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KAJIAN PERBANDINGAN ANTARA LIGNIN HIDROLISIS ENZIM & ACIDOLISIS 

YANG DIASINGKAN DARIPADA PULPA TANDAN BUAH KOSONG KELAPA 

SAWIT 

 

ABSTRAK 

Kajian asas terhadap pulpa kertas yang dihasilkan daripada serabut tandan buah kosong (EFB) 

kelapa sawit (Elaeis guineensis) telah dijalankan demi mendapatkan pemahaman yang lebih 

mendalam terhadap struktur baki lignin. Baki lignin telah diasingkan daripada pulpa kraft, pulpa 

soda, pulpa kraft-anthraquinone (AQ) dan pulpa soda-anthraquinone (AQ). Dalam kajian ini, 

dua kaedah telah digunakan untuk mengasingkan baki lignin: hidrolisis asid dalam dioxane-air 

82:18 (v/v) dengan 0.1M asid hidroklorik (HCl) di bawah hidrolisis refluks dan enzimatik 

dengan mengunakan enzim selulotik komersial dalam penimbal asetat dengan pH 4.5 pada suhu 

45°C dengan goncangan yang berterusan. Masa yang diperlukan unuk prosedur hidrolisis 

enzimatik adalah lebih lama daripada prosedur hidrolisis asid. Maka, dalam eksperimen ini, 

struktur baki lignin daripada dua kaedah ini telah dibandingkan. Prosedur hidrolisis 

menghasilkan lignin yang lebih banyak berbanding dengan hidrolisis asid. Kebanyakan baki 

lignin enzimatik tidak dapat melarut dalam pelarut ujian yang biasa seperti tetrahydrofuran 

(THF), dimethyl sulfoxide (DMSO), aseton, kloroform dan sebagainya sedangkan baki lignin 

asidolisis dapat melarut dengan mudah dalam semua pelarut ujian. FTIR menghasilkan jalur 

yang hampir sama bagi kedua-dua lignin yang terasing seperti bahagian OH, bahagian CH, unit 

S, unit G dan sebagainya. Selain itu, analisis CHN menunjukkan peratusan nitrogen yang lebih 

tinggi bagi baki lignin enzimatik. Spektroskopi UV menunjukkan setiap baki lignin yang 

terasing mengandungi jenis kumpulan hidroksil fenolik yang berlainan. ˡHNMR menunjukkan 

isyarat yang terhad bagi kedua-dua lignin yang terasing atas sebab kepekatan yang rendah. 

Tambahan lagi, PyGCMS dijalankan untuk menguji perubahan dalam baki lignin. Asid lemak 

rantai panjang telah ditemui dalam baki lignin yang dipautkan bersama oleh ikatan ester. Nisbah 

S/G turut diperoleh daripada kiraan program PyGCMS. 
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COMPARISON STUDY BETWEEN ENZYMATIC HYDROLYSIS & ACIDOLYSIS 

LIGNINS ISOLATED FROM OIL PALM EMPTY FRUIT BUNCH PULPS 

 

ABSTRACT 

Fundamental research on paper pulp produced from oil palm (Elaeis guineensis) empty fruit 

bunch (EFB) fiber was carried out in this study to gain better understanding of the residual 

lignin’s structures. Residual lignin was isolated from EFB chemical pulps which are kraft pulp, 

soda pulp, kraft-anthraquinone (AQ) pulp and soda-anthraquinone (AQ) pulp. In this study, 

there are two methods used for the isolation of residual lignin: acidic hydrolysis in dioxane-

water 82:18 (v/v) with 0.1M hydrochloric acid (HCl) under reflux and enzymatic hydrolysis by 

using commercial cellulolytic enzymes in an acetate buffer with pH 4.5 at 45°C under 

continuous shaking. The time required for enzymatic hydrolysis procedure is much greater than 

the acidic hydrolysis procedure. Hence, in this experiment, the structures of residual lignin by 

these two methods are compared. Results showed that the enzymatic hydrolysis procedure gave 

lignin with higher yield than acidic hydrolysis did. Most of the enzymatic residual lignin could 

not dissolve in the common testing solvents such as tetrahydrofuran (THF), dimethyl sulfoxide 

