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m2 Square meter  

mA Milli Amperes  

ml Milli litres  

min minutes  

mol Moles  

mm millimeter  

mmol Millimoles  

MCH4 Molar flow rate of methane (mol/min)  

n Order of reaction  

n,m Integers indicating chiral vectors  

nm nanometer  

psi Pressure per square inches  

PCH4 Partial pressure of methane  

r Reduction temperature  

rCH4 Rate of methane decomposition  

ro Initial rate of reaction  

r(t) Rate of reaction at time (t)  

R Reaction temperature  

s, p, sp, sp2 Electron orbitals  

sccm Standard cubic centimeter per minute  

S Active site on catalyst surface  

T Absolute temperature  
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TPa Tetra pascal  

vol Volume  

V Volt  

w.t. Wall thickness of CNTs  

wt% Weight percent  

 

GREEK SYMBOLS 

 

μm micrometer  

λ Lamda (X-ray wavelength)  

βd Distance between atomic layers  

βobs Observed line width  

βinst Instrumental line width  

θ Diffraction angle  

ωRBM Raman shift  

θCH3S Concentration of sites occupied by CH3S  

θCH2S Concentration of sites occupied by CH2S  

θHS Concentration of sites occupied by HS  

θV Concentration of vacant sites   

θT Concentration of total sites   
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SINTESIS NANOTUIB KARBON MELALUI PENGURAIAN 

METANA MENGGUNAKAN MANGKIN BERSOKONGKAN 

KARBON  
 
 

ABSTRAK 

 
Nanotiub karbon dengan sifat khususnya adalah bahan yang menarik dan 

ditemui aplikasinya dalam pelbagai bidang. Disebabkan kepada permintaan global, 

sintesisnya pada kos yang lebih rendah tidak dapat dielakkan. Dalam kajian ini, 

bahan karbon berharga murah seperti penapis molekul karbon (CMS-G, CMS-IN) 

dan karbon teraktif (AC) dikaji sebagai penyokong kepada tiga jenis logam aktif 

yang berbeza (Ni, Co dan Fe) untuk proses uraian wap kimia metana (m-CVD) bagi 

menghasilkan CNTs. Kajian bebas dan aktiviti mangkin diimpregnasikan logam aktif 

(5, 10 dan 15 wt%) telah dikaji pada suhu 650, 750 dan 850 oC untuk penukaran 

metana (CH4) yang maksimum dan pertumbuhan CNTs yang optimum. Mangkin 

logam yang disintesiskan atas penyokong AC dengan sifat yang diperlukan adalah 

lebih baik dalam penukaran metana dan pembentukan CNTs berbanding dengan 

penyokong jenis CMS. Analisis mendalam telah dijalankan keatas mangkin individu 

seperti Ni/AC, Co/AC dan Fe/AC dengan mempelbagaikan parameter dalam 

penyediaan mangkin dan keadaan tindak balas. Mangkin 5 wt% Ni/AC dikalsinkan 

pada 350 oC, terturun pada 550 oC ditemui memberikan penukaran metana yang 

maksimum sebanyak 96.81% pada suhu 850 oC. Bilangan CNTs yang lebih banyak 

dengan diameter dalaman purata sebanyak 14 nm dan ketebalan sebanyak 3 nm telah 

diperoleh melalui keadaan ini. Analisis SEM/EDX telah digunakan untuk 

memastikan pembentukan CNTs dan kandungan logam atas mangkin yang 

disintesiskan. Aktiviti mangkin dengan nisbah gas metana kepada nitrogen (CH4:N2) 
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sebanyak 1:2 ditemui dapat diperpanjang dengan lebih baik berbanding nisbah 

sebanyak 1:3. Profil penurunan berprogramkan suhu (TPR) bagi mangkin Ni/AC 

menunjukkan bahawa oxida nikel NiO terbentuk di bawah 450 oC. Kajian TEM 

sampel produk menunjukkan bahawa nanotiub karbon berbilang dinding (MWNTs) 

dengan jenis nipis dan lebih luas berserabut mempunyai diameter dalaman sekitar 2.5 

dan 27 nm, masing-masing telah terbentuk dengan 5 wt% Ni/AC di bawah 

penyediaan dan keadaan tindak balas yang berbeza. Begitu juga, mangkin dengan 

kemasukan 15 wt% Co/AC, dikalsinkan pada 350 oC dan terturun pada 450 oC 

merekodkan penukaran metana yang maksimum sebanyak 89% pada 850 oC. 

