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KAJIAN BAGI INTERAKSI BENDALIR/STRUKTUR DALAM PROSES 

UNDERFILL BERACUAN 

 

ABSTRAK 

Pembangunan pesat dalam alat electronic mudah alih seperti iPad, iPhone, iPod dan 

komputer riba telah mendorong teknologi pembungkusan IC ke arah pengecilan 

dengan pakej IC yang berciri-ciri kapasiti tinggi dan padat. Pengurangan pada saiz 

pakej IC telah menwujudkan cabaran kepada para jurutera dan pereka untuk 

mengekalkan kebolehpercayaan pakej dalam proses pembuatan yang berterusan. 

Dalam proses underfill beracuan, interaksi antara bendalir (EMC) dan struktur (cip 

silikon and bebola pateri) menghasilkan ubah bentuk yang tidak dikehendaki dan 

tekanan pada struktur, ini boleh menyebabkan kecacatan dan mengurangkan 

kebolehpercayaan pada pakej. Oleh itu, pemahaman fenomena FSI adalah penting 

untuk jurutera dan pereka IC untuk menangani masalah-masalah ini. Oleh itu, proses 

MUF dengan mempertimbangkan aspek FSI telah diberi tumpuan dalam kajian ini. 

Simulasi FSI telah dijalankan oleh perisian yang berdasarkan jumlah terhingga 

(FLUENT), dan unsur terhingga (ABAQUS), melalui teknik gandingan MpCCI 

untuk analisis yang serentak. Keupayaan perisian dalam menangani masalah 

pengkapsulan telah diperiksa dengan membandingkan keputusan yang diramal 

dengan keputusan terdahulu dan sekarang untuk proses pengkapsulan underfill 

beracuan yang berskala besar. Proses pengkapsulan underfill beracuan berskala besar 

difabrikasi dengan lut-sinar untuk visualisasi yang lebih baik untuk fenomena FSI, 

mekanisme aliran dan pembentukan udara yang terperangkap. Dalam simulasi, 

model kelikatan Castro-Macosko telah ditulis ke dalam UDFs untuk menerangkan 

kelakuan bendalir EMC. Ketepatan UDFs telah terbukti amat baik dalam 

memodelkan kelakuan bendalir reologi semasa proses pengkapsulan. Selain itu, 
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siasatan FSI dalam underfill beracuan telah dilanjutkan dengan kajian kes parametrik 

ke atas pelbagai faktor reka bentuk IC (iaitu, susunan bebola pateri, bentuk, bilangan 

kiraan I/O, ketebalan cip, ketinggian jurang) dan parameter pemprosesan (iaitu, 

tekanan masuk) dan kesan reologi. Kesan faktor-faktor ke atas kelakuan aliran 

bendalir, pembentukan udara yang terperangkap, ubah bentuk struktur dan tekanan 

telah dikaji. Hunbungan antara faktor dengan kesan-kesannya juga dibincangkan dan 

pakej dengan susunan bebola pateri jenis lingkaran mengalami tekanan dan peubahan 

bentuk yang paling serius. Tambahan pula, pengoptimuman menggunakan kaedah 

gerak-balas permukaan (RSM) telah dijalankan untuk mengkaji hubungan interaktif 

setiap faktor dan mengoptimumkan proses pengkapsulan underfill beracuan. Reka 

bentuk IC yang optimum, kawalan yang sepatutnya dalam parameter pemprosesan 

dan pemilihan bahan didapati mempunyai kesan penting terhadap pergerakan 

bendalir, pembentukan gelembung, ubah bentuk dan tekanan semasa proses 

pengkapsulan underfill beracuan. Reka bentuk IC yang optima untuk pakej (20 mm × 

20 mm) dengan susunan bebola pateri bagi kedua-dua parameter fizikal dan proses 

mempunyai ciri-ciri 150 μm untuk ketinggian pateri, 250 μm untuk ketebalan cip, 

dan 50.43 μm untuk ketinggian jurang pada tekanan masuk sebanyak 3.43 MPa.  

