
 

 

RULE GENERATION BASED ON STRUCTURAL 

CLUSTERING FOR AUTOMATIC  

QUESTION ANSWERING 

 

 

BY 

 

 

SONG SHEN 

 

 

Thesis submitted in fulfillment of the requirements  

for the degree of  

Master of Science 
 

 

December 2009 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/199245358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 

 

Acknowledgment 
 

I would like to take this opportunity to convey my sincere thanks and deepest 

gratitude to my main supervisor, Dr. Cheah Yu-N and my co-supervisor, Prof. Tang 

Enya Kong, for their dedication, support, encouragement, patience and valuable 

guidance provided to me during the preparation of this thesis.  

 

Moreover, I would like to convey my appreciation to Health Informatics Research 

Group, School of Computer Sciences, Institute of Postgraduate Studies, the university 

library for their help and support. 

 

Finally and most important of all, I would like to express my most sincere and 

warmest gratitude to my mother Dong Feng, my father Song JingSheng and my 

husband Usman Sarwar. Thanks for their love and care. They have always encouraged 

me, believed in me, and supported me when I needed it. 

 

 

 



iii 

 

TABLE OF CONTENTS 

 
Page 

 

Acknowledgement …………………………………………………………………….ii 

   

Table of Contents ……………………………………………………………………..iii 

 

List of Tables …………………………………………………………………………vii 

 

List of Figures …………………………………………………………………………ix 

 

Abstrak ………………………………………………………………………………...xi 

 

Abstract ………………………………………………………………………………xiii 
    
 
 
 

CHAPTER 1 - INTRODUCTION                                                                                   

1.1      From Information Retrieval to Question Answering ...…..……..…………................1                        

1.2      Question Answering Systems ......................................................................................2 

1.3      Rule-Based QA system ………………………………………………………….…...4 

1.4      Problem Statement ………………………………………………………………..…..5 

1.5      Research Objectives ………………………………………………………………..…5 

1.6      Research Scope ……………………………………………………………………… 6 

1.7      Contribution …………………………………………………………………………  6 

1.8      Thesis Outline …………………………………………………………………….......7 

 

CHAPTER 2 - LITERATURE REVIEW                                    

2.1      Introduction …………………………………………………………………..………9 

2.2      Rule-based Question Answering System …………………………………..………...9 

           2.2.1      Quarc ……………………………………………………………..…………9 



iv 

 

           2.2.2      TextRoller ………………………………………..…………………………11 

           2.2.3      Webclopedia ………………………………………..………………………13 

           2.2.4      AnswerFinder ………………………………………..……………………..14 

           2.2.5      DIRT ………………………………………………….……………………15 

2.3      Other QA Systems ……………………………………………….……………….....17 

           2.3.1      WEBCOOP ………………………………………………..………….……17           

           2.3.2      PiQASso ……………………………………………………..……………..18 

           2.3.3      AnswerBus ……………………………………………………..…………..20 

           2.3.4      AQUAREAS ……………………………………………………..………...21 

           2.3.5      START……………………………………………………………..……….22 

2.4      Discussion of QA.……………………………………………………………..…......23 

2.5      Clustering in Natural Language Processing …………………………………..……..26 

           2.5.1      Hierarchical Clustering ………………………………………………..…...27        

           2.5.2      Partitioning ………………………………………………………………....28 

2.6      Clustering in Other Fields ……………………………………………………….......30 

2.7      Discussion of Clustering in NLP …………………………………………………….31 

2.8      Conclusion …………………………………………………………………………...33 

 

CHAPTER 3 - METHODOLOGY 

3.1      Introduction ……………………………………………………………….………...34 

3.2      Phase One: Pre-processing of Training Data …………………………….………....36 

           3.2.1      Compilation of Question-Answer Pairs …………………….…………......36          

           3.2.2      Analysis of Question-Answer Pairs ……………………….……………....37 

3.3      Phase Two: Automatic Rule Generation ………………………….………………..37 

           3.3.1  Similarity Measurement ……………………………….………………...40 



v 

 

           3.3.2  Rules Generation via Clustering ………………………………………....41 

3.4      Phase Three: Question & Answering …………………………………………….....42 

           3.4.1      Analysis of Question and Repository ………………………………….….43 

           3.4.2      Answer Matching …………………………………………………….…...44 

3.5      Summary.…………………………………………………………………….……..45 

 

CHAPTER 4 - IMPLEMENTATION 

4.1      Introduction.………………………………………………..………………..……..46 

4.2      Implementation Details ……………………………………………………………46 

           4.2.1      Phase One: Pre-processing of Training Data …………………….……….46 

                         4.2.1.1      Compilation of Question-Answer Pairs …………….…………47 

                         4.2.1.2      Analysis of Question-Answer Pairs ……………….…………..49 

           4.2.2      Phase Two: Automatic Rule Extraction via Clustering …….…………….50 

                         4.2.2.1      Similarity Measurement ……………………….………………51 

                         4.2.2.2      Rule Generation via Clustering ……………….……………….70 

           4.2.3      Phase Three: Question & Answering.…………………....………………..82 

                         4.2.3.1      Analysis of the Input Question …………….……………..........83 

                         4.2.3.2      Answer Matching …………………….. ….…………………...83 

4.3      Conclusion ………………………………………………………………………….84 

 

CHAPTER 5 - EXPERIMENTS AND RUSULTS 

5.1       Introduction ………………………………………………………………………...86 

5.2       Experiment Setting ………………………………………………………………...86  

            5.2.1     Equipments Specification …………………………………………………87 

            5.2.2     Choice of Datasets ………………………………………………………...87 



vi 

 

