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RALAT JENIS I DAN KUASA UJIAN BAGI KAEDAH TEGUH 

MENGGUNAKAN PEMBOLEHUBAH MIN TERPANGKAS 

 

ABSTRAK 
 

Kesan ketaknormalan data serta masalah heteroskedastisiti terhadap statistik min 

terpangkas T1 dan Ft diselidiki menggunakan dua kaedah pemangkasan iaitu min 

terpangkas secara automatik yang dicadangkan dan pemangkasan biasa menggunakan 

amaun tetap. Ini merupakan masalah tipikal bagi pengujian ukuran kecenderungan 

memusat. Bagi setiap ujian statistik, tiga prosedur pemangkasan automatik 

menggunakan penganggar skala yang berbeza, MADn, Tn, dan LMSn, dan prosedur min 

terpangkas tetap diuji untuk keteguhan melalui kadar Ralat Jenis I dan kuasa ujian.  

Untuk mengenal pasti keteguhan setiap prosedur, beberapa pembolehubah dimanipulasi 

seperti bilangan kumpulan, saiz sampel seimbang dan sebaliknya, keheterogenan 

varians, pasangan bagi saiz sampel dan varians kumpulan, dan jenis taburan.  Dapatan 

menunjukkan bahawa, apabila pemangkasan automatik menggunakan LMSn 

diapplikasikan pada statistik Ft di bawah pengaruh taburan yang sangat terpencong 

bersama kes varians homogen, prestasi Ralat Jenis I adalah sangat menyakinkan.  Bagi 

taburan berekor normal dan varians heterogen, statistik T1 menggunakan pemangkasan 

automatik Tn menunjukkan prestasi yang memuaskan. Merujuk kepada kuasa ujian, 

pemangkasan automatik mampu menghasilkan kadar kuasa ujian yang tinggi 

terutamanya apabila keadaan saiz sampel tidak sama dan varians homogen.  Dengan 

menggunakan pemangkasan automatik, prestasi statistik Ft adalah lebih baik dari 

statistik T1  berdasarkan kadar Ralat Jenis I dan kuasa ujian secara serentak apabila 



varians homogen dan sampel saiz tidak sama.  Untuk keadaan lain, min terpangkas tetap 

masih cenderung digunakan. 

 

Katakunci:   Statistik teguh, ralat Jenis I, kuasa ujian, penganggar skala teguh, taburan 

terpencong 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TYPE I ERROR AND POWER RATES OF ROBUST METHODS 

WITH VARIABLE TRIMMED MEAN 

 

 

ABSTRACT 
 

 

The effects of nonnormality and heteroscedasticity on the T1 and trimmed F (Ft) test 

statistics were investigated using two methods of trimming namely the proposed 

automatic trimmed mean and the typical fixed amount of trimming. These are typical 

problems in any test of equality of central tendency measure.  For each test statistic, 

three automatic trimming procedures using different scale estimators MADn, Tn, and 

LMSn, and a fixed trimmed mean procedure were examined for their robustness via Type 

I error and power rates. To identify the robustness of each procedure, several variables 

were manipulated such as number of groups, balanced and unbalanced sample sizes, 

variance heterogeneity, pairing of group variances and group sample sizes, and types of 

distributions. The findings show that when automatic trimming using LMSn was applied 

on Ft statistic under the condition of extremely skewed distribution with homogeneous 

variance cases, the performance of Type I error is very convincing.  For normal-tailed 

distributions and heterogeneous variances, the T1 statistic with automatic trimming using 

Tn performed reasonably well. With regard to power, the automatic trimming is able to 

produce high power rates especially for the conditions of unequal sample sizes and 

homogeneous variances. By means of automatic trimming, the performance of Ft 

statistic is better than the T1 statistic simultaneously in terms of Type I error and power 

rates for homogeneous variances and unequal sample sizes.   For other conditions, fixed 

trimmed mean is still favorable. 



Keywords:   Robust statistics, Type I error, power, robust scale estimators, skewed 

distributions 
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CHAPTER 1 

 

BACKGROUND 

 

1.1 Introduction 

 

Analysis of variance (ANOVA) is the most commonly used statistical method for 

locating treatment effects in the one-way independent group design.  However, ANOVA 

can be adversely affected by two general problems, namely nonnormality and 

heteroscedasticity.  When these two problems arise simultaneously, Type I error rates 

are usually inflated resulting in spurious rejection of null hypotheses and reduction in the 

power of the test statistics.  

 

The usual group means and variances are greatly influenced by the presence of 

outliers in the score distribution.  Reduction in the power to detect differences between 

groups occurs because of the standard error for the usual mean can become seriously 

inflated when the underlying distribution is heavy-tailed (Lix & Keselman, 1998).  In 

addition, the classical least squares estimators can be highly inefficient when 

assumptions of normality are not fulfilled.  