Kajian ini dijangka memberi garis panduan dan rujukan yang bernilai untuk para 

jurutera dan pereka pakej semasa proses pengkapsulan MUF dalam industri 

mikroelektronik. 
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INVESTIGATION OF THE FLUID/STRUCTURE INTERACTION IN 

MOULDED UNDERFILL PROCESS 

 

ABSTRACT 

The rapid development of portable electronic devices, such as iPad, iPhone, iPod, 

and laptop, propels the integrated circuit (IC) packaging technology toward 

miniaturization characterized by high capacity and compactness of IC package. The 

scaling down of IC package size has given challenges to the engineers and IC 

designers in maintaining package reliability. In moulded underfill (MUF) process, 

the interaction between fluid (EMC) and structure (silicon chip and solder bump) 

yields unintended deformation and stress that may cause defects and reduce package 

reliability. Thus, the understanding of the FSI phenomenon is essential for the 

engineers and IC designers to tackle these problems. Therefore, the MUF process 

considering FSI aspect was the focus of this research. The FSI simulation was 

performed by finite volume based (FLUENT) and finite element based (ABAQUS) 

software through the MpCCI coupling technique for the simultaneous analysis. The 

capability of the software in handling encapsulation problems was examined by 

comparing the predicted results with previous scholars’ works and the current scaled-

up MUF encapsulation processes. The scaled-up MUF encapsulation processes were 

fabricated in transparent for better visualization of FSI phenomenon, flow and void 

formation mechanisms. In the simulation, the Castro-Macosko viscosity model was 

written into UDFs to describe the EMC fluid behaviour. The accurateness of the 

UDFs has been proven excellent in modelling the rheological fluid behaviour during 

the encapsulation process. Moreover, the FSI investigations on the MUF process 

were extended to the parametric case studies on various IC design factors (i.e., solder 

bump arrangement, shapes, number of I/O count, chip thickness, gap height), 
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processing parameter (i.e., inlet pressure) and rheological effect. The effects of these 

factors on the fluid flow behaviour, void formation, structure deformation and stress 

have been studied. The correlation between the design factors and those effects has 

been discussed and it was found that package with perimeter solder bump 

arrangement endured highest stress and deformation. Furthermore, the optimization 

using response surface methodology (RSM) was carried out to investigate the 

interactive relationship of each factor and optimize the MUF encapsulation process. 

The optimal package design, proper control of the processing parameter and material 

selection were found crucially influenced the fluid flow mechanism, void formation, 

deformation and stress during the MUF encapsulation process. The optimum design 

of the IC package (20 mm × 20 mm) with perimeter solder bump arrangement for 

both physical and process parameters was characterized by 150 µm of solder bump 

standoff height, 250 µm of chip thickness, and 50.43 µm of gap-wise at the inlet 

condition of 3.43 MPa. The current study is expected to provide valuable guidelines 

and references for the engineers and IC designers during the MUF encapsulation 

process in microelectronics industry.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 The rapid development of the portable electronic devices such as smart phone, 

laptop and tablet PC facilitates the communications, managing and sharing the 

information and entertainment. Slim and ergonomic designs of these devices create 

the challenging task to the designer and engineer. Compact characteristics, high 

performance and high reliability of IC package are needed to suit into a limited space 

of those devices. To accomplish these goals, the design of the IC package is now 

towards miniaturization and diversification for various IC applications. In the 

microelectronic industry, IC package designers and engineers are always concern 

with the reliability and quality of the IC package. To overcome these problems, the 

IC encapsulation process is utilized to encapsulate and protect the IC structures such 

as silicon chip, solder bump, wires, IC paddle and lead-frame from the hazardous 

environments. During IC encapsulation, the interaction between EMC and IC 

structures may yield undesirable defects on the IC package. Improper process control, 

material selection and the IC design may reduce the package reliability. As a result, it 

may cause reliability failure. Therefore, the understanding of the phenomenon occurs 

during the IC encapsulation is imperative to handle the IC design, process control, 

and material selection for optimal IC encapsulation process.  

 

1.2 IC Packaging and Encapsulation Process 

IC packaging provides reliable housing and protection for IC chip (silicon 

die), and protects the interconnection of the IC chip to other components such as 

PCBs, transformers, and connectors. It also mechanically supports the IC package. 
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Hence, the IC package is protected from vibration and mechanical stress. The 

exposure of IC chip and interconnectors (solder bumps and wire bonding) to 

moisture, ionic contamination, radiation, heat, and thermo-mechanical stress leads to 

defects and failures of the IC package. Therefore, IC encapsulation is a crucial 

process in IC packaging because it protects the IC chip and interconnectors from 

hazardous environment.  

During IC encapsulation, the encapsulant is transferred into the mould cavity 

to encapsulate the IC structures (silicon chip, solder bump, wire bonding, lead frame, 

and paddle) by using transfer moulding technology. Figure 1.1 illustrates the transfer 

moulding technique during encapsulation. This technique has been widely applied to 

various IC packaging such as thin quad flat package (TQFP), thin profile small 

outline package (TSOP II 54 L LOC), stacked-chip scale package (S-CSP), mould 

array package, moulded underfill (MUF), flip chip underfill encapsulation, and ball 

grid array package (BGA). Several issues, including structural deformation, 

overstress and void formation, reduce package reliability during encapsulation.  

