

RULE GENERATION BASED ON STRUCTURAL

CLUSTERING FOR AUTOMATIC

QUESTION ANSWERING

BY

SONG SHEN

Thesis submitted in fulfillment of the requirements

for the degree of

Master of Science

December 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/199245358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgment

I would like to take this opportunity to convey my sincere thanks and deepest

gratitude to my main supervisor, Dr. Cheah Yu-N and my co-supervisor, Prof. Tang

Enya Kong, for their dedication, support, encouragement, patience and valuable

guidance provided to me during the preparation of this thesis.

Moreover, I would like to convey my appreciation to Health Informatics Research

Group, School of Computer Sciences, Institute of Postgraduate Studies, the university

library for their help and support.

Finally and most important of all, I would like to express my most sincere and

warmest gratitude to my mother Dong Feng, my father Song JingSheng and my

husband Usman Sarwar. Thanks for their love and care. They have always encouraged

me, believed in me, and supported me when I needed it.

iii

TABLE OF CONTENTS

Page

Acknowledgement …………………………………………………………………….ii

Table of Contents ……………………………………………………………………..iii

List of Tables …………………………………………………………………………vii

List of Figures …………………………………………………………………………ix

Abstrak ………………………………………………………………………………...xi

Abstract ………………………………………………………………………………xiii

CHAPTER 1 - INTRODUCTION

1.1 From Information Retrieval to Question Answering ...…..……..…………................1

1.2 Question Answering Systems ..2

1.3 Rule-Based QA system ………………………………………………………….…...4

1.4 Problem Statement ………………………………………………………………..…..5

1.5 Research Objectives ………………………………………………………………..…5

1.6 Research Scope ……………………………………………………………………… 6

1.7 Contribution ………………………………………………………………………… 6

1.8 Thesis Outline …………………………………………………………………….......7

CHAPTER 2 - LITERATURE REVIEW

2.1 Introduction …………………………………………………………………..………9

2.2 Rule-based Question Answering System …………………………………..………...9

 2.2.1 Quarc ……………………………………………………………..…………9

iv

 2.2.2 TextRoller ………………………………………..…………………………11

 2.2.3 Webclopedia ………………………………………..………………………13

 2.2.4 AnswerFinder ………………………………………..……………………..14

 2.2.5 DIRT ………………………………………………….……………………15

2.3 Other QA Systems ……………………………………………….……………….....17

 2.3.1 WEBCOOP ………………………………………………..………….……17

 2.3.2 PiQASso ……………………………………………………..……………..18

 2.3.3 AnswerBus ……………………………………………………..…………..20

 2.3.4 AQUAREAS ……………………………………………………..………...21

 2.3.5 START……………………………………………………………..……….22

2.4 Discussion of QA.……………………………………………………………..…......23

2.5 Clustering in Natural Language Processing …………………………………..……..26

 2.5.1 Hierarchical Clustering ………………………………………………..…...27

 2.5.2 Partitioning ………………………………………………………………....28

2.6 Clustering in Other Fields ……………………………………………………….......30

2.7 Discussion of Clustering in NLP …………………………………………………….31

2.8 Conclusion …………………………………………………………………………...33

CHAPTER 3 - METHODOLOGY

3.1 Introduction ……………………………………………………………….………...34

3.2 Phase One: Pre-processing of Training Data …………………………….………....36

 3.2.1 Compilation of Question-Answer Pairs …………………….…………......36

 3.2.2 Analysis of Question-Answer Pairs ……………………….……………....37

3.3 Phase Two: Automatic Rule Generation ………………………….………………..37

 3.3.1 Similarity Measurement ……………………………….………………...40

v

 3.3.2 Rules Generation via Clustering ………………………………………....41

3.4 Phase Three: Question & Answering …………………………………………….....42

 3.4.1 Analysis of Question and Repository ………………………………….….43

 3.4.2 Answer Matching …………………………………………………….…...44

3.5 Summary.…………………………………………………………………….……..45

CHAPTER 4 - IMPLEMENTATION

4.1 Introduction.………………………………………………..………………..……..46

4.2 Implementation Details ……………………………………………………………46

 4.2.1 Phase One: Pre-processing of Training Data …………………….……….46

 4.2.1.1 Compilation of Question-Answer Pairs …………….…………47

 4.2.1.2 Analysis of Question-Answer Pairs ……………….…………..49

 4.2.2 Phase Two: Automatic Rule Extraction via Clustering …….…………….50

 4.2.2.1 Similarity Measurement ……………………….………………51

 4.2.2.2 Rule Generation via Clustering ……………….……………….70

 4.2.3 Phase Three: Question & Answering.…………………....………………..82

 4.2.3.1 Analysis of the Input Question …………….……………..........83

 4.2.3.2 Answer Matching …………………….. ….…………………...83

4.3 Conclusion ………………………………………………………………………….84

CHAPTER 5 - EXPERIMENTS AND RUSULTS

5.1 Introduction ………………………………………………………………………...86

5.2 Experiment Setting ………………………………………………………………...86

 5.2.1 Equipments Specification …………………………………………………87

 5.2.2 Choice of Datasets ………………………………………………………...87

vi

 5.2.3 Choice of Evaluation Metric …………………………………………….87

5.3 Experiment ……………………………………………………………………….88

 5.3.1 WHAT Questions ………………………………………………………..89

 5.3.2 WHERE Questions ……………………………………………………....97

 5.3.3 WHEN Questions ……………………………………………………….106