            5.2.3     Choice of Evaluation Metric …………………………………………….87 

5.3       Experiment ……………………………………………………………………….88 

            5.3.1     WHAT Questions ………………………………………………………..89 

            5.3.2     WHERE Questions ……………………………………………………....97 

            5.3.3     WHEN Questions ……………………………………………………….106 

            5.3.4     WHO Questions …………………………………………………………111 

5.4       Analysis of Rule Amount ………………………………………………………..117 

5.5      Comparison with other Rule-based QA system ………………………………….119 

5.6       Interpretation and Discussion …………………………………………………....123 

5.7       Conclusion ……………………………………………………………………….124 

 

CHAPTER 6 - CONCLUSION 

6.1       Introduction ……………………………………………………………………..126 

6.2       Revisiting the Contributions …………………………………………………….126 

            6.2.1     Revisiting the First Contributions ……………………………………....126 

            6.2.2     Revisiting the Second Contributions ……………………………………127 

6.3       Future Work ……………………………………………………………………..128 

6.4       Conclusion ……………………………………………………………………….130 

 

BIBLIOGRAPHY ………………………………………………………………...131 

APPENDICES ……………………………………………………………………..136 

LIST OF PUBLICATION ……………………………………………………..141 

 

 



vii 

 

LIST OF TABLES 
 

       
  Page 

Table 4.1 Comprehension articles’ WHAT-type question sentences and 

original answer sentences 

 

48 

Table 4.2 Comprehension articles’ WHAT-type question sentences and 

reworded answer sentences 

 

49 

Table 4.3 POS tagged WHAT-type question-answer pairs 

 

50 

Table 4.4 Comparisons of WHAT type question pairs for rule clustering 

 

54 

Table 4.5 Relative sequences for neighboring tokens 

 

66 

Table 4.6 BLEU values for WHAT type question sentence pairs from 

Table 4.4. (N-gram = 1) 

 

69 

Table 4.7 Answer sentences corresponding to Cluster 2 78 

Table 4.8 BLEU values for answer sentences from Cluster 2 79 

Table 4.9 Summary of rules generated via Clustering 

 

82 

Table 5.1 Answer accuracy of WHAT-type question (N-gram =1) 90 

Table 5.2 Rule amount of WHAT-type question (N-gram = 1) 91 

Table 5.3 Answer accuracy of WHAT-type question (N-gram = 2) 92 

Table 5.4 Rule amount of WHAT-type question (N-gram = 2) 

 

93 

Table 5.5 Answer accuracy of WHAT-type question (N-gram = 3) 

 

94 

Table 5.6 Rule amount of WHAT-type question (N-gram = 3) 

 

95 

Table 5.7 Average accuracy and rule amount (WHAT-type) 96 

Table 5.8 Answer accuracy of WHERE-type question (N-gram = 1) 98 

Table 5.9 Rule amount of WHERE-type question (N-gram = 1) 99 



viii 

 

Table 5.10 Answer accuracy of WHERE-type question (N-gram = 2) 101 

Table 5.11 Rule amount of WHERE-type question (N-gram = 2) 101 

Table 5.12 Answer accuracy of WHERE-type question (N-gram = 3) 102 

Table 5.13 Rule amount of WHERE-type question (N-gram = 3) 102 

Table 5.14 Average accuracy and rule amount (WHERE-type) 104 

Table 5.15 Answer accuracy of WHEN-type question (N-gram = 1) 106 

Table 5.16 Rule amount of WHEN-type question (N-gram = 1) 107 

Table 5.17 Answer accuracy of WHEN-type question (N-gram = 2) 108 

Table 5.18 Rule amount of WHEN-type question (N-gram = 2) 108 

Table 5.19 Answer accuracy of WHEN-type question (N-gram = 3) 109 

Table 5.20 Rule amount of WHEN-type question (N-gram = 3) 109 

Table 5.21 Average accuracy and rule amount for N-grams (WHEN-

type) 

 

110 

Table 5.22 Answer accuracy of WHO-type question (N-gram = 1) 112 

Table 5.23 Rule amount of WHO-type question (N-gram = 1) 113 

Table 5.24 Answer accuracy of WHO-type question (N-gram = 2) 114 

Table 5.25 Rule amount of WHO-type question (N-gram = 2) 114 

Table 5.26 Answer accuracy of WHO-type question (N-gram = 3) 115 

Table 5.27 Rule amount of WHO-type question (N-gram = 3) 115 

Table 5.28 Average accuracy and rule amount for N-grams (WHO-type) 116 

Table 5.29 Comparison between cluster amount of training question and 

sub-cluster of training answer 

 

118 

Table 5.30 Differences in the accuracies of retrieved answers between 

QASARG and Quarc 

123 

 



ix 

 

 

LIST OF FIGURES 
 
 

       Page 

 

Figure 2.1 An example of manual rules in Quarc  

 

10 

Figure 2.2 An example of indicative patterns 

 

12 

Figure 2.3 Example patterns on BIRTHYEAR 

 

13 

Figure 2.4 A logical graph rule 

 

15 

Figure 2.5 Example of extracted paths 

 

16 

Figure 2.6 The WEBCOOP Architecture 

 

18 

Figure 2.7 The flowchart of PiQASso 

 

19 

Figure 2.8 Working process of AnswerBus 

 

20 

Figure 2.9 The classifier for WHEN question type 

 

22 

Figure 3.1 Methodology of rule generation 

 

35 

Figure 3.2 Clustering for QA rule extraction  

 

38 

Figure 3.3 QASARG Question Answering Methodology  

 

43 

Figure 4.1 Algorithm for determining BLEU parameters 

 

55 

Figure 4.2 Relative position calculation of Main-sentence-Co-sentence 

pair 

 

59 

Figure 4.3 Relative position calculation of Main-sentence-Co-sentence 

pair 

 

60 

Figure 4.4 Relative position calculation of Main-sentence-Co-sentence 

pair 

 

61 

Figure 4.5 Relative position calculation of Main-sentence-Co-sentence 

pair 

 

