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PENGHASILAN BIODIESEL MENGGUNAKAN MINYAK JATROPHA 

CURCAS L. DENGAN MANGKIN SO4
2-/ZrO2 

 

ABSTRAK 

 

 Biodiesel yang diterbit daripada minyak tidak boleh makan seperti minyak 

Jatropha curcas L. mempunyai potensi yang lebih besar berbanding dengan minyak 

boleh makan sebagai gantian petroleum diesel kerana ia tidak perlu bersaing dengan 

sumber makanan. Walau bagaimanapun, minyak Jatropha curcas L. menggandungi 

kandungan asid lemak bebas yang tinggi, dimana melebihi batasan yang boleh 

diterima oleh mangkin alkali dalam fasa bendalir. Oleh itu, mangkin asid dalam fasa 

pepejal amat diperlukan untuk mencegah penghasilan sabun dalam campuran 

produk. Dalam kajian ini, dua cara mudah untuk menyediakan mangkin zirconia 

yang disulfatkan dan dimuati alumina (SZA) yang digunakan dalam transesterifikasi 

minyak Jatropha curcas L. dan metanol kepada biodiesel telah dilaporkan. Mangkin 

ini telah disediakan dengan cara pensulfatan zirconia oksida secara langsung dan cara 

bebas bendalir. Mangkin ini telah dikaji melalui alatan Analisis Pembelauan Sinar-X 

(XRD), Spektroskopi Jelmaan Fourier Infra-merah (FTIR), FTIR-pyridine dan luas 

permukaan BET. Keputusan menunjukkan bahawa mangkin yang disediakan 

daripada kedua-dua cara tersebut mempunyai struktur berhablur yang baik dengan 

tapak-tapak berasid yang mencukupi untuk tindak balas transesterifikasi. Kesan 

daripada pembolehubah-pembolehubah bagi proses penyediaan mangkin SZA 

terhadap hasil biodiesel telah dikaji dengan menggunakan Rekabentuk Eksperiement 

(DOE). Bagi cara pensulfatan zirconia oksida secara langsung, 84.6 peratus berat 

hasil biodiesel yang optimum telah diperolehi dengan suhu pengkalsinan 400 °C 
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selama 4 jam. Bagi cara bebas bendalir, keputusan menunjukkan 81.4 peratus berat 

hasil biodiesel yang optimum dapat diperolehi dengan suhu pengkalsinan 490 °C 

selama 4 jam. Disebabkan cara terdahulu memerlukan suhu pengkalsinan yang lebih 

rendah dalam proses penyediaan mangkin, mangkin yang dioptimumkan dengan cara 

tersebut telah dipilih untuk digunakan dalam kajian proses transesterifikasi yang 

seterusnya. Sekali lagi dengan menggunakan “DOE”, didapati bahawa bagi syarat-

syarat berikut: 150 °C suhu reaksi selama 4 jam, nisbah 9.88 bagi metanol dan 

minyak Jatropha curcas L. dan 7.61 peratus berat nisbah mangkin, dapat 

menghasilkan 90.32 peratus berat biodiesel. Daripada keempat-empat pembolehubah 

yang dikaji, suhu tindak balas menunjukkan kesan yang paling jelas terhadap hasil 

biodiesel diikuti dengan nisbah mangkin, nisbah metanol dan minyak Jatropha 

curcas L. dan akhir sekali jangka masa tindak balas. Keputusan telah menunjukkan 

bahawa dengan meningkatkan nilai pembolehubah-pembolehubah tersebut, hasil 

biodiesel dapat dipertingkatkan lagi. Selain daripada itu, interaksi pembolehubah-

pembolehubah tersebut juga menunjukkan kesan yang jelas terhadap hasil biodiesel. 

