

PHYTOCHEMICAL, BIOLOGICAL, STABILITY AND PHARMACOKINETIC STUDIES ON THE EXTRACTS OF THREE VARIETIES OF *Ficus deltoidea* Jack LEAVES

ZUNOLIZA ABDULLAH

Thesis submitted in the fulfilment of the requirement for the degree of Doctor of Philosophy

December 2010

Dedicated to

My parents, brothers and sisters

ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Almighty ALLAH SWT who helps me and gave me patience, strength, inspiration and chances to complete this studies.

I would like to express my deepest sincere, gratitude and greatest appreciation to my supervisors, Professor Dr. Zhari Ismail and Dr. Rasadah Mat Ali for their helpful advices, patience, guidance, support and inspiring ideas throughout this study. I am also grateful to Dean of School of Pharmaceutical Sciences, Associate Professor Dr. Syed Azhar Syed Sulaiman for the facilities provide during the course of study. Thanks also to Professor Dr. Zaini Asmawi, Mr. Hayder B. Sahib and Dr. Amin Malik Shah Abdul Majid for providing laboratory facilities for pharmacokinetics and antiangiogenic studies.

I also would like to express my thanks to the entire research fellows at Bilik Herba, especially to En. Mohammad Razak, Pn. Azizan and Ms Kwan Wei Yen who had assist me to complete my research. Thanks and appreciation also given to all laboratory staff and technicians of School of Pharmaceutical Sciences who helped me in this study. A lot of thanks to all research fellows from Medicinal Plant Division, FRIM Kepong who one way or other have contributed their help to the completion of this study. My wholehearted thanks to my family, my relatives and friends who give me supports, prays and help me in their own way for me to finish this study.

Last but not least, I am grateful to Forest Research Institute Malaysia (FRIM) for awarded me with Research Assistantship to further my study.

iii

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
LIST OF TABLES	xiii
LIST OF FIGURES	xv
LIST OF SCHEMES	xxii
LIST OF APPENDICES	xxiii
LIST OF ABBREVIATIONS	xxiv
LIST OF PUBLICATIONS AND SEMINARS	XXV
ABSTRAK	xxvi
ABSTRACT	xxix
CHAPTER ONE: INTRODUCTION	
1.1 Introduction	1
1.2 Efficacy, Safety, Quality Control In the Standardization of Herbal Medic	cine 4
1.3 Research Objectives	5
CHAPTER TWO: TAXONOMIC CLASSIFICATION AND LITERATURE REVIEW	
2.1 Taxonomic Classification	7
2.1.1 Vernacular Name	7
2.1.2 Nomenclature	7
2.1.3 Moraceae	7
2.1.4 Plant Description	8
2.1.4 (a) Ficus deltoidea var. terengganuensis	9
2.1.4 (b) Ficus deltoidea var. angustifolia	9
2.1.4 (c) Ficus deltoidea var. deltoidea	10
2.1.5 Traditional Uses	12
2.2 Literature Review	12
2.2.1 Traditional Uses of the Genus of Ficus	13

2.2.2 Scientific Study on the Genus of <i>Ficus</i>	16
2.2.3 Chemical Constituents from Genus of Ficus	19
CHAPTER THREE: PHYTOCHEMICAL AND ANALYTICAL STUDIES OF Ficus deltoidea VARIETY LEAVES	
3.1 Phytochemical Analysis	35
3.1.1 Plant Material	35
3.1.2 Phytochemical Screening	35
3.1.2 (a) Alkaloids	36
3.1.2 (b) Saponins	36
3.1.2 (c) Flavonoids	36
3.1.2 (d) Tannins and Polyphenolic Compounds	37
3.1.3 Results and Discussion of Phytochemical Screening	37
3.2 Separation and Purification of the Ficus deltoidea Leaves Extracts	38
3.2.1 General Experimental Procedures	38
3.2.2 Plant Material	38
3.2.3 Extraction and Separation	38
3.2.4 Results and Discussion of Isolated Compounds	41
3.2.4 (a) Compound A1: β-amyrin cinnamate	41
3.2.4 (b) Compound A2: β-sitosterol	46
3.2.4 (c) Compound A3: Friedelin	49
3.2.4 (d) Compound A4: Vitexin	53
3.2.4 (e) Compound A5: Isovitexin	58
3.3 Analytical Studies of Ficus deltoidea Variety Leaves	63
3.3.1 Analytical Methods in Research of Natural Compounds	63
3.3.2 Material and Methods	63
3.3.2 (a) Chemical and Solvents	63
3.3.2 (b) Instrumentations	64
3.3.2 (b.i) Ultra violet (UV)	64

	3.3.2 (b.ii) Fourier Transform Infrared (FTIR)	64
	3.3.2 (b.iii) High Performance Thin Layer Chromatography (HPTLC)	64
	3.3.2 (b.iv) High Performance Liquid Chromatography (HPLC)	64
	3.3.3 (c) Preparation of the Extracts	65
	3.3.2 (d) Acid Hydrolysis	65
	3.3.2 (e) Markers	66
	3.3.3 Qualitative Analysis of the Extracts Using FTIR, UV and HPTLC	66
	3.3.3 (a) Fourier Transform Infrared (FTIR) Spectroscopy	66
	3.3.3 (b) Ultra violet-Visible (UV) Spectroscopy	66
	3.3.3 (c) High Performance Thin Layer Chromatography (HPTLC)	66
	3.3.4 Development of HPLC Method for Quantitative Analysis of <i>Ficus deltoidea</i> Variety Leaves.	67
	3.3.4 (a) Validation of HPLC Method	67
	3.3.4 (a.i) Identification of Vitexin And Isovitexin in the Extracts	67
	3.3.4 (a.ii) Calibration Curves of the Standards	67
	3.3.4 (a.iii) Precision	68
	3.3.4 (a.iv) Accuracy	69
	3.3.4 (a.v) Limit of Detection (LOD) and Limit of Quantification (LOQ)	69
	3.3.5 Preparation of the Extracts Solution	69
	3.3.6 Quantification of Vitexin And Isovitexin In Aqueous and Methanol Extracts by HPLC Method	70
	3.3.7 Statistical Analysis	70
3.4	Results and Discussion	71
	3.4.1 Qualitative Analysis of the Extracts Using FTIR, UV and HPTLC	71
	3.4.1 (a) Assignments and Comparison of the FTIR Spectra	71
	3.4.1 (b) Comparison and Discussion of the Second Derivative IR Spectra	72
	3.4.1 (c) UV Spectra Analysis	75

	3.4.1 (d) HPTLC Qualitative Analysis	77
	3.4.2 Optimization of the HPLC Method Validation	78
	3.4.2 (a) HPLC Method Validation	79
	3.4.2 (b) Selectivity of the Standards	79
	3.4.2 (c) Range, Linearity, Limit of Detection (LOD) and Limit of Quantification (LOQ)	80
	3.4.2 (d) Precision and Accuracy	80
	3.4.3 Fingerprints Profile and Analyses of Aqueous and Methanol Extracts by HPLC Method	81
	3.4.4 Fingerprints Profile of Aqueous and Methanol Extracts after Acid Hydrolysis by HPLC Method	83
3.5	Conclusion	87
СН	APTER FOUR: CHEMICAL ANALYSIS AND <i>IN VITRO</i> BIOLOGICAL STUDIES	
4.1	Chemical Analysis for Varieties of Ficus deltoidea Leaves	89
	4.1.1 Material and Methods	89
	4.1.2 Instruments	89
	4.1.3 Determination of Total Polyphenolics	89
	4.1.4 Determination of Total Flavonoid	90
	4.1.5 Determination of Total Condensed Tannin	90
	4.1.6 Determination of Glycosaponins in Extracts	90
	4.1.7 Determination of Total Protein	91
	4.1.8 Determination of Total Polysaccharide	92
4.2	Antioxidant Studies for Varieties of Ficus deltoidea Leaves	93
	4.2.1 Introduction	93
	4.2.2 Antioxidant Evaluation	97
	4.2.2 (a) Material and Methods	97
	4.2.2 (b) Instruments	97
	4.2.2 (c) Lipid Peroxidation Inhibition Assay	97

4.2.2 (d) Determination of Free Radical Scavenging Activity	98
4.2.2 (e) Determination on Xanthine Oxidase Inhibition	98
4.2.2 (f) Determination of Xanthine/Xanthine Oxidase Superoxide Scavenging Activity	99
4.2.2 (g) Reducing Power by Iron (iii) to Iron (II)	100
4.2.2 (h) Nitric Oxide Radical Scavenging Activity	100
4.3 Antihypertensive Studies for Varieties of Ficus deltoidea Leaves	101
4.3.1 Introduction	101
4.3.2 Angiotensin Converting Enzyme Inhibitor	102
4.3.2 (a) Determination of Angiotensin Converting Enzyme (ACE) Inhibitory Activity	105
4.4 Antiinflammatory Activities for Varieties of Ficus deltoidea Leaves	106
4.4.1 Introduction	106
4.4.2 Lipoxygenase	107
4.4.3 Hyaluronidase (HYAase)	110
4.4.4 TPA-Induced Ear Oedema	111
4.4.5 Anti-inflammatory Activity	112
4.4.5 (a) Chemicals and Reagents	112
4.4.5 (b) Lipoxygenase Inhibitory Assay	112
4.4.5 (c) Hyaluronidase Inhibitory Assay	113
4.4.5 (d) 12-O-tetradecanoylphorbol 13-acetate (TPA)-Induced Ear Oedema Assay	113
4.5 Angiogenesis Studies on Ficus deltoidea Extracts	115
4.5.1 Introduction	115
4.5.2 Materials and Methods	117
4.5.2 (a) Chemicals and Solvents	117
4.5.2 (b) Instruments	117
4.5.2 (c) Animals and Dosage	118
4.5.2 (d) Sample Preparation	118

	4.5.3 Rat Aorta Assay	118
4.6	4.6 Statistical Analysis	
4.7	Results and Discussion	119
	4.7.1 Chemical Analysis for Varieties of Ficus deltoidea Leaves	119
	4.7.1 (a) Determination of Total Polyphenolics, Total Flavonoid and Total Condensed Tannins	119
	4.7.1 (b) Determination of Glycosaponins, Protein and Polysaccharide in extracts	121
	4.7.2 Antioxidant Studies for Varieties of Ficus deltoidea Leaves	122
	4.7.2 (a) Antioxidant Evaluation	122
	4.7.2 (b) Lipid Peroxidation Using Ferric Thiocyanate Method	123
	4.7.2 (c) Determination of Free Radical Scavenging Activity	124
	4.7.2 (d) Determination of Xanthine/Xanthine Oxidase Superoxide Scavenging Activity and Determination on Xanthine Oxidase Inhibition	125
	4.7.2 (e) Reducing Power by Iron (III) to Iron (II)	127
	4.7.2 (f) Nitric Oxide Radical Scavenging Activity	127
	4.7.3 Correlation of the Antioxidants Activities with Primary, Secondary Metabolites and Individual Markers in <i>Ficus deltoidea</i> Leaves Extracts	130
	4.7.4 Antihypertensive Studies of Ficus deltoidea Varieties Leaves	131
	4.7.5 Anti-inflammatory activities for varieties of Ficus deltoidea leaves	133
	4.7.5 (a) Lipoxygenase	133
	4.7.5 (b) Hyaluronidase	134
	4.7.5 (c) TPA-Induced Ear Oedema	137
	4.7.6 Anti-angiogenesis Studies on Ficus deltoidea Extracts	138
	4.7.7 Correlation of the Anti-inflammatory and Antihypertensive Activities with Primary and Secondary Metabolites and Individual Markers in <i>Ficus deltoidea</i> Leaves Extracts	140
4.8	Conclusion	141

CHAPTER FIVE: STABILITY STUDIES OF *Ficus deltoidea* LEAVES EXTRACTS

5.1	Introduction	145
	5.1.1 Short-term Stability Studies	147
	5.1.2 Accelerated Stability Testing	147
	5.1.3 Chemical Kinetic Reaction	148
	5.1.4 Factors of Degradation of Pharmaceutical Products/Drugs	150
	5.1.5 Stability Testing Guidelines For New Products	151
5.2	Stability Testing Methods	153
	5.2.1 High Performance Liquid Chromatography (HPLC)	153
	5.2.2 Fourier Transform Infra-Red (FT-IR) Spectroscopy	153
	5.2.3 Principal Component Analysis (PCA)	154
5.3	Materials and methods	155
	5.3.1 Chemicals	155
	5.3.2 Instruments	156
	5.3.3 Protocol for Stability Testing	156
	5.3.4 Analytical Methods	156
	5.3.4 (a) Qualitative Analysis by FTIR spectroscopy	156
	5.3.4 (b) Quantitative Analysis by HPLC	157
	5.3.4 (c) Determination and Calculation	157
	5.3.4 (c.i) Order of Degradation Reaction	157
	5.3.4 (c.ii) Activation Energy, Ea	158
	5.3.4 (c.iii) Shelf Life of the Reaction	158
5.4	Results and Discussion	158
	5.4.1 Determination of the Order of the Degradation Reaction	168
	5.4.2 Determination of the Rate Constant (K) and Activation Energy (Ea) of the Degradation of Marker Compounds	170
	5.4.3 Estimation of Shelf Life (t_{90})	172
	5.4.4 Effect of Storage Temperature on the Degradation of Rate Constant	175