 

62 



x 

 

Figure 4.6 Relative position calculation of Main-sentence-Co-sentence 

pair 

 

63 

Figure 4.7 Relative position calculation of Main-sentence-Co-sentence 

pair 

 

64 

Figure 4.8 Relative sequence calculation of Main-sentence-Co-sentence 

pair 

 

65 

Figure 4.9 Algorithm for rule generation 

 

71 

Figure 4.10 Example of rules generated via clustering 

 

81 

Figure 5.1 Average answer accuracy for various Q-thresholds(WHAT-

type) 

 

97 

Figure 5.2 Average answer accuracy for various A-thresholds(WHAT-

type) 

 

97 

Figure 5.3 Average answer accuracy for various Q-thresholds(WHERE-

type) 

 

105 

Figure 5.4 Average answer accuracy for various A-thresholds(WHERE-

type) 

 

105 

Figure 5.5 Average answer accuracy for various Q-thresholds(WHEN-

type) 

 

111 

Figure 5.6 Average answer accuracy for various A-thresholds(WHEN-

type) 

 

111 

Figure 5.7 Average answer accuracy for various Q-thresholds(WHO-

type) 

 

117 

Figure 5.8 Average answer accuracy for various A-thresholds(WHO-

type) 

 

117 

Figure 5.9 Comparison of the accuracies of retrieved answers between 

QASARG and Quarc 

121 

 
 



xi 

 

PENJANAAN PETUA BERDASARKAN PENGELOMPOKAN 

STRUKTUR UNTUK PENJAWABAN SOALAN AUTOMATIK 

  

 

ABSTRAK 

 

   Dalam kaedah berdasar-aturan untuk penyelidikan soal-jawab (QA), teknik 

pembelajaran aturan tipikal adalah didasarkan pada pertindihan corak dan maklumat 

leksikal.  Hal ini biasanya terhasil dalam aturan yang boleh memerlukan interpretasi 

lanjut dan aturan yang mungkin berlebihan. Bagi menangani isu ini, suatu algoritma 

penjanaan aturan berstruktur automatik dibangunkan melalui pengklusteran, dan suatu 

kaedah pengklusteran berasaskan-ayat pusat diolah untuk menjana aturan bagi sistem 

QA secara automatic. 

 

Metodologi bagi penyelidikan ini melibatkan tiga fasa. Fasa pertama melibatkan 

prapemprosesan pasangan soal-jawab latihan yang diterbitkan daripada korpus 

pemahaman bacaan 4 kanak-kanak CBC (Canadian Broadcasting Corporation). 

Prapemprosesan juga melibatkan tag POS (part-of-speech).  Fasa kedua pula melibatkan 

penjanaan aturan secara automatik, dan tag-POS pasangan QA  dikluster berdasarkan 

keserupaan nombor token POS dan jujukan mereka. Untuk ini, kaedah komputan serupa 

(similarity computation method) BLEU digunakan. Yang terakhir, fasa ketiga, 

melibatkan operasi sistem QA yang dikenali sebagai Sistem Soal-Jawab berdasarkan 
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Penjanaan Aturan Automatik (QASARG). Output daripada sistem ini kemudiannya 

dinilai. 

 

Keberkesanan QASARG dinilai terhadap sistem berasaskan aturan QA lain, 

Quarc. Ketepatan QASARG adalah dalam julat 55% hingga 85% bergantung pada jenis 

soalan, dan secara purata 26.4% lebih tinggi daripada Quarc. Walau bagaimanapun, 

perlu diambil perhatian bahawa set data ujian yang digunakan untuk menilai QASARG 

dan Quarc adalah berbeza (QASARG diuji berdasarkan pasangan QA yang diterbitkan 

daripada bahagian pemahaman bacaan, sedangkan keputusan Quarc adalah berdasarkan 

keseluruhan bahagian pemahaman bacaan). Namun demikian, keputusan QASARG 

menunjukkan bahawa keserupaan struktur di antara ayat adalah berguna dalam menjana 

aturan yang tepat untuk QA secara munasabah dan boleh dipercayai.  
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RULE GENERATION BASED ON STRUCTURAL CLUSTERING 

FOR AUTOMATIC QUESTION ANSWERING 

 

ABSTRACT 

 

In rule-based methods for Question-Answering (QA) research, typical rule 

discovery techniques are based on structural pattern overlapping and lexical information. 

These usually result in rules that may require further interpretation and rules that may 

be redundant. To address these issues, an automatic structural rule generation algorithm 

is presented via clustering, where a center sentence-based clustering method is designed 

to automatically generate rules for QA systems.  

 

The methodology for this research involves three phases. The first phase 

involves pre-processing of training question-answer pairs derived from the Canadian 

Broadcasting Corporation’s (CBC) 4 Kids reading comprehension corpus. Pre-

processing also involves part-of-speech (POS) tagging. The second phase involves 

automatic rule generation where the POS-tagged QA pairs are clustered based on the 

similarity in matching POS tokens and their sequences. For this, the BLEU similarity 

computation method is employed. The final phase involves the operationalisation of the 

QA system called Question Answering System based on Automatic Rule Generation 

(QASARG).  The output from this system is then evaluated. 
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The effectiveness of QASARG was evaluated against another rule-based QA 

system, Quarc. The accuracy of QASARG is in the range of 55% to 85% depending on 

the question type, and these are on average 26.4 % higher than those for Quarc. 

However, it must be noted that the test data sets used to evaluate QASARG and Quarc 

are different (i.e. QASARG is tested based on question-answer pairs derived from the 

reading comprehension passage while Quarc’s results are based on the entire reading 

comprehension passages). Nevertheless, the results for QASARG indicate that 

structural similarities between sentences are useful in generating reliable and reasonably 

accurate rules for QA systems. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 From Information Retrieval to Question Answering 

Ever since the emergence of human civilization, we have already realized that 

the proper organization and access to the archives were critical for efficient use of 

information, i.e. the Sumerians had designated special areas to store clay tablets with 

cuneiform inscriptions in 3000 B.C. (Singhal & Google Inc., 2001).  