 

One way to overcome the problems of controlling Type I error rates is by using 

robust statistics.  Hence, by substituting robust measures of location and scale such as 

trimmed means and Winsorized variances in place of the usual means and variances 

respectively, tests that are insensitive to the combined effects of nonnormality and 

variance heterogeneity can be obtained (Lix & Keselman, 1998).  Wilcox, Keselman & 
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Kowalchuk (1998) stated that one is able to obtain test statistics that do not suffer losses 

in power due to nonnormality by using trimmed means and variances based on 

Winsorized sum of squares.  

 

Trimmed mean is a good measure of location because the standard error of the 

trimmed mean is less affected by departures from normality.  This is due to the fact that 

the extreme values or outliers are removed (Lix & Keselman, 1998).  According to 

Gross (1976), the Winsorized variance is a consistent estimator of the variance of the 

corresponding trimmed mean.  Furthermore, the trimmed mean and Winsorized variance 

are intuitively appealing because of their computational simplicity and good theoretical 

properties (Wilcox, 1995). 

 

In recent years, numerous methods are being studied in terms of finding better 

methods for controlling the rates of Type I error in the one-way independent group 

designs (Babu, Padmanabhan & Puri, 1999; Othman, Keselman, Padmanabhan, Wilcox 

& Fradette, 2004; Wilcox & Keselman, 2003).  

 

1.2 Robust Statistics 

 

There are several definitions of robust statistics that have been found in the 

literature and these unfortunately lead to the inconsistency of its meaning.  Most of the 

definitions are based on the objective of the particular study by different researchers 

(Huber, 1981).  
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A statistical method is considered robust if the inferences are not seriously 

invalidated by the violation of such assumptions, for instance nonnormality and variance 

heterogeneity (Scheffe, 1959). Huber (1981) defined robustness as a situation which is 

not sensitive to small changes in assumptions while Brownlee (1965) reported slight 

effects on a procedure when appreciable departures from the assumptions were 

observed.  

 

The theory of robust statistics deals with deviations from the assumptions on the 

model and is concerned with the construction of statistical procedures which is still 

reliable and reasonably efficient in a neighborhood of the model (Ronchetti, 2006). 

Hampel, Ronchetti, Rousseeuw and Stahel (1986), stated that in a broad informal sense, 

robust statistics is a body of knowledge, partly formalized into “theories of robustness” 

relating to deviations from idealized assumptions in statistics. As mentioned by Hoel, 

Port and Stone (1971), a test that is reliable under rather strong modifications of the 

assumptions on which it was based is said to be robust. Hence in this thesis, a statistical 

method is considered robust when it has estimators which cannot be influenced by the 

deviations from the given assumptions when hypothesis testing is being conducted.  

 

Robust statistics has widely been used for many years now. Ronchetti (2006) 

reported that research in robust statistics has been conducted since 40 years ago and this 

area of research is still being actively studied today. In Ronchetti’s (2006) quick search 

in the Current Index of Statistics, 1617 papers on robust statistics were found between 

1987 and 2001 in statistics journals and related fields. 
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To date, there are several new procedures that were developed to deal with group 

trimmed means. One of which is the modified MOM-H statistic introduced by Wilcox & 

Keselman (2003) which used modified one-step M-estimator (MOM) as the central 

tendency measure in their work on the H statistic. Essentially, MOM is variable trimmed 

mean with trimming carried out automatically.  This method was proven to have good 

control of Type I error rates when comparing for the differences between distributions. 

Motivated by the good performance of this procedures, in this study we propose a 

modification of T1 statistic developed by Babu et al. (1999) with automatic trimming 

strategy based on trimming criteria using robust scale estimators, MADn, Tn and LMSn 

(Rousseeuw & Croux, 1993). 

 

The other new procedure is a modified trimmed F statistic (Ft statistic) based on 

a priori determined symmetric or asymmetric trimming strategies introduced by 

Keselman, Wilcox, Lix, Algina and Fradette (2007). This method was also proven to 

have good control of Type I error rates when comparing for the differences between 

distributions. In our study, we change the a priori trimming strategies to automatic 

trimming. Again, the automatic trimming was based upon the three robust scale 

estimators mentioned earlier. 

 

The original T1 and Ft statistics used fixed trimming percentage of 15% 

symmetric trimming in order to calculate the trimmed means. Unlike the original, we 

proposed automatic trimming. No fixed trimming percentage is needed.  
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1.3 Trimming 

 

Two approaches that may be considered by researchers faced with data that 

appear to violate the ANOVA assumptions are (i) to apply a transformation to the data 

and proceed with use of the F test or (ii) to select an alternative test procedure which is 

insensitive (i.e., robust) to assumption violations.  

