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Isopropil miristat (IPM) adalah bahan kimia yang penting di dalam industri kosmetik 

dan farmaseutikal. IPM boleh dihasilkan sama ada melalui proses pengesteran atau 

proses transesterifikasi dengan menggunakan penyulingan reaktor separa kelompok 

(BRD). Walau bagaimanapun, proses transesterifikasi masih kurang diselidik secara 

meluas. Proses transesterifikasi di dalam BRD boleh diterjemahkan melalui 

persamaan matematik, walau bagaimanapun, persamaan ini akan menghasilkan 

banyak persamaan pembezaan dan kos yang tinggi serta memerlukan masa yang 

lama untuk diselesaikan. Oleh itu, model empirik seperti rangkaian neural tiruan 

(ANN) menawarkan penyelesaian yang lebih baik kerana kebolehannya 

menyelesaikan struktur yang sangat tidak lelurus dan kompleks. 

 

Di dalam kerja ini, penghasilan IPM didalam BRD yang berskala industri melalui 

proses transesterifikasi telah disimulasi menggunakan Aspen Plus dan hasil simulasi 

menunjukkan keputusan yang setanding seperti yang dilaporkan dalam kajian lepas. 

Model yang telah disahkan ini kemudiannya digunakan untuk analisis kepekaan bagi 

menentukan hubungan antara pembolehubah masukan-keluaran. Ujian tidak 

berparameter digunakan dan pembolehubah masukan terpilih disusun mengikut 

kedudukan masing-masing berdasarkan kepada kepekaan purata  keseluruhan. 

Berdasarkan keputusan, duti pengulang didih, bilangan mol awal isopropanol, metil 

miristat, nisbah refluk, kadar suapan masuk dan suhu dulang 32 dipilih sebagai 
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pembolehubah masukan dalam pembangunan model ANN bagi menganggar 

komposisi bawah dan komposisi sulingan. 

 

Enam ANN model yang terdiri daripada dua model berbilang-masukan berbilang-

keluaran (MIMO) iaitu (MIMO-1, MIMO-2) dan empat model berbilang-masukan 

satu keluaran (MISO) iaitu (MISO-1, MISO-2, MISO-3, MISO-4) telah 

dibangunkan. Reka bentuk rangkaian optimum yang diperolehi adalah untuk MIMO-

2, MISO-2 dan MISO-4 adalah masing-masing [12-12-2], [11-12-1] dan [11-11-1]. 

Model MIMO-2 menunjukkan prestasi yang memuaskan apabila disahkan dengan 

data pengesahan dimana MSE adalah 0.0006 dan R2 adalah masing-masing 1.0000 

dan 0.9998 untuk komposisi bawah (xB) dan komposisi sulingan (xD). Kedua-dua 

model iaitu MISO-2 dan MISO-4 juga berjaya meramal dengan tepat apabila diuji 

dengan data ujian dengan nilai masing-masing MSE 0.0004 dan 0.0007 serta nilai R2 

bagi kedua-dua model adalah 0.9998. Model MIMO-2 juga diuji dengan data ujian 

beserta dengan gangguan . Keputusan menunjukkan model tersebut dapat meramal 

nilai sebenar dengan MSE 0.0124 manakala R2 menunjukkan 0.9924 untuk xB dan 

0.9953 untuk xD. 

 

Dengan menggunakan model yang optimum, kajian keupayaan ekstrapolasi telah 

dilakukan untuk menilai keupayaan model meramal data yang di luar daripada julat 

data latihan. Keputusan menunjukkan model MIMO-2 dan MISO-2 mempunyai 

padanan yang baik apabila diuji dengan data ekstrapolasi 1, dengan ketepatan MSE 

yang dicapai adalah masing-masing 0.0078 dan 0.0063 untuk MIMO-2 dan MISO-2. 

Nilai R2 yang diperolehi untuk MIMO-2 dan MISO-2 masing-masing adalah 0.9986 

dan 0.9975. Walau bagaimanapun, data ekstrapolasi 2 menunjukkan padanan yang 
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lebih baik di mana semua model ANN yang di uji menunjukkan MSE kurang 

daripada 0.0005 dengan nilai R2 bersamaan dengan 0.999. 
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NEURAL NETWORK MODEL AND SENSITIVITY ANALYSIS FOR THE 
PRODUCTION OF ISOPROPYL MYRISTATE IN SEMIBATCH REACTIVE 

DISTILLATION 
 

ABSTRACT 8 

 

Isopropyl myristate (IPM) is an important chemical in the cosmetic and 

pharmaceutical industries. The IPM can be produced either through esterification or 

the transesterification process in semibatch reactive distillation (BRD). However, the 

latter process is not widely explored. The transesterification process in BRD can be 

represented by a mathematical model, however, this model will end with a large 

number of differential equations and be very expensive to solve and will also be time 

consuming. Hence, the empirical model such as the artificial neural network (ANN) 

model provides better solution as it can deal with highly nonlinear and complex 

structures.  