(DMSO), acetone, chloroform and so on whereas the acidolysis residual lignin able to dissolve 

easily in all the testing solvents. Fourier transform infrared spectroscopy (FTIR) absorption 

gave almost similar band for both isolated lignin such as OH stretch, CH stretch, S unit, G unit 

and so on. Besides that, carbon hydrogen nitrogen (CHN) elemental analysis showed higher 

percentage of nitrogen for the enzymatic residual lignin compared to the acidolysis residual 

lignin. UV spectroscopy showed that each isolated residual lignin contained different type of 

phenolic hydroxyl group.  Proton nuclear magnetic resonance (ˡHNMR) showed limited signal 

and information for both isolated lignin due to low concentration. Furthermore, pyrolysis-gas 

chromatography mass spectrometry (PyGCMS) was carried out to examine the changes in the 

residual lignin. Long chain fatty acid was found in the residual lignin which linked together by 

ester bond. S/G ratio was also obtained from the calculation of PyGCMS programs. 



 

 

3 

 

CHAPTER 1   INTRODUCTION 

 

1.1 GENERAL  

Deforestation issues have always been widely debated worldwide, but a proper solution had yet 

to be discovered. Therefore, the use of non-wood lignocellulosic biomass is highly encouraged 

as an alternative to wood. Non-wood lignocellulosic biomasses are more commonly categorized 

as annual crops and agro-wastes such as kenaf, bamboo, oil palm empty fruit bunches (EFB) 

and others. 

 

Non-wood lignocellulosic materials such as oil palm EFB biomass are abundantly available as a 

by-product from the oil palm industry. The chemical and physical properties of EFB have been 

well examined, and it has also been utilized as a raw material for various fibrous-based 

products, including pulp and paper. Although various types of unbleached and bleached EFB 

pulps have been produced, the full understanding of the EFB, residual lignin structure still has 

not been identified.   

 

Lignin is a highly-polymerized organic substance in plant materials consisting primarily of 

phenyl propane units linked together in three dimension structures. It is found mostly in the 

middle lamellae between plant cell walls. The middle lamellae hold fibers together and its 

existence affects the mechanical strength properties. Lignin is a hydrophobic compound which 

is insoluble in most solvents (Smook, 1992). 
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During acidic hydrolysis, lignin is isolated by refluxing the pulp under an inert atmosphere 

(nitrogen) with acidic dioxane-water and then recovering the lignin from the solution 

(Gellerstedt, 1994). The yield of residual lignin is low but results in very high purity and has 

been proposed that some modification to the lignin structure happen. Enzymatic hydrolysis has 

been introduced since 1981 (Yamaki, 1981). Lignin is isolated by using the enzyme cellulase. 

Therefore, no structural changes will occur for the isolated residual lignin. Carbohydrates were 

dissolved by the enzyme cellulase, leaving behind solid residues known as residual lignin. This 

method gives a high yield of residual lignin but with low purity. 

 

There are several lignin reactions during alkaline pulping. For example, lignin will undergo 

degradation or fragmentation, which involves the cleavage of β-O-4 ether bonds of non-

phenolic lignin structure by hydroxide ions. These will cause the hydrophilicity of lignin to 

increase due to the generation of new phenolic hydroxyl groups. Besides that, lignin will also 

undergo condensations, which were caused by the formation of C-C linkages between 

fragmented lignin and also the formation of covalent bonds between lignin & carbohydrate.   

 

In both soda and kraft pulping process, anthraquinone (AQ) was used as a pulping additive to 

increase the delignification and to decrease the carbohydrate degradation. Furthermore, AQ will 

also increase the pulp yield because of the stabilization of the carbohydrate content in the pulp. 

AQ works by going through a cycle which leads to the reduction of lignin and the oxidation of 

reducing end group of the cellulose from an aldehyde to a carboxylic acid (Holton, 1977). 
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1.2 JUSTIFICATION 

Previously, studies on the residual lignin structure mostly concentrated on softwood and 

hardwood kraft pulps (Tong et al., 2000; Jaaskelainen et al., 2003). In order to gain a better 

understanding of non-wood residual lignin structure for future applications, similar studies 

cannot be neglected for non-wood pulps. In this study, the effect of kraft and soda pulping on 

the residual lignin structure of non-wood oil palm EFB pulp is examined. Comparison between 

the different pulping methods is necessary because soda pulping is more suitable for EFB fibers, 

and EFB soda pulps are easier to be bleached than kraft pulps. As the prehydolysed EFB pulps 

show much lower kappa number than non-prehydroysed pulps even after 1 stage of oxygen 

delignification. The effect of hydrolysis on EFB fiber, especially lignin structure (functional 

group) should be identified. The two major isolated methods commonly used for the isolation of 

residual lignin, which is acidic hydrolysis and enzymatic hydrolysis. As acid hydrolysis method 

gave changes on the isolated lignin. Enzymatic hydrolysis which gives fewer changes on the 

isolated lignin structure will be used in this study. 