 

1.3.1 Purpose of trimming 

 

When data are not normal and variances are heterogeneous, it is often possible to 

transform the data so that the new scores approximate normality and equality of 

variances. For example, when dealing with skewed distributions, two general 

suggestions are to take the square root or logarithms of every observation. Often these 

transformations produce data that are nearly normal. In some circumstances, the same 

transformations also achieve equality of variances (Maxwell & Delaney, 2004). 

Transforming data from designed experiments is an old and valuable tool (Carroll, 

1982). Most researchers would wish to transform data if such was necessary to obtain a 

normal distribution. Upon transformation, standard analyses will often be performed. 

 

However, there are some issues that should be kept in mind when applying 

transformation.  First, transformation of data indicates that an attempt to avoid making 

inferences about the mean of the original score. This will lead to complex issues of 

interpretation, since the conclusions which are drawn must be based on the transformed 

scores, not the original observations (Lix, Keselman & Keselman, 1996). Thus, the 
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interpretation of the results may also be less clear (Maxwell & Delaney, 2004). For 

example, most individuals find it difficult to understand the mean value of the square 

root of their original observations. Second, the complex transformations (i.e. Box-Cox 

transformation) do not remove the effects of outliers.  That is, outliers remain and can 

inflate the sample variance and also lower the power by a substantial amount. Third, if 

each observation is transformed in the same manner, situations arise where the 

distribution of the observed scores remains skewed (Wilcox, 2002).  Fourth, there is the 

problem of finding the correct transformation. Even though, there are a variety of 

transformations which may be applied to a set of data (Oshima & Algina, 1992), 

depending on the particular type and degree of assumption violation that is thought to be 

present in the data, this may not always be a simple solution (Lix et al., 1996). Also, it is 

difficult to find a transformation that will simultaneously deal with asymmetric data 

distributions and variance heterogeneity (Keselman et al., 2007). 

 

 Because of all of these drawbacks especially the interpretation issues, e.g. square 

root of the mean and log of the mean, we will ignore transformation and consider a 

robust method involving trimming. 

 

The robust method involving trimming is another alternative method to deal with 

nonnormal distribution.  This  robust test will control the actual Type I error rate close to 

the nominal level of significance, even when the data do not conform to the test's 

derivational assumptions, and will maintain actual statistical power close to theoretical 

power, as well (Lix et al., 1996). The literature so far suggest that this robust test is 

generally superior to the classical ANOVA F test and alternative test statistics (e.g., 
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Welch) in the majority of assumption violation situations (see Levy, 1978; Tomarken & 

Serlin, 1986).  

 

Methodology researchers consider ways to improve the performance of 

alternative procedures when the data are nonnormal (Lix et al., 1996). Wilcox (1995) 

has suggested that trimming, or discarding outliers from a data set prior to analysis, can 

lead to improve performance, both in terms of Type I error control and power.  

Trimming is the most popular robust based method when dealing with skewed data. 

Naturally, trimming is a very drastic way of dealing with extreme observations.  

However, removing a small set of observations in a relatively large sample should not 

change the results in a major way (Rodrigues & Rubia, 2006). 

 

The key factors in trimming are the amount of trimming and how the trimming is 

specifically conducted. There are two common methods in trimming, symmetric and 

asymmetric trimming.  In symmetric trimming, equal amount of trimming is applied on 

both tails of the distribution.  In asymmetric trimming, the process of trimming is either 

conducted on one-tail or on both tails with unequal amounts.  In order to avoid loss of 

information, trimming need to be conducted with care. Before trimming could be 

performed, the amount of trimming has to be determined first, usually by fixing the 

amount of trimming (predetermined).  In our study, we are going to depart from 

trimming with fixed amount to automated trimming. 
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1.3.2 Trimmed mean 

 

Trimming will definitely get rid of outliers but how do we address the question 

of outliers? Usually outliers are causes of nonnormality and heterogeneity. Even so, if 

we are looking at the differences between groups, the presence of a few outliers in one 

group will definitely lead to rejection of the null hypothesis. How do we deal with this 

rejection? This rejection should not be taken at face value. Further analysis will now be 

done on these outliers in order to determine their inclusion or exclusion in the study. In 

our study, the question of outliers does not arise because our study conditions do not 

involve them. Our study conditions are variance heterogeneity, pairing of group 

variances and group sample sizes, types of distributions, balanced and unbalanced 

sample sizes and number of groups. 