	5.4.5 Effect of Solvent Extraction on Stability of Marker Compounds	176
	5.4.6 Effects of chemical structure on stability of marker compounds	177
	5.4.7 Stability study of <i>Ficus deltoidea</i> leaves extracts by chemical fingerprinting using Fourier Transform Infrared (FTIR) Spectroscopy and Principal Component Analysis (PCA)	178
5.5	Conclusion	201
СН	APTER SIX: ACUTE TOXICITY AND PHARMACOKINETIC STUDIES	
6.1	Acute Toxicity Studies of Ficus deltoidea Leaves Extract	203
	6.1.1 Introduction	203
	6.1.2 Materials and Methods	204
	6.1.2 (a) Animals	204
	6.1.2 (b) Acute Toxicity Studies (Limit test at 2000 mg/ kg)	204
	6.1.3 Results and Discussion	204
6.2	Pharmacokinetic Studies of Ficus deltoidea Leaves Extracts	205
	6.2.1 Introduction	205
	6.2.2 Materials and Methods	208
	6.2.2 (a) Chemicals and Solvents	208
	6.2.2 (b) Instrumentation	208
	6.2.2 (c) Preparation of Ficus deltoidea Leaves Extracts	208
	6.2.2 (d) Animals and Dosage	208
	6.2.3 Pharmacokinetic Study of the Extract	209
	6.2.3 (a) Sample Preparation	209
	6.2.4 Validation of HPLC Method	210
	6.2.4 (a) Calibration Curves and Linearity	210
	6.2.4 (b) Precision	211
	6.2.4 (c) Accuracy	211
	6.2.4 (d) Limit of Quantification (LOQ)	211
	6.2.5 Development, Validation and Application of HPLC Method for the Determination of Vitexin and Isovitexin in Pharmacokinetic Study	211

xi

on the Rat Plasma Samples

	6.2.6	Development and Application of HPLC Method for the Dtermination of Vitexin and Isovitexin in Pharmacokinetic Study on the Urine Samples	218
	6.2.7	Application of HPLC Method for the Determination of Vitexin and Isovitexin in Pharmacokinetic Study on the Feces Samples	221
6.3	Conc	usion	221
CHAPTER SEVEN: SUMMARY			
7.1	Gene	ral Conclusion	224
7.2	Sugg	estions for Further Works	227
RE	FERE	ICES	229
AP	PENDI	CES	253

LIST OF TABLES

Table 1.1	WHO Research Guidelines for Evaluating the Safety and Efficacy Of Herbal Medicine	4
Table 2.1	Traditional uses of the genus of Ficus	13
Table 2.2	Scientific study on the genus of Ficus	16
Table 2.3	Chemical constituents from genus of Ficus	19
Table 3.1	Plant material	35
Table 3.2	Phytochemical screening of Ficus deltoidea varieties leaves	37
Table 3.3	NMR spectral data of compound A1, β-amyrin cinnamate, β- amyrin, lawso-nin and 3-O-(E)-coumaroyl β-amyrin	43
Table 3.4	NMR spectral data for compound A2 and β -sitosterol	48
Table 3.5	¹³ C NMR spectral data for compound A3 and friedelin (literature)	52
Table 3.6	NMR spectral data of compound A4, vitexin, 2"-O- <i>p</i> - hydroxybenzoylorien-tin, 2"-O-Caffeoylorientin and 8-C-(deoxy-β- D-glucopyranosyl)apigenin	56
Table 3.7	NMR spectral data compound A5 (d ₆ -DMSO), 2"-O- Galloylisovitexin, isovitexin, isovitexin-6"- <i>O</i> -β-D-glucoside and apigenin	60
Table 3.8	The gradient elution program	67
Table 3.9	Linear relation between peak area and concentration	80
Table 3.10	Precision (n = 5) of reference markers, vitexin and isovitexin	81
Table 3.11	Recovery (n = 3) of vitexin and isovitexin in FDLSPLSM	81
Table 3.12	Contents of vitexin and isovitexin in the aqueous and methanol extracts of <i>Ficus deltoidea</i>	83
Table 4.1	Glycosaponins, polysaccharides, protein, total polyhenolics, total flavonoids and total tannins contents in methanol (M) and water (W) extracts of <i>Ficus deltoidea</i>	121
Table 4.2	Percentage of antioxidants activities of methanol and water extracts of <i>Ficus deltoidea</i> on DPPH free radical scavenging activity, xanthine/xanthine oxidase assay and superoxide scavenging activity, reductive capability, NO assay and lipid peroxidation	129
Table 4.3	Pearson correlations between markers, total polyphenols, total flavonoids, total tannins, polysaccharide, protein, glycosaponin contents in methanol and water extracts of <i>Ficus deltoidea</i> with <i>in</i>	130

Page

vitro antioxidants activities

Table 4.4	Anti-inflammatory effects of MeOH and water extracts and standards on LOX, HYAase and TPA-induced ear oedema	134
Table 4.5	Effects of different extracts and pure compounds on blood vessels growth	138
Table 4.6	Pearson correlations between markers, total polyphenols, total flavonoids, total tannins, polysaccharide, protein, glycosaponin contents in methanol and water extracts of <i>Ficus deltoidea</i> with <i>in vitro</i> anti-inflammatory and ACE activities	141
Table 5.1	Mean climatic conditions for measuring data in the open air and in storage room	151
Table 5.2	Storage conditions for stability testing of drug substances and drug products (ICH, 2003)	152
Table 5.3	Storage conditions for stability testing of drug substances and drug products (FDA, 1999)	152
Table 5.4	Conditions for stability testing in ASEAN countries	152
Table 5.5	Storage conditions and Relative Humidity (RH) in the stability study	156
Table 5.6	Calculated degradation rate constant (K) and activation energy of vitexin in all extracts	172
Table 5.7	Calculated degradation rate constant (K) and activation energy of isovitexin in all extracts	172
Table 6.1	Effects of water extract of FDLSPLS after oral administration on the body weight of rats.	205
Table 6.2	Regression equations, correlation coefficient and linearity ranges of vitexin and isovitexin in plasma samples	213
Table 6.3	Precision of vitexin and isovitexin in plasma samples	213
Table 6.4	Recovery of vitexin and isovitexin in plasma samples	213
Table 6.5	Regression equations, correlation coefficient and linearity ranges of vitexin and isovitexin in urine sample	218

LIST OF FIGURES

Figure 2.1	Picture of the plants	11
Figure 3.1	Flow chart of the separation and purification process.	40
Figure 3.2	FTIR profile of the methanol extracts, (i) FDLNHTM, (ii) FDLTKSM, (iii) FDLNAM, (iv) FDLSPLSM	73
Figure 3.3	FTIR profile the leaves water extracts, (i) FDLTKSW, (ii) FDLNAW, (iii) FDLNHTW, (iv) FDLSPLSW	74
Figure 3.4	Second derivatives spectra of the methanol extracts in the region 600 to 1800 cm ⁻¹ . i) FDLTKSM, ii) FDLNHTM, iii) FDLSPLSM, iv) FDLNAM	74
Figure 3.5	Second derivatives spectra of the water extracts in the region 600 to 1800 cm ⁻¹ . i) FDLTKSW, ii) FDLNAW, iii) FDLNHTW, iv) FDLSPLSW	75
Figure 3.6	UV spectra of methanol and water extracts	76
Figure 3.7	UV spectra of vitexin and isovitexin	77
Figure 3.8	UV spectra of all the extracts after acid hydrolysis	77
Figure 3.9	HPTLC fingerprints of methanol and water extracts of <i>Ficus</i> deltoidea leaves	78
Figure 3.10	HPTLC densitogram of methanol and water extracts of <i>Ficus</i> deltoidea leaves	78
Figure 3.11	Calibration curves for reference markers, vitexin	80
Figure 3.12	Calibration curves for reference markers, isovitexin	80
Figure 3.13	Chromatograms of methanol (M) and water (W) extracts detected at 335 nm	84
Figure 3.14	Chromatograms of methanol (M) and water (W) extracts detected at 270 nm	85
Figure 3.15	Chromatograms of methanol (M) and water (W) extracts after hydrolysis, detected at 335 nm	86
Figure 4.1	Suggested hypertensive mechanism of angiotensin II	103
Figure 4.2	Reaction catalyzed by the angiotensin converting enzyme of lung	105
Figure 4.3	Total polyphenolics, flavonoids and tannins contents in methanol and water extracts of <i>Ficus deltoidea</i> varieties leaves.	120

- Figure 4.4 Glycosaponins, total protein and total polysaccharide contents 122 in methanol and water extracts of *Ficus deltoidea* varieties leaves
- Figure 4.5 ACE inhibition activity of methanol and water extracts of three 131 varieties of *Ficus deltoidea* leaves and captopril
- Figure 4.6 A blood vessel sprouts formation under growth medium 139 condition after 5 days incubation (control)
- Figure 4.7 The presence of antiangiogenesis inhibitor with 100 % 139 inhibition
- Figure 5.1 HPLC chromatogram for vitexin (1) and isovitexin (2) 160
- Figure 5.2 HPLC chromatogram of (i) FD var. *terengganuensis*; (a) 161 FDLNAM, (b) FDNAW, (c) FDLSPLSM and (d) FDLSPSLW; (ii) FD var. *angustifolia*; (e) FDLTKSM and (f) FDLTKSW; (iii) FD var. *deltoidea*; (g) FDLNHTM and (h) FDLNHTW, at zero time
- Figure 5.3 Effect of temperature and relative humidity on vitexin 163 percentage concentration in FDLNAM extract stored over 6 months period
- Figure 5.4 Effect of temperature and relative humidity on vitexin 163 percentage concentration in FDLNAW extract stored over 6 months period
- Figure 5.5 Effect of temperature and relative humidity on vitexin 164 percentage concentration in FDLSPLSM extract stored over 6 months period
- Figure 5.6 Effect of temperature and relative humidity on vitexin 164 percentage concentration in FDLSPLSW extract stored over 6 months period
- Figure 5.7 Effect of temperature and relative humidity on vitexin 164 percentage concentration in FDLTKSM extract stored over 6 months period
- Figure 5.8 Effect of temperature and relative humidity on vitexin 165 percentage concentration in FDLTKSW extract stored over 6 months period
- Figure 5.9 Effect of temperature and relative humidity on vitexin 165 percentage concentration in FDLNHTM extract stored over 6 months period
- Figure 5.10 Effect of temperature and relative humidity on vitexin 165 percentage concentration in FDLNHTW extract stored over 6 months period
- Figure 5.11 Effect of temperature and relative humidity on isovitexin 166 percentage concentration in FDLNAM extract stored over 6 months period

- Figure 5.12 Effect of temperature and relative humidity on isovitexin 166 percentage concentration in FDLNAW extract stored over 6 months period
- Figure 5.13 Effect of temperature and relative humidity on isovitexin 166 percentage concentration in FDLSPLSM extract stored over 6 months period
- Figure 5.14 Effect of temperature and relative humidity on isovitexin 167 percentage concentration in FDLSPLSW extract stored over 6 months period
- Figure 5.15 Effect of temperature and relative humidity on isovitexin 167 percentage concentration in FDLTKSM extract stored over 6 months period
- Figure 5.16 Effect of temperature and relative humidity on isovitexin 167 percentage concentration in FDLTKSW extract stored over 6 months period
- Figure 5.17 Effect of temperature and relative humidity on isovitexin 168 percentage concentration in FDLNHTM extract stored over 6 months period
- Figure 5.18 Plot of zero-order (%C versus time in month) of vitexin in 169 FDLNAM extract at 4 different storage conditions (◆ 30°C /65% RH, 40°C /75% RH, ▲ 50°C /85% RH and x 60°C /85% RH)
- Figure 5.19 Plot of first-order (In C versus time in month) of vitexin in 169 FDLNAM extract at four different storage conditions (◆ 30°C /65% RH, 40°C /75% RH, ▲ 50°C /85% RH and x 60°C /85% RH)
- Figure 5.20 Plot of zero-order (%C versus time in month) of isovitexin in 170 FDLNAM extract at 4 different storage conditions (◆ 30°C /65% RH, 40°C /75% RH, ▲ 50°C /85% RH and x 60°C /85% RH)
- Figure 5.21 Plot of first-order (In C versus time in month) of isovitexin in 170 FDLNAM extract at four different storage conditions (◆ 30°C /65% RH, 40°C /75% RH, ▲ 50°C /85% RH and x 60°C /85% RH)
- Figure 5.22 Effect of temperature and relative humidity on shelf life of 174 vitexin from all the extracts
- Figure 5.23 Effect of temperature and relative humidity on shelf life of 174 isovitexin from all the extracts
- Figure 5.24 PCA of methanol extracts from FDLNA stored at 30° C/65% 183 RH for 6 months storage duration in the 1900 – 850 cm⁻¹ spectral region (PC2 vs PC1)