MWNTs seperti reben yang berputar dengan diameter dalaman purata sekitar 16 nm 

telah terbentuk. Mangkin dengan kemasukan 5 wt% Fe/AC melaporkan penukaran 

metana yang maksimum sebanyak 98.6% pada 750 oC. Aktiviti mangkin 

diperpanjang lebih daripada 2 h telah ditunjukkan oleh mangkin 5 wt% Fe/AC 

berbanding dengan mangkin yang lain. Analisis permeteran gravity haba (TGA) 

menunjukkan bahawa suhu penurunan haba akhir bagi mangkin yang disintesis dan 

sampel produk adalah dalam urutan Co/AC > Ni/AC > Fe/AC. Nisbah kecacatan 

karbon grafitik (ID : IG) yang diperolehi oleh Raman spektrum adalah 1.17, 1.20 dan 

1.32 bagi sampel produk dengan mangkin Fe/AC, Ni/AC dan Co/AC, masing-masing. 

Bagi mangkin yang terbaik (5 wt% Fe/AC), keadaan optimum ditentukan 

menggunakan permukaan sambutan (RSM) dan analisis variasi (ANOVA) telah 

dicapai pada penurunan 447 oC, tindak balas pada 806 oC di bawah aliran CH4:N2 

ratio sebanyak 1:2 dengan 87.25% penukaran CH4. Mekanisme pertumbuhan 

MWNTs telah dicadangkan dengan urutan langkah tindak balas. Tenaga pengaktifan 

dijangkakan sekitar 42.25 kJ/mol. Kadar tindak balas, urutan tindak balas dan 

kinetiknya telah dikaji dan korelasinya telah disahkan dengan data ujikaji. 



SYNTHESIS OF CARBON NANOTUBES VIA DECOMPOSITION 

OF METHANE USING CARBON SUPPORTED CATALYSTS 
 

ABSTRACT 
 

Carbon nanotubes (CNTs) with their special properties find applications in 

many areas. Owing to its global demand, its synthesis at a cheaper cost is inevitable. 

In this study, low-cost carbon materials like carbon molecular sieves (CMS-G, CMS-

IN) and activated carbon (AC) were examined as supports for three different active 

metals (Ni, Co and Fe) for methane chemical vapour decomposition (m-CVD) 

process to produce CNTs. Blank studies and active metal impregnated (5, 10 and 15 

wt% loadings) catalysts activity were studied at temperatures 650, 750 and 850 oC 

for maximum methane (CH4) conversion and optimum CNTs growth. The 

synthesized metal catalysts over AC support were relatively better in CH4 conversion 

and formed CNTs compared to CMS type supports. In-depth analysis of individual 

catalysts like Ni/AC, Co/AC and Fe/AC were made by varying the parameters of 

catalyst preparation and reaction conditions. 5 wt% Ni/AC catalysts calcined at     

350 oC, reduced at 550 oC was found to give maximum CH4 conversion of 96.81% at 

850 oC. Higher population of CNTs with average internal diameter of 14 nm and 

thickness of 3 nm was obtained under these conditions. SEM/EDX analyses were 

used to confirm the formed CNTs and metal content on synthesized catalysts. 

Methane to nitrogen (CH4:N2) gas ratio of 1:2 was found to posses prolonged catalyst 

activity better than a ratio of 1:3. Temperature programmed reduction profiles (TPR) 

of Ni/AC catalyst showed that nickel oxides NiO formed below 450 oC. TEM study 

of product samples revealed that multi-walled carbon nanotubes (MWNTs) with thin 

and broader filamentous type having average internal diameters of around 2.5 and 27 

nm, respectively were formed over 5 wt% Ni/AC catalyst  under different 
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preparation and reaction conditions. Similarly, Co/AC catalyst with 15 wt% loading, 

calcined at 350 oC and reduced at 450 oC recorded a maximum CH4 conversion of 

89% at 850 oC. Twisted ribbon-like MWNTs with average internal diameter of 

around 16 nm were formed.  Fe/AC catalysts with 5 wt % loading reported maximum 

CH4 conversion of 98.6% at 750 oC. Prolonged catalyst activity of longer than 2 h 

was demonstrated by 5 wt% Fe/AC catalyst compared to the other catalysts. 

Thermogravimetric analysis (TGA) showed that the final thermal degradation 

temperatures of the synthesized catalyst and product samples were in the order of 

Co/AC > Ni/AC > Fe/AC. Ratios of defective to graphitic carbons (ID/IG) that were 

obtained by Raman spectra were 1.17, 1.20 and 1.32 for product samples obtained 

with Fe/AC, Ni/AC and Co/AC catalysts, respectively. For the best catalyst (5wt% 

Fe/AC), optimized condition determined using response surface methodology (RSM) 

and analysis of variance (ANOVA) studies were achieved at reduction of   447 oC, 

reaction at 806 oC under flow CH4:N2 ratio of 1:2  with 87.25 % CH4 conversion. 