 

Over the centuries, the demand of store and retrieve written information became 

important. With the invention of computers, people realized that computers could be 

used for storing and retrieving large amounts of information. The idea of using 

computers to search for relevant pieces of information was popularized in an article ―As 

We May Think‖ by Vannevar Bush in 1945 (Bush, 1945). By 1990 several different 

information retrieval systems had been shown to perform well on small text corpora. 

 

However, with the rapid increase in information nowadays, we are now faced 

with the problem of retrieving relevant information from various redundant resources 

such as documents and the Internet. This is largely due to the sheer information 

overload. Search engines have been proven useful in addressing many keyword-related 

search initiatives. Nevertheless, their effectiveness lies in the skill of the users to 

construct the right queries. 
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To further facilitate the search for information and to improve the user interface, 

automatic Question Answering (QA) approaches have been developed as a specialized 

information retrieval domain to allow questions to be posed in natural language (Hagen, 

Manning & Paul, 2000). 

 

1.2 Question Answering Systems 

As a branch in the field of Information Retrieval (IR), the initial purpose of QA 

systems is to provide a simple natural-language interface to expert systems. Nowadays, 

QA systems have moved on to become the next generation of search engines, with the 

capability to retrieve precise answers rather than related links (e.g. Google). 

 

QA systems avoid the need for users to formulate structured queries in order to 

retrieve a particular piece of information. Another added advantage is that QA systems 

also have the potential to respond to a user‘s query in natural language. The rapid 

development of question answering technologies in recent years leads to an increasing 

interest on the side of researchers, companies and end users.  

 

Since the first QA systems developed in the 1960s, e.g. BASEBALL (Green et 

al., 1961), more and more QA systems were implemented under the motivation of the 

Text Retrieval Conference (TREC) in late 1990s. With systems such as Start (Katz, 

1988) and AnswerBus (Zheng, 2002), researchers were trying different methods from 

different angles to improve the answer retrieval capability of QA systems. 
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Research on QA systems can be roughly categorized into three areas, 

information repository, query analysis, and answer matching (i.e. corresponding to the 

different phases in QA). In the area of information repository, the core task is to 

preselect the relevant documents or texts for extracting answer candidates of the input 

questions. Meanwhile, the information from the input question is the most important 

clue in answer retrieval. Hence, the other research area is targeted on query analysis. 

Answer matching is based on the efforts of the previous two phases and also on an 

effective answer retrieval method. The more effective the pre-selection of documents as 

well as the methods of query analysis and answer retrieval are, the higher the possibility 

of retrieving the matched answer to the input question.  

 

Generally, the development of QA systems requires solid foundations both in 

the areas of software engineering and Natural Language Processing (NLP), and 

therefore involves a wide range of techniques (Voorhees, 2001): 

1. Information repository: traditional document retrieval and information extraction 

techniques are exploited to pre-select the documents and the text of the documents 

which possibly contain the candidate answers of the question, as well as named 

entities in the question. In searching the information repository, QA systems can be 

divided into two categories, i.e. closed-domain (which deals with questions under a 

specific domain, e.g. medicine), and open-domain (which deals with questions in 

any domain, and relies on a general ontology). 

2. Query analysis: regular expression or machine-learning techniques are exploited to 

classify the questions according to the type of expected answers. 
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3. Answer matching: keywords, different parsers, and logical proof tools are 

commonly utilized to help retrieve candidate answers for the input question 

(Hirschman & Gaizauskas, 2001). The choice of answer matching technique 

categorizes QA systems further into inference-based, NLP tools-based, cooperative, 

or rule-based QA system. Many of these QA systems consider both semantic and 

syntactic factors of the question and answer sentences. 

 

1.3 Rule-Based QA system  

Traditionally, rule-based approaches have been employed in QA systems for the 

matching mechanism in view that it is simple, efficient and effective. Generally, it 

involves exploring the relationship among patterns within one sentence (question or 

answer sentence) with the help of NLP tools or specific weighted keywords matching 

techniques. 

 

Rules can be generated manually. E.g. in Quarc (Riloff & Thelen, 2000), it 

contains a list of hand-crafted rules for each type of question. The rules covered 

keyword matching and some lexical clues. On the other hand, some rule-based QA 

systems involve automatically generated rules. However, most of these rules were 

generated semi-automatically. E.g. in AnswerFinder (Molla & Zaanen, 2005), based on 

the overlapping of each question-answer sentence pair, graph rules were generated for 

each specific question/answer pair according the heuristics. In another system called 

TextRoller (Soubbotin & Soubbotin, 2001), a complex hierarchy of indicative pattern 

rules was applied on surface strings in manual method at first and extended the patterns 
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infinitely by inferring new patterns while studying the corpora. For the semi-automatic 

learning of rules for QA systems, the typical learning method is based on pattern 

overlapping and lexical information in general. The QA rules are still very much 

dependent on humans understanding and intervention. Furthermore, these rules are very 

specific to certain sets of training data (question/answer pairs). 

 

1.4 Problem Statement 

As mentioned above, various initiatives are on-going to realize fully automatic 

rule learning as most of the current automatic rule learning methods still partially 

depend on human understanding. Moreover, most of the rules in these rule-based QA 

systems are to detect similar pattern relationships between questions and corresponding 

answers. As a result, these rule-based QA systems are quite specific to its training 

resources. Meanwhile, there are some rule-based QA systems only identify sentences 

which contain the answers rather than directly answer the questions, e.g. Quarc.   

