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MOLEKUL 
 

ABSTRAK 

Dua puluh peratus gen daripada MGH78578 Klebsiella pneumonaie mengkod  

protein hipotetikal. Dua protein hipotetikal KPN00728 dan KPN00729 telah 

dikenalpasti dengan menggunakan pendekatan bioinformatik. Kedua-dua rangka 

bacaan terbuka menunjukkan homologi jujukan tinggi kepada suksinat 

dehidrogenase rantai C (SdhC) dan D (SdhD) daripada Escherichia coli. KPN00729 

dikenalpastikan sebagai SdhD pada Mei 2008. Malah penyelidikan terhadap 

KPN00728 tetap tidak diketahui kerana tidak ada anotasi bagi gen SDHC dalam 

jujukan genom lengkap daripada Klebsiella pneumoniae  MGH78578. Dalam kajian 

ini, KPN00728 mempunyai kawasan hilang yang mengandungi residu yang penting 

bagi ikatan ubiquinone (UQ) dan kumpulan Heme. Fungsi KPN00728 dengan 

gabungan analisis struktur sekunder dan topologi transmembran menunjukkan 

KPN00728 terima guna SDH-struktur (C subunit). Bagi mengkaji fungsinya dengan 

lebih mendalam, UQ telah didokkan pada model yang dibina (terdiri daripada 

KPN00728 dan KPN00729) dan pembentukan ikatan hidrogen antara UQ dengan 

Ser27, Arg31 (KPN00728) dengan Tyr83 (KPN00729) lebih menguatkan dan 

menyokong bahawa KPN00728 adalah suksinat dihidrogenase (SDH). Namun 

demikian, keterbatasan dalam simulasi megedok gagal untuk memberikan 

pemahaman mendalam tentang interaksi SDH yang berada pada trans-membran 

mitokondria. Simulasi dinamik molekul (MD) KPN00728 dan rantai D dalam 

membran dilakukan bagi melihat peranan molekul SDH. Kestabilan struktur telah 

ditunjukkan dalam pengiraan pada kawasan lipid, susunan parameter ekor, ketebalan 

lipid dan sifat struktur sekunder. Menariknya, molekul air yang ditemui mungkin 
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lebih menyebabkan penyimpangan interaksi UQ dengan SDH di Ser27 dan Arg31 

dibandingkan dengan kajian pendokan sebelumnya. Residu polar seperti Asp95 dan 

Glu101 (SDH rantai C), Asp15 dan Glu78 (SDH rantai D) mungkin telah 

menyumbangkan penciptaan lingkungan polar yang sangat penting bagi rantai 

pengangkutan elektron dalam kitaran Krebs. Walaupun terdapat perbandingan 

kestabilan struktur, interaksi dinamik telah banyak membuktikan bahawa interaksi 

KPN00728 sebagai SDH adalah lestari dan juga menepati dengan postulasi kami 

sebelum ini. 
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STRUCTURAL AND FUNCTIONAL PREDICTION OF HYPOTHETICAL 
PROTEINS FROM KLEBSIELLA PNEUMONIAE MGH78578: MOLECULAR 

MODELLING STUDIES 
 

ABSTRACT 

Twenty percent of the genes from Klebsiella pneumonaie MGH78578 coded for 

hypothetical protein. Two particular hypothetical proteins KPN00728 and 

KPN00729 were identified using bioinformatics approaches. Both open reading 

frames showed high sequence homology to succinate dehydrogenase Chain C (SdhC) 

and D (SdhD) from Escherichia coli KPN00729 was annotated as SdhD in May 2008. 

Thus, investigation on KPN00728 remained as no annotation for SdhC gene in the 

complete genome sequence of Klebsiella pneumoniae MGH78578. In this study, 

KPN00728 has a missing region with conserved residues which is important for 

ubiquinone (UQ) and heme group binding. Structure and function prediction of 

KPN00728 coupled with secondary structure analysis and transmembrane topology 

showed KPN00728 adopts SDH-(subunit C)-like structure. To further probe its 

functionality, UQ was docked on the built model (consisting KPN00728 and 

KPN00729) and formation of hydrogen bonds between UQ and Ser27, Arg31 

(KPN00728) and Tyr83 (KPN00729) further reinforced and supported that 

KPN00728 is indeed succinate dehydrogenase (SDH). However, limitation in 

docking simulation failed to provide in depth understanding of the SDH interaction 

that occurs in the trans-membrane of mitochondria. For more insight into its 

molecular role as SDH, molecular dynamics (MD) simulation of KPN00728 and 

Chain D in a membrane was performed. Structural stability was demonstrated in the 

calculation in area per lipid, tail order parameter, thickness of lipid and secondary 

structural properties. Interestingly, water molecules were found to be highly possible 

for the deviation of interaction of UQ with SDH in Ser27 and Arg31 as compared 
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with earlier docking study. Polar residues such as Asp95 and Glu101 (SDH chain C), 