MWNTs growth mechanism was proposed with sequence of reaction steps. 

Activation energy was estimated to be around 42.2 kJ/mol. Reaction rate, order of 

reaction and its kinetics were studied and their correlations were verified with 

experimental data.  



   CHAPTER 1 

INTRODUCTION 

 

1.1 Nanoscience and Nanotechnology  

 

In recent years, the advancement of science and technology has lead to the 

development of micro and nano-scale materials that enables our modern life to be 

much simple, comfort and handy. The ability to see nano-sized materials has opened 

up a world of possibilities in a variety of industries and scientific endeavours.  A 

nanometre (nm) is one-billionth of a meter, smaller than the wavelength of visible 

light and a hundred-thousandth the width of a human hair. The concept of 

nanotechnology was first proposed by the Nobel laureate Richard P. Feynman in 

1959 and later the term “nanotechnology”was coined by Norio Taniguchi in 1974 

(Fortina et al., 2007) 

Nanotechnology is defined as the study and use of structures between1 nm 

and 100 nm in size. It is essentially a set of techniques that allow manipulation of 

properties at a very small scale. Figure 1.1 represents the range of materials from 

millimetre to nanometre scale. 

 

Figure 1.1. Scale showing the range of materials from mm to nm (Serrano et al., 
2009). 
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At nano level, the materials are designed through process that exhibit fundamental 

control over the physical and chemical attributes of molecular-scale structures with one 

of its dimension of about 1 – 100 nm. The special applications in the current technology 

includeever smaller computer chips, custom-designed drugs, and materials with vastly 

increased strength based on arrangement of their molecules (such as carbon nanotubes).  

 

1.2 Future scope of Nanotechnology 

 

Nowadays, nanotechnology has spread its roots in almost all areas ranging 

from energy storage equipment to stain resistant fabrics. Diversified fields of 

application in nanotechnology on various sectors are shown in Figure 1.2. 
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Figure 1.2. Diverse applications of nanotechnology in today's life (Bioinfobank, 

2010). 
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 Nanotechnology has the prospects to revolutionise healthcare for the next 

generation. There are three key areas in which it could do this: diagnosis, prevention 

and treatment. It offers new solutions through particles and filter systems that can 

bind and remove or de-activate pollutants within land, sea and air. The promise is of 

more efficient use of resources, renewable energy, environmental monitoring and 

many more benefits. It has driven the development of super capacitors through the 

production of novel nanomaterials with increased surface area. Such materials can 

accommodate much more charge than conventional materials, thus increasing energy 

density and power output many fold.  

  

 At present, nanotechnology has reached the electronics industry with features 

in microprocessors now less than 100 nanometres (nm) in size (Intel’s Prescott 

processor uses 90 nm size features) (thekra-nanotechnology, 2010). It offer a new 

approach for the electronics industry in the form of new circuit materials, processors, 

information storage and even ways of transferring information such as 

optoelectronics. Nanotechnology is present in a number of consumer goods, and the 

number has been drastically increasing in recent years. Figure 1.3 shows the global 

prospects of nanotechnology in various industries and its estimated growth towards a 

trillion dollars in the forth-coming years.  
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Figure 1.3. Nanotechnology related area of services and future estimation by 
National Science Foundation (NSF), USA (Interdisciplines, 2010). 

 
 

1.3 Carbon and its classification 

  

 Carbon plays exceedingly predominant role in our daily life. It is present in 

many things that we use in our routine life. Carbon atom is distinct amongst all the 

elements that are found in nature. This uniqueness facilitates carbon to form millions 

of organic compounds. The electronic structure of carbon in the ground state is 

1s22s22p2. Carbon forms bonds with its neighbour atoms due to the re-arrangement of 

the electrons in the orbitals via hybridization process. Based on sp3, sp2 and sp 

hybridization types, the nature of carbon bond formation differs and hence 

responsible for the formation of different orientation, such as tetrahedral, planar and 

chain structures. Different carbon structures formed are called allotropes. Carbon 

exists in three pure crystalline forms: diamond (3-D form), graphite (2-D form) and 

fullerenes (0-D form). All other forms are amorphous allotropes of carbon. Each 

exhibits markedly different properties due to the different structures they adopt. The 

most recently identified allotrope of carbon is carbon nanotubes (CNTs). They 
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consist of carbon atoms bonded into a tubular shape. Classification of carbon based 

on its nature of occurrence is shown in Figure. 1.4.  
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Figure 1.4. Classification of carbon based on its nature (Baddour and Briens, 2005). 