Keupayaan mangkin ditebusguna dan jangka hayat mangkin terhadap proses 

transesterifikasi juga telah dikaji dan keputusan menunjukkan bahawa hasil biodiesel 

turun daripada 90.32 peratus berat kepada 74.57 peratus berat (kitar semula kali 

pertama). Hasil biodiesel terus turun kepada 52.04 peratus berat dalam kitar semula 

kali kedua, 32.07 peratus berat dalam kitar semula kali ketiga dan 30.86 peratus berat 

dalam kitar semula kali keempat. Ini adalah disebabkan mangkin tersebut telah 

hilang keaktifan. Oleh itu, penjanaan semula mangkin yang telah digunakan adalah 

penting. Ciri-ciri bahan api bagi biodiesel Jatropha telah dikaji dan biodiesel 

Jatropha dapat memenuhi biodiesel speksifikasi mengikut ASTM D6751. 
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PRODUCTION OF BIODIESEL FROM JATROPHA CURCAS L. OIL 

CATALYZED BY SO4
2-/ZrO2 

 

ABSTRACT 

 

Biodiesel which is derived from non-edible oil such as Jatropha curcas L. oil 

has a better potential compare to edible oil to replace petroleum-derived diesel fuel 

as it does not compete with food resources. However, Jatropha curcas L. oil contains 

high free fatty acids, which is far beyond the limit that can be tolerated by 

homogeneous alkaline catalyst. Therefore, heterogeneous acid catalyst is required to 

eliminate soap formation in the product mixture. In this study, two simplified 

methods to prepare sulfated zirconia loaded on alumina (SZA) catalyst for 

transesterification of Jatropha curcas L. oil with methanol to biodiesel is reported. 

The catalysts were prepared by direct sulfation of zirconia oxide method and solvent- 

free method. The catalysts were characterized by X-ray Diffraction (XRD), Fourier 

Transform Infrared Spectroscopy (FTIR), pyridine- FTIR and BET surface area 

measurement. The characterization results revealed that the catalysts prepared by 

these two different methods had good crystalline structure with sufficient acidic sites 

required for transesterification reaction. The effects of SZA catalyst preparation 

variables on the yield of biodiesel were investigated using Design of Experiment 

(DOE). For direct sulfation of zirconia oxide method, it was found that an optimum 

biodiesel yield of 84.6 wt% was obtained using catalyst prepared with calcination 

temperature and calcination duration at 400 °C and 4 hours, respectively. For 

solvent- free method, the results revealed that at the optimum condition, calcination 

temperature and calcination duration at 490 °C and 4 hours, respectively, an 

optimum biodiesel yield of 81.4 wt % was obtained. Since the former method 
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requires lower calcination temperature for catalyst preparation, the optimized catalyst 

prepared using this method was selected for subsequent transesterification process 

study. Again using DOE, it was found that at the following conditions; 4 hours of 

reaction at 150 °C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt% for 

catalyst loading, an optimum biodiesel yield of 90.32 wt% can be obtained. Among 

the four process variables studied, reaction temperature showed the greatest effect on 

the yield of biodiesel followed by catalyst loading, molar ratio of methanol to oil and 

reaction duration. The result revealed that an increase in each of the process variable 

led to an increase in biodiesel yield. Apart from that, the interaction between 

variables also showed significant effect on the yield of biodiesel. The reusability and 

life span of the catalyst for the transesterification process were also studied and it 

was found that the yield of biodiesel dropped from 90.32 wt% to 74.57 wt% (first 

cycle). The yields dropped further to 52.04 wt% in the second cycle, 32.07 wt% in 

the third cycle and 30.86 wt% in the fourth cycle. It was due to catalyst deactivation. 

Hence, regenerating the spent catalyst was important in order to reuse the catalyst. 

The fuel properties of Jatropha biodiesel were characterized and Jatropha biodiesel 

indeed met the specification for biodiesel according to ASTM D6751. 
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CHAPTER ONE 

INTRODUCTION 

 

This chapter gives an overall introduction to the entire research project. The 

current scenario of biodiesel (fatty acid methyl ester, FAME) and biodiesel related 

issues are outlined at the beginning of this chapter. Apart from that, information on 

Jatropha curcas L. oil used in this study and basic theory on transesterification 

reaction are given as well. Finally, this chapter concludes with the problem statement, 

project objectives, scope and the organization of thesis contents. 