Asp15 and Glu78 (SDH chain D) might have contributed in the creation of a polar 

environment which is essential for the electron transport chain in Krebs cycle. 

Despite the structural stability comparability, the dynamics of the interaction had 

further proved that the interaction of KPN00728 as SDH is preserved and well 

agreed with our postulation earlier.  
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CHAPTER 1 
 

INTRODUCTION 

1.1 Statement of problem 

Klebsiella pneumoniae is a Gram negative, non motile and rod-shaped bacterium.  It 

is named after a German microbiologist Edwin Klebs in 19th century (Figure 1.1).  

The genus Klebsiella belongs to the tribe Klebsiellae and it is a member of the family 

Enterobacteriaceae which has a prominent polysaccharide capsule (Philippon et al., 

1989). The resistance mechanisms against most hosts come from this capsule which 

encases the entire cell surface (Tsay et al., 2002). Classification of Klebsiella is 

based on the structural variability of the antigens which are expressed on their cell 

surface. There are two types of antigens, the first is lipopolysaccharide and the other 

is a capsular polysaccharide (Philippon et al., 1989). Both antigens are pathogenic.  

There are about 77 capsular antigens and 9 lipoplysaccharide  identified to which 

exist till date (Orskov and Mfife-Asbury, 1977; Toivanen et al., 1999).  

 

At present, 7 species of klebsiella are known which had shown DNA homology. 

These are Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella planticola, 

Klebsiella rhinoscleromatis, Klebsiella oxytoca, Klebsiella terrigena, and Klebsiella 

ornithinolytica. Klebsiella pneumoniae is the most medically important species of the 

group which is responsible in most human infections (Ko et al., 2002).  

 

Klebsiella is known as an opportunistic pathogen found in the environment and 

specifically in mammalian mucosal surfaces. They appeared as normal flora of the 

intestinal tract but usually low in number as compared to Escherichia coli. Generally, 

Klebsiella infections tend to occur in patient with a weakened immune system and 
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Figure 1.1 Scanning electron microscopy of wild type Klebsiella pneumonia 

MGH78578 (with the permission of Mr Teh Boon Aun). 
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people with underlying diseases (Kawai, 2006). The principal pathogenic reservoirs 

of infection are the gastrointestinal tract of patients and the hands of hospital 

personnel (Marshall, 1991; Obiamiwe and Leonard, 2006). It can spread rapidly, 

often leading to nosocomial outbreaks. Infections of Klebsiella often occur at urinary 

tract, respiratory tact, biliary tract, and surgical wound sites (Osazuwa et al., 2010; 

Obiamiwe and Leonard, 2006). Common clinical symptoms include pneumonia, 

bacteremia (Yinnon et al., 1996), thrombophlebitis, urinary tract infection (UTI)(one 

of the most common infections (Okadeinde et al., 2011)), cholecystitis, diarrhea, 

upper respiratory tract infection, wound infection, osteomyelitis, and meningitis. 

Studies conducted in Asia (Japan and Malaysia) estimated that the incidence rate in 

elderly persons to be 15-40% (Obiamiwe and Leonard, 2006), which is equal to, if 

not greater than, that of Haemophilus influenzae. The occurrences are likely to be far 

more common in Asia than elsewhere (Ko et al., 2002). The emergence of multi-

drug resistance as in extended-spectrum beta-lactamases (ESBL) in K. pneumoaniae 

has also been reported in the past decade (Paterson et al., 2004) as  this become a 

major concern clinically.  Although the incident of community acquired K. 

pneumoniae has apparently decreased, the mortality rate remains twice higher (Kang 

et al., 2006) as a result of the underlying disease that’s tends to be present in affected 

patients (Wiener et al., 1999; Carpenter, 1990). These rapid boosted incidences 

deserved to be investigated and delineated.  