 5.3.4 WHO Questions …………………………………………………………111

5.4 Analysis of Rule Amount ………………………………………………………..117

5.5 Comparison with other Rule-based QA system ………………………………….119

5.6 Interpretation and Discussion …………………………………………………....123

5.7 Conclusion ……………………………………………………………………….124

CHAPTER 6 - CONCLUSION

6.1 Introduction ……………………………………………………………………..126

6.2 Revisiting the Contributions …………………………………………………….126

 6.2.1 Revisiting the First Contributions ……………………………………....126

 6.2.2 Revisiting the Second Contributions ……………………………………127

6.3 Future Work ……………………………………………………………………..128

6.4 Conclusion ……………………………………………………………………….130

BIBLIOGRAPHY ………………………………………………………………...131

APPENDICES ……………………………………………………………………..136

LIST OF PUBLICATION ……………………………………………………..141

vii

LIST OF TABLES

 Page

Table 4.1 Comprehension articles’ WHAT-type question sentences and

original answer sentences

48

Table 4.2 Comprehension articles’ WHAT-type question sentences and

reworded answer sentences

49

Table 4.3 POS tagged WHAT-type question-answer pairs

50

Table 4.4 Comparisons of WHAT type question pairs for rule clustering

54

Table 4.5 Relative sequences for neighboring tokens

66

Table 4.6 BLEU values for WHAT type question sentence pairs from

Table 4.4. (N-gram = 1)

69

Table 4.7 Answer sentences corresponding to Cluster 2 78

Table 4.8 BLEU values for answer sentences from Cluster 2 79

Table 4.9 Summary of rules generated via Clustering

82

Table 5.1 Answer accuracy of WHAT-type question (N-gram =1) 90

Table 5.2 Rule amount of WHAT-type question (N-gram = 1) 91

Table 5.3 Answer accuracy of WHAT-type question (N-gram = 2) 92

Table 5.4 Rule amount of WHAT-type question (N-gram = 2)

93

Table 5.5 Answer accuracy of WHAT-type question (N-gram = 3)

94

Table 5.6 Rule amount of WHAT-type question (N-gram = 3)

95

Table 5.7 Average accuracy and rule amount (WHAT-type) 96

Table 5.8 Answer accuracy of WHERE-type question (N-gram = 1) 98

Table 5.9 Rule amount of WHERE-type question (N-gram = 1) 99

viii

Table 5.10 Answer accuracy of WHERE-type question (N-gram = 2) 101

Table 5.11 Rule amount of WHERE-type question (N-gram = 2) 101

Table 5.12 Answer accuracy of WHERE-type question (N-gram = 3) 102

Table 5.13 Rule amount of WHERE-type question (N-gram = 3) 102

Table 5.14 Average accuracy and rule amount (WHERE-type) 104

Table 5.15 Answer accuracy of WHEN-type question (N-gram = 1) 106

Table 5.16 Rule amount of WHEN-type question (N-gram = 1) 107

Table 5.17 Answer accuracy of WHEN-type question (N-gram = 2) 108

Table 5.18 Rule amount of WHEN-type question (N-gram = 2) 108

Table 5.19 Answer accuracy of WHEN-type question (N-gram = 3) 109

Table 5.20 Rule amount of WHEN-type question (N-gram = 3) 109

Table 5.21 Average accuracy and rule amount for N-grams (WHEN-

type)

110

Table 5.22 Answer accuracy of WHO-type question (N-gram = 1) 112

Table 5.23 Rule amount of WHO-type question (N-gram = 1) 113

Table 5.24 Answer accuracy of WHO-type question (N-gram = 2) 114

Table 5.25 Rule amount of WHO-type question (N-gram = 2) 114

Table 5.26 Answer accuracy of WHO-type question (N-gram = 3) 115

Table 5.27 Rule amount of WHO-type question (N-gram = 3) 115

Table 5.28 Average accuracy and rule amount for N-grams (WHO-type) 116

Table 5.29 Comparison between cluster amount of training question and

sub-cluster of training answer

118

Table 5.30 Differences in the accuracies of retrieved answers between

QASARG and Quarc

123

ix

LIST OF FIGURES

 Page

Figure 2.1 An example of manual rules in Quarc

10

Figure 2.2 An example of indicative patterns

12

Figure 2.3 Example patterns on BIRTHYEAR

13

Figure 2.4 A logical graph rule

15

Figure 2.5 Example of extracted paths

16

Figure 2.6 The WEBCOOP Architecture

18

Figure 2.7 The flowchart of PiQASso

19

Figure 2.8 Working process of AnswerBus

20

Figure 2.9 The classifier for WHEN question type

22

Figure 3.1 Methodology of rule generation

35

Figure 3.2 Clustering for QA rule extraction

38

Figure 3.3 QASARG Question Answering Methodology

43

Figure 4.1 Algorithm for determining BLEU parameters

55

Figure 4.2 Relative position calculation of Main-sentence-Co-sentence

pair

59

Figure 4.3 Relative position calculation of Main-sentence-Co-sentence

pair

60

Figure 4.4 Relative position calculation of Main-sentence-Co-sentence

pair

61

Figure 4.5 Relative position calculation of Main-sentence-Co-sentence

pair

62

x

Figure 4.6 Relative position calculation of Main-sentence-Co-sentence

pair

63

Figure 4.7 Relative position calculation of Main-sentence-Co-sentence

pair

64

Figure 4.8 Relative sequence calculation of Main-sentence-Co-sentence

pair

65

Figure 4.9 Algorithm for rule generation

71

Figure 4.10 Example of rules generated via clustering

81

Figure 5.1 Average answer accuracy for various Q-thresholds(WHAT-

type)