 

In this work, the production of industrial scaled IPM in BRD through the  

transesterification process is simulated using Aspen Plus and the simulation result 

achieved shows a comparable result as reported in the literature. The validated model 

is then used for sensitivity analysis to determine the relationship between the process 

input-output variables. The nonparametric test is used and the selected inputs are  

ranked according to their mean overall sensitivity. From the results, the reboiler duty, 

the initial mole of isopropanol, methyl mysistate, the reflux ratio, the feed flowrate 

and the temperature at stage 32 are considered as the input variables in the  ANN 

model development to predict the bottom and distillate composition.   
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Six ANN models which consisted of two multiple inputs-multiple outputs (MIMO) 

models (MIMO-1, MIMO-2) and four multiple inputs-single output (MISO) models 

(MISO-1, MISO-2, MISO-3, MISO-4) were developed. The optimum network 

architecture obtained were [12-12-2], [11-12-1] and [11-11-1] for MIMO-2, MISO-2 

and  MISO-4, respectively. The MIMO-2 model  performed satisfactorily with the 

validation data and provided MSE of 0.0006 and R2 of 1.0000 and 0.9998 for the 

bottom composition (xB) and the distillate composition (xD), respectively. Both 

MISO-2 and MISO-4 models also managed to accurately predict the testing data with 

MSE value of 0.0004 and 0.0007, respectively with R2 value for both models of  

0.9998. The MIMO-2 model also tested with the noise in the output data. The result 

shows that the model can predict the true value with MSE achieved 0.0124 while R2 

shows 0.9924 for xB and 0.9953 for xD.   

 

By using the optimum models, the extrapolation capability study was performed to 

evaluate the model ability to predict the out of training range data. The result showed 

MIMO-2 and MISO-2 have good generalization when tested with extrapolation data 

1, with MSE accuracy achieved at 0.0078 and 0.0063 for MIMO-2 and MISO-2, 

respectively. The respective R2 obtained for MIMO-2 and MISO-2 were 0.9986 and 

0.9975, respectively. However, better generalization was obtained for extrapolation 

data 2 where all the ANN models showed MSE less than 0.0005 with R2 equaled to 

0.999. 



CHAPTER 1  

INTRODUCTION 

 

1.1 Research background 

Fatty esters are natural based chemicals used in different areas and 

applications, such as the food industry, the cosmetic industry, solvents, plastics, 

pharmaceuticals and other applications. Fatty ester is produced by the fatty acid and 

is one resource that is not greasy and provides an environmentally safer function. 

Thus, they are expected to be the main demand of countries that have a strict 

environmental policy. One of the fatty esters that are widely used in the industries is 

isopropyl myristate.  

 

1.1.1 Isopropyl Myristate 

Isopropyl myristate (IPM) is a synthetic oil widely used in the cosmetics and 

pharmaceutical industries as a lubricant and an emollient. IPM is favourable in the 

cosmetic and pharmaceutical industries due to its less greasy nature and easily 

absorbed by the skin. One application of IPM as a phamaceutical product is its use as 

a non-pesticide alternative for treating head lice infestations (Scott and Halprin, 

2012). IPM is commonly manufactured by esterification and alternatively by the 

transesterification process. IPM is colourless and mild in odor. It is also commonly 

used as an additive in oral hygiene products such as mouthwash. Due to the demand 

of IPM as an ingredient in specialty products, the demand in the production of IPM 

has increased.  
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Its can be seen from the change of goverment direction to develop the down-

stream sector of the palm oil industry. One of the aims is to expend the production of 

high value oleo derivatives under the Entry Point Project (EPP) 6 (Yakcop and Jala, 

2011). The same scenario is observed in the global market, as reported by Global 

Industry Analysts, Inc. operating in California U.S.A. According to the report, the 

fatty esters market demand is expected to increase by the year 2015. The key factors 

driving market growth include a wide application offered by fatty esters in the 

industrial arena, eco-friendly characteristics, and increased demand from the 

developing Asia-Pacific market (Global Industy Analysts, 2012). 

 

1.1.2 Neural network application in batch reactive distillation 

Batch reactive distillation (BRD) is a dynamic process and operates in 

unsteady state condition. In this process, couple reaction and distillation process 

leads to the complex relationship which involve the thermodynamic equilibrium and 

chemical equilibrium at every stages.  For modelling the nonlinear process, three 

different model structures can be used i.e. white box models, empirical models and 

hybrid models. The fundamental models is derived from the mass, the energy and the 

momentum balance, while empirical models used existing monitoring data in the 

plant without priori knowledge of process behaviour and hybrid models combine 

both fundamental and empirical models. Once a dynamic model has been developed, 

the model can be solved using numerical software such as FORTRAN®, gPROMS®, 

Matlab® and modular software such as Aspen plus®. 

