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Introduction 

Currently, chemical plants face numerous 
challenges like stringent requirements are 
needed on the desired final product quality, 
utilization of a lot of energy, must be 
environmentally friendly and fulfill safety 
requirements.  High operation cost is needed 
in order for chemical plants to overcome the 
stated challenges.  Any faults that are present 
in a chemical process will yield higher 
operation cost on the plant due to increase in 
production of waste, re-work, re-processing 
and consumption of utilities.  Therefore, 
accurate process fault detection and diagnosis 
(FDD) on a chemical process at an early stage 
is important to reduce the cost of operation 
due to present of faults. 

The important task of detecting and 
diagnosing abnormal process behavior (faults) 
has led to the evolution of a range of 
statistically based condition monitoring 
approaches (Treasure et al., 2004).  These 
approaches are collectively referred to as 
Multivariate Statistical Process Control 
(MSPC) and have gained attention over the 
past decades noticeable by the large number 
of publications in this area (MacGregor and 
Kourti, 1995).  Application of MSPC as a 
fault detection tool in previous works was 
based on two conventional control chart: 
Hotelling’s T2 Statistic control chart and 
Square Prediction Error Statistic control chart 
(SPE) (Wachs and Lewin, 1999).  These two 
control charts have shown good fault detection 
performance for simulated model unit 
operations (Wachs and Lewin, 1999).  MSPC 
using the two stated conventional control 
charts is a very powerful tool for fault 
detection but its main limitation lies in the 
ability to isolate or diagnose the actual causes 
of the detected faults.  The main fault 
diagnosis tool used together with the two 
control charts is the Contribution Plots (CP) 
(Wachs and Lewin, 1999).  Although CP is 
used to diagnose the cause of the detected 
faults, they tend to be noisy and ambiguous.  
These plots also do not have confidence 

limit/control limit, thus making it difficult to 
determine whether a situation is normal or 
abnormal (Yoon and MacGregor, 2000).          

The present fault diagnosis tool using CP 
has limited usage in diagnosing causes of 
detected faults.  Faults that have effect 
propagated into other variables are hard to be 
isolated using CP.  In enhancing the fault 
isolation ability of MSPC and overcoming the 
ambiguity of CP, fault signatures have been 
proposed.  Faults from process data are 
collected and fault signatures are developed 
using Principal Component Analysis (PCA).  
Any new detected faults will exhibit certain 
fault signature and this signature will be 
compared to the database of fault signatures 
developed earlier on.  Good results were 
obtained for the application of the proposed 
method (Yoon and MacGregor, 2001).  
Although the fault signature method shown 
better fault diagnosis ability compared to the 
previous Contribution Plots, there are several 
weaknesses of the former method.  The fault 
signature database needs to be as 
comprehensive as possible to cover all 
possible faults in a process and great amount 
of computer calculation is needed in 
diagnosing a fault for highly multivariable 
processes.  The present work focuses on 
overcoming the ambiguity nature of fault 
isolation using MSPC through contribution 
plots and also the need for big database of 
faults signatures by introducing fault 
diagnosis using correlation coefficients of 
process variables and quality variables.  The 
proposed FDD method in this paper is an 
extension of fault detection using correlation 
coefficients (Mak and Kamarul, 2003). 

Correlation coefficients between key 
process variables and quality variables of 
interest are used as fault detection and 
diagnosis tools.  These coefficients are 
developed from nominal operating condition 
(NOC) data using multivariate projection 
techniques such as PCA and Partial 
Correlation Analysis (PCorrA).  PCorrA has 
been applied in many applications (Ding and 
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Nancy, 2000) and hardly been used in MSPC 
as a method for determining correlation 
between variables.  The developed correlation 
coefficients will be used together with 
conventional Shewhart Control Chart and 
Range Control Chart as FDD tools.  The 
proposed method is applied to a simulated 
industrial column model (Wong, 2003).  
 
Methodology 
 
Process modeling and data generation 
 The most important part in obtaining an 
accurate correlation between the process 
variables and quality variables is the data 
mining section.  In this research, data is 
obtained from a simulation model.  A 
distillation column from a Palm Oil 
Fractionation Plant is selected as the case 
study.  The model of this column is developed 
based on the model from literature with slight 
modifications to suit the present work (Wong, 
2003).  Figure 1 shows the distillation column 
with the key variables of the process.  From 
the column model, two sets of process 
operating data were generated.  For NOC data, 
some noises with zero mean were imbedded 
into the simulation program. The noises 
considered are small random change in 
selected key variables such as feed flow rate, 
feed temperature, reboiler duty, cooler duty, 
reflux flow rate and pumparound flow rate.  
While for Out-of-Control (OC) data, some 
large changes (significant faults) and 
moderate changes (insignificant faults) were 
purposely added into the process model as 
faults.  These faults represent valve faults, 
sensor faults and controller faults.  The 
description of each type of fault is described 
in Table1.  The feed flow rate and feed 
temperature to the study column are assumed 
to be fixed.  Any abnormal changes of the 
value of these two variables are due to faults 
as shown in Table 1 and not due to common 
cause variation (NOC).  The generated NOC 
and OC data are mean-centered and variance 
scaled.  The NOC data will be subjected to 
analysis using PCA and PCorrA for deriving 
the correlation coefficients between the 
selected process variables with the selected 
quality variables.  The two quality variables of 
interest in this research are the oleic acid mole 
fraction, x8, and linoleic acid mole fraction, x9, 
in the bottom flow rate.  The objective of the 