97

Figure 5.2 Average answer accuracy for various A-thresholds(WHAT-

type)

97

Figure 5.3 Average answer accuracy for various Q-thresholds(WHERE-

type)

105

Figure 5.4 Average answer accuracy for various A-thresholds(WHERE-

type)

105

Figure 5.5 Average answer accuracy for various Q-thresholds(WHEN-

type)

111

Figure 5.6 Average answer accuracy for various A-thresholds(WHEN-

type)

111

Figure 5.7 Average answer accuracy for various Q-thresholds(WHO-

type)

117

Figure 5.8 Average answer accuracy for various A-thresholds(WHO-

type)

117

Figure 5.9 Comparison of the accuracies of retrieved answers between

QASARG and Quarc

121

xi

PENJANAAN PETUA BERDASARKAN PENGELOMPOKAN

STRUKTUR UNTUK PENJAWABAN SOALAN AUTOMATIK

ABSTRAK

 Dalam kaedah berdasar-aturan untuk penyelidikan soal-jawab (QA), teknik

pembelajaran aturan tipikal adalah didasarkan pada pertindihan corak dan maklumat

leksikal. Hal ini biasanya terhasil dalam aturan yang boleh memerlukan interpretasi

lanjut dan aturan yang mungkin berlebihan. Bagi menangani isu ini, suatu algoritma

penjanaan aturan berstruktur automatik dibangunkan melalui pengklusteran, dan suatu

kaedah pengklusteran berasaskan-ayat pusat diolah untuk menjana aturan bagi sistem

QA secara automatic.

Metodologi bagi penyelidikan ini melibatkan tiga fasa. Fasa pertama melibatkan

prapemprosesan pasangan soal-jawab latihan yang diterbitkan daripada korpus

pemahaman bacaan 4 kanak-kanak CBC (Canadian Broadcasting Corporation).

Prapemprosesan juga melibatkan tag POS (part-of-speech). Fasa kedua pula melibatkan

penjanaan aturan secara automatik, dan tag-POS pasangan QA dikluster berdasarkan

keserupaan nombor token POS dan jujukan mereka. Untuk ini, kaedah komputan serupa

(similarity computation method) BLEU digunakan. Yang terakhir, fasa ketiga,

melibatkan operasi sistem QA yang dikenali sebagai Sistem Soal-Jawab berdasarkan

xii

Penjanaan Aturan Automatik (QASARG). Output daripada sistem ini kemudiannya

dinilai.

Keberkesanan QASARG dinilai terhadap sistem berasaskan aturan QA lain,

Quarc. Ketepatan QASARG adalah dalam julat 55% hingga 85% bergantung pada jenis

soalan, dan secara purata 26.4% lebih tinggi daripada Quarc. Walau bagaimanapun,

perlu diambil perhatian bahawa set data ujian yang digunakan untuk menilai QASARG

dan Quarc adalah berbeza (QASARG diuji berdasarkan pasangan QA yang diterbitkan

daripada bahagian pemahaman bacaan, sedangkan keputusan Quarc adalah berdasarkan

keseluruhan bahagian pemahaman bacaan). Namun demikian, keputusan QASARG

menunjukkan bahawa keserupaan struktur di antara ayat adalah berguna dalam menjana

aturan yang tepat untuk QA secara munasabah dan boleh dipercayai.

xiii

RULE GENERATION BASED ON STRUCTURAL CLUSTERING

FOR AUTOMATIC QUESTION ANSWERING

ABSTRACT

In rule-based methods for Question-Answering (QA) research, typical rule

discovery techniques are based on structural pattern overlapping and lexical information.

These usually result in rules that may require further interpretation and rules that may

be redundant. To address these issues, an automatic structural rule generation algorithm

is presented via clustering, where a center sentence-based clustering method is designed

to automatically generate rules for QA systems.

The methodology for this research involves three phases. The first phase

involves pre-processing of training question-answer pairs derived from the Canadian

Broadcasting Corporation’s (CBC) 4 Kids reading comprehension corpus. Pre-

processing also involves part-of-speech (POS) tagging. The second phase involves

automatic rule generation where the POS-tagged QA pairs are clustered based on the

similarity in matching POS tokens and their sequences. For this, the BLEU similarity

computation method is employed. The final phase involves the operationalisation of the

QA system called Question Answering System based on Automatic Rule Generation

(QASARG). The output from this system is then evaluated.

xiv

The effectiveness of QASARG was evaluated against another rule-based QA

system, Quarc. The accuracy of QASARG is in the range of 55% to 85% depending on

the question type, and these are on average 26.4 % higher than those for Quarc.

However, it must be noted that the test data sets used to evaluate QASARG and Quarc

are different (i.e. QASARG is tested based on question-answer pairs derived from the

reading comprehension passage while Quarc’s results are based on the entire reading

comprehension passages). Nevertheless, the results for QASARG indicate that

structural similarities between sentences are useful in generating reliable and reasonably

accurate rules for QA systems.

1

CHAPTER ONE

INTRODUCTION

1.1 From Information Retrieval to Question Answering

Ever since the emergence of human civilization, we have already realized that

the proper organization and access to the archives were critical for efficient use of

information, i.e. the Sumerians had designated special areas to store clay tablets with

cuneiform inscriptions in 3000 B.C. (Singhal & Google Inc., 2001).