 

Trimmed mean is a central tendency measure that summarizes data when 

trimming is carried out. By using the trimmed means, the effect of the tails of the 

distribution is reduced by their removal based on the trimming percentage that has to be 

stated in advanced (predetermined amount). The common trimmed mean used the fixed 

amount of trimming method. It needs the fix amount of trimming percentage and tight 

down with this amount of trimming. By using this method, amounts such as 10% or 20% 

of the observations from a distribution will be trimmed from both tails. In the case of a 

light-tailed distribution or the normal distribution, it may be desirable to trim a few 

observations or none at all. There is extensive literature regarding this trimming method 

that uses the fixed amount of symmetric trimming. Among them are Lee and Fung 

(1985), Keselman, Wilcox, Othman and Fradette (2002), and Wilcox (2003).  
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If we have skewed distributions then the amounts of trimming on both tails 

should be different. More should be trimmed from the skewed tail. However, if the fixed 

symmetric trimming is used, regardless of the shape of the tails, the trimming is done 

symmetrically as set. A research by Keselman et al. (2007) used asymmetric trimming 

and in particular, applying hinge estimators proposed by Reed and Stark (1996) to 

determine the suitable amount of trimming on each tail of a distribution. However, their 

method still used fixed trimming percentages.  

 

The trimmed mean is not so robust because the breakdown point of trimmed 

mean is just as much as the percentage of trimming and this shows that trimmed mean 

cannot withstand large numbers of extreme value. Wilcox, Keselman, Muska nad 

Cribbie (2000) in their study stated that when comparing trimmed means versus means 

with actual data, the power of the trimmed mean procedure was observed to be greatly 

increased. They also discovered that there was improved control over the probability of 

a Type I error. 

 

The question that always remains unanswered is “How can we determine the best 

percentage of trimming that would ensure good Type I error control and reasonable 

power?” A probable answer lies in trimming carried out for the calculation of modified 

one-step M - estimators (MOMs). Here trimming is based upon a trimming criterion that 

relies upon a robust scale estimator known as MADn (Wilcox & Keselman, 2002). With 

this method of trimming we do not have to fix the amount of trimming required. The 

criterion will identify how many extreme values need to be removed from the 

distribution.  
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Other than MADn, Rousseeuw and Croux (1993) have demonstrated that robust 

scale estimators Tn and LMSn can also be used successfully as trimming criteria for 

MOMs based procedures. Hence this study will examine the viability of the usage of 

these three trimming criteria in variable trimmed means based procedures. 

 

1.4 T1 Statistic 

 

Types of distributions and homogeneity of variances are two important aspects 

that need to be taken into consideration before we proceed with the testing of the 

equality of central tendency measures using robust statistics.  If the type of distribution 

is unknown and cannot be assumed as normally distributed, Babu et al. (1999) suggested 

the use of their T1 statistic to compare the differences between distributions. They 

applied this statistic when the distributions are tested symmetric. This procedure used 

15% symmetric trimming with trimmed mean as the central tendency measure.  

 

1.5 Trimmed F Statistic, Ft 

 

Lee and Fung (1985) introduced a statistical procedure that is able to handle 

problems with sample locations when nonnormality occurs but the homogeneity of 

variances assumption still applies. This statistic is known as trimmed F statistic. We 

denote it as Ft. They also suggested that this new statistic be used as an alternative to the 

classical F method involving one-way independent group design. By using the 15% 

symmetric trimming, this procedure would give reasonable results for various types of 

distributions. Furthermore, this procedure is easy to compute. 
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1.6 Scale Estimators 

 

A scale measure is a quantity that explains the dispersion of a distribution. The 

value of breakdown point is one of the main factors to be considered when we look for a 

scale estimator (Wilcox, 2005a). Rousseeuw and Croux (1993) proposed several scale 

estimators with high breakdown point such as Sn, Tn and LMSn. A breakdown point 

refers to the quantitative description of the effect of a small change in the underlying 

distribution F in changing the distribution of an estimate (Wilcox, 2005a). Another 

important feature for a robust scale estimator is the bounded influence function. In 

general, an influence function measures the change in the function due to small amount 

of contamination at the point of the observation x.  

 

Syed Yahaya, Othman and Keselman (2004a, 2004b) identified four scale 

estimators with highest breakdown point and bounded influence function that were 

capable of maintaining the robustness of the S1 statistic. The scale estimators are Qn, Sn, 

Tn (Rousseeuw & Croux, 1993) and the well known scale estimator, MADn. The S1 

statistic which uses median as the central tendency measure was discovered by Babu et 

al. (1999) to test for differences between distributions. This flexible statistic dealt with 

asymmetric distributions and heteroscedasticity settings satisfactorily. The S1 statistic 

works with the original data without having to trim or transform the data to achieve 

symmetry.  Syed Yahaya et al. (2004a, 2004b) observed that the combination of the S1 

statistic with the aforementioned estimators produced good Type I error rates. The 

combination of the S1 method with the scale estimator Tn produced a very promising 

procedure in robust statistics.     
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The scale estimator LMSn, is found to have influence function and efficiency 

which equals to MAD. However, LMSn can be used under asymmetric distributions as 

well (Rousseeuw & Leroy, 1987; Grubel, 1988).  