  

Graphite is a form of carbon, in which each atom is bonded trigonally to three 

others in a plane composed of merged hexagonal rings, similar to those in aromatic 

hydrocarbons. The network is 2-dimensional, and the flat sheets are loosely bonded 

through weak van der Waals forces. In diamond, each atom is bonded tetrahedrally  

to four others, thus making a 3-dimensional network of puckered six-membered rings 

of atoms. The buckyballs are large molecules formed solely of carbon bonded 

trigonally, forming spheroids (like soccer ball-shaped structure C60 

buckminsterfullerene). CNTs are structurally similar to buckyballs, but each atom is 

bonded trigonally in a curved sheet that forms a hollow cylinder. The different 

allotropes of carbon are shown in Figure1.5. 
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Diamond   Graphite   Fullerene 

 

Amorphous carbon   Carbon nanotubes 

Figure 1.5. Allotropes of carbon and their structural arrangement (Nanoage, 
2010). 

 

 
1.4 Carbon nanotubes (CNTs) morphologies and its properties  

 

Carbon Nanotubes (CNTs) are a new form of pure carbon that is perfectly 

straight tubules with diameter in nanometres, length in microns and properties close 

to those of an ideal graphite fibre (Ajayan et al., 2000). An ideal nanotube can be 

considered as hexagonal network of carbon atoms that has been rolled up to make a 

seamless hollow cylinder. These CNTs possess unique nano structures with 

remarkable mechanical and electronic properties that find the use of these materials 

in various applications. The history of carbon Nanotubes began with the 

development of fullerenes by Kratschmer et al. (1990). After that in 1991, Sumio 

Iijima of Japan was the first to report about CNTs having multi-walled structure 

(MWNTs) synthesized by arc-discharge evaporation technique (Iijima, 1991). 
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considered to be the economical route for higher production of CNTs. Further, the 

description of each synthesis methods will be discussed in the Literature Review 

section.  

 

 The various properties of CNTs result directly from their structural affiliation 

to graphite. A SWNT can be metallic and semiconducting, dependent on its tube 

chirality. Meanwhile, MWNT can be either metallic or a semi-conducting. This is 

due to their dominating larger outermost tube (Meyyappan, 2004). Both SWNTs and 

MWNTs are interesting nanoscale materials from applications perspective because 

CNTs (a) have very good elastic-mechanical properties for use as light – weight 

reinforcing fibres for functional composite materials; (b) can be both metallic or 

semiconductor leading to the possibility of use in field – effect transistors and 

sensors and nanotubes hetero-junctions in electronic switches; (c) are high aspect 

ratio objects with good electronic and mechanical characteristics leading to their use 

in field emission displays and various types of scanning probe microscope tips for 

metrological purposes and (d) are also hollow, tubular molecules with large surface 

area suitable for packing material for gas and hydrocarbon fuel storage devices, gas 

or liquid filtration devices, and molecular–scale controlled drug–delivery devices. 

 

The high tensile strength of CNTs is closely related to that of graphene. The 

graphitic sp2 bond in CNTs is 33% stronger than the sp3 bond of diamond (Dervishi, 

2009). In contrast to planar graphenes, the cylindrical shape provides the CNTs with 

structural stability. The Young’s modulus of CNTs bundles exceeds 1TPa, which is 

predominantly beneficial for the high strength properties of composites based on 

nanotubes. The main challenges during synthesis are to achieve a uniform dispersion 
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and alignment of nanotubes in a matrix and matrix to CNTs load transfer. Current 

emphasis is on advancing both the science and applications stemming from these 

mechanical properties. As defects strongly influence the mechanical properties of 

nanotubes, till date researchers are continuously working to face the challenges of 

controlling the synthesis process.  

 

Table 1.1. Properties of Carbon nanotubes (Dong et al., 2007) 

  

Property of CNTs Characteristics Data 

Geometrical 

Layers Single / Multiple 

Aspect ratio 10-1000 

Diameter ~ 0.4nm to<3nm (SWNTs) 

~1.4 to <100 nm (MWNTs) 

Length Several μm (Rope upto cm) 

Mechanical 
Young’s Modulus ~ 1 TPa (Steel : 0.2 TPa) 

Tensile Strength 45 GPa (Steel : 2GPa) 

Density 1.33 ~ 1.4 g/cm3 (Al: 2.7  g/cm3 ) 

Electronic 

Conductivity Metallic / Semi- conductivity 

Current Carrying 

Capacity 

~ 1 TA /  cm3 (Cu: 1 GA/cm3 ) 

Field Emission Activate Phosphorous at 1~3V 
Thermal Heat Transmission > 3 kW/mK (Diamond : 2 kW/mK) 