 

Recently, genome sequence determination for the complete genome of K. 

pneumoniae had been accomplished in the middle of year 2007 by Genome Research 

Center of Washington University of St. Louise (NCBI, 2007). It consists of about 5 

million of nucleotides and this complete genome map of klebsiella sp has enabled us 
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to identify the important part of the genome, eg. Regulatory regions which control 

the regulatory mechanisms can be identified from turning on or off at a particular 

gene.  However, the major challenge of biomedical research currently is to 

characterise the properties and biological functions not only from the genes but also 

from the proteins. There are a total of 4894 genes out of which 4776 genes are 

encoding proteins in K. pneumoniae. Further analysis showed that from the 4776 

protein coding genes, there is about twenty percent of the genes is annotated poorly 

and is classified as hypothetical gene. A hypothetical gene nevertheless will 

eventually be translated theoretically into a protein sequence which in turn will be 

identified as a hypothetical protein. Majority of the functional aspect of these 

proteins are not known and hence, deserving an investigation as they represent a 

rather large part of the bacterial proteins and they might play important roles towards 

improved understanding of biological functions.   

 

In this project, the goal is to study the hypothetical protein of K. pneumoniae using 

bioinformatics approaches with two specific aims: To identify novel structure and to 

characterize the functional and structural features of the hypothetical protein. In 

order to gain deeper understanding on the functional aspect of the hypothetical 

proteins, the first approach is to predict its structure. Different methodologies such as 

comparative genomics, homology modeling and fold recognition could be adopted in 

line to produce highly accurate structure of which the function of these proteins can 

be postulated. Once the protein structure is known, many computational modelling 

approaches can be used for better understand on aspects such as ligand binding, 

protein-protein interactions, receptor activation, or effects of structure and activity. 

This information can then act as a platform in establishing the mechanisms of the 
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hypothetical protein and the pathogenecity of K. pneumoniae in turn can be further 

understood in the future. With that in mind, the specific objectives of this research 

are:   

1. To select a hypothetical protein with important biological function in K. 

pneumoniae using computational/bioinformatics approach. 

2. To predict the structure of the selected hypothetical protein by 

comparative genomics and homology modeling. 

3. To study the function of hypothetical protein using molecular docking 

and molecular dynamics simulation approaches.   

 

1.2 Literature Review 

1.2.1 K. pneumoniae infection 

The non-motile and gram negative bacteria, Klebsiella pneumonaie is known as the 

most common species among the family that associated with human disease was 

found in 19th century in Germany (Figure 1.1). Although the bacteria is known for 

over hundreds years, there are still many unanswered question for scientists to reveal.  

 

Klebsiella sp. can be found naturally as a normal flora in gastrointestinal tract or in 

biliary tract of human and animal (Marshall, 1991). They may colonize skin, pharynx 

or gastrointestinal tract (Marshall, 1991). They may also colonize sterile wounds and 

urine (Obiamiwe and Leonard, 2006). It is an opportunistic pathogen; when the 

immunity is low in the body, the Klebsiella infections could occur. The most 

common infection caused by these bacteria is pneumoniae and it usually occurs in 

middle age and older men with underlying diseases such as alcoholism, diabetes 

(Chen et al., 2000) and lung diseases (Marrie and File, 2010; Montgomerie and Ota, 
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1980).  Infection with Klebsiella organisms frequently occurs in the lungs, where 

they cause destructive changes (Osazuwa et al., 2010). Necrosis, inflammation, and 

hemorrhage occurred within lung tissues, sometimes produce thick and bloody 

mucous sputum (also described as currant jelly sputum) (Obiamiwe and Leonard, 

2006). Mortality rate of this infection is 20 to 50% (Cryz et al., 1985; Montgomerie 

and Ota, 1980) but can reach up to almost 100% in alcoholic patient that suffer from 

bacteremia.  

 

Pneumonia that caused by Klebsiella is usually indistinguishable from the normal 

streptococcal pneumonia in term of the associated symptoms such as high fever, 

chills flu-like symptoms body aches and productive cough with a great deal of 

sputum (Brook, 2007). However, a patient with normal streptococcal pneumonia can 

recover without any complication but this is not the case of pneumonia that caused 

by Klebsiella sp, where lung tissues destruction and abscesses are always found in 

the patient. Klebsiella infection also has been identified to be one of the common 

infections found in neonatal intensive care units (Podschun and Ullmann, 1998), thus 

it becomes a major concern in infections among pre-mature infants in pediatric wards. 