Over the centuries, the demand of store and retrieve written information became

important. With the invention of computers, people realized that computers could be

used for storing and retrieving large amounts of information. The idea of using

computers to search for relevant pieces of information was popularized in an article ―As

We May Think‖ by Vannevar Bush in 1945 (Bush, 1945). By 1990 several different

information retrieval systems had been shown to perform well on small text corpora.

However, with the rapid increase in information nowadays, we are now faced

with the problem of retrieving relevant information from various redundant resources

such as documents and the Internet. This is largely due to the sheer information

overload. Search engines have been proven useful in addressing many keyword-related

search initiatives. Nevertheless, their effectiveness lies in the skill of the users to

construct the right queries.

2

To further facilitate the search for information and to improve the user interface,

automatic Question Answering (QA) approaches have been developed as a specialized

information retrieval domain to allow questions to be posed in natural language (Hagen,

Manning & Paul, 2000).

1.2 Question Answering Systems

As a branch in the field of Information Retrieval (IR), the initial purpose of QA

systems is to provide a simple natural-language interface to expert systems. Nowadays,

QA systems have moved on to become the next generation of search engines, with the

capability to retrieve precise answers rather than related links (e.g. Google).

QA systems avoid the need for users to formulate structured queries in order to

retrieve a particular piece of information. Another added advantage is that QA systems

also have the potential to respond to a user‘s query in natural language. The rapid

development of question answering technologies in recent years leads to an increasing

interest on the side of researchers, companies and end users.

Since the first QA systems developed in the 1960s, e.g. BASEBALL (Green et

al., 1961), more and more QA systems were implemented under the motivation of the

Text Retrieval Conference (TREC) in late 1990s. With systems such as Start (Katz,

1988) and AnswerBus (Zheng, 2002), researchers were trying different methods from

different angles to improve the answer retrieval capability of QA systems.

3

Research on QA systems can be roughly categorized into three areas,

information repository, query analysis, and answer matching (i.e. corresponding to the

different phases in QA). In the area of information repository, the core task is to

preselect the relevant documents or texts for extracting answer candidates of the input

questions. Meanwhile, the information from the input question is the most important

clue in answer retrieval. Hence, the other research area is targeted on query analysis.

Answer matching is based on the efforts of the previous two phases and also on an

effective answer retrieval method. The more effective the pre-selection of documents as

well as the methods of query analysis and answer retrieval are, the higher the possibility

of retrieving the matched answer to the input question.

Generally, the development of QA systems requires solid foundations both in

the areas of software engineering and Natural Language Processing (NLP), and

therefore involves a wide range of techniques (Voorhees, 2001):

1. Information repository: traditional document retrieval and information extraction

techniques are exploited to pre-select the documents and the text of the documents

which possibly contain the candidate answers of the question, as well as named

entities in the question. In searching the information repository, QA systems can be

divided into two categories, i.e. closed-domain (which deals with questions under a

specific domain, e.g. medicine), and open-domain (which deals with questions in

any domain, and relies on a general ontology).

2. Query analysis: regular expression or machine-learning techniques are exploited to

classify the questions according to the type of expected answers.

4

3. Answer matching: keywords, different parsers, and logical proof tools are

commonly utilized to help retrieve candidate answers for the input question

(Hirschman & Gaizauskas, 2001). The choice of answer matching technique

categorizes QA systems further into inference-based, NLP tools-based, cooperative,

or rule-based QA system. Many of these QA systems consider both semantic and

syntactic factors of the question and answer sentences.

1.3 Rule-Based QA system

Traditionally, rule-based approaches have been employed in QA systems for the

matching mechanism in view that it is simple, efficient and effective. Generally, it

involves exploring the relationship among patterns within one sentence (question or

answer sentence) with the help of NLP tools or specific weighted keywords matching

techniques.

Rules can be generated manually. E.g. in Quarc (Riloff & Thelen, 2000), it

contains a list of hand-crafted rules for each type of question. The rules covered

keyword matching and some lexical clues. On the other hand, some rule-based QA

systems involve automatically generated rules. However, most of these rules were

generated semi-automatically. E.g. in AnswerFinder (Molla & Zaanen, 2005), based on

the overlapping of each question-answer sentence pair, graph rules were generated for

each specific question/answer pair according the heuristics. In another system called

TextRoller (Soubbotin & Soubbotin, 2001), a complex hierarchy of indicative pattern

rules was applied on surface strings in manual method at first and extended the patterns

5

infinitely by inferring new patterns while studying the corpora. For the semi-automatic

learning of rules for QA systems, the typical learning method is based on pattern

overlapping and lexical information in general. The QA rules are still very much

dependent on humans understanding and intervention. Furthermore, these rules are very

specific to certain sets of training data (question/answer pairs).

1.4 Problem Statement

As mentioned above, various initiatives are on-going to realize fully automatic

rule learning as most of the current automatic rule learning methods still partially

depend on human understanding. Moreover, most of the rules in these rule-based QA

systems are to detect similar pattern relationships between questions and corresponding

answers. As a result, these rule-based QA systems are quite specific to its training

resources. Meanwhile, there are some rule-based QA systems only identify sentences

which contain the answers rather than directly answer the questions, e.g. Quarc.

1. 5 Research Objectives

According to the structural relationship between questions and their

corresponding answers, and also with the purpose of obtaining more general rules for

QA systems, the objectives of this research are:

 To define a clustering algorithm to generalize question and answer sentence

structures resulting in a fully automatic rule generation mechanism for QA without

the need of human understanding.