- Figure 5.25 PCA of methanol extracts from FDLNA stored at 40°C /75% 183 RH for 6 months storage duration in the 1900 – 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.26 PCA of water extracts from FDLNA stored at 30° C/65% RH for 184 6 months storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.27 PCA of water extracts from FDLNA stored at 40°C /75% RH for 184 6 months storage duration in the 1900 – 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.28 PCA of methanol extracts from FDLSPLS stored at 30° C/65% 185 RH for 6 months storage duration in the 1900 – 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.29 PCA of methanol extracts from FDLSPLS stored at 40°C /75% 185 RH for 6 months storage duration in the 1900 – 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.30 PCA of water extracts from FDLSPLS stored at 30° C/65% RH 186 for 6 months storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.31 PCA of water extracts from FDLSPLS stored at 40°C /75% RH 186 for 6 months storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.32 PCA of water extracts from FDLTKS stored at 30° C/65% RH 187 for 6 months storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.33 PCA of water extracts from FDLTKS stored at 40°C /75% RH 187 for 6 months storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.34 PCA of water extracts from FDLNHT stored at 30° C/65% RH 188 for 6 months storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.35 PCA of water extracts from FDLNHT stored at 40°C /75% RH 188 for 6 months storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.36: PCA of methanol extracts from FDLNA stored at four 189 temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.37 PCA of water extracts from FDLNA stored at four temperatures 189 (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)

Figure 5.38 PCA of methanol extracts from FDLPLS stored at four 190

temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration in the 1900 – 850 cm⁻¹ spectral region (PC2 vs PC1)

- Figure 5.39 PCA of water extracts from FDLPLS stored at four 190 temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.40 PCA of water extracts from FDLTKS stored at four 191 temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.41: PCA of water extracts from FDLNHT stored at four 191 temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration in the 1900 850 cm⁻¹ spectral region (PC2 vs PC1)
- Figure 5.42: 1D overlaid FTIR spectra (4000 400 cm⁻¹) of methanol 193 extracts of FDLNA stored at 30° C/65% RH for 6 months storage duration.
- Figure 5.43 1D overlaid FTIR spectra (4000 400 cm⁻¹) of methanol 193 extracts of FDLNA stored at 40°C /75% RH for 6 months storage duration.
- Figure 5.44 1D overlaid FTIR spectra (4000 400 cm⁻¹) of water extracts of 194 FDLNA stored at 30° C/65% RH for 6 months storage duration.
- Figure 5.45 1D overlaid FTIR spectra (4000 400 cm⁻¹) of water extracts of 194 FDLNA stored at 40°C /75% RH for 6 months storage duration.
- Figure 5.46 1D overlaid FTIR spectra (4000 400 cm⁻¹) of methanol 195 extracts of FDLSPLS stored at 30° C/65% RH for 6 months storage duration.
- Figure 5.47 1D overlaid FTIR spectra (4000 400 cm⁻¹) of methanol 195 extracts of FDLSPLS stored at 40°C /75% RH for 6 months storage duration.
- Figure 5.48 1D overlaid FTIR spectra (4000 400 cm⁻¹) of water extracts of 196 FDLSPLS stored at 30° C/65% RH for 6 months storage duration.
- Figure 5.49 1D overlaid FTIR spectra (4000 400 cm⁻¹) of water extracts of 196 FDLSPLS stored at 40°C /75% RH for 6 months storage duration.
- Figure 5.50 1D overlaid FTIR spectra (4000 400 cm⁻¹) of water extracts of 197 FDLTKS stored at 30° C/65% RH for 6 months storage duration.
- Figure 5.51 1D overlaid FTIR spectra (4000 400 cm⁻¹) of water extracts of 197 FDLTKS stored at 40°C /75% RH for 6 months storage

duration.

- Figure 5.52 1D overlaid FTIR spectra (4000 400 cm⁻¹) of water extracts of 199 FDLNHT stored at 30° C/65% RH for 6 months storage duration.
- Figure 5.53 1D overlaid FTIR spectra (4000 400 cm⁻¹) of water extracts of 198 FDLNHT stored at 40°C /75% RH for 6 months storage duration.
- Figure 5.54 1D overlaid FTIR spectra (4000 450 cm⁻¹) of methanol 199 extracts of FDLNA stored at four temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration
- Figure 5.55 1D overlaid FTIR spectra (4000 450 cm⁻¹) of water extracts of 199 FDLNA stored at four temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration
- Figure 5.56 1D overlaid FTIR spectra (4000 450 cm⁻¹) of methanol 199 extracts of FDLSPLS stored at four temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration
- Figure 5.57 1D overlaid FTIR spectra (4000 450 cm⁻¹) of water extracts of 200 FDLSPLS stored at four temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration
- Figure 5.58 1D overlaid FTIR spectra (4000 450 cm⁻¹) of water extracts of 200 FDLTKS stored at four temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration
- Figure 5.59 1D overlaid FTIR spectra (4000 450 cm⁻¹) of water extracts of 200 FDLNHT stored at four temperatures (30°C /65% RH, 40°C /75% RH, 50°C /85% RH and 60°C /85%) for 1 month storage duration
- Figure 6.1 Chromatogram of (a) blank plasma, (b) blank plasma spiked 212 with 0.25 ug/mL vitexin and 0.5ug/mL isovitexin, (c) blank plasma spiked with 2.5 ug/mL vitexin and 5 ug/mL isovitexin
- Figure 6.2 Chromatogram of (a) plasma sample at 0.5 h and (b) plasma 214 sample at 2 h after orally administration of 500 mg/kg extract
- Figure 6.3 Metabolism pathway of apigenin (aglycones of vitexin and 217 isovitexin) degraded by the intestinal bacterial *Clostridium orbiscindens*
- Figure 6.4: Chromatogram profile from the analysis of vitexin and 219 isovitexin. (A) blank urine; (B) blank urine spiked with 0.25 ug/mL and 0.50 ug/mL of vitexin and isovitexin, respectively; (C) urine sample at 3h after oral administration of 500 mg/kg extract.

- Figure 6.5 Chromatogram profile from the analysis of vitexin and 220 isovitexin. (A) urine sample after 3h oral administered extract (2x dilution); (B) blank urine spiked with 12.5 μg/mL and 25 μg/mL of vitexin and isovitexin, respectively;(C) urine sample after 3h oral administered extract spiked with 12.5 μg/mL and 25 μg/mL of vitexin and isovitexin, respectively.
- Figure 6.6 Chromatogram profile of urine samples at (a) 3; (b) 6; (c) 9 and 220 (d) 24 h, respectively after oral administration of FDLSPLSW extract.
- Figure 6.7 Chromatogram profile of (a) blank feces and (b) feces sample 221 after oral administration of the FDLSPLSW extract.

LIST OF SCHEMES

		Page
Scheme 3.1	The proposed mass fragmentation pattern of compound A1 (β-amyrin cinnamate)	43
Scheme 3.2	The proposed mass fragmentation pattern of compound A2 (β-sitosterol)	47
Scheme 3.3	The proposed mass fragmentation pattern of compound A3 (friedelin)	51
Scheme 3.4	The proposed mass fragmentation pattern of compound A4 (vitexin)	55
Scheme 3.5	The proposed mass fragmentation pattern of compound A5 (isovitexin)	62
Scheme 4.1	Dioxygenation mechanism of polyunsaturated fatty acid	107
Scheme 4.2	The reaction mechanism of DPPH	124

LIST OF APPENDICES

		•
A1	MS, IR, NMR spectra of compound A1 (β -amyrin cinnamate)	253
A2	MS, IR, NMR spectra of compound A2 (β-sitosterol)	254
A3	MS, IR, NMR spectra of compound A3 (friedelin)	255
A4	MS, IR, NMR spectra of compound A4 (vitexin)	256
A5	MS, IR, NMR spectra of compound A5 (isovitexin)	257
B1	Effect of temperature and relative humidity on vitexin percentage concentration in extracts stored over 6 months period	258
B2	Table 5.6 : Effect of temperature and relative humidity on isovitexin percentage concentration in extracts stored over 6 months period	259
B3	Plot of In C (%) of vitexin against time in the extracts at four storage conditions	260
B4	Plot of In C (%) of isovitexin against time in the extracts at four storage conditions	262
B5	Effect of storage condition on degradation rate constant (K) of vitexin in the extracts	264
B6	Effect of storage condition on degradation rate constant (K) of isovitexin in the extracts	264
B7	Arrhenius plots of vitexin for the extracts	265
B8	Arrhenius plots of isovitexin for the extracts	267
C1	Calibration curves of vitexin and isovitexin in blank plasma	269
C2	Weight of rats and dose of FDLSPSLW extract administered	270
C3	Cumulative urine volume after dosing with FDSLPLSW extract	270
C4	Pearson Correlation between antioxidants, anti-inflammatory and antihypertensive activities with the primary and secondary metabolites and the marker contents in the extracts as determined by HPLC	271
	Animal Ethical Committee Approval: Toxicity and <i>in vitro</i> antiangiogenesis studies on <i>Ficus deltoidea</i> extracts	272
	Animal Ethical Committee Approval: Pharmacokinetics studies of <i>Ficus deltoidea</i> leaves extracts	273

LIST OF ABBREVIATIONS

ACE	angiotensin converting enzyme
ALL	allopurinol
ATR	attenuated total reflectance
BHA	butylated hydroxyanisole
BHT	butylated hydroxytoluene
BSA	bovine serum albumin
COSY	Correlation spectroscopy
COX	cycloxygenase
DEPT	Distortionless Enhancement by Polarization Transfer
DMSO-d ₆	deuterated dimethyl sulfoxide
DNA	deoxyribonucleic acid
DPPH	1,1-diphenyl-2-picrylhydrazyl
EIMS	electron ionization mass spectrometry
EMEA	European Agency for the Evaluation of Medicinal Products
FD	Ficus deltoidea
FDA	Food and Drug Administration
FDLNA	Ficus deltoidea var. terengganuensis 1
FDLNAM	methanol extracts of FDLNA
FDLNAW	water extracts of FDLNA
FDLNHT	Ficus deltoidea var. deltoidea
FDLNHTM	methanol extracts of FDLNHT
FDLNHTW	water extracts of FDLNHT
FDLSPLS	Ficus deltoidea var. terengganuensis 2
FDLSPLSM	methanol extracts of FDLSPLS water extracts of FDLSPLS
FDLSPLSW FDLTK	
FDLTKSM	Ficus deltoidea var. angustifolia methanol extracts of FDLTKS
FDLTKSW	water extracts of FDLTKS
GA	gallic acid
HHL	hippuryl-histidyl-leucine
HIFBS	heat inactivated fetal bovine serum
HYAase	Hyaluronidase
ICH	International Council of Harmonization
LOD	limit of detection
LOQ	limit of quantification
LOX	Lipoxygenase
NBT	nitroblue tetrazolium
NMR	nuclear magnetic resonance
NO	nitric oxide
NOSs	nitric oxide synthases
NP	natural products
OECD	Organization for Economic Co-operation and Development
o-H₃PO₄	ortho – phosphoric acid
PBS	phosphate buffer saline
PCA	principal component analysis
PDA PTFE	photo diode array
QTN	Polytetrafluoroethylene Quercetin
R.S.D	relative standard deviation
RH	relative humidity
RNS	reactive nitrogen species
ROS	reactive oxygen species
SD	standard deviation

SOD	superoxide anion
TPA	12-O-tetradecanoylphorbol-13 acetate
WHO	World Health Organization
XOD	xanthine oxidase

LIST OF PUBLICATIONS AND SEMINARS

Working Papers:

- 1. Zunoliza Abdullah, Zhari Ismail and Rasadah Mat Ali (2007) Total Flavonoids, Polyphenols, Tannins and Antioxidants properties of *Ficus deltoidea*. USM-UNAIR First Collaborative Conference, 13-14 June 2007, Penang. Biotechnology and Pharmaceuticals: enhancing the life. (Oral presentation)
- Zunoliza Abdullah, Zhari Ismail and Rasadah Mat Ali (2006) Preliminary Results from a Study on Standardization of Malaysian Medicinal Plant, *Ficus deltoidea*. (2006) 3rd Life Sciences Postgraduate Seminar in conjunction with 1st USM Penang International Postgraduate Conference, Penang, 24-27 May 2006.
- 3. Zunoliza Abdullah, Zhari Ismail & Rasadah Mat Ali (2007).HPLC and HPTLC Profiling and free radical scavenging of Alcohol and Aqueous Extracts of *Ficus deltoidea* spp. Poster presented at *at International Symposium on Natural Products and Medicinal Chemistry (NPMC) 2007 in conjunction with* 12th Asian Chemical Congress (12ACC) 23-25 August 2007. *Putra World Trade Centre, Kuala Lumpur, Malaysia.*
- Zunoliza Abdullah, Zhari Ismail, Rasadah Mat Ali, Dr. Amin Malik Abdul Majid, Hayder B. Sahib (2008) Direct UV spectrophotometric evaluation of ACE inhibitory activity and determination of antiangiogenesis activity of *Ficus deltoidea* leaves extracts. Poster presented at 4th Life Sciences Postgraduate Seminar in conjunction with 2nd USM Penang International Postgraduate Conference, 18th - 20th June 2008.