 

Klebsiellae have also been incriminated in nosocomial infections (Tsay et al., 2002; 

Obiamiwe and Leonard, 2006). Common sites include the urinary tract, lower 

respiratory tract, biliary tract, and surgical wound sites. The spectrum of clinical 

syndromes includes pneumonia, bacteremia, thrombophlebitis, urinary tract infection 

(UTI), cholecystitis, diarrhea, upper respiratory tract infection, wound infection, 

osteomyelitis and meningitis. The presence of invasive devices, contamination of 

respiratory support equipment, use of urinary catheter, and use of antibiotics are 
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factors that increase the likelihood of nosocomial infection with Klebsiella species. 

Sepsis and septic shock may follow entry of organisms into the blood from a focal 

source. 

 

Symptoms such as UTI, rhinoscleroma and ozena which cause by some other species 

of klebsiella have also been reported. Klebsiella sp is increasingly isolated in patients 

that have invasive devices such as catheter, feeding tube on. Both rhinoscleroma and 

ozena are known to be caused by K. oxtoca and K. ozaenae.  Rhinoscleroma is a 

chronic granulamatous infection on nose which was found to be endemic in several 

countries such as Egypt and San Salvador (North et al., 1982; Paul et al., 1993; 

Shum et al., 1982). As for ozane, it also attacks the nose. The occurrence of both the 

diseases however is rare and is not fatal (Goldstein et al., 1978).  

 

1.2.2 Treatment for Klebsiella pneumoniae 

The general treatment of Klebsiella in the early days is with the beta-lactam 

antimicrobials such penicillin, ampicillin and amoxillin. Nevertheless, the extensive 

use of these broad-spectrum antibiotics in hospitalized patients has led to both 

increased infections of Klebsiellae and, subsequently, the development of multidrug-

resistant strains that produce extended-spectrum beta-lactamase (ESBL) (Philippon 

et al., 1989). Outbreaks of Klebsiella sp where the resistant strain were found had 

been reported by many (Bradford, 2001; Livermore et al., 2007; Ben-Hamouda et al., 

2003; Haryani et al., 2007). ESBL enzyme which consists of capsular type K55 is 

capable of destroying cephalosporins by cleaving the beta-lactam ring in the 

antibiotics. These multidrug strains are highly virulent and have an extraordinary 

ability to spread (Obiamiwe and Leonard, 2006; Kumar and Talwar, 2010). Most 
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outbreaks are due to a single clone or single gene; the major site of colonization with 

infection of the urinary tract, respiratory tract and wounds appears in bowel 

(Obiamiwe and Leonard, 2006; Kumar and Talwar, 2010). Bacteremia infection in 

blood namely bacteremia significant increased mortality has also resulted from 

infection with these species (Kumar and Talwar, 2010).   

 

Prior to antibiotic use, the presence of invasive medical apparatus in a pateint such as 

indwelling catheter, feeding tubes, poor health status as well as an intensive care 

patient are significantly increases the risk factors for infection and treatment 

(Obiamiwe and Leonard, 2006; Ben-Hamouda et al., 2003). Acquisition of these 

species has become a major problem in most hospitals because of resistance to 

multiple antibiotics and potential transfer of plasmids to other organisms. 

 

In Malaysia, Klebsiella pneumoniae is one of the high ranking community-acquired 

pneumonia among patient in local hospital (Loh et al., 2007; Loh et al., 2004).  

Navaratnam and coworkers (Palasubramaniam et al., 2005) had reported an outbreak 

caused by K. pneumonia in a local hospital. They had isolated an imipenem-resistant 

strain of K. pneumoniae and believed that to be an association of ESBL SHV-5. 

Characterization of multidrug–resistant (MDR) and extended-spectrum β-lactamase-

producing K. pneumoniae strains from Malaysia hospitals has been carried out in 

2009 (Lim et al., 2009) where more than 50% of K. pneumoniae strains found was 

MDR. This is also well correlated with an earlier study (Loh et al., 2007) carried out 

between the year of 2002-2007. In the study, they screened through of 1,581 cases of 

K. pneumoniae infections and found that 52.8% of the isolates were resistant to one 

class of antibiotics while 48.2% were to two classes of antibiotics. It was also noted 
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that the numbers of resistant isolates increased throughout the year of research (Loh 

et al., 2007).  