6

 To assess whether the automatic rule clustering algorithm and structural information

are able to improve the accuracy of the QA system.

1.6 Research Scope

In this research, the training corpus is limited to reading comprehension

passages with answers that have been reworded based on certain sentences in the corpus.

This is to ensure that the answer sentences directly answer the question (as opposed to

taking a sentence verbatim). The automatically generated rules are limited to structural

rules, i.e. the rules indicate that questions with a particular structural pattern will require

an answer of a particular structural pattern. Also, instead of other popular similarity

measurement for clustering, the BLEU (Papineni et al., 2002) mechanism is employed

to measure the similarity distance between any two sentences, which used to be utilized

in machine translation. Structural information is considered useful for certain research

fields, i.e. plagiarism detection, and it could be further emphasized in QA. In our

research, we only consider the structural relations between sentences to observe the

efficiency of structural information for QA.

1.7 Contribution

In this thesis, a clustering algorithm was successfully designed to generate

structural rules for QA system without the need for human understanding. The

clustering algorithm (inspired by QT clustering (Heyer, Kruglyah & Yooseph, 1999))

considered the similarity of word order (or structural sequence) between questions and

answers. Therefore, instead of considering the lexical relationship between sentences,

7

the sentences (questions or answers) were regarded as a sequence of POS tokens, which

was similar to the gene sequence concept used with QT clustering.

Generally, the clustering techniques in other fields of NLP require the feature

weights of each sentence, which means that a feature weight is assigned to each

sentence. Based on those assigned feature weights, the similarity between two sentences

is measured by comparing the similarity between the two feature weights. Different

from this similarity measurement, in this thesis, the similarity between two sentences

was determined by calculating the structural similarity between any two sentences,

which means that the similarity distance was assigned to a pair of sentences, rather than

assigning a feature weight to each single sentence. In our proposed rule generation

algorithm, the BLEU method (Papineni et al., 2002) was utilized for measuring

similarity distances between any two (question or answer) sentences.

Besides the clustering algorithm, a QA system called Question Answering

System via Automatic Rule Generation (QASARG) was developed to allow answers to

be returned as output based on the rules that were generated by the clustering algorithm.

This also allowed the QA system generally, and the rules particularly, to be evaluated.

1.8 Thesis Outline

This thesis is presented in six chapters. The following is an overview of each

chapter:

8

 Chapter 1 (Introduction): This chapter gives a brief introduction and background of

QA systems as an important branch of IR. Meanwhile, the research objectives and

contributions are also presented.

 Chapter 2 (Literature Review): This chapter presents a survey of QA systems,

especially rule-based QA systems. Some existing QA systems based on other

answer extractions methods are described in this chapter as well. Lastly, clustering

in NLP is also presented in brief.

 Chapter 3 (Methodology): This chapter outlines the research methodology. The

methodology is presented in three phases: (1) pre-processing of training question-

answer pairs, (2) designing of an algorithm for automatic rule generation via center

sentence-based clustering, and (3) implementing a QA system to assess the rules

generated in the second phase.

 Chapter 4 (Implementation): This chapter presents the implementation of the center

sentence-based clustering algorithm for automatic QA rules generation. A simple

example is shown to explain how the rules are generated via the clustering method.

 Chapter 5 (Evaluation): This chapter describes an evaluation of the generated rules

based on different conditions (i.e. different Q-threshold, A-threshold, and N-gram

values). For each question type, the suitable Q-threshold(s) and A-threshold(s), and

also the best N-gram are decided based on the analysis of results for each type of

question. Meanwhile, a comparison between QASARG and Quarc is also presented.

 Chapter 6 (Conclusion): This chapter presents a summary of this research work, and

re-visits the research objectives and contributions. An outline of future work is also

discussed.

9

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, existing Question Answering (QA) systems and answer

extraction techniques are surveyed. In line with the research problems mentioned in

Chapter 1, rule-based QA systems are highlighted in this survey. However, QA systems

based on other methods are also reviewed. Moreover, clustering methods in Natural

Language Processing are also reviewed in view that one of the contributions in this

research is to develop an algorithm for automatic rule generation for QA based on

clustering.

2.2 Rule-based Question Answering System

Traditionally, rule-based approaches have been employed in QA systems for the

answer matching mechanism in view that it is simple, efficient and effective. Initially,

the rule-based approach for QA involves the manual generation of rules. Subsequently,

automatic learning algorithm of QA rules is carried out as well. However, most of the

rules are generated semi-automatically, requiring intervention from humans in answer

matching.

2.2.1 Quarc

Quarc (Riloff & Thelen, 2000) is a heuristic rule-based QA system focusing on

reading comprehension passages. The heuristic rules that are derived look for both

lexical and semantic clues in the question and the passage/story. There are five sets of

10

rules according to the interrogative types (WHAT, WHO, WHY, WHERE and WHEN).

Figure 2.1 shows an example of WHAT-type rules in Quarc. From Figure 2.1, Rule 1 is

the generic word matching function shared by all question types. Rule 2 rewards

sentences that contain a date expression if the question contains a month of the year.

Rule 3 addresses these questions by rewarding sentences that contain certain words.

Rule 4 looks for words associated with names in both the question and the sentence.

Rule 5 recognizes questions that contain phrases such as ―name of <x>‖.