Publications:

- Zunoliza Abdullah, Zhari Ismail & Rasadah Mat Ali. (2008). Phytochemical Screening and Determination of Polyphenolics, Flavonoids and Tannins Content in Ficus spp. In Book: Beyond Medicinal Plants Reality and Challenges in Antidiabetic Research. Edited by Nor Hadiani Ismail & Khozirah Shaari. 22th Anual Seminar of the Malaysian Natural Products Society and 5th Asian Network of Research Antidiabetic Plants International Seminar. PWTC. Pp 171-176.
- 2. Abdullah Zunoliza, Hussain Khalid, Ismail Zhari, Mat Ali Rasadah, Pisar Mazura, Jamaludin Fadzureena, Sahdan Rohana (2009) Evaluation of extracts of leaf of three *Ficus deltoidea* varieties for antioxidant activities and secondary metabolites. Pharmacognosy Magazine, 1, 216-223.

Award:

1. Silver Award BioInno Awards 2009 at BIOMALAYSIA 2009, 17-19 November 2009 at Kuala Lumpur Convention Centre.

KAJIAN FITOKIMIA, BIOLOGIKAL, KESTABILAN DAN FARMAKOKINETIK EKSTRAK-EKSTRAK TIGA VARIASI DAUN *Ficus deltoidea* Jack

Tous denoidea Jack

ABSTRAK

Kajian ini telah dijalankan bagi memberikan maklumat terhadap pemiawaian esktrak daun *Ficus deltoidea* (*FD*). Tiga variasi pokok iaitu *FD* var. *terengganuensis*, *FD* var. *angustifolia* dan *FD* var. *deltoidea* telah dikaji. Kajian dibahagikan kepada lima bahagian iaitu penyiasatan kimia, pemprofilan kimia, pemprofilan biokimia, kajian stabiliti dan pemprofilan biologi.

Lima sebatian telah diasingkan yang merangkumi tiga triterpenoid, β-amyrin sinamat, β-sitosterol dan friedelin dan dua flavonoid, viteksin dan isoviteksin. Pengecaman dan penjelasan struktur sebatian-sebatian ini dibangunkan melalui teknik spektroskopi.

Ekstrak dianalisis untuk penentuan flavonoid total, polifenol, tanin, protein, polisakarida dan glikosaponin. Kandungan flavonoid total, polifenol dan tanin dalam ekstrak-ekstrak ini dalam julat 27.35 ± 1.08 sehingga 86.85 ± 0.58 (mg/g), 36.37 ± 0.27 sehingga 172.78 ± 0.47 (mg/g) dan 96.32 ± 0.75 sehingga 942.15 ± 4.08 (mg/g), masing-masing. Peratus protein, polisakarida dan glikosaponin total dalam ekstrak-ekstrak ini dalam julat 63.39 ± 0.26 sehingga 66.53 ± 2.74 (%), 0.01 ± 0.00 sehingga 5.11 ± 0.17 (%) dan 7.44 ± 1.07 sehingga 35.21 ± 1.26 (%), masing-masing.

Pemprofilan kimia kualitatif dan kuantitatif melibatkan penggunaan UV, FTIR, HPTLC dan HPLC. Sistem HPLC cerunan (gradient) telah dibangunkan dan divalidasi menggunakan viteksin dan isoviteksin sebagai penanda dan telah digunakan untuk kuantifikasi penanda tersebut dalam ekstrak metanol dan air. Kepekatan viteksin dalam ekstrak metanol dalam julat 4.95 sehingga 12.18 mg/g, sementara kepekatan viteksin dalam ekstrak air dalam julat 2.48 sehingga 19.05 mg/g. Kepekatan isoviteksin dalam ekstrak metanol dalam julat 1.58 sehingga 41.49 mg/g, sementara kepekatan isoviteksin dalam ekstrak air dalam julat 3.61 sehingga 26.94 mg/g.

Kajian pemprofilan biokimia ekstrak daun diselidiki untuk penentuan aktiviti antioksidan, antiihipertensi, anti-inflamasi dan antiangiogenik. Ekstrak berbagai varieti tumbuhan yang berbeza menunjukkan pelbagai aktiviti antioksidan pada pelbagai model antioksidan seperti penghapusan radikal bebas DPPH, penghapusan anion superoksida, xantina oksidase (XOD), kuasa penurunan Fe (III) ke Fe (II), penghapusan nitrik oksida (NO) dan peroksidasi lipid. Kajian antihipertensi menggunakan asai enzim pengubah angiotensin (ACE) menunjukkan bahawa ekstrak mempunyai potensi sebagai agen antihipertensi. Aktiviti antihipertensi ekstrak ditemui setanding dengan kaptopril, perencat ACE yang diketahui secara meluas. Ekstrak menunjukkan variasi dalam aktiviti anti-inflamasi dalam pelbagai model seperti lipoksigenase (LOX), hialuronidase (HYAase) dan edema telinga dicetus TPA. Dalam kajian antiangiogenik, ekstrak FDLSPLSW dan penanda, viteksin dan isoviteksin menunjukkan aktiviti 100%.

Dalam kajian kestabilan, ekstrak disimpan pada 4 keadaan simpanan yang berbeza selama enam bulan, dan sampel dianalisis dalam selang 1 bulan menggunakan FTIR dan HPLC. Berdasarkan kajian, didapati sebatian penanda dalam ekstrak yang disimpan pada 25 °C adalah lebih stabil dari ekstrak yang disimpan pada 30 °C /65% RH, 40 °C /75% RH, 50 °C /85% RH and 60 °C /85% RH. Selain itu, isoviteksin didapati lebih stabil dibandingkan dengan viteksin. Anggaran hayat

XXVİİ

simpan (t_{90}) dari viteksin dan isoviteksin adalah sekitar 1.5 dan 14 bulan, masingmasing pada 25 ° C.

Dalam kajian farmakokinetik, ekstrak air *FD*. var. *terengganuensis* berlabel FDLSPLS diberikan secara oral dalam dos 500 mg/kg berat badan kepada tikus *Sprague-Dawley*. Sampel plasma, urin dan najis dianalisis dengan menggunakan kaedah HPLC cerunan, yang dibangunkan dan divalidasi menggunakan viteksin dan isoviteksin. Keputusan kajian menunjukkan bahawa kedua-dua penanda tidak dapat dikesan dalam sampel plasma, urin dan najis.

Keputusan kajian menunjukkan bahawa kaedah HPLC yang dibangunkan boleh digunakan untuk pemiawaian ekstrak. Kedua-dua ekstrak telah menunjukkan potensi sebagai agen antioksida, anti-inflamasi dan antihipertensi. Sementara, ekstrak air *FD* var. *terengganuensis* menunjukkan aktiviti antiangiogenik.

PHYTOCHEMICAL, BIOLOGICAL, STABILITY AND PHARMACOKINETIC STUDIES ON THE EXTRACTS OF THREE VARIETIES OF *Ficus deltoidea* Jack. LEAVES

ABSTRACT

This study has been conducted to provide information on the standardization of extracts of *Ficus deltoidea* (*FD*) leaves. Three plant varieties namely *FD* var. *terengganuensis*, *FD* var. *angustifolia* and *FD* var. *deltoidea* were studied. The study was divided into five parts: chemical investigation, chemical profiling, biochemical profiling, stability studies and biological profiling.

Five compounds have been isolated that includes three triterpenoids, β -amyrin cinnamate, β -sitosterol and friedelin and two flavonoids, vitexin and isovitexin. Identification and structural elucidation of these compounds was established through spectroscopic techniques.

The extracts were analysed for the determination of total flavonoids, polyphenols, tannins, protein, polysaccharides and glycosaponin. The total flavonoids, polyphenols and tannins content in these extracts in range 27.35 ± 1.08 to 86.85 ± 0.58 (mg/g), 36.37 ± 0.27 to 172.78 ± 0.47 (mg/g) and 96.32 ± 0.75 to 942.15 ± 4.08 (mg/g), respectively. The percentage of total proteins, polysaccharides and glycosaponins in these extracts in range 63.39 ± 0.26 to 66.53 ± 2.74 (%), 0.01 ± 0.00 to 5.11 ± 0.17 (%) and 7.44 ± 1.07 to 35.21 ± 1.26 (%), respectively.

The qualitative and quantitative chemical profiling involved the use of UV, FTIR, HPTLC and HPLC. A gradient HPLC system has been developed and validated using vitexin and isovitexin as markers and was applied for the quantification of these markers in methanol and water extracts. The concentration of vitexin in methanol extracts in range 4.95 to 12.18 mg/g, whilst the concentration of vitexin in water extracts in range 2.48 to 19.05 mg/g. The concentration of isovitexin in the methanol extracts in range 1.58 to 41.49 mg/g, while the concentration of isovitexin in the water extracts in range 3.61 to 26.94 mg/g.

Biochemical profiling study of the leaves extracts were investigated for determination of antioxidant, antihypertensive, anti-inflammatory and antiangiogenic activities. The extracts of different varieties of the plant displayed varying antioxidant activities in various antioxidant models such as DPPH free radical scavenging, superoxide anion scavenging, xanthine oxidase (XOD), reducing power of Fe(III) to Fe(II), nitric oxide (NO) scavenging and lipid peroxidation. Antihypertensive studies using angiotensin converting enzyme (ACE) assay showed that the extracts have potential as antihypertensive agents. Antihypertensive activities of the extracts were found to be comparable to captopril, a widely known ACE inhibitor. The extracts showed the variation in the anti-inflammatory activity in various models such as lipoxygenase (LOX), hyaluronidase (HYAase) and TPA-induced ear oedema. In antiangiogenic studies, FDLSPLSW extract and the markers, vitexin and isovitexin showed 100 % activity.

In stability studies, the extracts were stored at 4 different storage conditions for six months, and samples were analysed at an interval of 1 month using FTIR and HPLC. Based on the studies, it was found that marker compounds in the extracts stored at 25 °C were more stable as compared to the extracts stored at 30 °C /65% RH, 40 °C /75% RH, 50 °C /85% RH and 60 °C /85% RH. Moreover, isovitexin was found to be more stable as compared to vitexin. Estimated shelf life (t₉₀) of vitexin and isovitexin was approximately 1.5 and 14 month, respectively at 25 °C.

ххх

In pharmacokinetic studies, water extracts of *FD* var. *terengganuensis* labelled FDLSPLS were administered orally in a dose of 500 mg / kg body weight to Sprague-Dawley rats. The plasma, urine and feces samples were analysed using gradient HPLC method, which was developed and validated using vitexin and isovitexin. Results of the study show that both the markers were not detected in plasma, urine and feces samples.

Results of the study indicate that the developed HPLC methods can be applied for standardization of the extracts. Both extracts have shown potential as an antioxidant, antiinflammatory and antihypertensive agent. Whilst, the water extract of *FD* var. *terengganuensis* show antiangiogenic activity.