 

Due to the rapid emerging of the resistant strain in the Klebsiella sp., determination 

of structure and function of hypothetical protein in Klebsiella pneumoniae may 

provide us an opportunity to find potential target for new antibiotic. The 

understanding of the structure of these hypothetical proteins might in turn be 

instrumental in the structure-based drug design strategy for discovering novel and 

effective antibiotics.      

 

1.2.3 The Genome of Klebsiella pneumoniae  

Complete genome sequence of Klebsiella pneumoniae was published and can be 

accessible in NCBI. It comprised a total of 5,315,120 million nucleotides and a total 

of 4894 coding genes. Out of that, 4,776 (about 85%) genes encode proteins. Further 

analysis showed that from the 4,776 protein coding genes, there are about 20% of the 

genes which are annotated poorly and are classified as hypothetical genes. In theory, 

these hypothetical genes (nucleic acid sequence) are eventually translated into 

proteins known as hypothetical proteins. It occupied a total number of 1004 protein 

of the 4776 protein (Table 1.1). Hypothetical protein deserved to be investigated in 

view of the fact that the hypothetical protein coded by quite a large percentage of 

genes in the genome of K. pneumoniae, and perhaps they might provide an important 

clue as what would be the best drug target for the bacteria. 

 

 

 



 

10 
 

 

Table 1.1 Distribution of all the hypothetical proteins from Klebsiella 
pneumoniae according to the number of amino acid residues.  

 
Size 

( Number of amino acid 
residues) 

Number of hypothetical 
protein 

 
0-100 

 
254 

101-200 343 
201-300 195 
301-400 87 

>400 
 

125 
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1.2.4 Hypothetical proteins of Klebsiella pneumonaie and the importance 

Approximately 20% of the K. pneumoniae protein coding genes are classified as 

hypothetical genes. Translation of these hypothetical genes into amino acid sequence 

will give rise to hypothetical proteins. However to date, there is no proper definitions 

for hypothetical proteins. In general, hypothetical proteins are predicted protein 

sequence which translated directly from nucleic acids sequences (Galperin, 2001; 

Lubec et al., 2005; Pawlowski, 2008). The existence of these proteins is not shown in 

laboratory experiments. In some cases, these proteins have low identity to known 

annotated protein (Lubec et al., 2005). 

 

Functional characterization of the hypothetical protein(s) of K. pneumoniae using 

computational approaches is a great challenge and is quite difficult due to the fact 

that the presence of these hypothetical proteins in the organism is unknown. 

However it is worth attempting to predict hypothetical protein as it might give new 

protein motif or domain. In more opportune situation, one might also reveal new 

biochemical pathway or mechanisms which may influence our understanding in 

protein-protein interaction which is important in selecting proteins as drug targets.   

 

1.2.5 Protein structure prediction  

Most of the molecular mechanisms of the cells are realised by decoding the functions 

of the protein in an organism. Thousands of protein sequences have been determined 

over the years, and thousand of the associated protein structures have been resolved 

as well (Rose et al., 2010). However, the experimental determination of the function 

of protein from known sequence still remains a challenging mission. Fortunately, 
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there are number of computational techniques that can be exploited to assign 

function to experimentally uncharacterized proteins. 

 

The experimental methods most commonly used to determine a protein's structure 

are x-ray crystallography and nuclear magnetic resonance (NMR) (Goodsell, 2010). 

In x-ray crystallography, scientists determine protein structure by measuring the 

directions and intensities of x-ray beams diffracted from high-quality crystals of a 

purified protein molecule. NMR uses high magnetic fields and radio-frequency 

pulses to manipulate the spin states of nuclei. The positions and intensities of the 

peaks on the resulting spectrum reflect the chemical environment and nucleic 

positions within the molecule. Scientists have been working to solve the protein-

folding mystery for decades. In research that received the 1972 Nobel Prize in 

Chemistry (Anfinsen, 1973), Christian Anfinsen showed that a completely unfolded 

protein could fold spontaneously to its biologically active state, indicating that a 

sequence of amino acids contains all of the information needed to specify its 3D 

structure (Anfinsen, 1973). Promising results can be developed using both 

methodology (Kawamura et al., 2011; Medina et al., 2011; Hwang and Hilty, 2011; 

Sanders et al., 2011). However, both methods are expensive and time consuming, 

and some proteins are not amenable to these techniques. 