1.3 OBJECTIVE 

This research was carried out: 

 To characterize the structure of lignin isolated from oil palm EFB fiber and its chemical 

pulps with and without prehydrolysis.   

 To study the effect of pulping and isolation methods on lignin’s structure. 

 To determine the effect of prehydrolysis on residual lignin structure after different 

pulping methods. 
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CHAPTER 2   LITERATURE REVIEW 

 

2.1 EMPTY FRUIT BUNCH (EFB) 

Oil Palm is cultivated as a source of oil where it is originated in Malaysia, Indonesia and 

Thailand. In Malaysia, oil palm is one of the most popular commercial crops, which had been 

double up planted area compared with rubber. Being one of the biggest producers and exporters 

of oil palm, Malaysia is facing the problems on replanting operations and environmental issues. 

Oil palm industry left an enormous amount of lignocellulosic materials such as EFB, which is 

renewable and low cost to extract into fibers form. However, 0.1% of oil content usually is 

found in EFB fiber, and its colour stability is low due to the lignin content. Hence, EFB fiber 

has been studied extensively by using various types of pulping processes in the pulp and paper 

productions.   

 

Table 2-1 Composition of EFB 

Biomass EFB 

Cellulose % 35-40 

Hemicelluloses % 20-25 

Lignin % 25-30 

Extractive and others % 8-10 

 

2.2 PULPING 

Pulping referred to the process which wood or non wood fibrous raw material is reduced to a 

fibrous mass (Casey, 1981). Generally, it is meant by the bonds are systematically rupture 

within the wood or non wood structure to constituent fiber's structure. The task can be 

accomplished by mechanically, thermally, chemically or combinations of treatments. Existing 

commercial processes are broadly classified as mechanical, chemical or semi chemical (Smook, 

1992).  
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2.2.1 Chemical pulping 

Chemical pulping mainly referred on the chemical reactants and heat energy to soften and 

dissolve the lignin in the raw material (Sixta, 2006). Based on the principle, fiber is liberated by 

dissolving the lignin from a middle lamella, which is freed undamaged and without any 

mechanical action, or with only a small amount of it (Ince, 2004, Kamarudin et al., 1999).  

 

An ideal chemical pulping process is ensured each fiber receiving the same amount of chemical 

treatment at the same time and temperature. The chemicals and energy must be transported 

uniformly throughout each of the reaction sides to middle lamella. In practice, chemical pulping 

process is removed almost the lignin in EFB fibers. Besides that, the process also degraded or 

dissolved certain amount of hemicellulose and cellulose in EFB fibers. Hence, the yield of pulp 

is low relatively compared to mechanical pulping process. The yield of pulp usually is 40% to 

50% of the original raw materials (Smook, 1992). The most common chemical pulping 

processes are soda pulping and kraft pulping (known as sulfate pulping). Both  soda and kraft 

pulping is categorized under alkaline pulping. The alkaline pulping process commonly using 

NaOH (soda pulping), SO3
2−

 (sulfite pulping), and alkaline S
2−

 (kraft pulping) as cooking 

liquors (Ibrahim et al., 2011).  

 

2.2.1.1 Soda pulping 

Soda process is the first recognized chemical pulping method. In 1850s, Watt (England) and 

Burgess found that using strongly alkaline solution of sodium hydroxide (NaOH) to delignify 

wood chips. At that time, costs of sodium hydroxide are expensive. Soon, it replaced by the 

sulfite process in 1867. Even it has been replaced by the sulfite process; it is still important and 

performs well in non-wood pulping such as EFB fibers. Furthermore, soda pulping also known 

as an environmentally friendly method (Khristova et al., 2002). Sodium hydroxide (NaOH) is 

used as a chemical to degrade and dissolve the lignin in the soda pulping. Wood can be swell 
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better in the medium of NaOH in order to make the cell wall more accessible to the pulping 

process. Besides that, the generated hydroxide ion (OH-) from NaOH will react with lignin and 

degrade it into smaller fragments (Ibrahim, 2000). The strength of the soda pulp is lower 

compared to the kraft pulps. Soda pulping usually produces pulp with lower yield and brighter 

colors, which contents some bleaching chemicals (Francis et al., 2006; Labid et al., 2008). The 

lower yield of soda pulp is due to the degradation of lignin, extractive, holocellulose, alpha 

cellulose. However, these drawbacks can be overcome with adding anthraquinone (AQ). With 

the addition of AQ, it will increase the process rate, yield, and pulp strength properties. 