proposed FDD tools is to maintain the value 
of these two variables at their steady-state 
value through detection and diagnosis of faults 
present in the process.  
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FIGURE 1 Distillation column model 
 
Derivation of correlation coefficients 
 After the NOC data are obtained, the 
correlation coefficients between the selected 
key process variables and the quality variables 
of interest are determined using PCA and 
PCorrA.   Method for obtaining correlation 
coefficients between the variables, Cik, using 
PCA was based on previous PCA work (Lam 
and Kamarul, 2002).  Correlation coefficients 
using PCA are calculated as in Equation 1.  
 

                        

(Eq.1) 
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Where:  
vij, vkj = eigenvectors obtained from process   
             data using PCA 
 λj      = eigenvalue obtained from process data  
             using PCA 
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TABLE 1 Fault Descriptions  

PCorrA determines the correlation between 
two variables while allowing the effect of 
other correlated variables on these two 
variables.  For calculating correlation 
coefficient, Cik, for variable 1 and 2 using 
PCorrA after allowing the effect of j-2 
variables is as shown in Equation 2 (Cliff and 
Ord, 1973).                                                  
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Where:  
 r12            = correlation between variable 1                                                          

                    and 2 
r12.3             = partial correlation between      
                      variable 1 and 2 after the effect   
                      of variable 3 
r12.(3,4,…,j-1)     = partial correlation between  
                      variable 1 and 2 after the effect  
                      of  j-2 variables 
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Development of FDD Tools 
 Cik relates a process variable, xi, with a 

quality variable, yi, in the following way:  

ik

i
i C

y
x =                      (Eq.3) 

 
For conventional Shewhart Control Chart, the 
Upper Control Limit (UCL), Center Line (CL) 
and Lower Control Limit (LCL) for mean-
centered and variance-scaled variables are +3, 
0 and -3 respectively (McNeese and Klein, 
1991).  Using the information from Equation 
3, the UCL, CL and LCL for quality variables 
and process variables will be +3, 0 and -3 and 
+3/Cik, 0 and -3/Cik respectively.  After the 
NOC control charts are established, they are 
used for fault detection of the OC data. 
 The UCL, CL and LCL for conventional 
Range Control Chart for mean-centered and 
variance-scaled variables are mean of the 
range values, Rmean multiplied by a constant, 
d2, Rmean and 0 respectively (McNeese and 
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Klein, 1991).  The constant, d2, is determined 
by the number of subgroup used in calculating 
the range values.  In the present work, d2 is 
3.267 for a subgroup, n = 2 (McNeese and 
Klein, 1991).  Rmean is determined as shown in 
Equation 4.  

                   
n

R
n

i
i∑

== 1
meanR                      (Eq.4) 

Where:  
Ri      = i-th Range value   
Rmean = mean of the range values 
n        = number of range values 
 
For the present work, the UCL, CL and LCL 
for the Range Control Chart of quality 
variables will be of the conventional Range 
Control Chart.  For the selected process 
variables, the UCL, CL and LCL will be 
(Rmean* d2)/Cik, (Rmean)/Cik and 0 respectively. 
 The major assumption in the proposed 
method is that all key process variables are 
measured.  The process variables that are 
major contributors to the variation of the 
process are included into the correlation 
analysis.  In this way, the behavior of the 
process will be well represented by the 
correlation determined from the selected key 
process variables and the developed fault 
detection and diagnosis method will suit the 
dynamic behavior of the process.  From 
Figure 1, the study column is installed with 
several control loops to ensure the stable 
operation of the column.  Any common cause 
changes in the column either through load 
problem (disturbance changes) or servo 
problem (set point changes) will be taken care 
of through these controllers.  The causal cause 
changes of interest in this work are those 
involving abnormal changes in the values of 
the variables of the process not through the 
two mentioned problems rather through faults 
in sensors, valves or even controllers.  For 
NOC data, only common cause variation is 
present in the process.  While for OC data, the 
observed causal cause variation is caused by 
faulty operation of the process sensors, valves 
and controllers.     
 When a process variable changed from its 
normal steady-state value, the variable of that 
control chart will be checked whether it is a 
closed loop variable or open loop variable.  A 
fault signal is observed only when either the 
Range Control Chart or Shewhart Control 