 

During the last decade, the integration for computational biology in protein research 

has become very essential. Bioinformatics tools have been widely used in predicting 

the structure of proteins and identifying their function homologue (Rigden, 2009). 

One of the goals of structural bioinformatics is to determine the three dimensional 

(3D) structure of all major protein families throughout the tree of life. Computer 
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based 3D structure offer some advantage over experimental characterization: they are 

faster and less expensive. This will permit a deeper understanding of the relatedness 

of protein domain and its catalytic functions. In addition, it also enables us to identify 

the function to many proteins. Hence, to predict the hypothetical protein structure 

and functional characterization from primary sequence to a complete three 

dimensional structure point of view using computational methods remains one of the 

most popular and cost effective routine in structural bioinformatics (Nan et al., 2009; 

Hernandez et al., 2009; Hoskeri et al., 2010).  

 

1.2.5.1 Computational Protein Structure prediction  

The prediction of three-dimensional structures of a protein from its primary sequence 

is a fundamental and well-studied area in structural bioinformatics (Sali and Kuriyan, 

1999; Bourne and Weissig, 2003). There are three main directions in search of better 

structure prediction including homology or comparative modeling, fold recognition 

and ab initio prediction (Sali and Kuriyan, 1999) (Figure 1.2)(Table 1.2). In the first 

step of comparative modeling (which is also known as homology modeling), one of 

the several template proteins of high sequence similarities with the target is identified. 

This category of protein is known as high homology protein. Comparative modelling 

provides a great promise in protein structure prediction because small deviation in 

the amino acid sequence usually results in insignificant changes in term of its 3D 

structure (Chothia and Lesk, 1986; Marti-Renom et al., 2000). On the other hand, if 

no unambiguous templates are found, fold recognition is attempted. Typically, the 

sequence-structure alignment (known also as threading) (Bowie et al., 1991; Lemer 

et al., 1995) is performed between the target and the template using both the 
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sequence and structure information to identify the fold of which the target is most 

likely adopt. 

 

Both approaches mentioned rely very much on similarity of sequence found on the 

target sequence and at least one known 3D protein structure. If no templates can be 

identified with confidence, ab initio methods are used to predict the target structure 

explicitly using templates sequence that do not align with the sequence of the 

template), as well as the details of side-chain positions (Zhang, 2008). This approach 

is aimed to predict the structure of protein on protein sequence alone with no similar 

amino acid sequence and it does not depend on any known protein structure. 

Although there are substantial progress seen in particularly in ab initio structure 

prediction (Koehl and Levitt, 1999),  comparative modelling remains the most 

accurate method (Marti-Renom et al., 2000). This approach can be applied to any 

proteins that have more than 40% sequence identity to the proteins with known 

structures in the PDB. Thus when a new protein sequence is found e.g. hypothetical 

protein in the Klebsiella pneumoniae which belong to a structure recognizable 

protein family, and 3D structures are already available for one or more members of 

that family, an atomic model can be built by comparison with those structures. There 

are many computer aided tools available in the web such as MODELLER (Sali and 

Blundell, 1993), SWISS-MODEL (Arnold et al., 2006), and EsyPred3D (Lambert et 

al., 2002) which manage to generate a reliable model prior to selection of proper 

template.  
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Figure 1.2 Flow chart showing the various steps and option for prediction of  
  protein.  
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Table 1.2 Summary of the four main approaches to structure predictions. Note that there are overlaps between nearly al categories.  
 

Method % Sequence 
similarity 

Knowledge Approach Difficulty Usefulness Accuracy 

NMR, X-ray - Magnetic 
field and 
radio 
frequency , 
X-ray  
 

Measure the directions and 
intensities of x-ray beams 
diffracted from high-quality 
crystals of a purified protein 
molecule.  
NMR uses high magnetic fields 
and radio-frequency pulses to 
manipulate the spin states of 
nuclei. 