 

Developing a theoretical rigorous model may not be practical for the complex 

process as BRD and as an alternative approach is developing an empirical model. 
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Artificial neural network (ANN) model is one of the available empirical models. It is 

used to solve various mathematical problems in BRD such as in modelling (Reusch 

et al., 2001; Osorio et al., 2004), control system (Engell and Fernholz, 2003),  soft 

sensor (Bahar and Özgen, 2010; Jithin Prakash et al., 2011), combination of soft 

sensor and control (Konakom et al., 2010a, 2011) and optimization (Mujtaba and 

Greaves, 2006) application due to its ability to predict the highly nonlinear functions 

effectively. The ANN is relatively less sensitive to the noise and unknown 

information and also can deal with higher level of uncertainty. Thus, self-learning 

ability of ANN eliminates the use of complex mathematical model (Malar and 

Thyagarajan, 2009). 

 

1.2 Problem statement 

The growing importance of specialty chemicals makes batch process more 

attractive. The batch process is utilized especially for the production of low volume, 

high value specialty chemicals, and high flexibility seasonal products. Typically, this 

process is used to produce chemicals, food, and in the cosmetic and pharmaceutical 

industries where flexibility is required. The process regularly consists of the batch 

reactor and followed by the distillation column for separation. Recently, more 

attention is given to process intensification which couples reaction and distillation in 

a single unit. 

 

  The batch reactive distillation (BRD) process is recommended especially for 

reversible esterification and the transesterification process to enhance yield and 

selectivity. The removal of one component continuously can avoid reaction 

equilibrium restrictions due to reaction rate enhancement. Modeling the BRD has 
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been a challenging task since it involves many components incorporated with large 

numbers of parameters. The purpose of mathematical modeling is to express the real 

process by representative mathematical equations.  

  

Recently the BRD model has gained more attention in various aspects such as 

feasibility study, mathematical model, optimization and control. There is intensive 

literature on the white box model which includes complex mathematical models and 

simplified models on the esterification process such as ethyl acetate, butyl acetate, 

methyl acetate, hydrolysis of lactic acid and isopropyl acetate. However, there is 

limited literature that covers the industrial scaled batch esterification process.  

 

The modeling of the transesterification process for long chain fatty esters in the 

reactive distillation (RD) is scarce. Only a few works on this subject has been 

reported in the literature. Li et al., (1998a), (1998b) and Arellano-Garcia et al., 

(2002), (2008) studied the transesterification of methyl myristate and isopropanol in 

the industrial scaled semibatch reactive distillation. Other researchers worked on 

other various types of fatty esters for the esterification process (Bock et al., 1997; 

Dimian et al., 2004; Jong, 2010). 

 

Li et al., (1998a) developed a thorough mathematical model of IPM production 

in BRD. However, the model suffers from the large number of equations which 

increases the model complexity and is very expensive to solve. In addition, the model 

is based on the assumption, where the accuracy of the developed model will decrease 

over time if natural degradation of the plant is not taken into consideration (Smrekar 

et al., 2010). Hence, it is important to gather the industrial operating plant data in 
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order to capture the real plant situation such as plant uncertainty, changes of the 

process parameter and changes of the process specifications. 

 

The empirical model is typically used to represent the real plant condition 

because this model only considers the input and output of the experiment or plant 

data even though the physical reactions are unknown. Moreover, this model is 

usually simpler than the mathematical model and can be solved in real time (Seborg 

et al., 2011). From the literature, only the neural network model has been used to 

develop an empirical model for BRD. However, it is meant for the production of 

methyl acetate, (Reusch et al., 2001; Engell and Fernholz, 2003), wine production 

(Osorio et al., 2004) and ethyl acetate production (Mujtaba and Greaves, 2006; Bahar 

and Özgen, 2010; Konakom et al., 2010b; Jithin Prakash et al., 2011; Konakom et al., 

2011). 

 

In all the ANN models for BRD that were developed, none of them have 

performed sensitivity analysis prior to their model development. It is important to 

implement the sensitivity analysis prior to model development for the selection of 

significant input-output variables. The model quality is strongly influenced by the 

quality of the data used (Osman and Ramasamy, 2010). The inputs of the model can 

come from the current time instant and also from previous time instant (historical 

data). The historical data will provide the short term memory to the network which 

will use this memory when forecasting the output (Samarasinghe, 2007). Thus, 

considering the past and present input in the model is useful in the prediction of the 

dynamic system. However, in previous related studies, only a few of them have 

considered historical data as input variables. 
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The min-max scaling is a typical method that is performed prior to the ANN 

model development, which is significantly effective to predict the model within the 

training range. However, other training methods such as z-score normalization have 

yet to be tested for both the interpolation and extrapolation study of BRD. At the 

same time, the selection of the model structure also plays an important role in the 

ANN model. Most of the work reported on the MISO model and none reported on 

the comparison between the MIMO and the MISO structure.  