 
Figure 1.1: Illustration of moulding encapsulation setup.  
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1.2.1 Flip chip underfill process  

 The flip chip package was developed by IBM in the early of 1960s to enrich 

microelectronic technology. The development of flip chips enables the IC package to 

be designed with a high number of interconnectors. Thus, the reliability of the 

interconnectors is significant for the flip chip package. In flip chip packaging, the 

underfill encapsulant is applied to protect the interconnectors from harmful 

environment. The underfill encapsulant fills the intermediate space between flip chip 

and substrate, which consists of interconnectors (solder bump). The capillary effect 

of the intermediate space let the encapsulant flow through the space in the 

conventional underfilling method. Figure 1.2 illustrates the underfill process.  

   

(i) Alignment (ii) Flux 

Dispensing 

(iii) Solder Bump 

Reflow and Flux 

Cleaning 

  

 

(iv) Underfilling (v) Curing 

 

 

Figure 1.2: Conventional underfill process (Wan et al, 2007). 

The longer filling time of the conventional flip chip underfill has become the 

bottleneck in the microelectronic industry. Lower productivity may cause an increase 

of manufacturing cost. The productivity of the underfill process is lower compared 

with other types of IC encapsulation process. This is because the underfilling process 

is dependent on the speed of encapsulant flow that fills the space between the flip 

chip and substrate as illustrated in Figure 1.2. Alternatively, the pressurized underfill 

process had been proposed to overcome the problem.  
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 The pressurized underfill process was thus developed by Han and Wang (1997) 

to address this problem. Pressurized underfill is performed by using a specially 

designed mould as shown in Figure 1.3. Vacuum conditioning at the air vent assists 

the smooth flow of the encapsulant. The application of pressurized underfill 

significantly reduces filling time and allows the use of highly viscous encapsulants in 

enhancing package reliability. However, the specific pressurized underfill mould 

design may only apply for a certain chip size or specific flip chip design and may 

also costly for the hardware modification. Thus, this technique is not widely applied 

in the industry.  

 

Figure 1.3: The pressurized process of underfill (Han and Wang, 1997). 

 

 Low cost and high throughput of the process are always the concerns in 

manufacturing process. The reduction in processing step can directly reduce the cost. 

In order to reduce processing steps, no-flow underfill process had been introduced to 

assemble and underfill the space between flip chip and substrate as depicted in 

Figure 1.4. The advantages (Painaik and Hurley, 2004) of the no-flow underfill 

process include simplification of process, no-additional flux agent needed, and 

curability of the no-flow underfill material in the reflow process. Development of the 

no-flow underfill was implemented on lead-free flip chip packaging. These underfill 
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techniques have also been applied on the high-density bump and fine pitch of flip 

chip package, board-level assembly, and assembly of flip chip flex BGA and micro-

BGA. Although this underfill method yields higher throughput and low cost, but the 

void formation during the process causes the reduction in package reliability. 

Improper process control of soak temperature and time may cause voids at the solder 

joints and the intermediate space; hence, diminish the package reliability. Voids in 

the package may induce stress concentration, delamination and solder extrusion; 

hence caused early failure of the package (Wan et al., 2007). Therefore, the moulded 

underfill technique had been introduced to address the package reliability problem. 

 

Figure 1.4: No-flow underfill processes (Wan et al, 2007). 

 

1.2.2 Moulded underfill (MUF) encapsulation process 

The microelectronic industry is focused on achieving high productivity, low 

cost and high reliability of the IC package in the manufacturing process. In 

conventional flip chip packaging, longer filling time affects the production speed of 

IC packages. Enhanced productivity can be accomplished through the 

implementation of transfer moulding technique (Becker et al, 2001) with single 

moulding step. The MUF process minimizes production time, improves package 

reliability and package co-planarity, and reduces stress concentration on the 

interconnectors (Chen, 2008). Thus, its excellent characteristics have led to the 

widely use of the MUF package in mobile applications (Joshi et al, 2010). However, 
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the application of this method on the 3D small-scale and thinned stacking chip still 

needs further research before it can be applied into mass production. Figure 1.5 

shows the schematic of MUF process.  

 

Figure 1.5: Moulded underfill process. 