  

 There has been large number of research done on electrical properties of 

CNTs (Dunlap, 1992; Langer et al., 1996; Postma, 2001) since there is an interest in 

the use of CNTs in nanoscale electronic devices. The electronic properties of CNTs 

are dependent on the tube structures and can be used as junction between metal-

semiconductor, semiconductor-semiconductor and metal-metal (Popov, 2004). There 
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are three types of junction: On–tube, Y- and crossed junctions. An On-tube junction 

can be attained by joining 2 tubes of different chiralities (Dunlap, 1992) or by 

chemical doping CNTs sediments (Zhou et al., 2000). Y and crossed junctions are 

formed from Y- branched CNTs (Papapdopulos et al., 2000) and crossed CNTs 

(Fuhrer et al., 2000). These various CNTs junctions can be used to manufacture parts 

of nano-scale devices. 

  

 The thermal conductivity of CNTs along their axis appears superior to that of 

all materials including diamond, due to the benefits derived from the strength and 

toughness of the sp2 bond. The CNTs also possess 1−D character that strongly limits 

their allowed scattering processes. CNTs remain stable up to very high temperature 

of 4000 K, due to their structural similarity with that of graphite. CNTs maximise 

their configurational and vibrational entropy similar to other low dimensional 

structures / polymers giving rise to thermal contraction in length and volume up to 

temperatures of several hundred degree celcius. 

 

1.5 Applications of CNTs 

 

Recent discoveries of various forms of CNTs have stimulated research on 

their applications in diverse fields. They are promising for the progress of innovative 

technological applications such as batteries, tips for scanning probe microscopy, 

electro chemical actuators and sensors (Baughman et al., 1999; Kong et al., 2001). 

Other recent and their broad areas of application are shown in Table 1.2. 
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Table1.2.  Different fields of applications of carbon nanotubes. 

Field of CNTs 
applications References Remarks 

High tensile 
strengthfibres 

Sandler et al. 
(2003) 

SWNTs embedded into a polymer. 
Fibres produced with polyvinyl alcohol 
required 600 J/g to break, in comparison, 
that of bullet-resistant fibre Kevlar is 27–
33 J/g 
 

Concrete Zhu et al.  
(2004) 

CNTs increase the tensile strength, and 
halt crack propagation in building 
materials.They are able to replace steel in 
suspension bridges 
 

Clothes De Schrijver et al. 
(2009) 

CNTs are used in textile industries to 
manufacture water proof tear-resistant 
clothing. Massachusetts Institute of 
Technology (MIT) is working on combat 
jackets that use carbon nanotubes as 
ultra-strong fibres and to monitor the 
condition of the wearer 
 

Ultra capacitors Gao et al.  
(2009) 

MIT is researching the use of nanotubes 
bound to the charge plates of capacitors 
in order to dramatically increase the 
surface area and therefore energy storage 
ability 
 

Sports equipment Schmid  
(2009) 

Stronger and lighter tennis rackets, bike 
parts, golf balls, golf clubs, golf shaft 
and baseball bats were recently 
developed 
 

Polyethylene Gupta et al.  
(2010) 

The addition of CNTs to polyethylene 
increases the polymer's elastic modulus 
by 30% 
 

Fire protection Zaikov et al.  
(2010) 

CNTs are used as covering material with 
a thin layer of buckypaper, which 
significantly improve fire resistance due 
to the efficient reflection of heat by the 
dense, compact layer of nanotubes or 
carbon fibres 
 

Solar cells Li & Xu  
(2010) 

GE's CNTs diode has a photovoltaic 
effect. Nanotubes can replace solar cells 
to act as a transparent conductive film in 
solar cells to allow light to pass to the 
active layers and generate photocurrent 
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http://en.wikipedia.org/wiki/Elastic_modulus
http://en.wikipedia.org/wiki/Buckypaper
http://en.wikipedia.org/wiki/Solar_cells
http://en.wikipedia.org/wiki/Photovoltaics


Table 1.2.  Continued. 