Figure 2.1: An example of manual rules in Quarc (Riloff & Thelen, 2000)

Given a question and a passage, Quarc parses the question and all of the

sentences in the passage using the Sundance partial parser. Most of the syntactic

1. Score(S) += WordMatch(Q,S)

2. If contains(Q,MONTH) and contains(S,{ today,

yesterday, tomorrow, last night})

 Then Score(S) += clue

3. If contains (Q, kind) and contains(S, {call, from})

 Then Score(S) += good_due

4. If contains(Q,narne) and contains(S, { name, call, known})

 Then Score += slam_dunk

5. If contains(Q,name+PP) and contains(S,PROPER_NOUN)

and contains(PROPER_NOUN,head(PP))

 Then Score(S) += slam_dunk

11

analysis is not used. The rules are applied to each sentence in the passage, as well as the

title of the passage, with the exception that the title is not considered for WHY

questions. Each rule awards a certain number of points to a sentence. After all of the

rules have been applied, the sentence that obtains the highest score is deemed to contain

the answer.

2.2.2 TextRoller

In the case of TextRoller (Soubbotin & Soubbotin, 2001), it uses not only

keywords, but also a complex hierarchy of indicative pattern rules on surface strings for

choosing and arranging candidate answers. The definition of indicative patterns is

totally heuristic and inductive. The indicative patterns used by TextRoller are sequences

or combinations of certain string elements. At the initial stage, the indicative pattern

lists are accumulated based on expressions that can be interpreted as answers to the

questions of a definite type. The system studies texts systematically with the purpose of

identifying expressions that may serve as models for answer patterns. The library of

patterns can never be completed. Thus, the system can accumulate the knowledge on

‗typical‘ combination and correlations of strings.

A pattern may include a constant part and a variable part. The latter can be

represented by a query term or even an unknown term. Usually, patterns with more

sophisticated internal structure are more indicative of the answer. The combinations of

element for patterns are also used. There are six basic definition patterns which can

12

answer not only definition question but also WHO, WHERE, and other question types.

The example of indicative patterns is shown in Figure 2.2.

 1. <A; is/are; [a/an/the]; X>

 <X; is/are; [a/an/the]; A>

 Example: "Michigan's state flower is the apple blossom".

 2. <A; comma; [a/an/the]; X; [comma/period]>

 <X; comma; [a/an/the]; A; [comma/period]>

 Example: "Moulin Rouge, a cabaret ".

 3. <A; [comma]; or; X; [comma]>

 Example: "shaman, or tribal magician."

 4. <A; [comma]; [also] called; X [comma]>

 < X; [comma]; [also] called; A [comma]>

 <X; is called; A>

 <A; is called; X>

 Example: "naturally occurring gas called methane".

 5. <X, dash; A; [dash] A; dash; X; [dash]>

 Example: "nepotism - hiring relatives for the better jobs".

 6. <X; parenthesis-; A; parenthesis >

 <A; parenthesis; X; parenthesis >

 Example: "myopia (nearsightedness)".

Figure 2.2: An example of indicative patterns (Soubbotin & Soubbotin, 2001)

In TextRoller, questions are analyzed in terms of question types. Using specific

question words as query terms (known as primary keywords) ensure in most cases that

the question subject is addressed in the source passages. In some question categories,

primary words do not convey the question subject completely, requiring secondary

searching terms. Query expansion may also be required in certain cases. The retrieved

passages are cut into 50-byte snippets which are around the query words, or other

13

question words. All the snippets are analyzed to identify patterns that are indicative of a

potential answer based on a confidence score.

2.2.3 Webclopedia

Webclopedia (Papineni et al., 2002) is a question answering system using

manually learned patterns. To classify the QA types, knowledge about language and

about the world are both involved in improving the results. Patterns are learned

manually from the web. Altavista is used to return 1000 relevant documents, and only

sentences containing both the question terms and answer terms are retained. For each

document, the sentences containing more words and phrases that overlap with the

question and its expanded query words are extracted and ranked. Webclopedia classifies

desired answers by their semantic types, using the approx. 140 classes called Qtargets.

In Webclopedia, there are 5 types of Qtargets, i.e. abstract, semantic, syntactic, role, and

slot. The example of Webclopedia Typology is shown in Figure 2.3.

Figure 2.3: Example patterns on BIRTHYEAR (Papineni et al., 2002)

14

The techniques involved in the architecture of Webclopedia, i.e. question

analysis, document/passage retrieval, passage analysis for matching against the question,

are adapted from current standard QA systems. To the input question, CONTEX is used

to obtain a semantic representation of the questions and answer candidates (Heyer,

Kruglyak & Yooseph, 1999). Then, these phrases/words are assigned significance

scores according to the frequency of their type in the question corpus. Following this,

IdentiFinder is used to isolate and classify names in texts. According to the parsing

result from IdentiFinder, WordNet synsets are used for query expansion by means of a

series of Boolean queries. After query expansion, relevant documents are retrieved by

the search engine called MG (Ulf, Hovy & Lin, 2002). According to similarity between

patterns of answer sentences and the query, the most relevant answer passages are

ranked for the last phase (answer matching). In answer matching, the parse trees of the

relevant answers are compared with the parse tree of the original question. Thereby, the

most suitable answer candidate(s) are extracted according to the ranking (Hovy et al.,

2000).

2.2.4 AnswerFinder

This is a QA system using logical graph rules which is learnt semi-automatically.