 

 Motivated by the good performance of the scale estimators MADn and Tn in 

controlling Type I error rates in Syed Yahaya et al. (2004a, 2004b) and the good review 

of LMSn by Rousseeuw and Leroy (1987), and Grubel (1988), we chose the three robust 

scale estimators, MADn, Tn and LMSn as the criteria for choosing sample values 

(trimming criterion), and used the values to calculate T1 and Ft under skewed 

distributions.  

 

1.7 Objective of the Study 

 

The main objective of this study is to examine the operating conditions that 

would result in good Type I error rates and power for the following new procedures: 

1. T1 with variable trimmed means derived using MADn. 

2. T1 with variable trimmed means derived using Tn. 

3. T1 with variable trimmed means derived using LMSn. 

4. Ft with variable trimmed means derived using MADn. 

5. Ft with variable trimmed means derived using Tn. 

6. Ft with variable trimmed means derived using LMSn. 

 

The secondary objective is to compare 1 – 6 against the original T1 and Ft, both 

with 15% symmetric trimmed means. In doing so, this study should be able to  
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1. determine if 1 – 6 are improvements over the original T1 and Ft. 

2. recommend the best procedure for extreme conditions. 

 

1.8 Significance of the Study   

 

Experimental design methodology depends on the assumptions of normality and 

homogeneity of variances, but these assumptions are rarely fulfilled in the real world. 

Researchers need alternative methods when these situations arise. This study contributes 

to the development of robust statistics that uses trimming strategy in its test statistic or in 

its procedures. Robust statistics with trimming were designed to handle violation of 

assumptions such as normality and variance homogeneity. The usual trimming strategy 

normally requires fixed amount of trimming which have to be stated in advanced. In our 

proposed method, this is not the case. The proposed strategy trims data automatically 

based on the shape of the distribution. By using this strategy, researchers do not have to 

worry about how much trimming should be done to achieve good Type I error and high 

power rates. This study will also naturally want to determine whether the proposed 

trimming strategy will improve the performance of the T1 and Ft statistics. 

 

1.9 Organization of the Thesis  

 

Chapter 1 gives an introduction on the importance of the study and gives in depth 

explanation regarding the robust statistical methods. This chapter also presents a brief 

introduction to the methods proposed in this study, namely T1 and Ft statistics. Details of 

these methods are presented in Chapter 2. Chapter 2 also discusses about the scale 
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estimators and defines terminologies used throughout this study. Explanations about 

operating conditions that have been manipulated are found in Chapter 3. They are the 

number of groups, the sample sizes for balanced and unbalanced design, heterogeneity 

of variances, the nature of pairings of group sample sizes and group variances and type 

of distributions. This chapter further gives the design specifications and explains the 

generation of data used in this study. The results from the analyses of Type I error and 

power were presented in Chapter 4. We conclude our findings and propose suggestions 

for further studies in the last chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

The two sample t-test and the analysis of variance (ANOVA) are two common 

statistical methods used to locate treatment effects in a one-way independent group 

design. However, in using these two statistics, assumptions of normality and variance 

homogeneity need to be fulfilled. In real life applications, these conditions are rarely 

achieved and these will lead to inaccuracy in decision based on the testing procedure.  

 

 Departures from normality originate from two problems, i.e. skewness and the 

existence of outliers. These problems could be remedied by using transformation such as 

exponential, logarithm and others but sometimes, even after the transformation, 

problems with nonnormal data still occur.  Simple transformations of the data such as by 

taking logarithm can reduce skewness but not for complex transformations such as the 

class of Box-Cox transformations (Wilcox & Keselman, 2003).  However, problems due 

to the outliers are not eliminated.  According to Wilcox and Keselman (2003), a simple 

transformation can alter skewed distributions to make them more symmetrical, but they 

still do not deal directly with outliers.  They suggested using a trimming method when 

dealing directly with outliers. 

 

The existence of outliers in a sample data will cause the probability of Type I 

error to be less than the nominal alpha level and concurrently lower the power of the test 
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statistic. In the application of t-test, outliers can inflate the sample variance and 

simultaneously lower the value of the test (Wilcox & Keselman, 2003). Even when 

sampling from a perfectly symmetrical distribution, outliers can still cause the t-test to 

lose power when compared against modern methods. Modern methods here are methods 

that are based on robust measures of location (Wilcox & Keselman, 2003). According to 

Keselman, Lix and Kowalchuk (1998), the reduction in the power to detect differences 

between groups occurs because the usual population standard deviation is greatly 

influenced by the presence of the extreme observations in a distribution of scores. 