Medium Very, for X-ray not all the 
protein can be crystallized. 
Crystallization of the 
protein may affect the 
conformation if the native 
protein. For NMR, the 
protein molecule must be a 
soluble protein and 
relatively small in size ~30 
mg/ml. 

High, ~ 1 Å 

Comparative 
modeling 
(homology 
modeling) 
 

More than 40 Protein of 
known 
structure 

Identify related structure with 
sequence methods, copy 3D 
coordination and modify and 
where necessary. 

Relatively  
Easy 

Very, if sequence identity 
 > 40%             drug design 

High, ~ 1.5 
Å 

Fold recognition Less than 30 Proteins of 
known 
structure 

Same as above, but use more 
sophisticated methods to find 
related structure. 

Medium Limited due to poor 
models. 

Medium, 
~3.5 Å 

ab initio tertiary 
structure 
prediction 

Insignificant 
sequence 
similarity 

Energy 
functions, 
statistics 

Simulate folding, or generate lots 
of structures and try to pick the 
correct one. 

Very hard Not really. Low, ~ 4-8 
Å 80a.a, 
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1.2.5.2 Homology modelling 

Homology modeling aims to predict the protein structures by exploiting the fact that 

evolutionarily related proteins with sequence similarity (Kaczanowski and 

Zielenkiewicz, 2010), as measured by the percentage of identical residues at each 

position based on an optimal structural superposition, share similar structures. Thus, 

if a new protein sequence is found (by sequence alignment) to belong to a 

recognizable protein family, and 3D structures are already available for one or more 

members of that family, an atomic model can be built by comparison with those 

structures (Tramontano and Morea, 2003). This approach can be applied to any 

proteins that have more than 40% sequence identity to the proteins with known 

structures in the PDB. In practice, the homology modeling is a multi-step process 

that can be summarized in seven steps:  

1. Template recognition and initial alignment 

2. Alignment correction 

3. Backbone generation  

4. Loop modeling  

5. Side-chain modeling  

6. Model optimization   

7. Model evaluation 

 

1.2.5.3 Homology modeling by MODELLER 

In this project, structure prediction using homology modeling approach was done 

using MODELLER 9. This software tool is developed by Andre Sali and coworker  

(Sali and Blundell, 1993). MODELLER is an automated tool adopting spatial 

restraint approach in homology modelling (Eswar et al., 2007). Sequence alignment 
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is the core process prior to the model building where the sequence alignment 

between the unknown sequences (target) with the known 3D structure (template) is 

aligned and used as the input of the program (Figure 1.3). Various types of restraints 

were calculated based on statistical analysis within a database that consist of 105 

families with known 3D structure (Sali and Blundell, 1993).  From the result of 

restraint analysis, these restraint conditions then transferred from the template to the 

target for 3D structure building. Combination of the restraints and CHARMM 

(Chemistry at HARvard Molecular Mechanics) (MacKerell et al., 1998) energy as an 

objective function in the model which was generated by optimizing this particular 

objective function using conjugate gradient and simulated annealing algorithm. The 

selection of the best model can be ranked according to the discrete optimized 

potential energy (DOPE) function (Shen and Sali, 2006). 
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Figure 1.3  A brief process flow of MODELLER automated homology modelling. 
(Adapted from 
http://salilab.org/modeller/9v7/manual/node11.html#2071, Date of 
accessed: 15 Dec 2011)(Sali, 1995)).  
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1.2.6 Protein function prediction  

Functional determination of protein has become the major challenge for scientist 

recently with the rapid growth of the genomics data in the 20th century (National 

Research Council, 2009). The main focus is on structural proteomics and how to 

analyze the protein structure using variety approaches such as computational or 

bioinformatics analysis. The function of a protein is very much dependent on how 

the proteins look like. Protein which has a similar structure usually adopts the same 

function (Brändén and Tooze, 1999). When the structure of the protein is being 

predicted correctly, with the built model from the prediction, we can use variety of 

computational approach such as molecular docking and molecular dynamics 

simulation to further probe or indicate the function of the protein. These two 

approaches were also used in this project to indicate the postulated function of the 

selected hypothetical protein from Klebsiella pneumoniae. 

 

1.2.6.1 Molecular docking simulation  

In the past few decades, computational approaches are used extensively to study the 

interaction of complexes. Generally, interaction between macromolecule (protein) 

and small molecule (ligand) can be studied using molecular docking method 

(Lengauer and Rarey, 1996). The interaction between macromolecule and the small 

molecules is very much depending on the physical forces and the chemical properties 

of each other. The binding of these molecules usually exhibit geometrical 

complimentary and this may also lead to the explanation of the activity or interaction. 