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Medicinal plants have been used for thousands of years in virtually all cultures as sources of medicine. Over recent years, the use of medicinal plants has grown significantly. This is not only due to a general trend toward the use of natural products, but more towards available evidence regarding the safety and efficacy of herbal medicinal products. In most of the European countries, submissions of quality, safety and therapeutic data is mandatory for authorization of herbal medicinal products. Germany, France, Sweden, Denmark and Switzerland have also established specific national regulations on evaluation of herbal products. Other countries like Netherland, United Kingdom and Portugal regulate these products in the same way as ordinary pharmaceuticals (Busse, 2000).

According to the World Health Organization (WHO), herbal medicines contain plant parts or plant material in the crude or processed state as active ingredients and may contain excipients. Combinations with chemically defined active substances or isolated constituents are not considered herbal medicines (WHO Technical Report, 1996). Similarly, the European Medicinal Evaluation Agency (EMEA) defines herbal medicinal products as medicinal products containing exclusively herbal drugs or herbal drug preparations.

Herbal drugs are plants or plant parts in an unprocessed state which are used for medicinal or pharmaceutical purpose. Herbal drugs preparation are comminuted or powdered herbs, extracts, tinctures, fatty or essential oils, expressed juices, processed resins or gums, and so forth prepared from herbal drugs, and preparations whose production involves a fractionation, purification or concentration processes (EMEA, 1999).

Herbs contain complicated mixture of organic chemicals which may include fatty acids, sterols, alkaloids, glycosides, saponins, tannins and terpenes. The concentration of these substances depends on various factors related to the species variation, seedlings growing condition, processing and production of the herbal products.

Herbal products may contain a single herb or combinations of several herbs believed to have complementary effects. But it is usually difficult to determine which components are biologically active. The chemical constituents in the herbs were affected by the processing activity and environmental factors that will contribute in their pharmacological effect and the uniformity of the herbal products. To overcome this situation, manufacturers have attempted to create more consistent products through standardization using marker compounds, unique chemical constituents in the herbs and alter the production process to achieve consistent level of the markers in every batch.

Herbal products are usually perceived as safe because they are natural. However, many side effects have been reported from the use of herbal products (Bent and Ko, 2004). These include direct toxic effects and allergic reactions. The information on safety and efficacy of herbs or plant medicine are limited in a number of ways such as data is year's old, limited *in vitro* and *in vivo* studies, drug interactions, effects in special populations and toxic reactions (O'hara *et al.*, 1998). The Food and Drug Administration (FDA) has categorized about 250 herbs as "generally recognized safe" (GRAS) including chamomile, echinacea, feverfew, garlic, ginger, ginkgo and

ginseng; based on their long-term traditional use without significant side effects (O'hara *et al.*, 1998).

For the purpose of lead discovery or for the scientific validation of a traditional medicinal plant or a phytopharmaceutical, active principles in the complex matrices need to be identified. It is currently estimated at least 420,000 plants species exist in nature (Bramwell, 2002), less than 5% of the plants have been screened for one or more biological activities (Verpoorte *et al.*, 2000). More than 100,000 secondary metabolites are known though only a small percentage of all plant have been studied.

It is estimated about 25% of all the modern medicines are directly or indirectly derived from higher plants. For antitumor and antimicrobial drugs, about 60% of the medicines available in the market are derived from natural products, mainly from the higher plants (Farnsworth and Morris, 1976; de Smet, 1997; Cragg *et al.*, 1998, Shu, 1998; Calixto, 2000). According to the World Health Organization, about 65-80% of the world's population which lives in developing countries depends on the medicinal plants for primary healthcare due to lack of access to modern medicine (Calixto, 2000). In developed countries such as Germany, France, Italy and the United States, herbal medicinal preparations are very popular and have been used traditionally for a longtime and there are guidelines for the registration of such medicines (Calixto, 2000).

Based on the WHO and the EMEA quality guidelines (Table 1.1), the great efforts have to be made to ensure the quality of the herbal drugs. To ensure a consistent quality of a therapeutic agent, it is evident that only suitable standardized and validated process should be used. In addition, fingerprint, chromatograms and spectrograms analysis can also provide chemical information to help in

3

standardization. This technique is more effective for comparing and evaluating quality control of herbal drugs (Ren, 2001 and Li *et al.*, 2002 as cited by Chaudhary *et al.*, 2007).

Table 1.1: WHO Research Guidelines for Evaluating the Safety and Efficacy of Herbal Medicine (WHO, 1993)

• To ensure the reliability and repeatability of research on herbal medicines, the identity and quality of the plant material or preparation must be determined.

• A description should be provided of the physical and chemical tests done to identify the plant substances and a chromatogram of the active fraction or characterizing compound should be sufficient to identify a characteristic mixture of substances.

1.2 Quality Control in the Standardization of Herbal Medicine

Herbal medicines are formulated from a single or mixture of plants and have been used widely in treating a range of diseases. However, as stated in the Calixto (2000), only few programs have been established to study the safety and efficacy of herbal medicines as originally proposed by the WHO guidelines for the assessment of herbal medicines. Generally, herbal medicines are always assumed safe and free from side effects based on their traditional use. Although this is not supported by scientific data. the situation leads to the tremendous growth in phytopharmaceutical usage as compared to synthetic drugs (Calixto, 2000).

Many phytopharmaceuticals in the market are crude extracts and thus complex mixtures of compounds. Investigation of pharmacological activity on single isolated compounds versus the original plant extracts exerts polyvalent pharmacological effects (Wagner, 2001). This might explain the pharmacological synergistic effects and the phenomenon that very often an extract possesses a much better therapeutic effect than single isolated constituent. In consequence, the application of refined herbal extract rather than "isolated active principle(s)" may be favored in order to get benefit from the broad therapeutical and pharmacological action related to the special composition of the ingredients in the entire plant.

Herbal medicinal products (HMPs) consist of hundreds of constituents and some of them may be very toxic such as digitalis, pyrrolizidine alkaloids, ephedrine and phorbol esters. Establishing appropriate strategies for the analysis of quality, safety and efficacy, and the process of standardization of HMPs is a big challenge due to complex chemical composition. With increasing knowledge and advances in analytical methods, standardized, safe and high quality HMPs can be manufactured successfully.

In this study, *Ficus deltoidea* (*FD*) which is locally known as 'mas cotek or secotek emas' has been selected. It is one of the most popular medicinal plants after Tongkat Ali (*Eurycoma longifolia* Jack), Hempedu bumi (*Andrographis paniculata*), Misai Kucing (*Orthosiphon stamineus*), Kacip Fatimah (*Labisia pumila*) and pegaga (*Centella asiatica*) because of its traditional use in treating many disease including high blood pressure, improve blood circulation, diabetes, gout, pneumonia, heart problems, diarrhea and skin infection (Fasihudin and Hasmah, 1991).

1.3 Research Objectives

Although, a number of products manufactured from *Ficus deltoidea* are available in the market, there is still lack of information in terms of the chemical components, quality, safety and efficacy of the plant. Since, the plant being one of the popular herbs used in Malay traditional medicine, the pharmacological properties of the plant have not been studied yet.

Objectives of the study are:

- 1. To identify chemical constituents of *FD* leaves in order to develop and validate a reliable analytical method for chemical profiling and standardization of *FD* leaves extracts.
- 2. To evaluate *FD* leaves extracts for *in vitro* biological activities such as antioxidant, anti-inflammatory, antihypertensive and antiangiogenesis.
- 3. To investigate the *FD* leaves extracts for accelerated stability.
- 4. To investigate the pharmacokinetics of selected *FD* leaves extracts in rats.

CHAPTER TWO

TAXONOMIC CLASSIFICATION AND LITERATURE REVIEW

2.1 Taxonomic Classification

Taxonomically, this plant is classified as the following scheme:

Family	:	Moraceae
Genus	:	Ficus
Species	:	deltoidea
Scientific name	:	Ficus deltoidea Jack
Synonyms	:	Ficus diversifolia Blume

2.1.1 Vernacular Name

In Peninsular Malaysia, East Malaysia and Kalimantan, this plant is known as mas cotek, secotek emas, telinga kera, sempit-sempit and agoluran. In Indonesia, it is known as tabat barito, ara jelatih, ara tunggal, api-api telinga gajah and api-apitelinga kera and in Africa, kangkalibang.

2.1.2 Nomenclature

The common name of this plant comes from the habit of as epiphytes on larger trees. The scientific name, deltoidea or triangularis refers to the shape of the leaves. Same is in Malaysia, the local name of this plant referred to the golden dot (emas or mas) which can be observed on the upper layer of the leaves. Also the shape of the leaves was slightly same as the ear of monkey or 'beruk or kera' in Malay.

2.1.3 Moraceae

According to the Bhattacharya and Johri (1998) in their book title *Flowering Plants; Taxonomy and Phylogeny*, the family of Moraceae consists of 53 genera and 1400 species, distributed in tropical and subtropical zones of the world (Africa, Asia and America). They also have stated that genus *Ficus* has more than 1000 species and their statement has been proved by Wagner *et al.* (1999) as cited by Starr *et al.* (2003).

The genus *Ficus* occupies many habitats from lowland swamps to mountain rainforest and semi-arid areas. They have a wide range of life forms from lianescent climbers to hemiepiphytes and forest canopy trees.

2.1.4 Plant Description

Ficus deltoidea (FD) Jack is evergreen shrub or small tree up to 2 m tall, usually bushy and sometimes epiphytic. Leaves of this species are broadly spoon-shaped to obovate, blade thinly to thickly leathery, 2-8 x 1.5-7.5 cm, bright green above and rust-red to olive brown beneath. The underside of the leaf showed midrib forked or not but generally there is a black spot (gland) at the fork and on the upper side of the leaves, yellow spot can be observed all over the surface.

The shapes of the leaf are more variable in the whole genus and ranges from elliptical or spathulate-shaped, the apex is blunt, truncate or widely notched and rarely pointed. The leaves are also succulent. Shapes of the figs also vary from one another, from spherical to round: peduncle 3-15 x 1-2 mm: basal bract ca. 1 mm: body 5-7 mm wide and with 1.5 cm across. Figs are freely produced in pairs and ripening from dull yellow and then to orange or red. This plant is native to South East Asia, Borneo and Philippines (Brickell and Zuk, 1997 cited by Starr *et al.* 2003). Riffle (1998) cited by Starr *et al.* (2003) described this specie as indigenous to the Southern Philippines southward and westward to South East Asia, Malaysia and Indonesia.

According to the Malaysian traditional herbalist, at least 7 different varieties are identified, which are FD var. *motleyana*, FD var. *angustifolia*, FD var. *intermedia*, FD var. *kunstleri*, FD var. *deltoidea*, FD var. *bilobata* and FD var. *terengganuensis* (Kamarudin and Latiff, 2002). Other varieties also have been identified by Corner, 1965 and 1969; FD var. *angustissima*, FD var. *arenaria*, FD var. *bilobata*, FD var. *borneensis*, FD var. *kinabaluensis*, FD var. *lutescens*, FD var. *oligoneura* and FD var. *peltata*.

For the purpose of analytical study, three varieties have been selected which are FD var. *angustifolia*, FD var. *terengganuensis* and FD var. *deltoidea* because availability of species during the study conducted (Figure 2.1).

2.1.4 (a) FD var. terengganuensis (Corner, 1969)

Distribution: Malaya (Terengganu, east coast of Pahang)

Ecology: Coastal shrub and in Leptospermum forest at 1300 m altitude, also epiphytic in lowland forest.

Morphology: Lamina size from 2.3 x 1.8 - 5.5 cm, elliptic to rounded-obovate or some what bilobed: midrib dichotomous about 1/2-2/3 lamina; glands 3-4 (-5), two basal, the others at the dichotomies of the main veins: petiole $10-50 \times 1-2$ mm. Figbody 9-12 mm wide, rose-red to purple-black when ripening: peduncle 6-20 x 1.5 mm: basal bracts 1-1.5 mm. Twigs are 2 mm thick.

2.1.4 (b) FD var. angustifolia (Corner, 1969)

Distrbution: Lower Thailand, Malaya, Riau Archipelago, Sumatra, Borneo, Anamba and Natuna Island, Palawan.

Ecology: Epiphytic in lowland and mountain forest up to 1500 m altitude and common on seashores

Morphology: A shrub, growing up to 4 m high. Shapes of this varieties are spathulate or lanceolate obovate, rarely obscure lobed at the apex and sizes from 2-7 cm x 0.8-3 cm. There also a midrib dichotomous at or above the middle of the leaf. At the lower part, one gland can be seen at the fork of the midrib. Fig ripening yellow to orange or red: peduncle 5-15 x 1 mm, slender: body 6-8 x 4-6 mm.