 

1. 5      Research Objectives 

According to the structural relationship between questions and their 

corresponding answers, and also with the purpose of obtaining more general rules for 

QA systems, the objectives of this research are: 

 To define a clustering algorithm to generalize question and answer sentence 

structures resulting in a fully automatic rule generation mechanism for QA without 

the need of human understanding. 
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 To assess whether the automatic rule clustering algorithm and structural information 

are able to improve the accuracy of the QA system.  

 

1.6       Research Scope 

In this research, the training corpus is limited to reading comprehension 

passages with answers that have been reworded based on certain sentences in the corpus. 

This is to ensure that the answer sentences directly answer the question (as opposed to 

taking a sentence verbatim). The automatically generated rules are limited to structural 

rules, i.e. the rules indicate that questions with a particular structural pattern will require 

an answer of a particular structural pattern. Also, instead of other popular similarity 

measurement for clustering, the BLEU (Papineni et al., 2002) mechanism is employed 

to measure the similarity distance between any two sentences, which used to be utilized 

in machine translation. Structural information is considered useful for certain research 

fields, i.e. plagiarism detection, and it could be further emphasized in QA. In our 

research, we only consider the structural relations between sentences to observe the 

efficiency of structural information for QA. 

 

1.7 Contribution 

In this thesis, a clustering algorithm was successfully designed to generate 

structural rules for QA system without the need for human understanding. The 

clustering algorithm (inspired by QT clustering (Heyer, Kruglyah & Yooseph, 1999)) 

considered the similarity of word order (or structural sequence) between questions and 

answers. Therefore, instead of considering the lexical relationship between sentences, 
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the sentences (questions or answers) were regarded as a sequence of POS tokens, which 

was similar to the gene sequence concept used with QT clustering.  

 

Generally, the clustering techniques in other fields of NLP require the feature 

weights of each sentence, which means that a feature weight is assigned to each 

sentence. Based on those assigned feature weights, the similarity between two sentences 

is measured by comparing the similarity between the two feature weights. Different 

from this similarity measurement, in this thesis, the similarity between two sentences 

was determined by calculating the structural similarity between any two sentences, 

which means that the similarity distance was assigned to a pair of sentences, rather than 

assigning a feature weight to each single sentence. In our proposed rule generation 

algorithm, the BLEU method (Papineni et al., 2002) was utilized for measuring 

similarity distances between any two (question or answer) sentences. 

 

Besides the clustering algorithm, a QA system called Question Answering 

System via Automatic Rule Generation (QASARG) was developed to allow answers to 

be returned as output based on the rules that were generated by the clustering algorithm. 

This also allowed the QA system generally, and the rules particularly, to be evaluated. 

 

1.8 Thesis Outline 

This thesis is presented in six chapters. The following is an overview of each 

chapter: 
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 Chapter 1 (Introduction): This chapter gives a brief introduction and background of 

QA systems as an important branch of IR. Meanwhile, the research objectives and 

contributions are also presented.  

 Chapter 2 (Literature Review): This chapter presents a survey of QA systems, 

especially rule-based QA systems. Some existing QA systems based on other 

answer extractions methods are described in this chapter as well. Lastly, clustering 

in NLP is also presented in brief. 

 Chapter 3 (Methodology): This chapter outlines the research methodology. The 

methodology is presented in three phases: (1) pre-processing of training question-

answer pairs, (2) designing of an algorithm for automatic rule generation via center 

sentence-based clustering, and (3) implementing a QA system to assess the rules 

generated in the second phase. 

 Chapter 4 (Implementation): This chapter presents the implementation of the center 

sentence-based clustering algorithm for automatic QA rules generation. A simple 

example is shown to explain how the rules are generated via the clustering method.  

 Chapter 5 (Evaluation): This chapter describes an evaluation of the generated rules 

based on different conditions (i.e. different Q-threshold, A-threshold, and N-gram 

values). For each question type, the suitable Q-threshold(s) and A-threshold(s), and 

also the best N-gram are decided based on the analysis of results for each type of 

question. Meanwhile, a comparison between QASARG and Quarc is also presented. 

 Chapter 6 (Conclusion): This chapter presents a summary of this research work, and 

re-visits the research objectives and contributions. An outline of future work is also 

discussed. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1       Introduction 

In this chapter, existing Question Answering (QA) systems and answer 

extraction techniques are surveyed. In line with the research problems mentioned in 

Chapter 1, rule-based QA systems are highlighted in this survey. However, QA systems 

based on other methods are also reviewed. Moreover, clustering methods in Natural 

Language Processing are also reviewed in view that one of the contributions in this 

research is to develop an algorithm for automatic rule generation for QA based on 

clustering. 

 

2.2       Rule-based Question Answering System 

Traditionally, rule-based approaches have been employed in QA systems for the 

answer matching mechanism in view that it is simple, efficient and effective. Initially, 

the rule-based approach for QA involves the manual generation of rules. Subsequently, 

automatic learning algorithm of QA rules is carried out as well. However, most of the 

rules are generated semi-automatically, requiring intervention from humans in answer 

matching.  

 

2.2.1    Quarc 

Quarc (Riloff & Thelen, 2000) is a heuristic rule-based QA system focusing on 

reading comprehension passages. The heuristic rules that are derived look for both 

lexical and semantic clues in the question and the passage/story. There are five sets of 
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rules according to the interrogative types (WHAT, WHO, WHY, WHERE and WHEN). 

Figure 2.1 shows an example of WHAT-type rules in Quarc. From Figure 2.1, Rule 1 is 

the generic word matching function shared by all question types. Rule 2 rewards 

sentences that contain a date expression if the question contains a month of the year. 

Rule 3 addresses these questions by rewarding sentences that contain certain words. 

Rule 4 looks for words associated with names in both the question and the sentence. 

Rule 5 recognizes questions that contain phrases such as ―name of <x>‖. 