 

2.2.1.2 Kraft pulping 

Kraft pulping process is also known as sulfate pulping process (Sarkanen and Ludwig, 1971). A 

mixture of sodium hydroxide (NaOH) and sodium sulfide (Na2S) are used as a chemical to 

degrade and dissolve the lignin in the kraft pulping (Sixta, 2006). This mixture can generate an 

equilibrium condition for the pulp (Sarkanen and Ludwig, 1971). Kraft pulping currently 

dominant in the lignin removal process because of it superior properties which mainly because 

of  the ability on chemical recovery site and strong pulp strength (Walker, 2006, Sixta, 2006). 

Although kraft pulping gave superior pulp properties and low carbohydrate lost compared to 

soda pulping, but it outcome's waste will cause environmental pollution. Besides that, the kraft 

pulp also gave darker colour and caused a difficulty on bleaching. Furthermore, kraft pulping 

process will also be releasing some malodorous gases (methyl mercaptan and other sulfur 

compounds) during the chemical recovery process (Johansson et al., 1987). 
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2.2.2 Hydrolysis pretreatment 

The hydrolysis pretreatment process is carried out with water under temperature of 165°C for 1 

hour. The process will break down the structure of cellulose, hemicellulose, and lignn for 

further process. Prehydrolysis is normally used for the production of dissolving pulp, which will 

result the pulp with lower kappa number (lignin) and lower hemicellulose content. In previous 

studies, it is found that prehydrolyzed EFB fiber is darker with similar or slightly higher lignin 

content than non-prehydrolyzed EFB fiber before applying chemical pulping process. However, 

after pulping, the prehydrolyzed EFB pulps show lower kappa number (6-7) in comparison to 

the non-prehydrolyzed EFB pulp (12-13). During the pulping process, the prehydrolyzed fiber is 

easier to be delignified could be caused by the following phenomena during prehydrolysis state: 

 Degradation of lignin into lower molecular weight  

 Cleavage of Lignin-Carbohydrates Compounds (LCC) 

 Changes of lignin’s side chains 

 

Cleavage of Lignin-Carbohydrates Compounds will increase the solubility of lignin. Lower 

molecular weight is due to the cleavage of β-O-4 glycosidic linkages in various polysaccharides. 

When in the steam condition, carbohydrate will convert into furfural and hydroxymethylfurfural 

which is suggested as lignin degradation (Li et al., 2005; Tanahashi, 1990). 

 

2.2.3 Anthraquinone (AQ) 

Anthraquinone (AQ) (Figure 2-1) is an aromatic organic compound with a formula of C14H8O2 

(McKelvey and Malcolm, 1978). As a catalyst of pulping process, AQ must be stable to hot and 

strong alkali conditions. Besides that, AQ also must be zero toxicity, no environmental effects 

and cost low (Blain, 1993).   
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Figure 2-1 Anthraquinone (AQ) chemical structure (Blain, 1993) 

 

AQ act as a pulping additive to: 

 Increase delignification (Goyal 1997)   

 Decrease and stabilized carbohydrate degradation (Ghosh et al., 1977; Smook, 1992) 

 Increase pulp yield (Holton, 1977) 

 Obtain low kappa number pulp which maintaining ideal viscosity (Minja et al., 1997) 

 

Furthermore, Figure 2.2 shown that AQ is work by going through a cycle which leads to the 

reduction of lignin and the oxidation on reducing end group cellulose from an aldehyde to 

carboxylic acid (Blain, 1993). 

 

 

Figure 2-2 Anthraquinone reduction and oxidation of reducing end of cellulose (Blain, 1993) 
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2.3 LIGNIN ISOLATION METHOD  

Mostly, the research aimed on improvement at pulping and bleaching process, which required 

an understanding of the structure changes residual lignin. Currently, the most common used 

isolation methods are acidolysis and enzymatic hydrolysis. Both methods have their own 

limitations that need to be considered. Hence, a new combined isolation method was introduced 

to improve the output of lignin. 