 

1.1 Biodiesel 

At present, despite of the rapid decline in fossil fuel reserves, the demand for 

fossil fuels is still increasing very fast and this scenario has escalated the price of 

fossil fuel in the world market. It was estimated that remaining fossil fuel reserves 

for oil will last another 40 years if the world continues to consume fossil fuels at the 

rate recorded in 2006 (Shafiee and Topal, 2009). Therefore, the diminishing fossil 

fuel reserves and the negative environmental consequences of exhaust gases from 

petroleum-fuelled engines has given rise to the exploitation of renewable energy 

sources such as biodiesel. 

 

Biodiesel, which consists of simple alkyl esters of fatty acids is synthesized 

by the transesterification of vegetable oils with alcohols. Biodiesel is now recognized 
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as a “green fuel” that has several advantages over conventional diesel. It is safe, 

renewable, non-toxic and biodegradable in water. Furthermore, it contains less sulfur 

compounds (Demirbas, 2005), has a high flash point (>130°C) and has been 

successfully tested in unmodified diesel engines without effecting engine 

performance. Comparison between biodiesel and fossil-based diesel, biodiesel shows 

effectiveness in reducing exhaust emissions of carbon monoxide, emitting 80% fewer 

hydrocarbons and almost 50% less particulates and sulfur (National Biodiesel Board, 

2004). Generally, renewable fuel always has an “intrinsic” perception of being 

environmentally friendly and sustainable (Niederl-Schmidinger and Narodoslawsky, 

2008). Hence, there is a need to prove the sustainability credentials of biodiesel in a 

rigorous manner that can withstand the scrutiny of a competitive market. This can be 

achieved with the use of life cycle assessment (LCA) as one of the systematic 

approaches to investigate all upstream and downstream processes or cradle-to-grave 

analysis for the production of biodiesel to validate the benefits or “cleanliness” of 

this so called “green fuel” throughout the product lifespan.  

 

In the recent decade, there were unprecedented rise of the biodiesel industry 

all over the world. As shown in Figure 1.1, production of biodiesel in the world has 

been increasing steadily from the year 1991 to 2005 (Worldwatch Institute, 2006). 

However, at the beginning of the year 2004, there was a drastic increase in the world 

biodiesel production from 2,196 million liters to 3,762 million liters in the year 2005. 

In the year 2006, biodiesel production further jumped 50% compared to the previous 

year to over 6,000 million liters globally (REN21, 2008). Biodiesel 2020 (2008) 

reported that the global production for biodiesel in the year of 2007 and 2008 

reached over 9,000 million liters and 11,000 million liters, respectively. This is the 
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consequence of the drastic increase in petroleum prices (shown in Figure 1.2) which 

has gained the world attention to find an alternative renewable fuel such as to convert 

cheaper vegetable oils and animal fats to biodiesel. However, the utilization of 

vegetable oils and fats for the production of biodiesel has affected the food and 

oleochemical sectors since these sectors compete for the same raw materials. Due to 

this circumstance, the issue on food security has been intensively debated all over the 

world focusing on issues encompassing adequacy, affordability and realiability of 

oils and fats supply. One possible solution to overcome this problem is to use non-

edible oil sources for the production of biodiesel. Since non-edible oils derived from 

non-edible crops are by nature not consumable by human, it will not affect food 

security and thus will not lead to the shortage of food supply. 

 

 

 

Figure 1.1: World biodiesel production from 1991 to 2005 (Worldwatch 
Institute, 2006). 



4 

 

 

 

Figure 1.2: Crude petroleum price from 2000 to 2007 (Basiron, 2008). 

