ribosome)

Table 2.2 Continue	b
Table 2.2 Continues	J

Class	Drug	Derivation	Species range	Primary target	Pathway affected
<i>Macrolides</i> Protein synthesis inhibitors	Erythromycin and azythromycin	Natural and semi- synthetic forms of 14- and 16 membered lactone rings (from <i>Saccharopolyspora</i> <i>erythraea</i> and <i>Streptomyces</i> <i>ambofaciens</i>)	Aerobic and anaerobic Gram-positive and Gram-negative species	50S ribosome	Protein translation (through inhibition of elongation and translocation steps) and free tRNA depletion
** <i>Sulfonamides</i> Metabolic pathway inhibitor	Sulfamethoxazole, trimethoprim	Synthetic	Aerobic Gram- positive and Gram- negative species	Folate synthesis	Biosynthesis of nucleotides (building block of DNA and RNA)

Source: **Dzidic et al. (2008); Kohanski et al. (2010)

2.4 Antioxidant activity

Antioxidant is referred to the compounds or substances that are able to prevent or minimize oxidative damages to the body tissues (Scheibmeir *et al.*, 2005). Generally, they are two types of antioxidant which are natural and synthetic antioxidant. Natural antioxidants are generally refers to the compounds which originated from natural products such as phenolics, nitrogen compounds and carotenoids (Nandita and Ranjini, 2004). Synthetic antioxidants are commonly used in food processing as food preservatives (Zhang *et al.*, 2010). Most common commercialized synthetic antioxidant like butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are used to prolong the storage life-span of food.

Antioxidant can be classified into two categories, based on their mechanism of action which is chain-breaking antioxidants and preventive antioxidant. The chainbreaking antioxidant acts by breaking the formation chain of the free radical by giving up an electron to the free radical and stabilize the free radicals. On the other hand, the preventive antioxidants inhibit or delay the oxidation process by scavenging the reactive oxygen species. There are three crucial enzymes needed in scavenging the reactive species namely, superoxide dismutase, catalase and glutathione (Scheibmeir *et al.*, 2005).

2.4.1 Oxidative damage and diseases

Free radical denotes to any atoms with a single unpaired electron in the outermost shell that formed from the splitting of the weak bonds (Gutteridge and Mitchell, 1999). Free radicals are unstable and highly reactive as it tends to pair up with other electron to gain stability. The unpaired electron is responsible in causing cellular damage and disruptions of biological function by attacking macromolecules such as lipids, proteins, DNA and carbohydrates through lipid peroxidation (Kuhn, 2003; Wu and Cederbaum, 2003). Thus, presence of antioxidant in the body will helps in combating the free radicals.

Free radicals are produced by aerobic metabolic reactions of the body (Gutteridge, 1994), which resulted into two major types of free radicals being produced; reactive oxygen species (ROS) and reactive nitrogen species (RNS). According to Scheibmeir *et al.* (2005), reactive oxygen species (ROS) such as superoxide anion $(O_2^{-\bullet})$ and its derivatives; hydroxyl radical ($^{\bullet}OH$) and hydrogen peroxide (H₂O₂), are produced through reduction of triplet oxygen species. This reduction reaction that occurrs during electron transport chain (ETC) process in mitochondria require an enzyme called NADPH oxidase. The hydroxyl radical ($^{\bullet}OH$) produced is responsible in damaging cell membrane and lipoproteins through lipid peroxidation that leads to artherosclerosis (Kerr *et al.*, 1996). The formation of the ROS types and its derivatives is illustrated in Figure 2.1.

Figure 2.1 Formation of reactive oxygen species (ROS) and its derivatives. (**Source:** Scheibmeir *et al.*, 2005)

Reactive nitrogen species (RNS) called nitric oxide (NO[•]) and its derivatives; nitrosonium cation (NO⁺), nitroxyl anion (NO⁻) and peroxynitrile (ONOO⁻) are produced through an oxidative process of an L-arginine terminal nitrogen atom (Palmer *et al.*, 1988; Stamler *et al.*, 1992). On the bright side, not all free radicals are bad for body. Some of the free radicals that produced by body through metabolism reactions involved in important physiological functions as shown in Table 2.3. Liver for example, use free radical for detoxification and neutrophils produced free radicals to destroy the pathogens (Lunec *et al.*, 2002).

 Table 2.3 Important physiological functions involves free radicals or their derivatives

Type of radical	Source of radical	Physiological process
Superoxide anion $(O_2^{-\bullet})$	NADPH oxidase	Control of erythropoietin
and related ROS		production; hypoxia-
		inducible functions; smooth
		muscle relaxation
Superoxide anion $(O_2^{-\bullet})$	Any source	Oxidative stress responses;
and related ROS		maintenance of redox
		homeostasis
Nitric oxide (NO [•])	Nitric oxide synthase	Smooth muscle relaxation
		(control of vascular tone);
		cGMP-dependent functions

*ROS; Reactive oxygen species. (Source: Droge, 2002).

However, unavailability of antioxidants or excessive production of free radicals in the body will lead to oxidative stress condition (Li *et al.*, 2009). This condition is responsible for development of diseases such as heart disease, congestive heart failure, Alzheimer's disease, ageing, liver damages, cancer and others (Duan *et al.*, 2006).