 

2.3.1 Lignin isolation methods by Acidic Dioxane-water hydrolysis of pulp 

During acidolysis, the lignin is isolated by refluxing the pulp under nitrogen atmosphere with 

82:18 (v/v) acidic dioxane–water solutions (Gellerstedt et al. 1994). The yield of lignin is lower 

but with high purity. There are some structural changes in residual lignin such as cleavage of a-

aryl, a-alkyl ether and b-aryl ether bonds in benzyl alcohol during the isolation process.  

 

The drawbacks of acidic hydrolysis isolation method: 

 Strong acidic conditions are needed to extract the lignin from pulp fibers.  

 The acidic hydrolysis conditions expected may cause some structural changes and 

modifications and towards the lignin. Example:  

i. Cleavage of some α-aryl and α-alkyl ethers as well as β-aryl ethers in benzyl 

alcohol units. The cleavage of the aryl ether bonds would increase and showed 

a higher amount of phenolic hydroxyl groups compared to the actual amount 

which present in the wood or pulp (Gierer and Wannstrom, 1986). 

ii. Condensation reactions between the residual lignin under acidic conditions are 

possible for various kinds of pulp except in Kraft pulp. This is because a low 

amount of residual benzyl alcohol and benzyl ether structures in the lignin after 

a completed Kraft pulping. Hence, the tendency to form a condensed lignin 

could be low also (Gellerstedt et al., 1994). Besides that, the kraft pulp residual 
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lignin from the acidolysis treatment was compared using flow through and 

batch reactors. It was found that the structure of kraft pulp residual lignin 

isolated from a flow-through process was similar to the batch process. 

Therefore, addition evidence showed that the structure of residual lignin in 

Kraft pulps is not significantly during the acidolysis treatment (Jiang et al., 

1987). 

 The yield is lower compared to the enzymatic isolation method (40-60%). Increasing 

the yield of residual lignin is dependent on the use of different isolation conditions. 

Example: 

i. Higher acid concentration  

ii. Longer reaction time 

 

It was suggested that optimum isolation conditions were necessary to produce better yield of 

residual lignin. 

 

2.3.2 Lignin isolation method by enzymatic hydrolysis of pulp  

Enzymatic hydrolysis has been used for lignin isolation since 1981 (Yamaski et al. 1981). In 

this method, the carbohydrates are digested and dissolved by cellulase enzymes, and the solid 

residue contains the residual lignin. Enzymatic hydrolysis retains the linkages between lignin 

and carbohydrates. Therefore, the origin structures of the residual lignin can be studied. This 

isolation method gives better lignin yields, but it contains some carbohydrates and protein 

residues from the enzymes itself (Jääskelä et al., 2001; Lachenal et al., 1995). 
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The drawbacks of enzymatic hydrolysis method: 

 The residual lignin was found contains carbohydrates that cannot be removed by 

prolonged and repetitive enzymatic treatments or by purification methods that are 

commonly used. These caused by the limited ability of enzymes to hydrolyze lignin-

carbohydrate complex linkages.  

 The residual lignin was found contains some protein impurities, which originating from 

the enzymes used during the enzymatic hydrolysis. Therefore, these protein impurities 

need to be removed by purification (Hortling et al., 1990). 

 Time required for the enzymatic hydrolysis procedure is much longer than the 

acidolysis isolation method.  

 

The carbohydrate and protein impurities from the enzymatic hydrolysis method will complicate 

the subsequent of analysis on the lignin structure. However, structural of this residual lignin is 

considered chemically unchanged.  

 

2.3.3 Lignin isolation method by enzymatic combined with acidic hydrolysis of pulp.   

Hence, a new isolation method was established due to the limitations of acidolyis and enzymatic 

isolation methods (Argyropoulos et al. 2000). Initially, enzymatic isolation method aimed to 

digest most of the carbohydrates, which present on the surface of fibers by using cellulotic 

enzyme. Besides that, it also exposes a fresh cellulosic fibers surface. The inability of further 

carbohydrate's degradation is due to the strongly bonding between the remaining carbohydrates 

with lignin (Wang J et al. 1997). Then, the residual lignin is further treated with a mild 

acidolysis treatment (Wu and Argyropoulos, 2003). This acidolysis treatment is to cleave the 

remaining lignin–carbohydrate covalent bonds. This new isolation method will provide lignin 

with about 70% yield and low amounts of impurities. 
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2.4 LIGNIN 

Lignin is the polymeric organic substance in the plant world. Its principal role is to form the 

middle lamella, the intercellular materials which cement the fibers together. Its existence 

increased the mechanical strength properties, and a macromolecular formed by random 

coupling. It hydrophobic properties cause the cell wall doesn’t swell (Smook, 1992). 