 

In this study, two neural network structures were developed: multiple inputs- 

multiple outputs (MIMO) and multiple inputs and single output (MISO) models to 

represent the nonlinear behavior of the industrial scaled semibatch reactive 

distillation process.  The data for training, validation and testing data sets were 

simulated using a validated fundamental model. Prior to that, the significance of the 

inputs and the outputs was evaluated using nonparametric sensitivity test methods 

which can classify the high and less impact of the input variables. To ensure the 

input and output variables were at the same magnitude, they were scaled using the z-

score normalization method. The ANN training was carried out using the Levenberg-

Marquardt algorithm and their optimum selection was made based on the validation 

and testing performed. Finally, the extrapolation capability of the optimum ANN 

developed was tested.   
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1.3 Objectives of the research 

The aim of this research is to develop the artificial neural network model for the 

production of Isopropyl myristate in an industrial scaled semibatch reactive distillation. 

The measurable objectives are: 

 

(i) To simulate an IPM production of the industrial scaled BRD process using 

Aspen Plus (Batchfrac).  

(ii) To determine any relationship among the key variables in the process using 

non-parameteric test sensitivity analysis. 

(iii) To develop neural network models for the industrial scaled semi batch 

reactive distillation column. 

(iv) To evaluate the extrapolation capability of the neural network models 

developed. 

1.4 Organization of Thesis 

 

Chapter 1 provides a brief introduction of Isopropyl Myristate and its market 

demand. Subsequently, the problem statement is highlighted and the objectives are 

outlined. Finally, the organization of the thesis is given at the end of the chapter.  

 

Chapter 2 consists of the literature review related to this study. First, the 

modeling of batch reactive distillation related issues is reviewed. Three types of 

models are explained and their respective literature is reviewed. Then, a general 

review of the transesterifications process and isopropyl myristate is explained. 

Finally, the neural network model development for the production of isopropyl 
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myristate in the industrial scaled semibatch reactive distillation is discussed. In 

addition, the application of sensitivity analysis to determine the significant input and 

output variables in the related literature is also reviewed. 

 

Chapter 3 outlines the methodology adopted in this work. It covers all the 

procedures involved from the simulation stage up to the neural network model 

development. This step includes the simulation procedure, sensitivity analysis, data 

generation, nonlinear neural network process identification and extrapolation 

capability test. 

 

Chapter 4 presents the results and discussion obtained in this work. It covers 

the results of the model verification with Aspen Plus and the sensitivity analysis 

study. Based on the results, the degree of the nonlinearity of the process is 

determined and presented. The results from the neural network model such as the 

performance evaluation of the neural network models based on the number of hidden 

neurons, the effect of the structures and the historical input data of the NN model 

developed are also discussed. The validation results of the NN model on the 

industrial data is also evaluated. Finally, the extrapolation capability of the model is 

demonstrated.  

 

Chapter 5 provides the conclusion that summarizes the overall study 

including the main findings of this research. Recommendations and suggestions for 

future work are also briefly discussed in this chapter. 
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CHAPTER 2  

LITERATURE REVIEW 

 

This chapter begins with the description on the various types of batch reactive 

distillation (BRD). After that, three types of models are explained and the related 

literature is reviewed. The subsequent section explains the transesterification process 

in general and the long chain of isopropyl myristate production in industrial scaled 

semibatch reactive distillation. Finally the related literature on sensitivity analysis 

and the application of the artificial neural network (ANN) in BRD is reviewed.     

 

2.1 Batch reactive distillation 

In the chemical industry, the chemical reaction and the purification of the 

desired products by distillation are usually carried out sequentially. The integration 

of the reaction with a separation operation results in reactive distillation (RD) and it 

offers advantages over conventional applications in the chemical industry. Reactive 

distillation can reduce the number of equipments used in the plant, which leads to a 

reduction of capital investment. At the same time, it allows the direct utilization of 

the thermal heat of the reaction for separation, thus lowering the operating cost. This 

process also permits the continuous removal of light key components from the 

reaction zone. The continuous removal results in the suppression of equilibrium 

limitation on conversion. It also causes the avoidance of azeotrope, hence shifting the 

reaction to increase the yield and selectivity of the product (Doherty and Buzad, 

1992; Venimadhavan et al., 1999; Malone and Doherty, 2000; Sun et al., 2009). The 

reactive distillation can be utilized either as a continuous or a batch mode of 

operation.  
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Batch processes are typically used when the production volume is low, when 

isolation is required for reasons of sterility or safety, and when frequent changes in 

the market demand are necessary especially for the production of specialty chemicals 

and pharmaceutical products (Bonvin et al., 2001). The integration of the separation 

process (distillation column) and the batch process with chemical reaction is known 

as batch reactive distillation (BRD). BRD can be classified into four types of 

configuration i.e batch reactive rectifier (BRR), batch reactive stripper (BRS), batch 

reactive with middle vessel (BRMV) and semibatch reactive distillation (SBRD).  