2.1.4 (c) FD var. *deltoidea* (Corner, 1969)

Distribution: Malaya (Singapore, East Johore, South East Pahang), Riouw and Lingga Archipelagos, Bangka, Sumatra, Borneo.

Ecology: Generally epiphytic in lowland and mountain forest, up to 1200 m altitude (Kinabalu), also terrestrial on rocks and sea-shores.

Morphology: A small shrub with smaller figs ripening orange to red. The leaves are lanceolate and penniveined. A strong distinction of this plant is rugose-angular ovary.

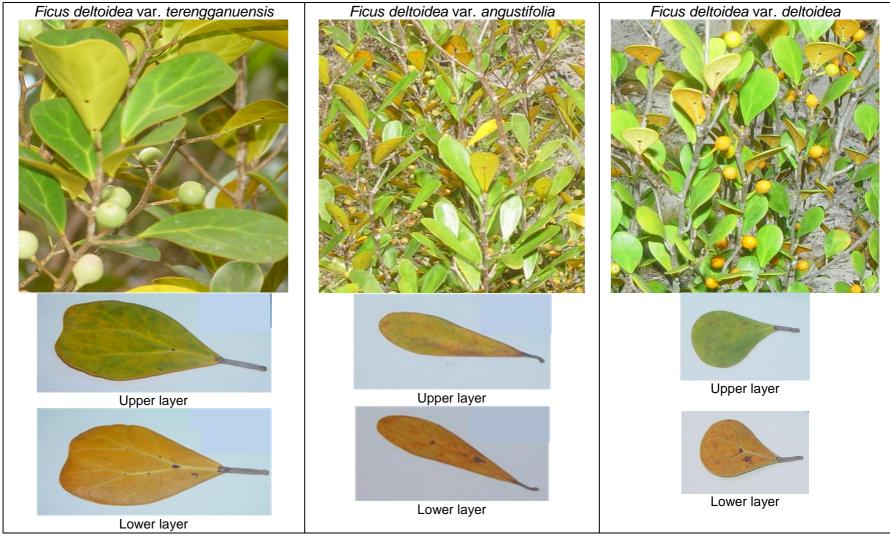


Figure 2.1: Pictures of the plants

2.1.5 Traditional Uses

In Malaysia, decoction of the *Ficus deltoidea* leaves is used to improve blood circulation and regain body strength and for treating diabetes, high blood pressure, heart problems, gout, diarrhea, pneumonia and skin infection. Some communities in Sabah consume the plant leaves as herbal tea for anti aging and youthful appearance (Fasihudin and Hasmah, 1991).

There are many claims by the traditional medicine practitioners regarding this plant in Malaysia. Unfortunately, there is no scientific study on this plant to prove these claims. Therefore, leaves of this plant were selected in this study to provide information to the herbal industry in Malaysia so that they can produce high quality products.

2.2 Literature Review

Until now only two report of blood glucose lowering effect and antinociceptive effect of *Ficus deltoidea* have been published (Sulaiman *et al.*, 2004; Sulaiman *et al.*, 2008). Phytochemical screening detected the presence of different classes of constituents, such as flavonoids, saponins, steroids, terpenes and tannins (Sulaiman *et al.*, 2008). Therefore, the studies have been conducted to give the information on the safety, quality and efficacy aspects of *Ficus deltoidea* leaves.

The traditional uses and scientific studies on genus *Ficus* are given in Table 2.1 and Table 2.2, respectively. From the aerial part of genus *Ficus* various chemical constituents including phenolics, triterpenoids, sterols, flavonoids and alkaloids has been identified. Reviews on the chemicals isolated from genus of *Ficus* are summarized in Table 2.3.

2.2.1 Traditional Uses of the Genus of Ficus

Table 2.1: Traditional uses of the genus of <i>Ficus</i>			
Ficus spp.	Traditional uses	References	
Ficus platyphylla	 In Northern Nigeria, this plants is used for treating several diseases including insomnia, psychorosis, depression and also used as an analgesic 	Audu (1989) as cited by Chindo <i>et</i> <i>al.</i> , 2003.	
Ficus racemosa (Ficus glomerata)	 In India the leaves of this species has been used for treating dysentery, bilious affection and also used as a mouth wash in spongy gum. The roots, fruits and bark are used for treating dysentery and diabetes. The fruits are also used to relieve diarrhoea In Bombay, this plant is a popular remedy for mumps and other inflammatory enlargement and the milky juice is popular among traditional healers as an antiinflammatory remedy. Also reports for treatment of skeletal fracture The roots are used as medicine against hydrophobia. Its fruits are effective against leprosy, diseases of the blood, fatigue, bleeding nose and cough. Its bark used for asthma and its leaves for bronchitis. It is also used as carminative, astringent, vermifuge and anti-dysentery drug. The plant also used to relieve inflammation of skin wounds, lymphadenitis, sprains and fibrositis. 	Mandal <i>et. al</i> , 2000a; Kirtikar and Basu, 1975; Nadkarni <i>et al.</i> , 1996; Chopra <i>et al.</i> , 1985; Ekanayake (1980) as cited by Mandal <i>et al.</i> , 2000a Mandal <i>et al.</i> , 2000b	
Ficus hispida	 Various parts of this plant are used in Indian traditional medicine for the treatment of various ailments. Bark was used as emetic and anti-diarrhoeal. Fruits used as tonic, lactogogue, cooling, astringent and in hepatic obstruction. The plant was found to be used widely as an anti-diarrhoeal, hepatoprotective, antitussive, antipyretic, anti-inlammatory, depurative, vulnerary, hemostatic, anti-ulcer and in treatment of anemia. In West Bengal, India, people of Khatra used the leaves of this plant to cure diarrhoea. 	Kirtikar and Basu, 1956; Nadkarni, 1976; Rastogi and Mehrotra, 1993; Peraza-Sanchez <i>et al.</i> , 2002; Anon (1956) and Anon (1986) as cited by Mandal and Ashok Kumar, 2002	
Ficus bengalensis	 Leaves of this plant are good for treating ulcers and leprosy. The bark is astringent and useful in the treatment of dysentery, diarrhoea and diabetes. An infusion of the young buds also used for the treatment of diarrhoea and dysentery. The young tips of hanging roots are given for obstinate vomiting. The milky juice is externally applied for pains and bruises and as an anodyne in rheumatism, lumbago and also used as 	Satyati <i>et al.</i> , 1976; Hosamani and Pattanashettar, 2003 Kirtikar and Basu, 1933	

Table 2.1: Traditional uses of the genus of Ficus

I		
	remedy for toothache.The seeds and fruits are used for cooling and as tonic	
Ficus carica	 Used for prevention of nutritional anaemia and an anthelmintic Various parts of this plants used by the native of India as a diuretic, demulcent, emollient and as an anthelmintic Fruits of this plant if taken internally along with senna and carminative herbs can gave mildly laxative properties 	Saeed and Sabir, 2002; Sastri, 1976; Jaffe, 1943 Omar <i>et al.</i> , 2004
Ficus sur	 People of Zulu in Africa drink a decoction of the root and bark for pulmonary tuberculosis, an infusion of the leaf and bark used to improve milk production in cattle. Tanganyika's people used a decoction of bark as galactogogue in women and cows and to prevent vomiting. 	Watt and Breyer, 1962 Burkill, 1985
	 In West Africa, the plant is used by traditional eye doctors. In Zaire, the latex used for the treatment of burns. In northern part of Nigeria, fresh young aerial root with the inner bark is chewed with kolanut to alleviate thirst and to treat throat. The leaves are claimed to act as a remedy for pectic ulcer. 	Kunle <i>et al</i> ., 1999
Ficus septica	 In Papua New Guinea, leaf of this plant is used to cure colds, fever, fungal and bacterial diseases. 	Baumgartner <i>et al</i> ., 1990
Ficus maxima	 In folk medicine this plant has been used as anthelminthic and anti-rheumatic, anti- anaemic and antipyretic agents. 	Diaz <i>et al.</i> , 1997
Ficus pumila	 The leaves of the plant has been traditionally consumed by some Okinawan elders in Japan either as a beverage or used as an invaluable medicinal herb by the folks to treat diabetes, dizziness, high blood pressure, and neuralgia. There is evidence that some of the compounds in the plants regularly consumed by the Okinawans have powerful antioxidant and positive hormonal effects 	Mitsuhashi, 1988; Tobinaga, 1989 and Nakatani, 1992 as cited by Abraham <i>et al.</i> , 2008.
Ficus insipida	 The latex leaves and unripe fruits of this species have been used by the natives in Central America to Argentina in treatment of worm diseases. Used as an anti-anaemic and anti-pyretic 	Peckolt (1942) as cited by Amorin <i>et</i> <i>al.</i> , 1999; Lopes <i>et al.</i> , 1993; Diaz <i>et al.</i> , 1997
Ficus beecheyana	 This plant was widely distributed in east of Asia, especially in mainland China, Hong Kong, Vietnam and Taiwan. Its rhizomes have been used in folk medicine to the treatment of rheumatism and diabetes and as carminative. 	Lee et al., 2002

Ficus fistulosa	 In Central and South America the latex of some <i>Ficus</i> species has been traditionally used as vermifuge 	Hansson <i>et al.</i> , 1986
Ficus asperifolia	• The bark infusion of <i>Ficus asperifolia</i> is used for washing sores and ulcers and applied to circumcision wounds In Ghana, the rough leaves are used for scraping patches of ringworm before further treatment	Irvine,1961; Abbiw, 1990
Ficus chlamydocar- pa and Ficus cordata	 In Cameroon, both plant were used in the treatment of filaris, diarrhoeal infections and tuberculosis. The decoction from the mixture (1:1 w/w) of root bark from <i>Ficus</i> <i>chlamydocarpa</i> and stem bark of <i>Ficus</i> <i>cordata</i> are used in the treatment of oral infections. 	Khabe (2007) as cited by Kuete <i>et</i> <i>al.</i> , 2008
Latex of some <i>Ficus</i> species	 Latex has been traditionally used as vermifuge in Central and South America Some Brazilian species (<i>Ficus glabrata</i> HBK, <i>Ficus doliaria</i> Martius, <i>Ficus anthelmintica</i> Martius and <i>Ficus radula</i> Humboldt and Bonpland), were introduced into medical practice as a powerful vermifuge The latex has been identified as active 	Hansson <i>et al.</i> , 1986; Peckolt, 1942 as cited by Amorin <i>et</i> <i>al.</i> , 1999
	fraction of protein and namely ficin from the studied done on the <i>Ficus laurifolia</i> .	Robbins, 1930
Other species	 The stem bark of <i>Ficus vallis-chaudae</i> used for the treatment of heart problems Leaves of <i>Ficus thonnigii</i> used for rheumatism 	Kone <i>et al.</i> , 2004