 

Table 2-2 Lignin content found is the different type of raw materials. 

 Lignin Content % 

Hardwood 20-25 

Softwood 25-30 

Non-wood (EFB) 30 

 

Lignin mostly known as 3 dimensional of phenylpropane units, which consist of syrinyl, 

guaiacyl and p-hydroxyphenyl (Grima-Pettenati and Goffner, 1999). Usually hardwood and non 

wood (EFB) is found to have both S unit and G unit whereas only the G unit is found in the 

softwood.  

 

 

 

         (a)                                               (b)                                       (c) 

Figure 2-3 Basic lignin elements: G unit (a); S unit (b); p-hydroxyphenyl (c) (Grima-Pettenati 

and Goffner, 1999) 
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Basically, syringaldehyde and vanillin are produced from S unit and G unit respectively. The 

molar ratio of the S unit and G unit is called S/G ratio. It is to know the solubility of lignin 

during alkaline cooking. S unit lignin decomposed faster than the G unit lignin while alkaline 

cooking (T. Akiyama et al., 2005). 

 

2.4.1 Major lignin reaction in alkaline pulping 

In the soda process, sodium hydroxide is the major pulping chemical whereas in the sulfate 

process, a mixture of sodium hydroxide and sodium sulfide is used for the delignification 

process. Between these 2 pulping processes, sulfate pulps produced an outstanding strength 

pulp. The term's kraft and sulfate pulping are interchangeable.   

 

Delignification is necessary in paper industry because the lignin portion of pulp contributed 

both chromophoric and leucochromophoric structures. Hence, delignification has been proposed 

as a responsible for the colour of native lignin and pulps (Johansson, 2000). Overall 

delignification process consists of a rapid phase (bulk delignification) and a slow phase 

(residual delignification). Rapid phase removed most of the lignin very fast in the beginning of 

the pulping process while the slow phase removed the remaining lignin very slowly until the 

end of the pulping process.   

 

The bulk delignification is caused by rapid degradation or fragmentation of lignin through 

rupture of bonding by thermal homolysis (Kleinert, 1965; Kleinert 1966). The free radicals 

formed may also undergo secondary reaction such as: 

 Condensation 

 Grafting 

 Termination 

 Radical transfer 
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2.4.1.1 Lignin degradation/ fragmentation 

i. Cleavage of  ether bonds 

The cleavage of β-O-4 ether bonds probably is one of the most important single reactions of 

alkaline delignification. This reaction involves the cleavage of β-O-4 ether bonds from non-

phenolic lignin structure by hydroxide ions. Cleavage of the β-O-4 ether bonds will increase the 

hydrophilicity of lignin and generate some phenolic hydroxyl groups. The mechanism of 

cleavage involved a nucleophilic attack of the neighboring hydroxyl group on the β carbon 

atom. Therefore, resulting the formation of epoxide and simultaneous removal of the aryl ether 

substituent as phenoxide ions (Gierer and Kunze 1961; Gierer et al. 1962). 

  

Figure 2-4 Reaction of β-O-4 ether bonds (J. Gierer and I. Kunze 1961; J. Gierer et al. 1962) 
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ii. Cleavage of carbon-carbon bonds 

In contrast to the extensive lignin fragmentation resulting from the rupture of inters unitary 

ether linkages, the effect of carbon-carbon bond cleavage is relatively minor in this respect 

(Gierer 1980).  Carbon-carbon fragmentation of the propanoid side chain may occur in a variety 

of laboratory treatment and technical processes. Besides that, C-C fragmentation reaction also 

depending on: 

 Type of substituent on the propanoid side chain 

 Reagents involved in the treatment  

 Reaction conditions (acidity or alkalinity. temperature) 

 

2.4.1.2 Lignin condensation 

i. Formation of C-C linkages between fragmented lignin 

Figure 2-5 Reaction of C-C linkages 

 