Field of CNTs 
applications References Remarks 

Superconductor Chae et al.  
(2010) 

CNTs have been shown to be 
superconducting at low temperatures 
 

Displays Yuan et al.  
(2010) 

Low-energy low-weight displays. This 
type of display would consist of a group 
of many tiny CRTs, each providing the 
electrons to hit the phosphor of one 
pixel, instead of having one giant CRT in 
which electrons are aimed using electric 
and magnetic fields. These displays are 
known as field emission displays (FEDs) 
 

Hydrogen storage Martin et al. 
(2010) 

Research is currently being undertaken 
into the potential use of CNTs for 
hydrogen storage. They have the 
potential to store between 4.2 and 65% 
hydrogen by weight. This is an important 
area of research, since if they can be 
mass produced economically there is 
potential to contain the same quantity of 
energy as a 50L gasoline tank in 13.2L of 
nanotubes 
 

Water filter Upadhyayula et al. 
(2009) 

Recently, CNTs membranes have been 
developed for use in filtration. This 
technique can purportedly reduce 
desalination costs by 75%. The tubes are 
so thin so that small particles (like water 
molecules) can pass through them, while 
larger particles (such as the chloride ions 
in salt) are blocked 
 

Air pollution filter Guan and Yao, 
(2010) 

Future applications of CNTs membranes 
include filtering carbon dioxide from 
power plant emissions 
 

 

 

1.6 Problem statement 

  

Owing to its extra- ordinary physical and chemical properties, CNTs are one 

of the most fascinating materials. Among various nanomaterials, CNTs finds wide 
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scope and applications in many areas of science and technology. Hence, there is a 

huge demand for CNTs at present and in future. Nowadays, synthesis of CNTs is one 

of the prominent focuses of many researchers around the globe. Among the three 

methods of CNTs synthesis, arc discharge and laser ablation were reported to be very 

expensive, tedious operation involve high temperature. Though various latest 

strategies have been adopted in recent years to produce these expensive 

nanomaterials, only catalytic CVD method has found its way towards the large scale 

production in a simplest manner (Baddour and Briens, 2005). 

  

 During the CVD method of CNTs synthesis, usually hydrocarbon vapours 

will be decomposed at high temperatures (600-900 oC) by the metal catalyst over 

chemically inert support materials. Transition metals such as Ni, Co and Fe are the 

most commonly used catalysts over high temperature resistance supports with high 

surface area such as silica, alumina, zeolites and magnesia. Other metals such as 

copper, molybdenum, boron, etc, are also been used either as promoters or used in 

binary metal compositions to enhance the yield of CNTs during synthesis. In addition 

to the nature of metal catalysts and supports, several other CVD process parameters 

such as flow rate of hydrocarbon gas, catalyst pre-treatment condition like catalyst 

calcination temperature, reduction under H2 atmosphere, reaction temperature and 

time play a vital role in determining the growth and yield of CNTs.   

  

Innumerable research work has been carried out using the traditional supports 

and catalysts to synthesize CNTs by CVD method. It is found that growth 

mechanism of CNTs depends on the metal-support interactions. Stronger interactions 

would cause CNTs to grow with base-growth mechanism while, weaker interaction 
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results in tip-growth CNTs. Hence, the nature of metal catalysts and the support on 

which they are impregnated are found to play a major role in determining the CNTs 

growth mechanism along with all other CVD process parameters. 

 

Despite several in-depth studies made on the CNTs synthesis with transitional 

metal catalysts and traditional supports, there are still several setbacks like high raw 

materials cost (especially for chemical supports like alumina, silica, zeolite and 

magnesia), difficulty in the removal of support from the synthesized CNTs product 

and  expensive post-processing treatments to be made after the CVD reaction. Due to 

aforementioned drawbacks, CNTs ultimatelyhave higher production cost and market 

price. In order to overcome the current high production cost, an initiative towards the 

use of low-cost and abundantly available resources like carbon materials were 

identified in this research project, to be used as supports for catalysts in CVD 

process. Some of the advantages of carbon support are, chemically inert, 

economically available from natural resources like wood waste, coal, etc., which 

possessing high surface area similar to that of traditional supports. Carbon has also 

been used as catalyst support in many industrial processes.  

 

Carbon materials are also found to play a crucial role in hydrocarbon 

decomposition based on its nature, source of origin and surface properties. Malaysia 

is the world leading nation in palm oil industry and is also one of the main resources 

for availability of activated carbon (one of the major by-product that is available in 

plenty from palm industries). Thus this study explores the possibility of utilizing 

carbon as support for metal catalyst in catalytic CVD process towards achieving 

CNTs production at lower cost. In this research, the main scope is set to develop 
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catalysts based on carbon support and to do further experimental studies on methane 

decomposition to get different morphologies of CNTs. Different kinds of analysis 

using equipment like SEM, TEM, XRD, TPR, and online-GC are employed to 

characterize the developed catalyst as well as the product CNTs produced from the 

methane decomposition process. 

 

1.7 Research objectives 

 

The present study has the following objectives: 

1) To synthesize carbon nanotubes (CNTs) over carbon supports using different 

transition metal catalysts (Fe, Co and Ni) via methane catalytic chemical vapour 

decomposition process. 