1.3 MUF encapsulation background and problem statement 

 Encapsulation process is a popular technique to encapsulate and protect the IC 

chip. This technique provides reliable housing to IC chip and also enhances the IC 

package interconnections. The development of the flip chip underfill process from 

the conventional method to the moulded underfill method has been discussed in 

Sections 1.2.1 and 1.2.2. The conventional flip chip underfill technique has been 

practiced for nearly 25 years (Wan et al., 2007), however, the low productivity and 

long filling time have become the constraint in the microelectronic industry. 

Therefore, the improved underfill technique is important to yield better productivity 

and reliability of the IC package.    

 There is a wide research gap in the field of MUF technique. Many research and 

development activities are still carried out by the researchers to better understand the 

MUF technique. Although this technique has been introduced for nearly 12 years and 

patented by Weber (2000), it is still difficult to observe the fluid-structure interaction 

phenomenon during the MUF process especially for small scale and thinned chips of 
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IC packages. Besides, there are still limited literatures available in this topic. The 

design of the IC package, the process control parameters and the material selection 

for MUF process affect the fluid flow behaviour, structural deformation, stress 

concentration, especially on the chip and solder bump. Improper control of these 

factors may cause void formation, critical structural deformation, and also induce 

initial failure of the package. To minimize the impact of these problems, the 

understanding of MUF encapsulation process is significant. Thus, computational 

simulation is advantageous for the visualization, and for a better understanding of the 

physicochemistry of FSI phenomenon. To attempt the solution, several commercial 

software solutions had been developed for the encapsulation process, such as 

Moldflow, Cadmould, C-mould, MAGMAsoft, Flow-3D etc. However, these 

software solutions are mainly for the fluid flow analysis but limited for the FSI 

analysis.  

 The IC package design is toward miniaturization, compact and high 

performance. The encapsulation of miniaturized IC package yields the challenging 

task to IC designers and engineers in maintaining the package reliability.  In addition, 

the reduction of silicon chip and solder bump sizes might bring more challenges to 

MUF process. The interaction between EMC fluid and structures could cause 

unintended deformation and stress that impose on the structure. The extreme 

structural deformation and stress on structures reduce package reliability in the 

subsequent manufacturing process. As a result, it could increase the rejection rate of 

IC products due to the malfunction of package. Therefore, the understanding of FSI 

phenomenon is crucial to tackle this problem through optimal IC package design and 

proper process control.  
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 In the MUF process, small IC package and non-transparent packaging mould 

cause difficulties in visualising FSI phenomenon. FSI also occurs in the 

encapsulation of wire-bonding package, as it was extensively reported in the 

available literature. The deformation of wire bond is normally observed from the top 

view of IC package. However, the visualisation of FSI in the moulded flip chip 

package by using MUF technique is more complicated than the wire-bonding 

package. The horizontal position of the chip complicates FSI visualisation. The chip 

is thin and tiny in package size. The best method for visualising FSI is through cross-

sectional and side views of the scaled-up transparent mould, and also by using the 

simulation tools.  

 

 

1.4 Objectives of the study 

 

 The general objective of this research work is to investigate the fluid/structure 

interaction during moulded underfill process. The understandings of moulded 

underfill process are significant for IC designers and engineers to obtain the optimal 

IC package design and process control. In order to achieve these aims, six main 

objectives were set out as mentioned below:   

 

1. To validate the predictions of modelling tools, CFD and CAE in the fluid 

flow and structural analyses of MUF process.  

2. To validate the predictions of encapsulation process in S-CSP, TQFP 

underfill and MUF encapsulation processes using various viscosity model and 

user defined functions (UDFs) of Castro-Macosko model. 

3. To carry out and establish the experiment on a scaled-up MUF process.  

4. To visualize and study the FSI phenomenon on the scaled-up MUF process in 

the experiment and simulation. 
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5. To study the effect of different parameters such as inlet pressure, solder bump 

arrangement, shapes, number of I/O counts, and chip thickness to the IC 

structures of the MUF IC package.  

6. To perform the computational optimization of MUF process by using 

response surface method and to study the interactive relationship of each 

factor to the responses. 

 

1.5 Scope of the research work 

 In this research work, the investigation of FSI phenomenon is focused on the 

MUF encapsulation process through the simulation and scaled-up experiment. The 

FSI simulation of fluid flow and structural analyses concentrates on the actual size of 

MUF packages by considering the Castro-Macosko viscosity model to describe the 

realistic moulding flow behaviour. This research also focused on the parametric case 

studies to enrich the understanding of each factor. Moreover, the optimization of the 

IC package using response surface methodology was carried out to investigate the 

interactive relationship of the factors to minimize the deformation, stress, void 

formation and filling time in the encapsulation process. The validation of the FSI 

simulation on solving fluid flow and structural predictions were performed with 

scaled-up experiment and the polymer behaviour of Castro-Macosko model was 

compared with TQFP and S-CSP encapsulation obtained by the previous researchers.  