With the integration of an extensive searching algorithm, the geometrically and 

energetically best fitted ligand with the binding site of the protein can be determined 

using molecular docking simulation. Hence this approaches is frequently used to 
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predict the binding affinity which play an important role in drug design (Kitchen et 

al., 2004).  

 

A large number of molecular docking tools have been developed due to the rapid 

emerging research in bioinformatics field.  The most commonly being used and 

discussed are DOCK (Ewing and Kuntz, 1997), GOLD (Jones et al., 1997) and 

Autodock (Morris et al., 1998). DOCK program is developed by University of San 

Francisco in 1997 and it employed rigid body assumption with graph theoretical 

searching technique. It is usually used for screening of large database of ligand as it 

is less expensive computationally (due to the fact that both protein and ligand are 

treated as rigid body). As for Autodock and GOLD, both tools allowed more 

flexibility as compared to DOCK.  Different variant of genetic algorithm are used in 

both softwares which enable full range of ligand conformation flexibility of protein 

and also the ligand. This enhancement in term of flexibility of protein and ligand in 

the program is one step closer to the fundamental requirement that ligand and protein 

are bound in the water which allows tremendous flexibility in their binding mode.   

 

Autodock 3.0.5 (Morris et al., 1998) was used in this study. Flexibility of the 

molecules can be achieved due to randomization on the torsion angle, which is done 

by exploring translation, rotations and its internal degree of freedom of the ligand. 

This will lead to the favourable conformation in its binding mode. Lamarkian genetic 

algorithm scoring function incorporated with Solis and Wet search procedure in this 

version showed better handling in large ligand and higher accuracy as compared to 

the previous version.  
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Docking simulations enabled us to understand the preferable conformation of ligand 

in the binding mode to form a stable complex but there are limitations. In docking 

simulation, rigidity of protein and target of docking location is defined by the user. 

Hence this decreases the degree of freedom of both interacting component during the 

simulation. Furthermore, results from docking can only provide a single snapshot of 

the ligand orientation which is lacking in interaction dynamics. Therefore, another 

more powerful computer simulation technique, namely molecular dynamics was 

employed in this research to obtain an in-depth understanding about the predicted 

hypothetical protein structure and function. 

 

1.2.6.2 Molecular dynamics simulation 

The dynamics nature of the protein and ligand lead us to further investigate the 

structural and functional properties using molecular dynamics simulation. Molecular 

dynamics (MD) simulation is a well-established method for modeling. It provides 

insight into biomolecular systems in particularly the interaction properties, 

understanding of protein folding, and interactions specifically in phospholipids 

membrane bilayer that are difficult to access experimentally (Karplus and 

McCammon, 2002).  

 

Forty years ago, McCammon and co-worker performed the very first molecular 

dynamics simulation (McCammon et al., 1977). It was on a small globular protein 

and the total simulation time is less than 10 ps. Over the years, many promising 

development on software and hardware enhancement enable us to perform a longer 

time scale simulation which allows us to gain a better insight. Many different 

software tools available such as AMBER (Pearlman et al., 1995), CHARMM 
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(Brooks et al., 1983), NAMD (Phillips et al., 2005), GROMACS (Lindahl et al., 

2001). Different variant of stochastic dynamics integration are used in most of these 

tools. In this study,  GROMACS 4.0.5 (Groningen Machine of Chemical Simulation) 

(Van Der Spoel et al., 2005) a free and efficient software to perform energy 

minimization and molecular dynamics simulation was used. It is developed by 

University of Groningen and designed primarily for biological systems such as lipid, 

protein and nuclei acids.  To set up a MD simulation in general, a set of coordinates 

of the starting structures, information about the interaction such as bonding, torsion 

and angle, last but not least the MD simulation parameters are needed.  The process 

flow of typical MD run using GROMACS with protein in a box of water is shown in 

Figure 1.4. GROMACS is commonly use especially with membrane system; this is 

also the reason that this program is selected to aid the validation. 
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Figure 1.4  Process flow of a general set-up of the molecular dynamics simulation 
system aided with GROMACS. 

 
 
 
 
 