 

1.2 Non-edible Oil as Feedstock 

Feedstock for biodiesel production covers a wide variety of oil source which 

can be mainly classified into three types; vegetable oils, animal fats and non-edible 

oil. However, due to the food versus fuel debate, non-edible oils offer a better 

prospect as feedstocks. Example of non-edible oils are those derived from plant 

species such as Pongamia pinnata (karanji), Calophyllum inophyllum (nagchampa), 

Rosa canina L. (rosehip fruit), Eribotrya japonica (loquat fruit), Cerbera odollam 

(sea mango), sweet sorghum and castor. Lately, Jatropha curcas L. or physic nut has 

gained popularity as a potential source of non-edible oil due to its special 

characteristics. The plant has a lifespan of 30 to 40 years. It is a drought resistant 

large shrub or small plant tree belonging to the genus Euphorbiaceae which produces 

seeds containing oil. The seeds of Jatropha curcas L. are a good source of oil which 
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can be used as a diesel substitute. The oil extracted from the seed can serve as fuel 

for diesel engines (Berchmans and Hirata, 2008). Jatropha seed and oil were found 

to be toxic to mice, rats, calves, sheep and goats, and human. The high concentration 

of phorbol esters present in Jatropha seed has been identified as the main toxic agent 

responsible for Jatropha toxicity (Kumar and Sharma, 2008). Hence, due to its 

toxicity, its utilization is limited only for traditional use such as manufacturing soap 

and medicinal applications and cannot be consumed by human and animal. Therefore, 

this non-food crop is very suitable to become the feedstock for the production of 

biodiesel.  

 

Jatropha curcas L. has its native habitat distribution range in Mexico, Central 

America, Brazil, Bolivia, Peru, Argentina and Paraguay, but is now found 

abundantly in many tropical and sub-tropical climates across the developing world 

(Openshaw, 2000). It can grow in arid, semiarid and waste lands, which mean that it 

can be cultivated on non-agricultural land, and therefore, it does not compete with 

land for food crops plantation. Apart from that, it has a high-seed yield and high oil 

content. Under optimum conditions, Jatropha curcas L. seeds can yield up to 40 % 

oil content (The Energy Report, 2008). For extraction of the Jatropha curcas L. oil, 

two main methods are generally used; mechanical extraction and chemical extraction 

(Arhten et al., 2008). Mechanical press is able to extract 60-80 % of the available oil 

while chemical extraction can extract up to 95-99 % of available oil by using soxhlet 

apparatus in which n-hexane is used as the extraction solvent. Jatropha curcas L. oil 

contains 20.1 % saturated fatty acids and 79.9 % unsaturated acids. Its fatty acid 

content is similar to conventional oilseeds such as palm oil, which mainly contains 

palmitic acid, stearic acid, oleic acid and linoleic acid. Table 1.1 shows the typical 
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properties and fatty acid compositions of Jatropha curcas L. oil (De Oliveira et al., 

2008). Due to this characteristic, Jatropha curcas L. oil is seen as a very promising 

source of non-edible oil that can be used as feedstock for the production of biodiesel. 

 

Table 1.1: Typical properties and fatty acid compositions of Jatropha curcas 
L. oil (De Oliveira et al., 2008) 

Properties Value 

Calorific value (MJ/kg) 40.31 

Acid value (mg KOH/g) 8.45 

Kinematic viscosity at 40°C (Cst) 30.686 

Pour point (°C) -2 

Fatty acid composition (%)  

Lauric (C12:0) 5.9 

Myristic (C14:0) 2.7 

Palmitic (C16:0) 13.5 

Stearic (C18:0) 6.1 

Oleic (C18:1) 21.8 

Linoleic (C18:2) 47.4 

Others 2.7 

 

1.3 Transesterification Reaction 

Generally, transesterification reaction describes the process of exchanging 

alkoxy group of an ester compound with another alcohol. The transformation of ester 

compound occurs by mixing the reactants together. In the transesterification of 

vegetable oils, triglyceride reacts with alcohol in the presence catalyst, producing a 

mixture of fatty acids alkyl esters (fatty acid methyl esters) and glycerol. The overall 



7 

 

process is a sequence of three reversible reactions, in which di- and monoglycerides 

are formed as intermediates. Figure 1.3 shows the stoichiometric reaction which 

requires 1 mol of a triglyceride and 3 moles of alcohol to form a mixture of alkyl 

esters and glycerol. Excess amount of alcohol is normally used to increase the yield 

of alkyl esters and to facilitate easier phase separation from the glycerol formed. 