2) To examine the effect of catalyst metal loading on carbon supports and its pre-

treatment conditions like calcinations and reduction temperatures over methane 

decomposition reactions. 

3)  To investigate the influence of process parameters like the methane to inert    

(CH4:N2) gas ratio, reaction temperature and reaction time on the formation of 

various morphological structures of CNTs. 

4) To compare the performance of individual catalyst in methane conversion, CNTs 

characteristics upon different metals methane decomposition process. 

5) To study CNTs growth mechanism and reaction rate kinetics in methane CVD 

process based on the developed catalysts which result with higher catalytic 

activity and better CNTs.  
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1.8 Scope of the study 

 

The current study deals with the development of carbon based catalyst, 

kinetic study of methane decomposition and reaction parameters for CNTs 

formation. The method of CNTs synthesis is carried out using catalytic chemical 

vapour decomposition of methane. During this process, the prepared catalysts are 

subjected to a high temperature reaction in a tubular horizontal fixed bed reactor. The 

reactor exit gases are analyzed using an online gas chromatography. Synthesized 

catalysts and product samples are characterized using surface area analyzer, scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), 

thermogravimetric analyzer (TGA), temperature-programmed reduction (TPR) 

apparatus, X-ray diffractometer (XRD) and Raman spectroscopy. 

 

The main objective of this study is to develop low-cost carbon based catalyst 

for CNTs synthesis. This approach towards the usage of carbon as support for the 

active metals in carbon nanotubes synthesis is to overcome the existing drawback of 

its high production cost. It also allows the anchoring of metal particles on a substrate 

which does not exhibit solid acid-base properties. In this study, transition metals like 

Ni, Co and Fe are considered for catalyst development, as they are already been 

proven and well established catalysts along with traditional support materials like 

silica, alumina, zeolite and magnesia. Naturally, carbon materials have surface 

properties that are suitable for a support which is considered to be one of the 

important parameters for accommodating the metal particles and its distribution over 

the surface, which in turn leads to different morphologies of CNTs. All of these 

important criteria enable us to further study about its role with respect to the 

interaction with active metals like Fe, Co and Ni in methane decomposition.  
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During catalyst development, some of the important aspects that determine 

the particle size distribution and metal-support interactions are metal catalyst 

loading, calcination and reduction temperatures. Hence, the aforementioned 

parameters are varied at different conditions in order to study the methane 

decomposition reaction. The catalyst activity and its stability during the methane 

CVD process are identified from methane gas conversion using chromatographic 

technique. After the study of individual metal catalysts and its pre-treatment 

conditions towards effective methane decomposition, ultimate aim of CNTs 

production is focussed by studying the reaction parametric conditions like reaction 

temperature, time, gas ratio (CH4:N2). The resultant products were analysed to study 

the morphologies and structure of CNTs formed over different metal catalysts. The 

structure and the growth mechanism of CNTs are characterized using high resolution 

TEM and SEM. The embedded metal particles in the nanotubes are detected by 

EDX. The nature of metal oxides and its reduced forms are studied using powdered 

XRD technique. The amorphous and graphitized carbon formed over the product 

samples are studied through Raman spectral analysis. 

 

 Thermal stability of the catalyst and CNTs are examined with the help of 

TGA. The conditions such as metal loading, calcination temperature, catalyst 

reduction, reaction temperature, reaction time and gas ratio, are optimized based 

upon parameters such as catalytic activity and its stability, higher methane 

conversion during CCVD and better CNTs formation over the developed catalyst. 

Further kinetic studies and possible reaction rate mechanism for the methane 

decomposition over the developed catalyst are also investigated. 
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1.9 Organization of the thesis 

 

This thesis consists of six chapters. Chapter 1 (Introduction) provides a brief 

description about nanoscience and nanotechnology, its importance and applications 

in various sectors. It also discusses about different types of carbon nanotubes and its 

wide applications in diversified areas of science and technology. This chapter also 

includes the problem statement that provides some basis and rationale for the 

research directions while objectives followed by the organization of the thesis.  

  

 Chapter 2 (Literature Review) summarizes the earlier research works that has 

been carried out in the fields related to CNTs synthesis. It also includes the 

prominent CNTs synthesis techniques highlighting its advantages and disadvantages. 

Further, a review on various CVD reaction parameters and CNTs growth influencing 

factors is made in this chapter. Possible growth mechanism of CNTs on supported 

catalysts is also reviewed and thoroughly discussed. This serves as the background 

information about the specific problems that are addressed in this research work. 

  

 Chapter 3 (Materials and Methods) presents the details of the materials and 

chemicals used and the research methodology conducted in the present study. 