 

1.6 Thesis outline 

This thesis is organized in five chapters. Brief presentation about IC 

packaging, flip chip underfill, background, objectives and scope of research have 

been introduced in chapter one. In chapter 2, literature study of moulded IC 
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encapsulation process is presented. The methodology in mathematical modelling and 

numerical method is highlighted in chapter 3. In chapter 4, the validation of 

experimental and simulation results, parametric case studies and optimization of IC 

package are presented. The interactive relationship of each factor and the 

minimization of the responses are also discussed in this chapter. Lastly, concluding 

remarks on the studies and recommendation for future works are described in chapter 

5. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

The current trend of microelectronics packaging is toward smaller, thinner, 

higher performance, compact and higher reliability, such as high I/O chip, thin 

package, multi chip module etc. These IC characteristics boost the challenges to IC 

designers and engineers in maintaining the package reliability through the 

subsequent manufacturing process. In the aspect of manufacturing, longer production 

time consumes higher cost, for example, flip chip underfill process would take a 

longer time compared with transfer moulding IC encapsulation. Thus, moulded 

underfill encapsulation process was proposed and developed by Weber (2000), in 

which the underfill and encapsulation are preformed in a single step. In this chapter, 

a substantial amount of previous works on the underfill, IC encapsulation and 

moulded underfill processes is discussed. Moreover, the fluid behaviour modelling, 

fluid-structure analysis, RSM optimization are also discussed in this chapter.  

 

2.2 Flip chip underfill process  

 

In early 1960s, IBM developed the C4 (Controlled Collapse Chip Connection) 

flip chip package, through the connection of solder bumps from silicon chip to 

substrate for electricity supply. The reliability of the solder bump is important for the 

flip chip IC package. To maintain the package reliability, the underfill encapsulant is 

applied during the packaging process to protect the interconnector. In the 

conventional underfill process, the encapsulant is dispensed to fill the intermediate 

space between IC chip and substrate, which consists of solder bumps. During the 

filling process, the encapsulant is driven by the capillary effect of the intermediate 
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space as presented in Section 1.2.1. Improper control of the underfill process can 

cause cracking problems and high-stress concentration on the solder bump (Su et al., 

1999). Moreover, the material significantly affects flip chip reliability (Lau et al., 

2000) because imperfections of the underfill lead to delamination of the silicon chip 

and the substrate as well as induced cracks. Delamination is caused by the separated 

interface between the encapsulant and structure. Fluid flow characteristics (Yamada 

and Togasaki, 2003) during the underfill process are influenced by the design of 

interconnectors, such as solder bump standoff height, solder bump pitch, and bump 

gap. A large chip size with a small bump gap and high I/O counts allows a uniform 

flow and a void-free condition. Defects such as fractures (Zhang et al., 2008), crack 

on die and underfill (Shim et al., 2000), and voids in the package (Lee et al., 2010) 

reduce the reliability of the flip chip package.  

 Substantial modelling studies (Wheeler and Bailey, 2000; Pantuso et al., 

2003; Lai and Young, 2004; Wan et al., 2005; Wan et al., 2009; Young, 2010; Khor 

et al., 2010) had been conducted to describe the encapsulant flow during the underfill 

process, including analytical models for flow front advancement and filling time. On 

the other hand, CFD applications in the conventional underfill process provide 

apparent visualization of the underfill process and predictions of underfill behaviour. 

Several solving methods have been utilized in predicting underfill flow, including 

FEM (Han and Wang, 1997; Tay et al., 1997), FVM (Yang et al., 1998), and 

characteristic split-based method with FEM (Kulkarni et al., 2006), which discretized 

the governing equations of the fluid flow during the simulation. In the underfill 

encapsulation process, Han and Wang (1997) noted that the surface tension of the 

encapsulant slightly decreased with the increase of temperature, and that the dynamic 

contact angle was an important consideration in the underfill process. Besides, Tay et 
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al. (1997) found that the underfill time was proportional to surface tension and 

inversely proportional to viscosity. Besides, the filling of fluid in conventional 

underfill encapsulation is driven by capillary effect that is dependent on the surface 

tension (Pantuso et al., 2003) of the chip and substrate. 