 

2.1.1 Configuration of batch reactive distillation 

The BRR consists of the reboiler at the bottom of the distillation column, a 

distillation column and a condenser. The chemical reaction of this process occurs in 

the reboiler where the initial batch amount of the component is charged into it. The 

distillate consists mainly of the lower boiling point product than the reactant and 

other products. At the end of the batch process, the excess reactant and the other 

products remain in the reboiler (Arellano-Garcia et al., 2008).  

 

On the other hand, the reactive section of the BRS is located at the condenser. 

The initial amount of the batch component is charged into the condenser whereas the 

products are withdrawn at the bottom of the rectifying section (Qi and Malone, 

2010). The products are obtained in the order of decreasing boiling point from the 

bottom of the column and a light-boiling fraction can be obtained at the condenser 

(Demicoli, 2005).The composition in the condenser relies on the removal of the 

bottom product and the chemical reaction (Chin and Lee, 2008).  
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The BRMV consists of the condenser at the top, the stripping section, the 

middle vessel, the rectifying section and the reboiler at the bottom. The reaction 

takes place in the middle vessel and loads with a mixture of the initial batch feed. 

The product is continuously removed from the stripper and the rectifier thus pushing 

the reaction to shift to the product side. The light and heavy-boiling products are 

simultaneously obtained from the column’s top and bottom (Demicoli, 2005). The 

temperatures in the middle vessel can be kept low throughout the process thus it can 

reduce the thermal exposure of the component in the charge. Therefore, BRMV 

shows better performance than BRR and BRS (Arellano-Garcia et al., 2008). 

 

The batch process is often used for low capacity products and it is not suitable 

for intermediate product capacity and higher production rate. Moreover, the 

continuous process is the most efficient for a high production rate but it loses its 

economic benefit when the production rate is decreased. Thus, the SBRD is 

introduced to offer a cost effective process for intermediate production rate (Adams 

and Seider, 2006). The continuous feed flow is fed into the column after a few hours 

of operation. Figure 2.1(a-d) shows the configuration of BRR, BRS, BRMV and 

SBRD, respectively.  

 

Several literature discusses the feasibility of the BRD configurations that is 

explained earlier (Guo et al., 2003; Chin et al., 2006; Steger et al., 2006; Chin and 

Lee, 2008; Stéger et al., 2009). 
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Figure 2.1 The configurations of batch reactive distillation (a) BRR (b) BRS (c) 

BRMV) (d) SBRD (Cui et al., 2009). 

 

2.2 Modelling and simulation in batch reactive distillation  

The dynamic model plays an important role in the chemical process for a few 

reasons: it can be used to improve the understanding of the process in which the 

process behavior can be investigated without plant interruption. The model can also 

be employed for operator training to run complex units and can also be utilized for 

process improvement such as the development of control strategy and process 

optimization. 

 

Once a dynamic model has been developed, it can be used to study the 

behavior of the process for different operating conditions including various changes 
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in the input variables. To solve this dynamic model, various numerical integration 

techniques such as the Euler and Runge-Kutta method, the Newton-Raphson, the 

gear method and the Implicit Euler method can be applied. For solving a dynamic 

model that contains a large number of equations, standard software that is available 

such as MALTAB®, POLYMATH®and Mathematica® can be used. This software 

allows integrating DAE and ODE equations to determine the response while the 

inputs are changing (Seborg et al., 2011). Simulators such as Batchfrac®, 

CHEMCAD®, Batch Plus®, and BatchCAD® are also available for modeling batch 

processes (Bonvin et al., 2001).  

 

Modeling BRD poses a great challenge because of its complex dynamics due 

to the integration of reaction and separation. The model deals with complex 

interactions between vapor-liquid equilibrium (VLE), chemicals kinetics, intrinsic 

process condition, and so on. Thus, it is important to develop a reliable model in 

order to understand the behavior of the process. There are three types of models that 

can be adopted to model the system i.e. white box (fundamental) model, black box 

(empirical) model and grey box (hybrid) model.  

 

The white box model is derived from physical laws, conservation relations, 

and established physical-chemical relations. The black box model can be viewed as a 

highly parameterized structure such that in principle any input-output mapping. 

Meanwhile, the grey box model takes advantage of the fundamental and empirical 

model where all available fundamental knowledge is used to build a white box 

modeling part while the missing information is estimated using the black box model 

(Romijn et al., 2008).  

13 
 



2.2.1 White box model 

The white box model is built from the prior knowledge of the process. It is 

derived from conservation laws such as the conservation of mass and energy. This 

model shows a very high accuracy which provides physical insight into the process 

behavior and is valid over wide ranges of conditions. The following literature 

discusses the fundamental approach for the BRD model development.  