Oxidants which are free radicals (e.g., ClO₂ and O₂) or, which are convertible into such species 

(e.g., conversion of peroxides to OH-) abstract hydrogen atoms from the phenolic hydroxyl 

group to generate phenoxy radicals. Coupling of the proper mesomeric forms of such radicals 

ultimately leads to diphenyl structures, as is shown by Figure 2-5. Either or both aromatic rings 

in such structures may undergo further oxidation, yielding quinonoid and carboxylic acid 

derivatives analogous in structure to those produced from monomeric units. 
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ii. Formation of covalent bonds between lignin & carbohydrate 

 

 

 

 

Figure 2-6 Reactions of covalent bonds 

 

In alkaline media, phenolic units may react with formaldehyde and hence forming methylol 

derivatives that will condense among themselves or react with another phenol, as shown by 

Firgure 2-6. This formaldehyde condensation reaction forms the basis for using technical lignin 

in the production of adhesive.   

 

2.4.2  Model of lignin 

Over the years, various hypothetical models of lignin molecular structures have been proposed 

based on: 

 Random coupling theory 

 Available data on the types and distributions of inter-units or linkages 

 

The actual lignin structure is very complex. These existing lignin models neither imply any 

particular sequence of monomeric units nor reflect the actual network of monomers in the lignin 

macromolecule. Further details on the polymerization process of lignin have not been 

completely established. The coupling model in the monolignols reacts endwise with the 

growing polymer under simple chemical control, which produces random linkages. Hence, the 

lignin structure is not absolutely defined or determined (Boerjan et al., 2003). Although the 
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template replication models are proposed in these recent years, but there is still some lacking 

experimental demonstration on showing the bonding formation in a lignin polymerization 

process. Polymerization process is believed to be under the control of biochemical. Endwise 

polymerization is guided by proteinaceous sites on the template that stipulates linkage types and 

its configurations (Davin and Louis, 2003; Chen and Sarkanen, 2003). 

 

Lignin distribution is quantified by using ultraviolet light (UV) microscopy. Strong or weak 

portion of lignin can be visualized by using interference microscopy and confocal laser scanning 

microscopy (Donaldson et al., 2001). Lignin is polymerized in a matrix of concentrated 

polysaccharide gel, which surrounded by water molecules in dynamic conditions. Synthesis 

using model compounds suggested that construction of the lignin polymer will be affected by 

the pre-existing polysaccharide gel in the cell wall (Barakat et al., 2007). Thus, the structure of 

lignin is highly affected by environmental factors during biosynthesis. The fundamental unit 

structure of lignin is now well-identified by the research work of lignin chemists (Sarkanen and 

Ludwig, 1971) but the polymeric structure of lignin has not been fully elucidated.   

 

Statistical method is applied to determine the higher order of lignin structure, which constructed 

linking with those possible unit compounds by using a computational means (Glasser and 

Glasser, 1974; Glasser and Glasser, 1974; Glasser and Glasser, 1976). However, this method 

has its own limitations since the constructed structure is just an assumed model. It is widely 

accepted that lignin is not a constitutionally defined compound, but it is a physically and 

chemically heterogeneous material consisting of representative phenylpropane structures. It may 

also be appropriate that the diversity of structural combinations is unlimited because the various 

factors influencing the biosynthetic process of lignin.   
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Therefore, it is worth considering the structural moiety of various lignins. It is important to 

realize the amount of functional groups in the lignin (Balakshin et al., 2008). According to all 

the previous studies, lignin mostly will have a linkage with carbohydrates (Koshijima et al., 

1998). This indicates that contaminants of fragments from carbohydrate are unavoidable in 

isolated lignin because of the presence of lignin-carbohydrate complex (LCC).   

 

2.4.2.1 Lignin-Carbohydrate Complex (LCC) 

Basically, a typical water-soluble lignin component in wood is called lignin-carbohydrate 

complex (LCC). The lignin and hemicellulose are linked together by benzylic ether, benzylic 

ester, and glycosidic bonds to form LCC.   

 

Figure 2-7 Examples of linkages between lignin and carbohydrate in LCC 
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It is commonly assumed that lignin polymer is bound covalently to polysaccharides to form 

lignin-carbohydrate complexes (LCCs) (Bjorkman, 1957; Lai and Sarkanen, 1957; Eriksson et 

al., 1980). Main reason of resisting the delignification during kraft pulping and bleaching is 

probably due to the lignin carbohydrate covalent linkages. From the previous experiments on 

LCCs, those bonding are existing between lignin and hemicellulose.  