 

 

 

 

 

 

 

 

 

   

                      

                 

Figure 2.1: An example of manual rules in Quarc (Riloff & Thelen, 2000) 

 

Given a question and a passage, Quarc parses the question and all of the 

sentences in the passage using the Sundance partial parser. Most of the syntactic 

 

1. Score(S) += WordMatch(Q,S) 

 

2. If contains(Q,MONTH) and contains(S,{ today,     

yesterday, tomorrow, last night}) 

 

       Then Score(S) += clue 

 

3.   If contains (Q, kind) and contains(S, {call, from}) 

         

      Then Score(S) += good_due 

 

4.  If contains(Q,narne) and contains(S, { name, call, known} ) 

  

      Then Score += slam_dunk 

 

5. If contains(Q,name+PP) and contains(S,PROPER_NOUN) 

and contains(PROPER_NOUN,head(PP)) 

 

      Then Score(S) += slam_dunk 
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analysis is not used. The rules are applied to each sentence in the passage, as well as the 

title of the passage, with the exception that the title is not considered for WHY 

questions. Each rule awards a certain number of points to a sentence. After all of the 

rules have been applied, the sentence that obtains the highest score is deemed to contain 

the answer. 

 

2.2.2    TextRoller 

In the case of TextRoller (Soubbotin & Soubbotin, 2001), it uses not only 

keywords, but also a complex hierarchy of indicative pattern rules on surface strings for 

choosing and arranging candidate answers. The definition of indicative patterns is 

totally heuristic and inductive. The indicative patterns used by TextRoller are sequences 

or combinations of certain string elements. At the initial stage, the indicative pattern 

lists are accumulated based on expressions that can be interpreted as answers to the 

questions of a definite type. The system studies texts systematically with the purpose of 

identifying expressions that may serve as models for answer patterns. The library of 

patterns can never be completed. Thus, the system can accumulate the knowledge on 

‗typical‘ combination and correlations of strings.  

 

A pattern may include a constant part and a variable part. The latter can be 

represented by a query term or even an unknown term. Usually, patterns with more 

sophisticated internal structure are more indicative of the answer. The combinations of 

element for patterns are also used. There are six basic definition patterns which can 
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answer not only definition question but also WHO, WHERE, and other question types. 

The example of indicative patterns is shown in Figure 2.2. 

 

              1.  <A; is/are; [a/an/the]; X> 

                   <X; is/are; [a/an/the]; A> 

                   Example: "Michigan's state flower is the apple blossom". 

 

              2. <A; comma; [a/an/the]; X; [comma/period]> 

                  <X; comma; [a/an/the]; A; [comma/period]> 

                  Example: "Moulin Rouge, a cabaret ". 

 

              3. <A; [comma]; or; X; [comma]> 

                  Example: "shaman, or tribal magician." 

 

              4. <A; [comma]; [also] called; X [comma]> 

                  < X; [comma]; [also] called; A [comma]> 

                  <X; is called; A> 

                  <A; is called; X> 

                  Example: "naturally occurring gas called methane". 

 

              5. <X, dash; A; [dash] A; dash; X; [dash]> 

                  Example: "nepotism - hiring relatives for the better jobs". 

 

              6. <X; parenthesis-; A; parenthesis > 

                  <A; parenthesis; X; parenthesis > 

      Example: "myopia (nearsightedness)". 

Figure 2.2: An example of indicative patterns (Soubbotin & Soubbotin, 2001) 

 

In TextRoller, questions are analyzed in terms of question types. Using specific 

question words as query terms (known as primary keywords) ensure in most cases that 

the question subject is addressed in the source passages. In some question categories, 

primary words do not convey the question subject completely, requiring secondary 

searching terms. Query expansion may also be required in certain cases. The retrieved 

passages are cut into 50-byte snippets which are around the query words, or other 
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question words. All the snippets are analyzed to identify patterns that are indicative of a 

potential answer based on a confidence score. 

  

2.2.3    Webclopedia 

Webclopedia (Papineni et al., 2002) is a question answering system using 

manually learned patterns. To classify the QA types, knowledge about language and 

about the world are both involved in improving the results. Patterns are learned 

manually from the web. Altavista is used to return 1000 relevant documents, and only 

sentences containing both the question terms and answer terms are retained. For each 

document, the sentences containing more words and phrases that overlap with the 

question and its expanded query words are extracted and ranked. Webclopedia classifies 

desired answers by their semantic types, using the approx. 140 classes called Qtargets. 

In Webclopedia, there are 5 types of Qtargets, i.e. abstract, semantic, syntactic, role, and 

slot. The example of Webclopedia Typology is shown in Figure 2.3. 

 

 
Figure 2.3: Example patterns on BIRTHYEAR (Papineni et al., 2002) 
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The techniques involved in the architecture of Webclopedia, i.e. question 

analysis, document/passage retrieval, passage analysis for matching against the question, 

are adapted from current standard QA systems. To the input question, CONTEX is used 

to obtain a semantic representation of the questions and answer candidates (Heyer, 

Kruglyak & Yooseph, 1999). Then, these phrases/words are assigned significance 

scores according to the frequency of their type in the question corpus. Following this, 

IdentiFinder is used to isolate and classify names in texts. According to the parsing 

result from IdentiFinder, WordNet synsets are used for query expansion by means of a 

series of Boolean queries. After query expansion, relevant documents are retrieved by 

the search engine called MG (Ulf, Hovy & Lin, 2002). According to similarity between 

patterns of answer sentences and the query, the most relevant answer passages are 

ranked for the last phase (answer matching). In answer matching, the parse trees of the 

relevant answers are compared with the parse tree of the original question. Thereby, the 

most suitable answer candidate(s) are extracted according to the ranking (Hovy et al., 

2000). 