The rule learning method is based on the translation of the logical forms of questions

and answers into graph form (Witten, Moffat & Bell, 1994). This graph rule learning

method is quite straightforward as shown in Figure 2.4. Rules learnt with this algorithm

are very specific to question-answer pairs. Hence, the rules need to be generalized. Each

15

generalized rule is weighted according to its ability to detect the correct answer in the

training corpus.

Figure 2.4: A logical graph rule (Witten, Moffat & Bell, 1994)

In AnswerFinder, the process of finding the answer iterates over all the rules

according to the given question q with graph Q and a sentence s with graph S. A rule r

triggers if the overlap component of the rule is a sub graph of Q. After generating the

expanded graph, the overlap is computed between this expanded graph and that of the

answer sentence. The result of overlapping between question and answer sentences

determines whether the answer sentences can be extracted as the final answer candidate.

2.2.5 DIRT

Inference rules are used in DIRT (Ravichandran & Hovy, 2002). However, the

inference rules are learned through an unsupervised algorithm instead of a traditional

manual one. The inference rules, learned by DIRT, are to find similar words by means

16

of detecting similar paths in dependency trees. If two paths tend to occur in similar

contexts, the meanings of the paths tend to be similar.

The dependency trees are generated by Minipar (Lin & Pantel, 2001), which is a

principle-based English parser and the lexicon of it is derived from WordNet (Berwick,

Abney & Tenny, 1991). Additional nodes and links are created dynamically to represent

subcategories of verbs. In the dependency trees generated by Minipar, a simple

transformation is applied to connect the prepositional complement to the words

modified by the preposition. Therefore, each link between two words in a dependency

tree represents a direct semantic relationship. An example of extracted paths is shown in

Figure 2.5.

Figure 2.5: Example of extracted paths (Ravichandran & Hovy, 2002)

The path is a binary relation between two entities. A path begins and ends with

two dependency relations, which are called two slots and in charge of left-hand side and

17

right-hand side paths respectively. The similarity between a pair of paths is defined as

the geometric average of the similarities of their slots (Miller et al., 1990).

2.3 Other QA Systems

Besides the rule-based approach, other approaches have also been utilized in QA

systems. Here, some of these other approaches are discussed.

2.3.1 WEBCOOP

The concept of cooperative answer is proposed by Grice (Szpektor & Dagan,

2009) in the 1970s. A cooperative answer is an answer that should be correct, non-

misleading, and answers a query. In order to measure the cooperative performance of an

information system, there are maxims that describe fundamental properties of

cooperative behavior (Gallaire, 1978), which include quality, quantity. QA systems

eventually adopted the concept of cooperative answer. One such system is WEBCOOP

(Gaasterland, Godfrey & Minker, 1992).

 WEBCOOP (Benamara, 2004) is a QA system that provides intelligent

cooperative responses to Web queries. This QA system integrates knowledge

representation and advanced reasoning procedures to assist answer extraction instead of

utilizing NLP tools frequently, i.e. processing queries or generating responses.

Meanwhile, the inclusion of answer justification features help to provide a wider range

of relative information compared to inference-based system. The architecture of

WEBCOOP is shown in Figure 2.6.

18

Figure 2.6: The WEBCOOP Architecture (Benamara, 2004)

However, the ―cooperativity‖ only focuses on atomic and enumerative responses.

The system utilizes a knowledge extractor and a robust question parser to select and

examine the proposed answers. According to the cooperative rules, the WEBCOOP

inference engine will determine the matching answers and organize them for output

(Benamara & Dizier, 2003).

2.3.2 PiQASso

PiQASso (Antonio et al., 2001) is a QA system based on a combination of

modern IR techniques and a series of semantic filters for selecting paragraphs

containing a justifiable answer. Semantic filtering is based on several NLP tools,

including a dependency-based parser, a POS tagger, a Name Entity (NE) tagger, and a

lexical database. The flowchart of PiQASso is shown in Figure 2.7.

19

Figure 2.7: The flowchart of PiQASso (Antonio et al., 2001)

Semantic analysis of questions is performed in order to extract keywords used in

retrieval queries and to detect the expected answer type. Semantic analysis of retrieved

paragraphs includes checking the presence of entities of the expected answer type and

extracting logical relations between words. Thereby, queries are expanded to cope with

morphological variants of words by adding the synonyms of the search terms.

The answer retrieving in PiQASso is based on IXE (Attardi & Cistemino, 2001),

a high-performance C++ class library for building full-text search engines. In PiQASso,

sentences are parsed to produce a dependency tree which represents the dependency

relations between words in the sentence. A dependency relationship is a binary

relationship between a word called as head and another word called as modifier.

20

By checking entities and verifying that the answer sentence contains word nodes

of the dependency tree that are of the same type and relationship with corresponding

word nodes in the question dependency tree, matching words between question and

answer are found. All matches between triples in the question and in the answer are

considered. The greater the result of match distance the candidate sentence obtains, the

more likelihood the candidate sentence is the most suitable answer.

2.3.3 AnswerBus

As an open-domain question answering system, AnswerBus (Zheng, 2002) is

based on sentence-level web information retrieval. It accepts natural-language questions

in multiple languages and retrieves relevant Web pages. From these Web pages,

AnswerBus extracts sentences that are determined to contain answers. The working

process of AnswerBus is shown in Figure 2.8.