 

These proposed linkages’s type is classified into the following groups: 

 Ether linkage of the hydroxyl group at the (z-position of the lignin side chain with 

alcoholic hydroxyl of sugar residue (Freudenberg, 1965) 

 Ester linkage of the alcoholic OH of lignin with the carboxylic group of uronic acid 

(Yaku et al., 1976) 

 Hemiacetal or acetal linkage of the carbonyl group located at β-position of lignin with 

carbohydrates (Bolker and Sommerville, 1963) 

 Glycoside linkage with the primary alcoholic OH at the γ-position of the phenylpropane 

unit (Enoki and Koshijima, 1978) 

 Glycosidic linkage at the phenolic OH of lignins (Hayashi, 1961; Smelstorius, 1974) 

 Ester's linkage of the carboxylic group of the cinnamic acid unit in lignin with the 

alcoholic OH of carbohydrates
 
(Kato et al., 1983; Lain et al., 1992; Iiyama and Stone, 

1994) 
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Figure 2-8  Some of the possible structure for lignin-hemicellulose complex 

 

Most of the LCC bonds stated above were obtained from degradation analysis in acid hydrolysis 

and alkaline hydrolysis conditions. However, it is impossible to fully depolymerize or degrade 

LCCs into their constituent units quantitatively by these common methods. Therefore, it is 

inevitable that many undesirable modifications occur during their degradation reactions. Hence, 

a very small significant evident to this linkage has been obtained (Sipilfi and Brunow, 1991). 

 

Carbon-13 nuclear magnetic resonance (¹³C-NMR) has proven to be a powerful method for 

elucidating the detailed chemical features of LCC because it reflects the nature of chemical 

bonding between lignin and carbohydrates (Watanabe et al., 1989; Lewis et al., 1989). 

However, observation of the LCC bonds by ¹³C-NMR is difficult because the strong signals 

arising from carbohydrates in LCC overlap with those from lignin.   
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2.4.2.2 Condensed lignin 

Condensed lignin structure is the term used to describe lignin with an aryl or alkyl substituent at 

the C5 or C6 position on the aromatic ring which has some condensed-type structures such as 5-

5, α-5, α-1 and 4-O-5. 

 

Evidence for the formation of condensed structures during Kraft pulping has also been 

suggested (Kringstad and Morck, 1983; Gellerstedt and Robert, 1987; Gierer et al., 1976). 

Condensed structures are stable under Kraft delignification conditions and believed to be 

present in the residual lignin of Kraft pulp, which caused the residual lignin to be not reactive.  

Condensation reactions may occur during cooking condition, and uncondensed structures are 

expected to undergo solvolysis at a higher rate than the “primary” condensed structures. 

Therefore, the residual lignins contain much higher concentrations of condensed structures. 

 

2.5 FUNCTIONAL GROUP OF RESIDUAL LIGNIN  

Although lignin is one of the most abundant natural macromolecules, and it is available at 

exceedingly low cost but it has received a relatively low attention as a polymer in the market. 

Indeed, in those days standard polymer text often does not even acknowledge its existence as 

one of the important natural polymers (Flory, 1953; Tanford, 1961).  

 

Lignin should be regarded as a family of the 3 dimensional polymers because it is: 

 Spherical in solution 

 Containing a variety type of functional group and site 

 Capable for a surprising selection of modifying reactions 
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Figure 2-9 Common functional group found in residual lignin 

 

2.5.1 Phenolic hydroxyl group 

The phenolic hydroxyl group is an important functional group in lignin that influences pulping 

and bleaching chemistry. During kraft delignification, the cleavage of ß-O-4 linkages creates 

new phenolic groups. Therefore, the residual lignin has a greater quantity of phenolic groups 

(Gierer, 1980). 

 

Throughout the reactivity, the most important functionality in lignin is the free phenolic group. 

Most of the chemical reactions in lignin usually occurred between these phenolic phenylpropane 

units. Phenolic groups perform well in the dissolution of lignin during pulping process by 

improving the lignin’s solubility in an alkaline medium. Besides that, the phenolic groups also 

involved in the formation of reactive quinone methide intermediates (Gellerstedt et al., 1988). 