 

Due to the lack of information and knowledge on the production of ethyl ester 

pentanoic acid (PAEE) in BRD, Bollyn and Wright (1998) developed a rigorous 

model which helped them to understand the fundamentals of the process. All the 

required data was gathered for simulation by using the BatchCAD simulator. This 

package uses rate-control chemical reactions and a rigorous dynamic mass transfer 

based distillation model.  The model developed was fitted well with the plant data 

and can be utilized to determine the optimum conditions of the process. 

 

Li et al. (1998a) developed the detailed dynamic model of industrial scale 

semibatch reactive distillation for the production of Isopropyl Myristate (IPM). The 

aim of their work was to determine the optimal process of the BRD operation. The 

model was developed using detailed material balance, equilibrium relationship, 

summation and energy balance (MESH) equations. The Newton-Raphson method 

was applied to solve the algebraic equations that were performed in the FORTRAN® 

program. The detailed dynamic model was validated with the experiment conducted 

in the industrial site and showed satisfactory agreement between the model and the 

experimental result.  
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The model developed by Li et al. (1998a) was used by Arelano-Garcia et al. 

(2002) to study the properties of the new operational mode. Typically in batch 

distillation, the distillate is accumulated in two accumulators to collect the desired 

purity (main-cut) and not desired purity (off-cut). In this new operational mode, the 

off-cut was recycled in the form of a continuous feed flow into the column and the 

model is used for the optimization study. 

 

The detailed rigorous dynamic rate-based approach was used by Schneider et 

al. (2001) to develop the detailed model including mass transfer and chemical 

reaction. This model leads to complex and highly nonlinear DAE equations which 

were solved using the Newton method. To prove the reliability of the developed 

model, it was validated by the pilot plant data. The result showed that the rigorous 

model was able to predict the dynamic process behavior. The sensitivity analysis to 

determine the effect of the liquid holdup in the column periphery was also considered 

in the study. 

 

The aim of the work by Elgue et al. (2002) was to perform an optimization 

strategy for the production of methyl acetate (MA). They simulated the detailed 

model developed by Elgue et al. (2001) and verified with the pilot plant data 

obtained from Bonnaillie et al. (2001). The model was simulated by using DISCo, a 

general DAE solver based on the Gear method.  The result obtained by the model 

showed a good agreement between the pilot plant data and the model developed.  
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Brüggemann et al. (2004) developed a robust dynamic simulation method for 

the heterogeneous BRD and the DAE model was solved using gPROMS®. The case 

study of butyl acetate (BA) was used to validate the robustness of the dynamic 

simulation strategy. The reasonable computational times of up to 10 hours per 

simulation were obtained using this simulation strategy. 

 

Kumar et al. (2006) explored a novel esterification strategy to perform 

esterification, distillation and hydrolysis in a single unit. The ODE model was 

developed and its reliability was compared with the result obtained from the 

experimental work. All the equations were solved using ODE15s solver in Matlab.  

The model was also used to obtain the optimum conditions of the process. 

 

Adams II and Seider (2006) worked on semicontinuous distillation with a 

chemical reaction in the middle vessel (SDRMV) using the forced cyclic method for 

the production of 2,4-dimethyl-2,3-dioxolane. The model was simulated using Aspen 

Plus  and the economic analysis was performed and a comparison was made between 

the continuous and the batch processes operation.  

 

  The model developed by Li et al. (1998a) was further improved by Arellano-

Garcia et al. (2008). In their work, they modeled and simulated the new operation 

mode of the start-up operation (middle vessel BRD) with the cold and empty batch 

columns as the initial state. A detailed rigorous model was developed including the 

start-up phase. The total equation system and reaction kinetics were combined to 

describe the reaction both in the middle vessel and the respective column section 

which was then solved using gPROMS.  
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 The model developed by Jana and Adari  (2009) and Kathel and Jana (2010) 

was embedded in the control scheme. Jana and Adari  (2009) developed the dynamic 

model for the production of ethyl acetate (EA) while Kathel and Jana (2010) 

developed the model for the production of butyl acetate. The model that was 

developed was used to investigate the closed loop process dynamic with the 

application of control algorithm. 

 

Edreder et al. (2008) performed a study to determine the optimal operation of 

BRD for the production of ethyl acetate. The dynamic model was developed by 

including mass, energy equations, column holdup, phase equilibria and chemical 

reaction. The model was simulated using gPROMS modeling software and the 

simulated model was used to determine the feasible range of the feed composition for 

the optimization study. The aim of the optimization study was to determine the 

maximum conversion of the process. The model developed by Edreder et al. (2008) 

was again used by Edreder et al. (2010) for a similar process and the dynamic 

optimization problem was formulated that incoporated the developed model.  