2.2.2 Scientific Study on the Genus of Ficus

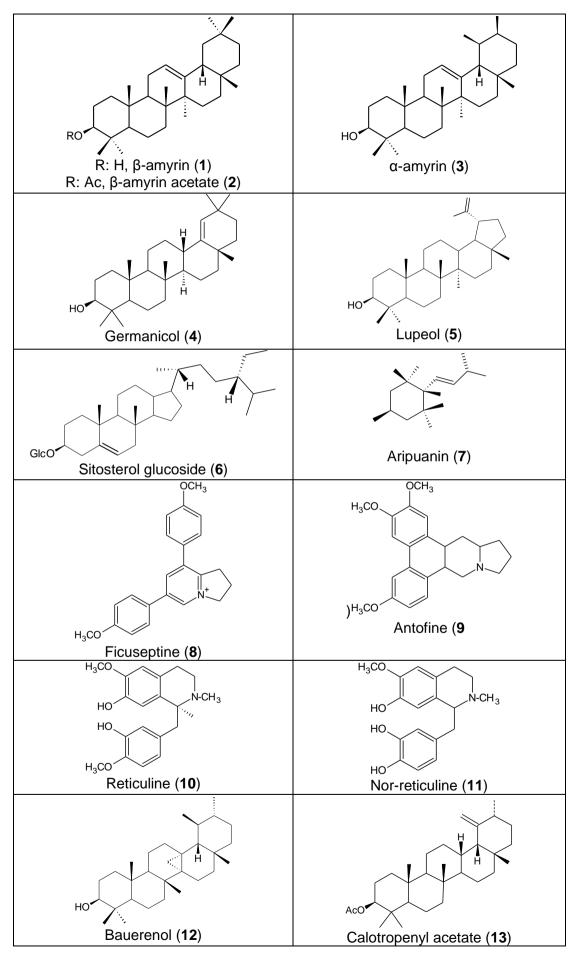
Table 2.2: Scientific study on the genus of <i>Ficus</i>			
Ficus spp.	Bioactivities study	References	
Ficus platyphylla	 Studies has been showed this plant possesses antinociceptive, anti-inflammatory and gastrointestinal activities in rodents 	Amos <i>et al.</i> , 2001 and 2002	
	 Phytochemical analysis revealed the presence of flavonoids, tannins and saponins. 	Amos <i>et al.</i> , 2001 Chinda at al	
	 Chindo et al have been evaluated the central nervous system (CNS) activity using methanolic extract. Results from the studies suggest the extract from stem bark contain psychoactive principles that are sedative in nature with possible neuroleptic properties 	Chindo <i>et al.,</i> 2003	
Ficus racemosa	 Evaluation on anti-inflammatory on carrageenin, serotonin, histamine and dextran-induced rat hind paw oedema models. Results possessed of significant anti-inflammatory activity. 	Mandal <i>et al</i> ., 2000a	
	 Studied on hypoglycaemic and antidiarrhoeal have been reported by Mandal et al. (1997a and 1997b) on leaves 	Mandal <i>et al</i> ., 1997a and 1997b	
	The methanol extract of stem bark possesses significant antipyretic effect in the reduction of normal body temperature and yeast-provoked elevated temperature.	Rao <i>et al.</i> , 2002	
	 The extract of fruit is used in diabetes and leucoderma. The alcoholic extract of the stem bark of the plant possessed antiprotozoal activity against Entamoeba histolytica. It is also used in the treatment of mumps, smallpox, heamaturia and inflammatory conditions. 	Mandal <i>et al</i> ., 2000b	
	 Studies done by Khan and Sultana have resulted that the extract from this plant is a potent chemopreventive agents and inhibits Fe-NTA induced renal carcinogenesis and oxidative damage response in Wistar rats. 	Khan and Sultana, 2005	
Ficus hispida	 Studies done by Mandal and Ashok Kumar have been exhibited that methanolic extract of the leaf showed a significant results on the anti-diarrhoeal activity. 	Mandal and Ashok Kumar, 2002	
	 The chloroform extract of the leaves and twids showed significant cytotoxic activity against the lung and colon human cancer cell lines. 	Peraza- Sanchez <i>et al</i> ., 2002	
Ficus bengalensis	 A water extract of the bark of this plant has been shown to possesses hypoglycemic, hypocholesterolaemic and hypolipidaemic effects Two compounds isolated from ethanolic extract of the bark on this plant have shown antioxidant properties. An antioxidant effect of aqueous extract of the bark 	Shroti and Aiman, 1960; Vohra and Parasar, 1970; Shukla <i>et al.</i> 1994 and 1995 Daniel <i>et al.</i> ,	
	 An antioxidant effect of aqueous extract of the bark has been evaluated in hypercholesterolaemic rabbits. Results showed the extract has significant antioxidant effect 	1998 ; Shukla <i>et al.</i> , 2004	

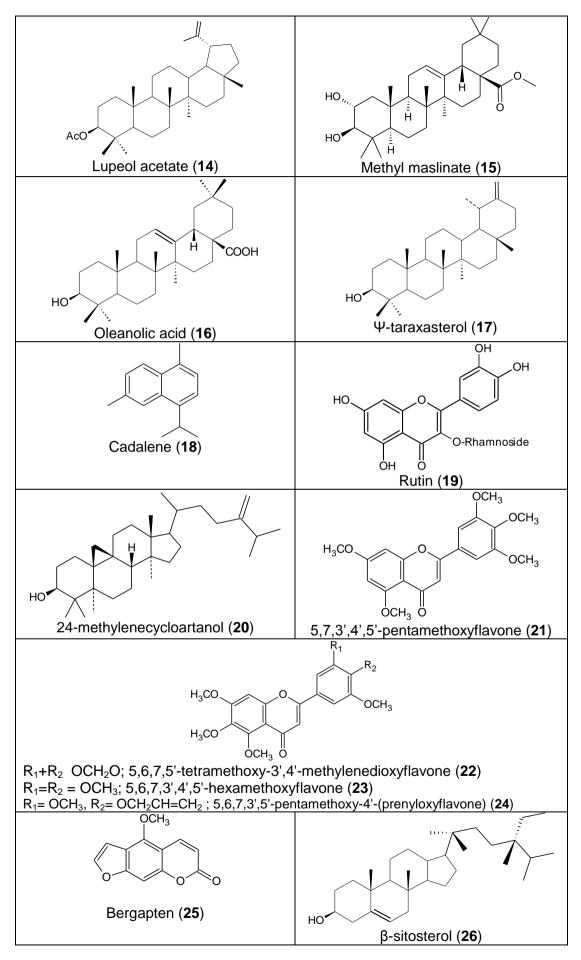
Table 2.2: Scientific study on the genus of Ficus

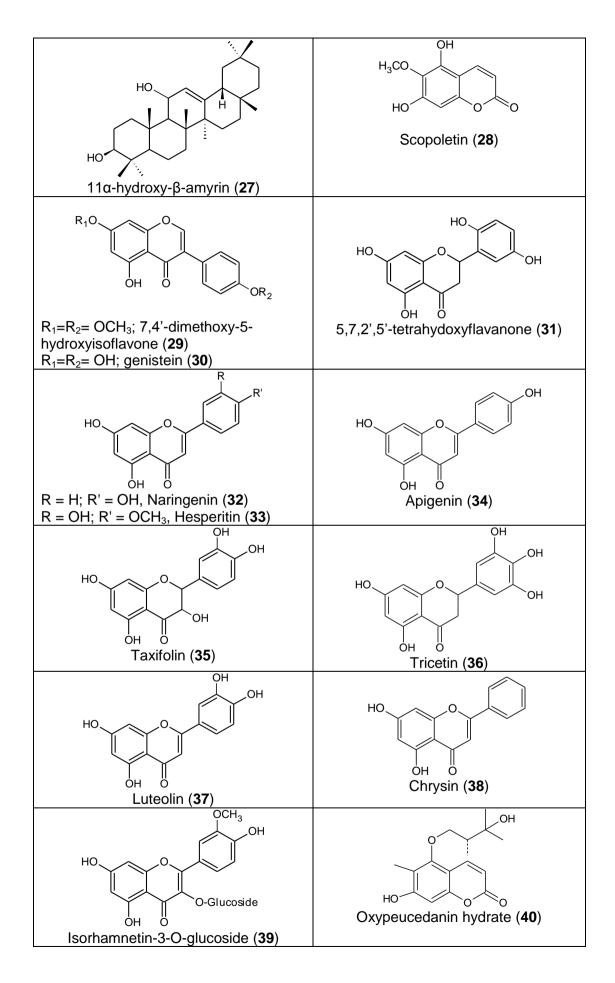
	 A glucoside isolated from the bark showed more potent hypoglycemic action as compared to crude ethanolic extract and activity was half of tolbutamide 	Augusti, 1975
	 Oral administration of bark extract showed significant antihyperglycemic effects in diabetic rats by raising serum insulin levels or inhibiting insulinase activity in liver and kidney. 	Achrekar <i>et al</i> ., 1991
Ficus carica	• A study hypoglaemic action of an oral fig-leaf decoctions in type-I diabetic patients by Serraclara et al. (1998) showed the total insulin doses given to the patients decreased during the study according to their glycemic profiles.	Serraclara <i>et</i> <i>al</i> ., 1998
	 Investigation on methanolic extracts and five compounds isolated from the leaves exhibited irritant potential on mice ears. 	Saeed and Sabir, 2002
	• In Amorin et al. (1999), the latex from this species showed of high toxicity and low anthelmintic efficacy and not recommended for the treatment of intestinal helminthiasis as claimed by the practitioner traditional medicine.	Amorin <i>et al.</i> , 1999
Ficus sur	 Studied done by Kunle et al. resulted that hexane, methanol and water extracts showed antiulcer activity and spasmolytic effects. Hot water extract was most effective compare to others. Furthermore all extracts except hexane extract was found t have gastroprotective activity. 	Kunle <i>et al.</i> , 1999
Ficus septica	The methanolic extracts of the leaves showed an intense antibacterial and antifungal activity using	Baumgartner
Seption	TLC bioautographic assays against <i>Penicillium</i> oxalicum, Bacillus subtilis, Micrococcus luteus and Escherhia coli.	<i>et al</i> ., 1990
Ficus fistulosa	 TLC bioautographic assays against <i>Penicillium</i> oxalicum, Bacillus subtilis, Micrococcus luteus and Escherhia coli. Studies on methanol extract on bark and leaves exhibited of antiplasmodial activity 	<i>et al.</i> , 1990 Tuyen <i>et al.</i> , 1998
Ficus fistulosa	 TLC bioautographic assays against <i>Penicillium</i> oxalicum, Bacillus subtilis, Micrococcus luteus and Escherhia coli. Studies on methanol extract on bark and leaves exhibited of antiplasmodial activity Studies done by Zheng et al. 2002, has successfully isolated a trichothecenes compound namely verrucarin L-acetate and found to have antimalarial activity against <i>Plasmodium</i> falciparum. 	Tuyen <i>et al.</i> , 1998 Zhang <i>et al.</i> , 2002
Ficus	 TLC bioautographic assays against <i>Penicillium</i> oxalicum, Bacillus subtilis, Micrococcus luteus and Escherhia coli. Studies on methanol extract on bark and leaves exhibited of antiplasmodial activity Studies done by Zheng et al. 2002, has successfully isolated a trichothecenes compound namely verrucarin L-acetate and found to have antimalarial activity against <i>Plasmodium falciparum</i>. An aqueous extract of stem bark of this plant can be used as analgesic to human and animals. Furthermore the extract also used for the treatment of ailments such as mental illness, wound dressing and diarrhoea. Studies done by Sandabe et al. (2003) shown this plant has sedative and anticonvulsant effects on rats. 	Tuyen <i>et al.</i> , 1998 Zhang <i>et al.</i> ,
Ficus fistulosa Ficus	 TLC bioautographic assays against <i>Penicillium</i> oxalicum, Bacillus subtilis, Micrococcus luteus and Escherhia coli. Studies on methanol extract on bark and leaves exhibited of antiplasmodial activity Studies done by Zheng et al. 2002, has successfully isolated a trichothecenes compound namely verrucarin L-acetate and found to have antimalarial activity against <i>Plasmodium</i> falciparum. An aqueous extract of stem bark of this plant can be used as analgesic to human and animals. Furthermore the extract also used for the treatment of ailments such as mental illness, wound dressing and diarrhoea. Studies done by Sandabe et al. (2003) shown this plant has sedative and anticonvulsant effects on 	Tuyen <i>et al.</i> , 1998 Zhang <i>et al.</i> , 2002 Sandabe and Kwari, 2000; Sandabe <i>et al.</i> , 2003 and Sandabe, 2002 as cited by Sandabe <i>et</i>