 Zheng et al. (2008) also carried out two-dimensional underfill flow 

modelling. The improvement of underfill on various dispensing patterns was 

performed by Xie et al. (2008) by using a 3D flow model, which was well validated 

by experimental results. Furthermore, Wan et al. (2009) enhanced the numerical 

modelling of flip chip underfill by developing analytical equations and using power 

law equation to describe non-Newtonian fluid behaviour. They performed underfill 

predictions by using ANSYS software, as depicted in Figure 2.1, and their 

predictions were in good agreement with the experimental work of Nguyen et al. 

(1999).  

 
 

Figure 2.1: Predicted underfill flow profile by Wan et al. (2009) and experimental 

results (Nguyen et al., 1999). 

 

 In recent years, the application of FV-based software FLUENT was reported 

by Khor et al. (2010), who investigated the 3D conventional underfill process by 

taking into account the solder bump pattern of the flip chip package. The design of 

the solder bump pattern in the flip chip underfill had a crucial effect on filling time 

and flow front velocity, which caused the full array package to consume a longer 
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filling time for the underfill process. The presence of the solder bump restricted the 

fluid flow to a narrow space. The predictions of FLUENT results are shown in Figure 

2.2. 

 
 

Figure 2.2: Capillary driven underfill process at 50% filling stage for different solder 

bump pattern (Khor et al., 2010). 

 

 Recently, an improvement on the flow front tracking method was carried out 

by Wang et al. (2011) by using the PLIC–FAN (Piecewise linear interface 

calculation – flow analysis network) method in a capillary driven underfill process. 

This method handled the interface reconstruction and tracked the melt front at every 

time step. They used Petrov–Galerkin methods to solve the fluid flow governing 

equations. Their simulation results showed realistic predictions on the melt front of 

the underfill. A comparison of the experimental and simulation results by Wang et al. 

(2011) is presented in Figure 2.3. Their studies and application of algorithm have 

contributed to the improvement of virtual modelling. In addition, Moon et al. (2011) 

addressed the importance of edge effect in underfill modelling and showed that 

neglecting the edge effect will affect the accuracy of predictions. The 3D modelling 

and experimental results obtained by Moon et al. are illustrated in Figure 2.4.  
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Figure 2.3: Flow front profile (a) Experimental and (b) simulation results by Han and 

Wang (1997); (c) PLIC-FAN method and (d) Autodesk MoldFlow by Wang et al. 

(2011). 

 

 
 

Figure 2.4: Edge effect of underfill modelling (Moon et al., 2011) at 10, 60 and 95 % 

of filling.  

 

2.3 IC Encapsulation process 

 

 IC package reliability is a main issue in IC packaging. Reliability parameters 

in the IC encapsulation process are usually referred to the deformation, stress 

imposed on IC structures (e.g. silicon chip, solder bump, wire bond and IC paddle) 

and void formation. High deformation, stress imposed on IC structures and void in 

the IC package may cause the malfunction of package. Improper processing, material 

selection, and package design yield unintended defects or features to the IC package 

in the subsequent processes. These defects and features cause failures to the IC 
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package, such as interconnector cracks or fractures, structural deformation, interface 

delamination, and overstress. These defects consequently cause the IC package to 

break down. In the encapsulation process, the feeding of viscous polymer fluid (e.g., 

EMC and liquid encapsulant) causes the interaction between fluid and structure 

during encapsulation. This interaction induces the deformation of IC structures, 

including wire sweep and lead-frame deformation. Unstable filling during 

encapsulation also contributes to void formation or incomplete filling of mould 

cavity. To eliminate and minimize the defects in the encapsulation process, the 

understanding of the process is important. In this section, a substantial amount of 

works on the IC encapsulation is considered in TQFP, S-CSP and MUF packages. 

Reliability issues during encapsulation process are also discussed in the subsequent 

sections.  

 

2.3.1 Encapsulation process for TQFP and S-CSP packages 

 

 Various IC packages are designed for the variety applications of electronic 

devices. TQFP is popularly used in portable electronic devices such as cell phone, 

portable personal computer, and digital camera because it is lightweight and has 

good thermal performance. Figures 2.5 and 2.6 depict a typical TQFP IC package 

and its internal structures within the package. During encapsulation, the interaction 

phenomenon induces the structural deformation such as wire bonding and paddle 

shift. Therefore, encapsulation process must be properly controlled to eliminate these 

problems. The study on the predictions of 144-lead TQFP encapsulation was carried 

out by Nguyen et al., (2000) through computational modelling by using the CFD-

ACE (U) solver of the PLICE-CAD software package. The experiment was 

conducted by using transfer-moulding technique on the commercially available 
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TQFP package with the dimensions of 20 mm × 20 mm × 14 mm. Their results were 

found in good conformity with the short-shot experimental results. Minor 

discrepancies were observed for flow front shape and locations compared with the 

experiment because a simple geometric model was used.  