 

The model for the production of industrial grade ethyl acetate 90 mole% in a 

conventional BRD was developed by Konakom et al. (2010b) and (2011). The 

mathemetical model developed was based on the material and energy balance which 

were used for the model based optimization. The DAE equations were solved using 

Matlab.  

 

Edreder et al. (2011) developed two models, the conventional (CBD) and the 

inverted column (IBD) model, to optimize the operation of the hydrolysis of lactic 
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acid. The model was derived from the MESH equations and was embedded in the 

process optimization which was solved using gPROMS software.  

 

Qi and Malone (2011) evaluated the vapor-liquid and the liquid-liquid phase 

equilibrium for the production of isopropyl acetate (IPA). They used semibatch 

reactive distillation to overcome the loss of isopropanol (IP) in the aquous phase. The 

simulation was carried out using the Aspen BatchSep simulator and the performance 

was compared with conventional BRD. The semibatch reactive distillation gave 

better results because the IPA was in the form of  binary mixture with water (H2O) 

instead of a ternary mixture of IP-IPA-H2O .  

 

Khazraee et al. (2010) developed the dynamic model of BRD for ethyl acetate 

production. The model was developed using MESH equations and the simulation 

was performed by solving DAE simultaneously with the numerical integration 

method. The simulation result based on the model developed was verified with the 

experimental result from the pilot plant.  

 

Johri et al. (2011) simulated the BRD model for the production of ethyl 

acetate based on the fundamental model development. The developed model was 

used to evaluate the performance of energy integration in the presented BRD. Two 

types of columns were investigated and compared; conventional BRD (CRBD) and 

vapor compression BRD (VRRBD). The model developed was used to simulate both 

processes for comparison. The result showed that, the proposed energy VRRBD 

scheme had the ability to provide more than 65% of energy savings. 
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Jithin Prakash et al. (2011) considered the production of ethyl acetate to 

evaluate the closed-loop process dynamics. The process model was developed using 

the fundamental model which considered MESH equations. Later, the model 

developed was used to be incorporated with the control scheme. 

 

Mujtaba et al. (Mujtaba et al., 2012) developed the dynamic model for the 

esterification of lactic acid with methanol. The model was developed using the 

material and the energy balance with the reaction taking place in the reboiler. The 

model developed was also used to simulate the dynamic process by optimizing the 

reflux ratio for energy saving via minimization of the production time. The model 

equations were solved using gPROMS.  

 

The models developed from fundamental knowledge is a good source of 

process information however, they are always complex and time consuming to solve. 

To overcome the drawbacks of the rigorous model, some researchers proposed to 

develop a simplified model as proposed by Venimadhavan et al. (1999); 

Balasubramhanya and Doyle III (2000); Gadewar et al. (2000); Huerta-Garrido et al. 

(2004) and Qi and Malone (2010).  This method is computationally inexpensive and 

provides quick estimates for the target over the various operating conditions 

Gadewar et al. (2000). 

 

2.2.2 Black box model 

The development of a rigorous theoretical model may not be practical for 

some complex models which require a large number of equations with a significant 

number of process variables and unknown parameters such as chemical and physical 
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properties. Thus, the empirical model which makes use of the experimental or 

industrial data can be an alternative. The empirical model is simpler than the 

theoretical model and offers advantages for real time applications since the 

computational time required for the model solution is shorter than the fundamental 

model (Seborg et al., 2011).    

 

The empirical model, also known as the black box model, is based entirely on 

the available data with the absence of priori physical knowledge. It is not derived 

from assumptions and physical principles based on the relationship between the 

variables. The validity of the model depends on regression correlation and error 

between the predicted model and the actual data. In the common batch processing, 

modeling is often done empirically using the input-output static model on the basis of 

the experimental design. The operation parameter is decided at the beginning of the 

process while the quality is measured at the end of the process (Bonvin et al., 2001). 

There are a number of empirical models available such as ANN, Wiener model, 

ANFIS, Hammerstein model, NARMAX model, NARX and PLS model.  

 

Engell and Fernholz (2003) developed the ANN model for the production of 

methyl acetate in semibatch reactive distillation. The developed MISO model 

consisted of past and present process inputs and past process outputs. The 

identification the ANN model was implemented in the nonlinear control system to 

predict the future mole fraction of methyl acetate and water over the fixed time 

horizon. 
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Mujtaba and Greaves (2006) replaced the rigorous dynamic model with the 

neural network model for the production of ethyl acetate. The objective of their work 

was to develop a tool that can forecast batch time, productivity, profitability, and 

energy cost when changing the product specification. The NN model was developed 

and simulated by using the NN tool in MATLAB. The optimal product yield, optimal 

heat load, optimal maximum conversion and optimal reflux ratio profiles were 

successfully predicted using this model.  