 

2.2.4    AnswerFinder 

This is a QA system using logical graph rules which is learnt semi-automatically. 

The rule learning method is based on the translation of the logical forms of questions 

and answers into graph form (Witten, Moffat & Bell, 1994). This graph rule learning 

method is quite straightforward as shown in Figure 2.4. Rules learnt with this algorithm 

are very specific to question-answer pairs. Hence, the rules need to be generalized. Each 
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generalized rule is weighted according to its ability to detect the correct answer in the 

training corpus.  

 

 
Figure 2.4: A logical graph rule (Witten, Moffat & Bell, 1994) 

 

In AnswerFinder, the process of finding the answer iterates over all the rules 

according to the given question q with graph Q and a sentence s with graph S. A rule r 

triggers if the overlap component of the rule is a sub graph of Q. After generating the 

expanded graph, the overlap is computed between this expanded graph and that of the 

answer sentence. The result of overlapping between question and answer sentences 

determines whether the answer sentences can be extracted as the final answer candidate.  

         

2.2.5    DIRT 

Inference rules are used in DIRT (Ravichandran & Hovy, 2002). However, the 

inference rules are learned through an unsupervised algorithm instead of a traditional 

manual one. The inference rules, learned by DIRT, are to find similar words by means 
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of detecting similar paths in dependency trees. If two paths tend to occur in similar 

contexts, the meanings of the paths tend to be similar. 

 

The dependency trees are generated by Minipar (Lin & Pantel, 2001), which is a 

principle-based English parser and the lexicon of it is derived from WordNet (Berwick, 

Abney & Tenny, 1991). Additional nodes and links are created dynamically to represent 

subcategories of verbs. In the dependency trees generated by Minipar, a simple 

transformation is applied to connect the prepositional complement to the words 

modified by the preposition. Therefore, each link between two words in a dependency 

tree represents a direct semantic relationship. An example of extracted paths is shown in 

Figure 2.5. 

 

 
Figure 2.5: Example of extracted paths (Ravichandran & Hovy, 2002) 

 

The path is a binary relation between two entities. A path begins and ends with 

two dependency relations, which are called two slots and in charge of left-hand side and 
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right-hand side paths respectively. The similarity between a pair of paths is defined as 

the geometric average of the similarities of their slots (Miller et al., 1990). 

 

2.3       Other QA Systems 

Besides the rule-based approach, other approaches have also been utilized in QA 

systems. Here, some of these other approaches are discussed. 

 

2.3.1    WEBCOOP  

The concept of cooperative answer is proposed by Grice (Szpektor & Dagan, 

2009) in the 1970s. A cooperative answer is an answer that should be correct, non-

misleading, and answers a query. In order to measure the cooperative performance of an 

information system, there are maxims that describe fundamental properties of 

cooperative behavior (Gallaire, 1978), which include quality, quantity. QA systems 

eventually adopted the concept of cooperative answer. One such system is WEBCOOP 

(Gaasterland, Godfrey & Minker, 1992). 

 

 WEBCOOP (Benamara, 2004) is a QA system that provides intelligent 

cooperative responses to Web queries. This QA system integrates knowledge 

representation and advanced reasoning procedures to assist answer extraction instead of 

utilizing NLP tools frequently, i.e. processing queries or generating responses. 

Meanwhile, the inclusion of answer justification features help to provide a wider range 

of relative information compared to inference-based system. The architecture of 

WEBCOOP is shown in Figure 2.6. 
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Figure 2.6: The WEBCOOP Architecture (Benamara, 2004) 

 

However, the ―cooperativity‖ only focuses on atomic and enumerative responses. 

The system utilizes a knowledge extractor and a robust question parser to select and 

examine the proposed answers. According to the cooperative rules, the WEBCOOP 

inference engine will determine the matching answers and organize them for output 

(Benamara & Dizier, 2003). 

 

2.3.2    PiQASso  

PiQASso (Antonio et al., 2001) is a QA system based on a combination of 

modern IR techniques and a series of semantic filters for selecting paragraphs 

containing a justifiable answer. Semantic filtering is based on several NLP tools, 

including a dependency-based parser, a POS tagger, a Name Entity (NE) tagger, and a 

lexical database. The flowchart of PiQASso is shown in Figure 2.7. 
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Figure 2.7: The flowchart of PiQASso (Antonio et al., 2001) 

 

Semantic analysis of questions is performed in order to extract keywords used in 

retrieval queries and to detect the expected answer type. Semantic analysis of retrieved 

paragraphs includes checking the presence of entities of the expected answer type and 

extracting logical relations between words. Thereby, queries are expanded to cope with 

morphological variants of words by adding the synonyms of the search terms. 

 

The answer retrieving in PiQASso is based on IXE (Attardi & Cistemino, 2001), 

a high-performance C++ class library for building full-text search engines. In PiQASso, 

sentences are parsed to produce a dependency tree which represents the dependency 

relations between words in the sentence. A dependency relationship is a binary 

relationship between a word called as head and another word called as modifier. 
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By checking entities and verifying that the answer sentence contains word nodes 

of the dependency tree that are of the same type and relationship with corresponding 

word nodes in the question dependency tree, matching words between question and 

answer are found. All matches between triples in the question and in the answer are 

considered. The greater the result of match distance the candidate sentence obtains, the 

more likelihood the candidate sentence is the most suitable answer.  

 

2.3.3    AnswerBus 

As an open-domain question answering system, AnswerBus (Zheng, 2002) is 

based on sentence-level web information retrieval. It accepts natural-language questions 

in multiple languages and retrieves relevant Web pages. From these Web pages, 

AnswerBus extracts sentences that are determined to contain answers. The working 

process of AnswerBus is shown in Figure 2.8. 