 

The presence of outliers will inevitably lead to the observed scores being 

skewed. However, skewness itself can be an inherent property of several score 

distributions. It is also well known that skewness can also be a problem when we are 

trying to control the probability of Type I error. Type I error rates and the confidence 

intervals can be highly inaccurate when the data are skewed. For the normal distribution 

and any symmetric distribution, the skewness for the distributions is zero. When the data 

are skewed to the left, the skewness value is negative. This denotes that the left tail is 

longer than the right tail. When the data are skewed to the right, the skewness value will 

be positive. Many classical statistical tests depend on normality assumptions. When this 

assumption is not satisfied, the rate of Type I error and the power of the test conducted 

will be affected. 

  

 The sample mean is the most common estimator used in most statistical analyses. 

However, this estimator is very sensitive to the presence of outliers and skewness. One 

single outlier could easily influence this estimator, thus causing it to have a low 
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breakdown point (Sawilowsky, 2002).  In addition, the sample mean also has unbounded 

influence function, implying that a single contaminated observation may have a 

considerable effect on the estimate (Thomas, 2000). Under these conditions, any test that 

used the sample mean as the estimator will produce low power and distorted rates of 

Type I error. These include the t-test and ANOVA.  Furthermore, the standard error of 

the usual mean can become seriously inflated when the underlying distribution is heavy-

tailed. To address this problem, Wilcox and Keselman (2003) suggested using estimators 

of robust measures of location and rank-based methods. Some of these robust estimators 

are the M-estimator and trimmed mean. 

The sample trimmed mean (will be referred to as “trimmed mean” throughout 

this thesis) is one of the estimators which are able to handle the problem of nonnormality 

due to skewness. When using this estimator, the smallest and the largest observations in 

the distribution will be trimmed, thus automatically discarding skewed data. By using 

the trimmed mean, high power, accurate probability coverage, relatively low standard 

errors, a negligible amount of bias and a good control over the probability of a Type I 

error can be achieved (Wilcox & Keselman, 2003).  

 

There are two possibilities of estimating the trimmed mean, i.e. equal amount of 

trimming or symmetric trimming and unequal amount of trimming or asymmetric 

trimming. In symmetric trimming, the trimming is done equally on both sides of the 

distribution. While for asymmetric trimming, the trimming is done on only one side or 

unequally on both sides of the distribution. Othman, Keselman, Wilcox, Fradette and 

Padmanabhan (2002) in their study suggested that when the data are said to be skewed to 



18 

 

the right, then in order to achieve robustness to nonnormality and greater sensitivity to 

detect effects, one should trim data just from the upper tail of the data distribution. Hogg 

(1974), Hertsgaard (1979), and Tiku (1980, 1982) suggested that the data should have 

different amounts of trimming percentages from the right and left tails of the 

distribution. Keselman et al. (2007) proposed a method called adaptive robust estimators 

to determine the number of observations to be trimmed from each tail of the distribution. 

By using this method, the total amount of trimming is determined a priori before making 

the decision whether to trim the data symmerically, asymmetrically or not to trim at all.  

 

If the distribution is skewed, the trimmed mean provides better estimates of the 

typical score than the usual mean. This is due to the fact that when a distribution is 

skewed, the trimmed mean does not estimate  but rather some value (i.e. t ) that is 

typically closer to the bulk of the observations (Keselman et al., 2004). Herron and 

Hillis (2000) stated that, for heavy-tailed distributions, the trimmed mean is less 

sensitive to the outliers and also have smaller standard errors than the usual mean. To 

avoid unnecessary loss of information due to trimming, if a distribution is highly skewed 

to the left, it seems more reasonable to trim more observations from the left tail of the 

distribution than from the right tail.  

 

However, the trimmed mean suffers from at least two practical concerns which 

are (i) the proportion of data at the tails exceeds the percentage of adopted trimming and 

vice versa and (ii) the trimming is done unproportionately.  In the latter case, the 

problem occurs when equal percentage of trimming (as in trimmed mean) on both tails is 
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adopted on skewed distribution, whereas it would be more reasonable to trim more 

observations from the tail that is highly skewed.  Note that these problems arise because 

of the amount of trimming have to be fixed in advance without examining the 

characteristics of the data. In many situations, researchers would want to use an adaptive 

trimmed mean, (i.e. asymmetric trimmed mean) in which the trimming proportion adapts 

itself to the characteristics of the distribution on the basis of the sample. 

To avoid from trimming erroneously, the process needs to be done meticulously.  