Figure 2.8: Working process of AnswerBus (Zheng, 2002)

21

The workings of AnswerBus comprise of mainly four steps:

1. selecting two or three search engines for information retrieval, and form search

engine specific queries based on the question,

2. contacting the search engines and retrieve documents and retrieve documents at the

top of the respective hit lists,

3. extracting sentences that potentially contain answers from the documents,

4. Ranking the answers and return the top choices with contextual link to user.

Instead of returning a snippet of fixed length of text, AnswerBus returns

sentences, which can provide users with some contextual information of the answers.

Meanwhile, the use of different search engines for different questions increases the

likelihood that the answer sentences are among the retrieved documents. The result of

this online QA system shows that it has higher accuracy than off-line QA systems.

2.3.4 AQUAREAS

AQUAREAS (Hwee et al., 2000) is a QA system based on machine learning

approach, focusing on reading comprehension resources. The advantage of a machine

learning approach is that it is more adaptable, robust, flexible, and maintainable. This

approach comprised of two steps. First, a set of features are designed from question-

sentence pairs to capture the information that helps to distinguish answer sentences

from non-answer sentences. Afterwards, a learning algorithm is utilized to generate a

classifier for each question type from the training examples. The example of the

classifier is shown in Figure 2.9.

22

Figure 2.9: The classifier for WHEN question type (Hwee et al., 2000)

To each sentence, the classifier will decide if it is positive (an answer) or

negative (not an answer) with a confidence value. The features that are considered in

identifying the answer consist of named entity, co-reference information, keywords in

questions. AQUAREAS also considers the same set of features in answer sentences.

Compared to handcrafted rule-based methods, the machine learning approach avoids the

need for continuous improvement or maintenance on the set of rules. Moreover, the

results of this QA system are comparable to the results from other reading

comprehension QA system.

2.3.5 START

START (B.Katz, 1997) is an information server built at the MIT Artificial

Intelligence Laboratory. Since December 1993, START became the first natural

language system available for question answering on the World Wide Web.

23

The START server is built on two foundations: the sentence-level NLP

capability and the idea of natural language annotation for multi-media information

segments. T-expression is employed to handle embedded sentences. Together, S-rules

are implemented to help T-expressions which involve the verb expression and which

meet the additional structural constraints. These two foundations are respectively

implemented by two modules: (1) an understanding module while analyzes the English

text and (2) a knowledge base which incorporates the information found in the text.

Given an appropriate segment of the knowledge base, a generating algorithm produces

English sentences. A user can retrieve the information stored in the knowledge base by

querying it in English. The system will then produce an English response.

2.4 Discussion of QA

Besides the literature that was surveyed, there are many other techniques that

can be exploited to improve the answer searching ability of QA systems according to

their respective different domains. However, essentially, the ultimate goal of any

answer extraction algorithms is to increase the accuracy of the retrieved answer

candidates. For this purpose, researchers have utilized NLP tools, statistical methods

and traditional IR techniques in the different phases the of QA system. Semantic

techniques have also been employed to achieve optimal answers.

From the survey, WEBCOOP utilizes an inference-based method with the

concept of cooperative answering with the aim of guiding computers to recognize

accurate answers and to handle situations when no suitable answer is retrieved. The idea

24

of introducing the cooperative method into QA systems is quite helpful for optimizing

the QA search ability.

The strategy of PiQASso, however, is to integrate NLP tools (such as a Name

Entity tagger) and modern IR techniques. As a result, the performance of PiQASso is

very much dependent on its parser. In PiQASso, it also appears that the answer type

identification and keywords are not very helpful for answer matching.

As the first online QA system, START utilized NLP annotation and sentence-

level analysis. As a relative mature product, the response speed and answer retrieval

accuracy of START is pretty optimistic. AQUAREAS retrieves answer by utilizing a

machine learning approach, which decides on answer candidates by considering 20

features of questions and answer sentences in documents on the Remedia reading

comprehension data set. Although the achieved accuracy from the machine learning

approach is competitive compared to handcrafted algorithms, the performance from

AQUAREAS is still not optimistic.

In contrast, AnswerBus, following the typical process of QA, exploits multiple

IR techniques to retrieve the sentence level answers. As an open-domain QA system,

the performance of AnswerBus is better when compared to PiQASso and AQUAREAS.

For rule-based QA systems, it was observed that the focus is on learning rules

based on similar keyword detection or lexical relations between question and answers.

25

For instance, the manually derived heuristic rules of Quarc focus on lexical relations in

different WH-type questions from a reading comprehension corpus. Quarc is a simple

and efficient QA system employing a set of heuristic rules. However, it seems rather

simple to handle other types of question-answering tasks.

In TextRoller, the generation of pattern rules is decided based on heuristics,

using the training data from the TREC data set. The accuracy of TextRoller is greater

than the accuracy of Quarc. The result of TextRoller shows that the indicative patterns

work well for QA systems. However, the performance might be better if TextRoller

could be developed with more appropriate tools for indicative pattern generation.

As mentioned earlier, the pattern rules of Webclopedia are learnt based on

simple surface patterns. The rules of Webclopedia are categorized according to the

question typology, which reveal the semantic relations between questions and answer

sentences. However, the semantic relations are too complex to complete the decision

trees of the rules. Also, lengthy question sentences seem difficult for Webclopedia to

figure out.

However, researchers are also trying to generate rules using automatic or semi-

automatic approaches to prevent humans from inadvertently missing out certain rules.

To detect pattern relationships automatically for QA systems, there are different

methods utilized in rule learning. In AnswerFinder, the patterns are learnt based on

logical information instead of meaning. The graphs connecting between patterns

	1_content_abstract.pdf
	2_thesis_content
	3_appendix