Chart of one or more quality variable show 
value that exceeds its control limit AND one 
or more process variable observed a value out 
of its control limit either in its Shewhart 
Control Chart or Range Control Chart.  For 
open loop variable, the fault will be of sensor 
fault or valve fault as pre-designed while fault 
for closed loop variable can be of valve fault, 
sensor fault or controller fault.  The cause 
variable(s) of each detected fault is diagnosed 
by checking the control charts of the process 
variables.  Process variables that show value 
exceeding its control limit (either in Shewhart 
Control Chart or Range Control Chart) are 
diagnosed as the cause of the observed fault.  
To determine which type of fault is detected, 
the method used is as the previous paragraph. 
 
Results and Discussions 

Figure 2 shows an example of the fault 
detection and diagnosis using the proposed 
method based on PCA.  For the PCorrA 
method, a similar plot of graphs will be 
observed as well.  Due to space limitation, 
only the Shewhart Control Chart for the 6 
selected key process variables (feed flow rate 
(Lf), feed temperature (Tf), reflux flow rate 
(Re), pumparound flow rate (P), reboiler duty 
(Qr) and bottom column temperature (Tbot)) 
and quality variable 1 (oleic acid mole 
fraction in the bottom flow rate (x8) were 
shown in Figure 2.  Similar results will also be 
observed through the Range Control Chart of 
these variables.  The performance of PCA and 
PCorrA in detecting the faults and diagnosis 
the cause of each detected fault is shown in 
Figure 3 and Figure 4. 

Both methods based on PCA and PCorrA 
were able to diagnose the cause of each fault 
detected.  Out of the 17 faults in the fault data, 
13 faults (both single fault and multiple faults) 
were successfully detected by the PCA 
method (Using data reduction with 95% of the 
variation of the original data retained).  The 4 
faults that were not detected by the PCA 
method were insignificant faults (moderate 
changes in the values of the process 
variables).  The method based on PCorrA 
performed better than the PCA method by 
successfully detecting all the 17 pre-designed 
faults (both significant faults and insignificant 
faults).  The PCorrA method performed better 
because the correlation coefficients developed 
by this method are closer to the actual value of 
the correlation coefficients representing the
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FIGURE 2 Example of Fault Detection and Diagnosis based on PCA 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 FIGURE 3 Performance of fault detection using          FIGURE 4 Performance of fault diagnosis using                                     
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correlation between the selected process 
variables with the quality variables of interest.  
This is because the PCorrA method sets other 
selected process variables at constant values 
when calculating the correlation between a 
selected process variable with a quality 
variable.  The PCA method calculates the 
cross-correlation between variables 
(interaction between variables) when 
determining the correlation coefficients 
between the process variables and quality 
variables.  However, the PCorrA method was 
superior in determining the correlation 
between variables judging from the observed 
fault detection and diagnosis results of the 
study column.   

One major advantage of the correlation 
coefficients method is the simplicity in 
determining the fault cause(s) of a detected 

fault.  The control charts of the selected 
process variables will trigger alarm if any of 
them exhibit value out of their control limits 
and the charts that triggers an alarm will be 
determined as the root causes of the detected 
fault.  Furthermore, the availability of control 
limits in these control charts will shed away 
any ambiguities of whether a change in value 
of the selected process variables are due to 
common cause (NOC) or causal cause (OC).  
For online process monitoring, the data that 
are used for calculating the correlation 
coefficients can be updated with dynamic data 
to take account into the changes of the process 
due to change in raw material, fouling in heat 
exchangers and other changes in the process 
parameters.  This area can be further 
researched and are a research problem for 
future work.  The application of the developed 
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FDD tools on a multiple unit operation case 
study is also a research work for the future. 
 
Conclusion 

An approach for fault detection and 
diagnosis using correlation coefficients based 
on PCorrA and PCA was presented.  The 
performance of the approach was studied on 
an industrial distillation column.  The results 
show that the fault detection and diagnosis 
method using cross correlation coefficient was 
able to detect the faults and diagnose the fault 
cause of each detected fault (both single fault 
cause and multiple fault causes).  Although 
both methods based on PCA and PCorrA were 
successful in diagnosing the cause of each 
fault detected, PCorrA managed to detect all 
the pre-designed faults (both significant faults 
and insignificant faults) while PCA only 
managed to detect the significant fault.  This 
is due to the fact that PCorrA determines the 
correlation between two variables after taken 
account into the effect of other variables that 
are correlated with the two variables of 
interest.  Therefore, the correlation 
coefficients developed using the PCorrA 
method was better in representing the 
correlation between the selected process 
variables and the quality variables of interest.    
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