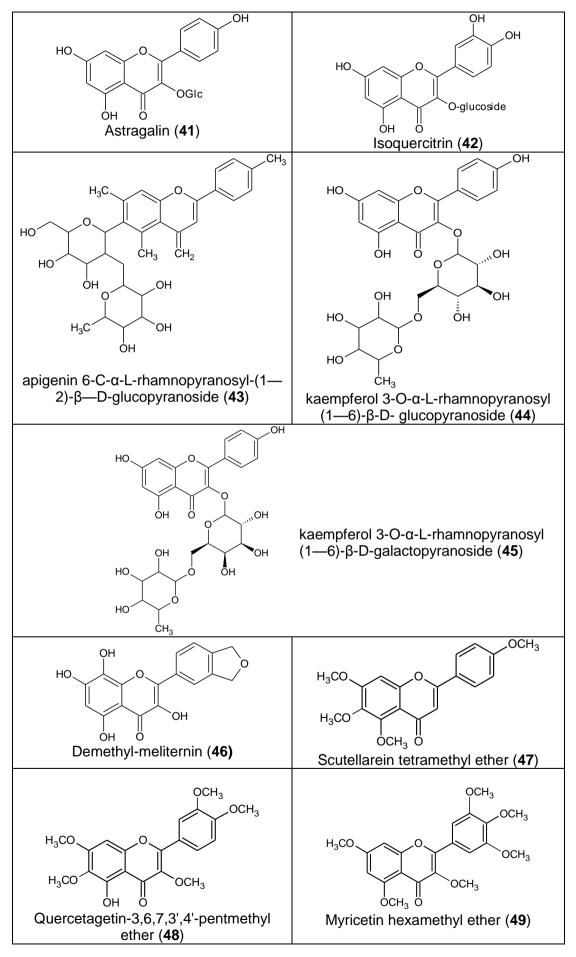
· · · ·		
insipida	high degree of toxicity and the low anthelmintic efficacy of the latex from this species. Therefore the use of the products containing this latex in traditional medicine for the treatment of intestinal helminthiasis is not recommended.	1999
Ficus microcarpa	 Methanol extract of bark have showed of antiplatelet activity. Ao et al, 2008 reveal that the methanol extracts from bark, fruits and leaves of F. microcarpa contained high amounts of phenolic compounds and showed strong antioxidant and antibacterial effects. 	Li and Kuo, 1997 Ao <i>et al.</i> , 2008
Ficus benjamina	 The methanolic extract of the leaves showed significant anti-inflammatory, antinociceptive and antipyretic activities. 	Farag, 2005 as cited by Simo <i>et al.</i> , 2008
Ficus hispida and Ficus carica	• Anthelmintic study on the latex of these species in NIH mice naturally nfected with the oxyurids <i>Syphacia obvelata</i> and <i>Aspiculuris tetraptera</i> and cestode <i>Vampirolepis nana</i> showed the low anthelmintic efficacy plus the latex show high degree on toxicity. So the latex is not recommended to use in the traditional medicine as claimed.	Amorin <i>et al</i> ., 1999
	 Study indicates that the ethanolic aqueous extract of dried ripe fruits of <i>Ficus carica</i> possesses an antiplatelet and spasmolytic effect. The spasmolytic effect was mediated possibly through K⁺ _{ATP} channel activation, which explain some of its medicinal uses in hyperactive gut disorders. 	Gilani <i>et al.</i> , 2008.
Ficus asperifolia	 Water extract showed a significant dose- dependent effect on the growth of human dermal fibroblast (142BR) at concentration of 50g/ml with 38% growth. Above 50g/ml doses, extract showed cytotoxicity effect. At high concentration of the infusion of the plant, the new cells will be proliferating. Investigation for the effects of hydrogen peroxide induced damage on the fibroblast cell using same extract showed 58% protection against oxidative damage to the fibroblast cells. 	Annan and Houghton, 2008
Ficus chlamydoca rpa and Ficus cordata	 Methanol crude extracts and isolated flavonoids and isoflavonoids from both plants were evaluated for the antibacterial and anticandidal activities. Both extracts and compounds tested showed antimicrobial activity with crude extract from <i>Ficus</i> <i>cordata</i> are more active on the tested mycobacteria than that of <i>Ficus chlamydocarpa</i>. 	Kuete <i>et al.</i> , 2008
Other species	 Screening on the leaves of <i>Ficus thonnigii</i> showed antibacterial activity. An aqueous extract of <i>Ficus polita</i> showed effective inhibition on HIV-1 and HIV-2 replication. In the experiments using the latex of <i>Ficus laurifolia</i> Lamarck suggested that the active fraction was possibly a protein, called ficin. 	Kone <i>et al.</i> , 2004 Ayisi and Nyadedzor, 2003 Robbins, 1930

2.2.3 Chemical Constituents from Genus of *Ficus*


Table 2.3: Chemical constituents from genus of <i>Ficus</i>			
Ficus spp.	Chemical constituents	References	
Ficus aripuanensis	 β-amyrin (1), α-amyrin (2), β-amyrin acetate (3), Germanicol (4), Lupeol (5) Sitosterol glycoside (6), Aripuanin (7) 	Nascimento <i>et al</i> ., 1999	
Ficus septica	Ficuseptine (8), Antofine (9)	Herbert and Moody, 1972; Baumgartner <i>et</i> <i>al.</i> , 1990	
Ficus pachyrachis	(-)-Reticuline (10), (+)-Nor-reticuline (11)	Khan <i>et al</i> ., 1992	
Ficus carica	Bauerenol (12), Calotropenyl acetate (13), Lupeol acetate (14), Methyl maslinate (15), Oleanolic acid (16), Ψ -taraxasterol (17), Cadelene (18), β -amyrin (1), Lupeol (5), Rutin (19), 24-methylenecycloartanol (20)	Ahmad and Abdul Malik 1988; Saeed and Sabir, 2002; Abu Mustafa <i>et al.</i> , 1964; Subramaniam and Nair, 1970; El-Kholy and Shaban, 1966; Ahmad and Abdul Malik, 1988	
Ficus maxima	5,7,3',4',5'-pentamethoxyflavone (21), 5,6,7,5'-tetramethoxy-3',4'- methylenedioxyflavone (22), 5,6,7,3',4',5'- hexamethoxyflavone (23), 5,6,7,3',5- pentamethoxy-4'-prenyloxyflavone (24)	Diaz <i>et al.</i> , 1997	
Ficus pumila	Bergapten (25), β -sitosterol (26), α -amyrin (1), Taraxasterol (17), 11 α -hydroxy- β -amyrin (27), Scopoletin (28) 7,4'-dimethoxy-5-hydroxyisoflavone (29), Genistein (30), 5,7,2',5'-tetrahydoxyflavanone (31), Naringenin (32), Hesperitin (33), Apigenin (34) Taxifolin (35), Tricetin (36), Luteolin (37), Chrysin (38), Rutin (19), Isorhamnetin-3-O- glucoside (39), Oxypeucedanin hydrate (40), Astragalin (41), Isoquercitrin (42), Apigenin 6- C- α -L-rhamnopyranosyl-(1-2)- β -D- glucopyranoside (43), Kaempferol 3-O- α -L- rhamnopyranosyl (1- 6)- β -D- glucopyranoside (44), Kaempferol 3-O- α -L- rhamnopyranosyl (1- 6)- β -D- glactopyranoside (45)	Juan <i>et al.</i> , 1997, Pistelli <i>et al.</i> , 2000, Kitajama <i>et al.</i> , 1998a and 1998b, Abraham <i>et al.</i> , 2008	
Ficus altissisma	Demethyl-meliternin (46), Scutellarein tetramethyl ether (47), Quercetagetin- 3,6,7,3',4'-pentmethyl ether (48), Myricetin hexamethyl ether (49), Demethyl-melibentin (50), Hypolaetin pentamethyl ether (51)	Mohamed <i>et al</i> ., 2000	
Ficus bengalensis	Rutin (19), Quercetin 3-galactoside (52), Ψ- taraxasteryl ester (53)	Subramaniam and Nair,1970	
	Studies on the fatty acids in seed oil <i>of Ficus bengalensis</i> was found to contain: Vernolic acid (54), Malvalic acid (55),	Subramaniam and Nair, 1970 Hosamani and	


Table 2.3: Chemical constituents from genus of *Ficus*


	Sterculic acid (56), Lauric acid (57), Myristic acid (58), Palmitic cid (59), Stearic acid (60), Oleic acid (61), Linoleic acid (62), Linolenic acid (63)	Pattanashettar, 2003
Ficus fistulosa	3b-acetyl22,23,24,25,26,27- hexanordamaran-20-one (64), 24- methylenecycloartenol (65), Sorghumol (isoarbinol) (66), 11a,12a-oxidotaraxeryl acetate (67), Ursa-9(11):12-dien-3b-ol- acetate (68), 3b-acetyl ursa-14:15-en-16-one (69), Lanosterol-11-one acetate (70), Verrucarin L acetate (71)	Tuyen <i>et al</i> ., 1998; Zhang <i>et al</i> ., 2002
Ficus microcarpa	Ficuisoflavone (72), Isolupinisoflavone E (73), Ficusic acid (74), Methyl-4'-hydroxy-3'- methoxytropate (ficusol) (75), Ficuglucoside (76), 20-taraxastene-3β,22α-diol (77), 3β- acetoxy-20-taraxastene-22α-ol (78), 3β- acetoxy-20α,21α-epoxytaraxastane-22α- ol (80), 3β-acetoxy-20α,21α- epoxytaraxastane (81), 3β-acetoxy-19α- methoxy-20-taraxastene (82), 3β-acetoxy- 19α-hydroperoxy-20-taraxastene (83), 3β- acetoxy-12β,13β-epoxy-11α- hydroperoxyursane (84), 3β-acetoxy-11α- hydroperoxy-13α <i>H</i> -ursan-12-one (85), 3β- acetoxy-1β,11α-epidioxy-12-ursene (86), (20S)-3β-acetoxy-20-hydroperoxy-30- norlupane (88), 3β-acetoxy-12- oleanen-11-one (89), 3β-acetoxy-12- oleanen-11-one (89), 3β-acetoxy-12- oleanen-11-one (90), 3β-acetoxy-12- oleanen-11-one (91), 3β-acetoxy- 12-oleanene (91), 3β-acetoxy- 12(3)-3β-acetoxy-20α-ol (92), 3β-acetoxy- 12(3)(18)-oleanene (91), 3β-acetoxy- 11α,12α-epoxy-16-oxo-14-taraxerene (95), 3β-acetoxy-25-methoxylanosta-8,23- diene (97), 3β-acetoxy-25-hydroxylanosta- 8,23-diene (98), Acetylbetulinic acid (99), Betulonic acid (100), Acetylursolic acid (101) Ursonic acid (102), Ursolic acid (103) 3-oxofriedelan-28-oic acid (104), Oleanonic acid (105), α-tocospiro A (106), α-tocospiro B (107), α-tocopherol (108), 27- <i>no</i> -3β-hydroxy- 25-oxocyloartane (109), (22E)-25,26,27- <i>trinor</i> -3β-hydroxy-c2-en-24-al (110), 3β-acetoxy-5α-hydroxy-13,27-cyclours-11- ene (111), 3β-acetoxy-2α-formyloxy-13,27- cycloursan-11α-ol (112)	Li and Kuo, 1997; Li and Kuo, 1998; Chiang and Kuo, 2000; Chiang and Kuo, 2001; Chiang <i>et</i> <i>al.</i> , 2005; Chiang <i>et</i> <i>al.</i> , 2001
Ficus insipida	Moretenolactone (113)	Lopes <i>et al.</i> , 1993
Ficus pantoniana	Ficine (114), Isoficine (115)	John and Russel (1965)


Ficus hispida	Ficustriol (116), o-methyltylophorinidine (117)	Peraza-sanchez <i>et al</i> ., 2002
Ficus beecheyana	Threo-2,3-bis(4-hydroxy-3-methoxyphenyl)-3- ethoxyprpan-1-ol (118), Erythro-2,3-bis(4- hydroxy-3-methoxyphenyl)-3-ethoxypropan- 1-ol (119), Erythro-2,3-bis(4-acetoxy-3- methoxyphenyl)-3-ethoxypropan-1-ol acetate (120), trans-4,5-bis(4-hydroxy-3- methoxyphenyl)-1,3-dioxacyclohexane (121), trans-4,5-bis(4-acetocy-3-methoxyphenyl)- 1,3-dioxacyclohexane (122), Threo-3-(4- hydroxy-3,5-dimethoxyphenyl)-3- ethoxypropane-1,2-diol (123), 2,3-dihydroxy- 1-(4-hydroxy-3,5-diemthoxyphenyl)-1- propanone (124), 3-hydroxy-1-(4-hydroxy- 3,5-dimethoxyphenyl)-1-propanone (125)	Lee <i>et al</i> ., 2002
Ficus infectoria	Luteolin 6-O- β -D-glycopyranoside 3'-O- α -L- rhamnoside (126)	Neeru <i>et al</i> ., 1990
Ficus chlamydo- carpa	β-amyrin (1), luteolin (37), alpinium isoflavone (127), genistein (30), laburnetin (128), $β$ - sitosterol-3-O- $β$ -D-glucopyranosi <i>de</i> (129)	Kuete <i>et al</i> ., 2008
Ficus cordata	β-amyrin (1), catechin (130), epiafzelechin (131), β-sitosterol-3-O-β-D-glucopyranoside (129)	Kuete <i>et al</i> ., 2008
Fcus benjamina	B-amyrin (1), β -amyrin acetate (3), lupeol (5), β -sitosterol glucoside (6), rutin (19), naringenin (32), psoralen (132), quercetin (133), morin (134) emodin (135), D-mannitol (136), cinnamic acid (137), caffeic acid (138), lactose (139), sucrose (140), betulinic acid (141), platanic acid (142), stigmasterol (143), benjaminamide (144)	Simo <i>et al.</i> , 2008; Dafalla, 2002

Number in brackets indicates the number of the structure.