In our proposed method of trimming, this problem can be avoided since the amount of 

trimming is determined by the characteristics of the sample data. This method utilizes 

characteristics of the observed data to determine whether data should be trimmed 

symmetrically, asymmetrically or not at all. The idea is that, good efficiency will be 

obtained when sampling from normal distributions as well as non-normal distributions 

by introducing flexibility into how much is trimmed. 

Another problem which researchers always encountered when using the classical 

methods is heteroscedasticity. Some of the parametric methods that can handle this 

problem are those proposed by Welch (1961), James (1951) and Alexander and Govern 

(1994). Unfortunately, all of these methods have difficulty in dealing with problem of 

nonnormal data.  Nonetheless, Abdullah, Syed Yahaya and Othman (2008) found that 

Alexander and Govern test which uses automatically trimmed mean as the central 

tendency measure in place of the usual mean is robust to skewed data when the trimming 

strategy was adopted.   
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Some researchers sought for alternatives in the non-parametric methods, such as 

Mann Whitney and Kruskall Wallis. However, these methods have low power (Wilcox, 

1992). Even though non-parametric methods are distribution free, they are not 

assumptions free. Usually the distribution has to be symmetric.  The alternative is to use 

a robust approach to deal with the problems of nonnormality and heteroscedasticity. 

 

Robust statistics combine the virtues of both, the parametric and the non-

parametric approach.  In general, these statistics are used in handling the problem of the 

violation of the independence assumptions such as nonnormality and variance 

heterogeneity. In this study, we suggested two robust procedures, the T1 statistic 

proposed by Babu et al. (1999) and the trimmed F statistic, Ft introduced by Lee and 

Fung (1985). Babu et al. (1999) suggested the use of T1 statistic to compare the 

differences between distributions if the type of distribution is unknown and cannot be 

assumed as normally distributed. They applied this statistic with 15% symmetric 

trimmed mean as the central tendency measure when the distributions are tested 

symmetric. Trimmed F statistic is a statistical method that is able to handle problems 

with sample locations when nonnormality occurs but the homogeneity of variances 

assumption still applies.  

 

In this study, we will look at the problems of nonnormality and variance 

heterogeneity, simultaneously. We will use these statistics with trimming strategies 

using robust scale estimators, Tn and LMSn proposed by Rousseeuw and Croux (1993). 

In addition to these two estimators, we also consider one of the most popular estimators, 

MADn.  We choose these estimators because of their high breakdown points and 
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bounded influence functions. These strategies will trim extreme values without the need 

to state the trimming percentage in advanced. 

 

 There are a few terminologies that will be used throughout our study. We will 

discuss these terminologies briefly in the next sections prior to the in depth discussion of 

the proposed methods. 

 

2.2 Trimming  

 

Trimming is a method to eliminate outliers or extreme observations from each 

tail of a distribution. Determining the percentage of trimming must be made prior to the 

testing. In order to make this decision, efficiency is one factor to be considered. In this 

context, efficiency means achieving relatively small standard error when the trimming 

method is used. Trimming needs to be done cautiously. If the amount of trimming is too 

small, efficiency can be very poor when sampling is from heavy-tailed distribution, but 

if the amount is too large, efficiency will be very poor when we consider the sampling 

from a normal distribution (Keselman, Kowalchuk, Algina, Lix & Wilcox, 2000).  

 

Trimming can be very beneficial in terms of efficiency and in achieving high 

power. Trimming can eliminate outliers and power might be increased substantially. 

This is a conclusion that follows almost immediately from a result derived by Laplace 

two centuries ago (Wilcox, 2005b). According to Wilcox (1998) trimming can be good 

or bad in terms of power, depending upon the criteria we adopt and the goals we hope to 

achieve.  In Wilcox (2005b), it is stated that the median corresponds to the most extreme 
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case in which all but one or two values are trimmed. He gave an example that if n is 

even, all but two observations are trimmed and if n is odd, all but one. Due to the 

extreme amount of trimming reflected by the usual sample median, the sample median 

will have a large standard error and low power relative to using the usual sample mean 

(Wilcox, 2005b).  

 

Theory indicates that the more we trim, the more we can reduce problems due to 

skewness.  Rocke, Downs and Rocke (1982) in their paper concluded that the best 

results were obtained with 20% – 25% symmetric trimming, while Othman et al. (2004) 

reported that one can achieve a slightly better Type I error control with a 15% symmetric 

trimming rather than a 20% symmetric trimming. Keselman, Othman, Wilcox and 

Fradette (2004) demonstrated that good control of Type I error can be achieved with 

only modest amounts of trimming, namely 15% or 10% from each tail of the 

distribution.  For long-tailed symmetric distributions, Lee and Fung (1985) 

recommended the used of 15% symmetric trimming. According to the literature, the 

optimal fixed amount of symmetric trimming percentage is between 0% and 25%.   