 
 

Figure 2.5: Schematic of a TQFP [http://cpu.linuxmania.net]. 

 

 

 
 

Figure 2.6: Illustration of typical TQFP (Ref. http://www.practicalcomponents.com). 

 

 During the encapsulation, the interaction between fluid and structure causes 

other issues in package reliability. The integration of CFD and CAE software allows 

the researcher to perform structural analysis. Teng and Hwang (2008) utilized the 

Moldex3D-RIM software to simulate encapsulation of the TQFP process and the 

commercial finite element (FE)-based ANSYS to conduct structural calculation. The 

generated fluid flow data were extracted by using InPack software, and then 

transferred to ANSYS. In their analysis, the paddle shift was attributed to unstable 
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filling because the lead frame was subjected to unstable forces. The corner regions of 

the chip also had an air trap. Figure 2.7 illustrates the experimental and simulation 

results using Moldex3D-RIM software. A similar paddle shift phenomenon was also 

observed in other studies (Shen et al., 2007; Chou et al., 2009; Chen et al., 2007; Pei 

and Hwang, 2005). Finite element method (FEM) and finite difference method 

(FDM) (Kuah et al., 1996) were also utilized to simulate the flow modelling of 

plastic quad flat package (PQFP) using transfer moulding while considering the lead 

frame and wire structures during encapsulation.  

 

 
 

Figure 2.7: Simulation and experimental results by Teng and Hwang (2008). 

 

 In recent years, Wang et al. (2010) introduced the Galerkin/least-squares 

stabilized FEM during microchip encapsulation. The similar technique was also used 

for underfill process as mentioned in Section 2.2. Piecewise linear interface 

calculation–flow analysis network (PLIC–FAN) method was applied for melt front 

tracking by reconstructing the interface of fluid and air phases. The simulation 

system was developed and carried out by using VC++ 6.0. Their algorithm predicts 

the details of the melt front by considering the presence of the lead frame and IC chip 

(Figure 2.8). The smooth melt front is shown in the predictions of Moldex-3D 

(Figure 2.8a). However, they predicted the detailed disturbance on the melt front. 
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The occurrence of non-uniform melt front that was due to the lead frame and IC chip, 

which is clearly visualized in Figure 2.8 (b). Hence, the continuous improvement in 

virtual modelling yields realistic predictions of flow front advancement in the IC 

encapsulation process.   

 
(a) Moldex-3D  (b) Stabilized filling method  

 

Figure 2.8: Melt front prediction (a) Modex-3D (Teng and Hwang, 2008) and (b) 

stabilized filling method (Wang et al., 2010). 

 

 

Stacking chip technology allows the IC packages to be compact and with 

high capacity by stacking the package vertically. The technology is a result of the 

high demand and high performance of electronic devices. The current and future 

trends of stacking chip technology are presented in Figure 2.9. The increased IC chip 

and wire bonding in IC package need reliable protection. Thus, encapsulation process 

is also applied to the stacking chip package. Multifarious research effort has been 

performed in encapsulation simulation for S-CSP package. Moon et al. (2007) 

investigated stacking chip packages using MoldFlow through the injection moulding 

technique. The design of stacked-die configuration, mould cap clearance, and 

properties of the moulding compound significantly affected the flow front profiles 

during filling. The overhang of stacking chip may increase the tendency of void 

formation and cause mechanical failures. Moreover, increasing mould gap clearance 

and decreasing fluid viscosity could achieve uniform flow front profiles. 
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Figure 2.9: Chip staking trends (Agonafer et al., 2006). 

 

 

 Abdullah et al. (2007, 2008, and 2010) studied the encapsulation process of 

S-CSP package by using the FORTRAN program. FDM was applied to discretize the 

governing equations. Figure 2.10 depicts the melt front predictions by using 

FORTRAN 77 program. Retardation of EMC material advanced the slower flow 

front and increased the resistance of fluid flow during the process. The selection of 

the viscosity model for EMC is also essential to the simulation results while the 

Castro–Macosko model describes the optimized EMC predictions during IC 

encapsulation. Thus, the design of stacking chips and the characteristics of moulding 

compound are important in the modelling of IC encapsulation. Similarly, Ramdan et 

al. (2012b) had studied the S-CSP encapsulation (Figure 2.11) by using FLUENT 

focused on the venting effect. They found the flow front distribution of S-CSP 

encapsulation process and pressure profiles within the cavity significantly influenced 

by the number of vents, position and size. 
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Figure 2.10: Predicted melt front using FORTRAN and experimental results 

(Abdullah et al., 2007). 