Detailed experimental setup is elaborated and shown in this chapter. This is followed 

by the discussion on the detailed experimental procedures, covering catalyst 

preparations, CNTs synthesis procedures andCVD process parameters study. Finally, 

the analytical techniques and the conditions set for the equipment used for various 

characterizations of both CNTs and catalysts are presented.  
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 Chapter 4 (Results and Discussion) presents and discusses all important 

findings obtained in this study. This chapter is the main part of the thesis and it 

comprises of seven main sections based on the present experimental work done. The 

main topics in this chapter include studies on methane CVD process, the use of 

activated carbon as support for nickel, cobalt and iron catalysts, effects of catalyst 

pre-treatment, process analysis, growth mechanism and kinetic study. 

 

Chapter 5 (Conclusions and Recommendations) reported the conclusions that 

are obtained from each individual study carried out in the present research and also 

suggests the ways to improve the present studies and make recommendations for 

possible future studies in this field. These recommendations and suggestions are 

given after taking into consideration the significant findings, the conclusions 

obtained as well as the limitations and difficulties encountered in the present work.  

 

 

 



CHAPTER 2  

LITERATURE REVIEW 

 

2.1 CNTs synthesis methods 

  

After the initial discovery of carbon nanotubes (CNTs) by Sumio Ijima in 

1991, researchers around the world started their keen interest towards the synthesis 

techniques to develop different morphologies of CNTs, because of their fascinating 

properties and applications in various fields. In continuation, several methods had 

been adopted in the following years to prepare CNTs. The prominent techniques are 

as follows: (1) Arc discharge (2) Laser ablation and (3) Chemical vapour deposition. 

The descriptions of each method were explained in detail in the following sections. 

 

2.1.1 Arc- discharge method 

  

Arc-discharge is the primitive and common method of producing CNTs. This 

technique involves the growth of CNTs on carbon (graphite) electrodes during the 

direct current (dc) arc-discharge evaporation of carbon in the presence of an inert gas 

such as helium or argon (Popov, 2004). Figure 2.1 illustrates the arc-discharge 

scheme. In this technique, anode is moved towards the cathode until they are less 

than 1 mm apart and a current of 100 Amp passes through the electrodes, creating 

plasma between them. The temperature of this plasma usually reaches 4000 K. At 

this temperature, the graphite on the anode is vaporized and deposited onto the 

cathode. The diameter of the anode is normally smaller than the diameter of the 

cathode and both electrodes are water-cooled. Basically, two types of synthesis can 
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2.1.3 Chemical vapour deposition (CVD) method 

  

Chemical vapours decomposition (CVD) technique was introduced by 

Yacaman et al. (1993). This was found to be an advanced, economical and low 

temperature method as compared to arc discharge and laser ablation methods. This 

process involves the decomposition of a hydrocarbon in the presence of a metal 

catalyst. Hydrocarbons usually used are ethylene or acetylene, which are 

decomposed in a tube reactor at temperatures ranging from 550 to 750°C (Popov, 

2004). Figure 2.3 illustrates a CVD system. During the synthesis, the hydrocarbon 

enters the reactor with an inert gas at high temperature. As the decomposition of 

hydrocarbon occurs, carbon settles onto the catalyst, which was supported by a 

material such as alumina, silica, zeolites, etc. The most commonly used active metals 

for CNTs synthesis are iron, nickel or cobalt. Since carbon has a low solubility in 

these metals at high temperatures, the carbon tends to precipitate to form nanotubes 

(Dresselhaus & Endo, 2001).  

    Plasma / thermal - Energy supply   Reactor 
         
   Pressure Gauge 

 

Gas Mixer        Thermocouple 

                                                                                          Catalyst                                                

      

    

         Exit gas Trap 
        & Analysis 

       
 

 

 
Figure 2.3. Schematic diagram of a CVD process for CNTs synthesis (Oncel and 

Yurum, 2006). 
 

Hydrocarbon Inert gas Source 
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2.1.4  Summary  

  

All of the above methods of CNTs synthesis have some advantages and 

limitations. For example, the main disadvantages of arc discharge and laser ablation 

methods are they require high power to generate carbon vapours from graphite rod 

and the requirements of sophisticated and costlier equipment. But in recent times, the 

focusing issue is about the selection of best and economical method for commercial 

production of CNTs (Serp et al., 2003). Since bulk production of CNTs is becoming 

the most important factor, industries today are opting for the CVD technique.  It is a 

promising technique that can be easily up-scaled to industrial production level. This 

technique has been reported to be the simplest method with high yield and well 

controlled growth process of nanotubes in larger scale. Table 2.1 highlights the 

summary of different CNTs synthesis methods. 
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