 

Figure 2.8: Working process of AnswerBus (Zheng, 2002) 
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The workings of AnswerBus comprise of mainly four steps: 

1. selecting two or three search engines for information retrieval, and form search 

engine specific queries based on the question, 

2. contacting the search engines and retrieve documents and retrieve documents at the 

top of the respective hit lists, 

3. extracting sentences that potentially contain answers from the documents, 

4. Ranking the answers and return the top choices with contextual link to user.  

Instead of returning a snippet of fixed length of text, AnswerBus returns 

sentences, which can provide users with some contextual information of the answers. 

Meanwhile, the use of different search engines for different questions increases the 

likelihood that the answer sentences are among the retrieved documents. The result of 

this online QA system shows that it has higher accuracy than off-line QA systems.  

 

2.3.4    AQUAREAS 

AQUAREAS (Hwee et al., 2000) is a QA system based on machine learning 

approach, focusing on reading comprehension resources. The advantage of a machine 

learning approach is that it is more adaptable, robust, flexible, and maintainable. This 

approach comprised of two steps. First, a set of features are designed from question-

sentence pairs to capture the information that helps to distinguish answer sentences 

from non-answer sentences. Afterwards, a learning algorithm is utilized to generate a 

classifier for each question type from the training examples. The example of the 

classifier is shown in Figure 2.9.  
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Figure 2.9:  The classifier for WHEN question type (Hwee et al., 2000) 

 

To each sentence, the classifier will decide if it is positive (an answer) or 

negative (not an answer) with a confidence value. The features that are considered in 

identifying the answer consist of named entity, co-reference information, keywords in 

questions. AQUAREAS also considers the same set of features in answer sentences. 

Compared to handcrafted rule-based methods, the machine learning approach avoids the 

need for continuous improvement or maintenance on the set of rules. Moreover, the 

results of this QA system are comparable to the results from other reading 

comprehension QA system.  

 

2.3.5    START 

START (B.Katz, 1997) is an information server built at the MIT Artificial 

Intelligence Laboratory. Since December 1993, START became the first natural 

language system available for question answering on the World Wide Web.  
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The START server is built on two foundations: the sentence-level NLP 

capability and the idea of natural language annotation for multi-media information 

segments. T-expression is employed to handle embedded sentences. Together, S-rules 

are implemented to help T-expressions which involve the verb expression and which 

meet the additional structural constraints. These two foundations are respectively 

implemented by two modules: (1) an understanding module while analyzes the English 

text and (2) a knowledge base which incorporates the information found in the text. 

Given an appropriate segment of the knowledge base, a generating algorithm produces 

English sentences. A user can retrieve the information stored in the knowledge base by 

querying it in English. The system will then produce an English response.  

 

2.4       Discussion of QA 

Besides the literature that was surveyed, there are many other techniques that 

can be exploited to improve the answer searching ability of QA systems according to 

their respective different domains. However, essentially, the ultimate goal of any 

answer extraction algorithms is to increase the accuracy of the retrieved answer 

candidates. For this purpose, researchers have utilized NLP tools, statistical methods 

and traditional IR techniques in the different phases the of QA system. Semantic 

techniques have also been employed to achieve optimal answers.  

 

From the survey, WEBCOOP utilizes an inference-based method with the 

concept of cooperative answering with the aim of guiding computers to recognize 

accurate answers and to handle situations when no suitable answer is retrieved. The idea 
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of introducing the cooperative method into QA systems is quite helpful for optimizing 

the QA search ability. 

 

The strategy of PiQASso, however, is to integrate NLP tools (such as a Name 

Entity tagger) and modern IR techniques. As a result, the performance of PiQASso is 

very much dependent on its parser. In PiQASso, it also appears that the answer type 

identification and keywords are not very helpful for answer matching. 

 

As the first online QA system, START utilized NLP annotation and sentence-

level analysis. As a relative mature product, the response speed and answer retrieval 

accuracy of START is pretty optimistic. AQUAREAS retrieves answer by utilizing a 

machine learning approach, which decides on answer candidates by considering 20 

features of questions and answer sentences in documents on the Remedia reading 

comprehension data set. Although the achieved accuracy from the machine learning 

approach is competitive compared to handcrafted algorithms, the performance from 

AQUAREAS is still not optimistic. 

 

In contrast, AnswerBus, following the typical process of QA, exploits multiple 

IR techniques to retrieve the sentence level answers. As an open-domain QA system, 

the performance of AnswerBus is better when compared to PiQASso and AQUAREAS. 

 

For rule-based QA systems, it was observed that the focus is on learning rules 

based on similar keyword detection or lexical relations between question and answers. 
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For instance, the manually derived heuristic rules of Quarc focus on lexical relations in 

different WH-type questions from a reading comprehension corpus. Quarc is a simple 

and efficient QA system employing a set of heuristic rules. However, it seems rather 

simple to handle other types of question-answering tasks. 

 

In TextRoller, the generation of pattern rules is decided based on heuristics, 

using the training data from the TREC data set. The accuracy of TextRoller is greater 

than the accuracy of Quarc. The result of TextRoller shows that the indicative patterns 

work well for QA systems. However, the performance might be better if TextRoller 

could be developed with more appropriate tools for indicative pattern generation. 

 

As mentioned earlier, the pattern rules of Webclopedia are learnt based on 

simple surface patterns. The rules of Webclopedia are categorized according to the 

question typology, which reveal the semantic relations between questions and answer 

sentences. However, the semantic relations are too complex to complete the decision 

trees of the rules. Also, lengthy question sentences seem difficult for Webclopedia to 

figure out. 

 

However, researchers are also trying to generate rules using automatic or semi-

automatic approaches to prevent humans from inadvertently missing out certain rules. 

To detect pattern relationships automatically for QA systems, there are different 

methods utilized in rule learning. In AnswerFinder, the patterns are learnt based on 

logical information instead of meaning. The graphs connecting between patterns 
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