When sampling from a symmetric distribution, it is intuitively appealing to use 

symmetric trimming (Wilcox, 2003). Symmetric trimming trims the same number of 

observations at both ends of data and hence is quite efficient for symmetric distributions. 

However, this strategy becomes less efficient when there is even just a slight departure 

from symmetry, for example with one end containing outlying points (Wu & Zuo, 

2009).  Higher amount (i.e. more than 20%) of symmetric trimming should be used 

when sampling from a skewed distribution (Wilcox, 2003).  Nevertheless if the amount 
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of trimming is too high, this can result in lower power when sampling from a light tailed 

distribution (i.e. normal distribution) where outliers are relatively rare.  While for heavy-

tailed distributions, the power goes up as the amount of trimming increases, (Wilcox, 

1995).   

It has been a general practice that 90%, 95%, and 99% are typical choices to 

specify coverage probabilities. Nevertheless, as stated in Granger (1996), practical 

forecasters seem to prefer 50% intervals whereas academic writers focus almost 

exclusively on 95% intervals.  It is noted that the larger the probability coverage, the 

wider the prediction interval, and vice versa.  Relating to the trimming percentages, 

Wilcox (1998) stated that the more we trim, the less effect skewness had on the 

probability coverage.  According to Wilcox (1996), a 20% trimming provide more 

accurate probability coverage of confidence intervals regarding differences between 

means when the distributions are skewed.  

Nevertheless, when the sample size, n is small, the optimal amount of trimming 

is yet to be determined. The amount of trimming can also be arrived at empirically. 

However, it is difficult to do so. This is usually attempted when doing one-sided or 

asymmetric trimming. Othman et al. (2002) dealt with predetermined amount of 

trimming on one side. The recent study done by Keselman et al. (2007) also worked 

with fixed total amount of trimming for both sides of the distribution. They then 

identified the number of observations that should be trimmed from each tail by the 

characteristics of the sample data. However, the total number of trimmed data from the 

left and right tail of the distribution must be equal to the total amount of trimming that 
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they determined earlier. The mismatch of the proportion of skewed data is still of 

practical concern if we use this method.   Thus, in this study, we proposed a method of 

trimming without any fixed amount. The amount of trimming for both tails of the 

distribution is determined automatically using robust scale estimators, namely, MADn, Tn 

and LMSn to get the sample values.  We also compared this automatic method of 

trimming with the usual symmetric trimming. Specifically we chose 15% symmetric 

trimming for this purpose. 

 

Essentially one does not trim a fixed amount of the data but only the skewed 

data. These trimming mechanisms will ensure that the problems of outliers and skewed 

data will be adequately addressed.  

 

2.3 Type I Error 

 

Hypothesis testing is the art of testing if variation between sample distributions 

can either be explained by chance or not. If we are to test two distributions to see if they 

vary in a meaningful way, we must be aware that the difference is not just by chance. 

Type I error is the error of rejecting the null hypothesis given that it is actually true. In 

other words, this is the error of accepting an alternative hypothesis when the results can 

be attributed to chance.  

 

According to Steven (1990), a test statistic is robust if the actual level of 

significance is very close to the nominal level. The nominal level is the level set by the 

experimenter and is the percent of time one rejects falsely when the null hypothesis is 
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true and all assumptions are met. While the actual level is the percent of time one rejects 

falsely if one or more of the assumptions are violated. 

 

Type I error rejects an idea that should not have been rejected and also claims 

that two observations are different, when they are actually the same. It is also known as 

a ‘false positive’. A false positive usually means that a test claims something to be 

positive, when that is not the situation. The probability of a Type I error is designated by 

the Greek letter alpha ( ) and is called the Type I error rate. 

 

Conventionally Type I error is set at 0.05 or 0.01. This brings the meaning of 

there is only 5 or 1 in 100 chance that the variation that we obtained is due to chance. 

This is called the 'level of significance'. The significance levels need to be chosen 

attentively. For example, a 5% significance level is the rate to declare a result to be 

significant when there is actually no relationship in the population. The 5% value is also 

known as the rate of false alarms or false positives.  

 

 By convention, a procedure can be considered robust if it’s Type I error is 

between 5.0  and 5.1  (Bradley, 1978). Thus, when the nominal level is set at  = 

0.05, the Type I error rate should be in between 0.025 and 0.075. Type I error rates are 

considered liberal when they are above the 0.075 limit while those below the 0.025 limit 

are considered conservative. However, Guo and Luh (2000) in their study regarded a test 

with 5% level of significance to be robust if its empirical Type I error rate does not 

exceed the 0.075 limit.  
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