 

Khazraee et al. (2010) proposed the application of the adaptive neuro-fuzzy 

interface system (ANFIS) as the model estimator. The artificial neural network and 

fuzzy logic were combined to establish a fuzzy neural network for the production of 

ethyl acetate. The ANFIS model that was developed was utilized to estimate distillate 

composition at the top tray. The results were compared with the data generated by 

the dynamic model, which was priori validated with the pilot plant data. 

 

Konakom et al. (2010a, 2011) presented the modeling of the neural network 

model of the ethyl acetate process that was implemented as model base in the control 

system. Two models were developed in their work; the model for the estimator and 

the model for controller. The simulated data from the dynamic model was used for 

the training procedure for the MISO and the MIMO models for the estimator and 

process model, respectively. The inputs to the estimator consisted of present and past 

data which were used to predict current output, which was later used as a part of the 

input parameter to the process model. The process model was embedded into the 

control scheme to predict the future distillate composition and temperature.  
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2.2.3 Grey box model 

The hybrid model or grey box model is the combination of the white box and 

black box models. Since the white box model always deals with its complexity in the 

online application, the black box model shows its advantage when implemented in 

the online application.  Knowledge of the process can be used to develop the white 

box model while the hard part to be formulated is modeled using the black box 

model. 

 

Reusch et al. (2001) considered the heterogeneously catalyzed production of 

the methyl acetate process in a semi batch reactive distillation column in their study. 

The dynamic model of the theoretical stage was developed, which consisted of the 

mass balance and the energy balance for each stage. Besides that, the VLE 

relationship also had to be derived and the equations consumed a large part of all the 

MESH equations. Thus, the VLE relationship was modeled using the black box 

model and simulated by gPROMS. The result obtained from the hybrid model was 

compared with the dynamic model on its capability of predicting VLE. 

 

The BRD model for wine production was developed by Osorio et al. (2004). 

The DAE model developed was transformed into a set of ordinary differential 

equations (ODE) by pre-solving the nonlinear algebraic equations for VLE and the 

partial condenser using the Gauss-Newton routine (FSOLVE) from MATLAB. 

These two equations were later replaced by the polynomial and NN model to reduce 

the complexity of the dynamic model. This hybrid model, which combined the model 

equations and the empirical model, was compared with the dynamic model that was 

developed before. The dynamic model combined with the NN model accurately 
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predicted the DAE model when compared to the hybrid model with the polynomial 

approach.  

 

Tables 2.1 to 2.3 show the summary on the available literature for the white 

box, the black box and the grey box models, respectively. From these tables, it can be 

concluded that, there was lack of works in BRD modeling for the transesterification 

process and only a few of them using industrial scale data for the model 

development. Moreover, most of the model that has been developed in BRD was 

white box model and only a few of them considered empirical and hybrid models. 

The observation from tables also shows that the developed models were solved by 

using equation oriented simulators. Consequently, the development of empirical 

model for BRD has getting attention in recent works and most of the model chosen is 

NN. However the process considered were not a transesterification process for the 

production of IPM. Moreover, the table also shows that none of the reviewed works 

were considered the sensitivity analysis before the NN development. Thus in this 

work, the NN for transesterification process in industrial scale BRD will be 

developed.   

 

 



Table 2.1 Summary of modeling and simulation using fundamental model in 

BRD. 

No. Author Product 
Type of 

model 

Simulator/  

Software  

Industrial/ 

laboratory 

Sensitivity 

study 

1. 
Bollyn and 

Wright, (1998) 
PAEE 

Rigorous 

dynamic 

mass 

transfer 

BatchCAD P & I No 

2. Li et al., (1998a) IPM (T) 
Dynamic 

model 
Fortran I No 

3. Li et al., (1998b) IPM (T) 
Dynamic 

model 
Fortran I No 

4. 
Venimadhavan et 

al., (1999) 
BA (E) 

Simplified 

model 
Na Sim No 

5. 

Balasubramhanya 

and Doyle III, 

(2000) 

EA (E) 

Low order 

nonlinear 

model 

Matlab Sim No 

6. 
Gadewar et al., 

(2000) 

Alkylation of 

Butane 

Simplified 

model 
Na Sim Yes 

7. 
Schneider et al.,  

(2001) 
MA (E) 

Rigorous 

dynamic 

rate-based

Numerical 

solver 
P Yes 

8. 
Elgue et al., 

(2002) 
MA (E) 

Dynamic 

model 
DISCo P No 

9. 
Arellano-Garcia et 

al., (2002) 
IPM (T) 

Dynamic 

model 
Fortran I No 

10. 
Brüggemann et al., 

(2004) 
BA (E) 

Dynamic 

model 
gPROMS Sim No 

11. 
Huerta-Garrido et 

al., (2004) 
isomerization 

Simplified 

model 
Batchfrac Sim No 

12. 
Kumar et al., 

(2006) 
LA (E) 

Dynamic 

model 

ODE15s, 

Matlab 
L Yes 
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