 

 

 
 

Figure 2.11: Predicted pressure profile using FLUENT by different venting designs 

(Ramdan et al., 2012b). 

 

2.3.2 Moulded underfill (MUF) 

 

 High productivity and low cost in the manufacturing process are the desired 

goals of engineers in the microelectronic industry. Conventional flip chip packaging 

requires more filling time, which affects the subsequent production speed of IC 

packages (Rector and Fisher, 2011) and creates a bottleneck. Alternatively, the 

implementation of transfer moulding technique (Becker et al., 2001) can reduce the 
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number of processing steps, where the underfill and encapsulation are performed at a 

single moulding step. Thus, this process enhances the overall productivity by 

reducing the production time, improving package reliability, enhancing package co-

planarity, and reducing stress concentration on the solder bumps (Chen, 2008).  

Moreover, this moulding technique also helps in reducing thermal mismatch (Braun 

et al., 2002), enhancing stress performance (Kao et al., 2004), providing better 

electrical (Braun et al., 2006) and thermal performance (Tsai et al., 2007). Besides, 

vacuum conditioning during the MUF process and its material performance also 

make it void-free during encapsulation process. Therefore, its excellent 

characteristics have made MUF package widely used in mobile applications (Joshi et 

al., 2010). Further reviews on the MUF developments will be discussed in the 

following paragraphs.  

 Lee et al. (2008) investigated the MUF process on a flip chip multi-chip 

module by using transfer moulding. Modex3D software was utilized to handle flow 

front modelling in the MUF process. A characterization of the MUF rheological 

compound was also considered. Void formation was observed at the top-left and 

bottom-right gate locations in their experimental and simulation results. The void 

formation was still observed when seven different types of gate and locations were 

employed by using the finite element model. They found that the optimized design 

with the top-left pin gate solved the void formation problem in the packaging, and 

they concluded that an optimal design is a significant and effective way to solve the 

void formation in the MUF process. The numerical and experimental results were 

found to be in good conformity, as clearly shown in Figure 2.12.  
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Figure 2.12: Experimental and Moldex3D results on predicted void formation (Lee 

et al., 2008). 

 

 

 The underfill techniques offer significant productivity improvement through 

capillary underfill process. The effect of no-flux type of flip-chip packaging on the 

interfacial adhesion in the moulded underfill package was examined by Rector and 

Fischer (2001) by using scanning acoustic microscopy. The moulded flip-chip 

packages fulfilled the JEDEC (Joint Electron Devices Engineering Council) level 3 

requirement and showed the greatest reliability in thermal shock tests. Kooi et al. 

(2004) investigated the flip-chip package by using transfer moulding technique. 

They focused on the exposed die moulded package and non-exposed die MUF for 

the matrix array packaging (Figure 2.13). Both packages were tested and the non-

exposed die moulded package showed a better reliability performance than the 

exposed die moulded package because cracking was observed at the mould corner.  

 

Inlet gate 

Inlet gate 
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Figure 2.13: Schematic drawings of exposed-die and non-exposed-die MUF (Kooi et 

al, 2004). 

 

 Kao et al. (2004) studied the moulded flip-chip BGA (MFCBGA) 

characterization by using finite element method. The thermal and stress 

characteristics were taken into account in the analysis for MFCBGA and the more 

common FCBGA. A comparison of both packages characteristics was made. The 

major concerns in moulded flip-chip BGA were the high stress concentration at the 

silicon die from the injection pressure and the thermal stress generated as well as the 

mismatch between them. The thermal performance of MFCBGA was obtained in 

their study. The material properties with lower coefficients of thermal expansion 

(CTE) and higher temperature of gelation (a process of forming a gel), Tg, had 

resulted in lower bump and chip bending stresses for the package.  In addition, the 

application of moulded underfill (MUF) technique in the IC packaging process 

yields shorter processing time and enhanced the package reliability by using MUF 

material. The MFCBGA process with underfill and MUF is illustrated in Figure 2.14.  

Substrate Solder bump 

MUF material 
Silicon die Silicon die 

Solder bump 

(a) Exposed silicon die (b) Non-exposed silicon die 
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