 

 

 

Figure 1.3: General equation for transesterification of triglycerides (Jitputti et al., 
2006).  

 

 Transesterification reaction requires catalyst in order to obtain reasonable 

conversion rates. Basically, the catalytic process is categorized based on the type of 

catalyst used such as homogeneous catalyst, heterogeneous catalyst or enzyme-based 

catalyst. Furthermore, homogeneous and heterogeneous catalysts can be further 

divided into base or acid catalyst. Besides that, there is also non-catalytic process for 

producing biodiesel such as transesterification in supercritical alcohol in which 

catalyst is not required under the critical reaction conditions.   
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1.3.1 Homogeneous Catalysis 

Homogeneous catalysis uses catalyst which is in the same phase as the 

reactants. Currently, most biodiesel is produced using homogeneous base catalysts 

such as sodium and potassium methoxides and hydroxides in a batch process. In the 

industry, sodium hydroxide, NaOH and potassium hydroxide, KOH are preferred due 

to their wide availability and low cost (Lotero et al., 2005). Apart from that, 

homogeneous base-catalyzed transesterification proceeds faster and is less corrosive 

if compared with acid-catalyzed transesterification. Even though transesterification is 

feasible using homogeneous base catalysts, the process suffers limitations, both from 

the ecological and economical points of view. Oil that contains significant amounts 

of free fatty acid (FFA) reacts with homogeneous base catalyst to produce soaps and 

leads to difficulty in downstream separation process (Lu et al., 2009; Berchmans and 

Hirata 2008). Besides, removal of these catalysts appears to be technically 

challenging which brings additional cost to the final product (Helwani et al., 2009). 

One way to overcome this limitation is to use heterogeneous catalyst. 

  

1.3.2 Heterogeneous Catalysis  

 Heterogeneous catalysis is defined as catalyst which is in different phase than 

the reactants and the catalyst provides a surface on which reaction may take place. 

An appropriate amount of heterogeneous catalyst could be easily incorporated into a 

packed bed continuous flow reactor, simplifying product separation and purification 

and reducing waste generation. There are two types of heterogeneous catalysts which 

are acid and base. Heterogeneous acid catalysts are preferable than heterogeneous 

base catalysts as the latter require a feedstock with higher purity. For heterogeneous 



9 

 

base catalyst, the total FFA content associated with the lipid feedstock must not 

exceed 0.5 wt%, otherwise this might lead to undesired saponification side reaction 

that produces soap. Soap production is undesirable because it causes the 

emulsification between biodiesel and glycerol which makes the separation of 

biodiesel-glycerol mixture become more difficult (Shu et al., 2007). Heterogeneous 

acid catalysts can be further sub-categorized by their Bronsted or Lewis acidity. 

There are many types of heterogeneous acid systems such as heteropoly acids, ion 

exchange resins (Amberlyst and Nafion-H), zeolites and clays. 

 

1.3.3 Enzyme-based Catalysis 

 Enzyme-based transesterification is typically catalyzed by lipase such as 

Candida antartica, Candida rugasa, Pseudomonas cepacia, immobilized lipase 

(Lipozyme RMIM), Pseudomonas spp. and Rhizomucar miehei.  Both extracellular 

and intracellular lipases are favourable as they are able to effectively catalyze the 

transesterification of triglycerides in either aqueous or non-aqueous systems 

(Helwani et al., 2009). However, the main problem with lipase-catalyzed process is 

the high cost of lipases. Apart from that, this enzyme-catalyzed system normally 

requires a much longer reaction time than base catalyzed systems (Helwani et al., 

2009). 

 

1.3.4 Supercritical Alcohol 

 Lately, non-catalytic transesterification reaction has been reported and 

continuous effort is being carried out to fully develop this technology for producing 
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biodiesel using supercritical alcohol. A high temperature, high pressure vessels are 

used to physically catalyze the oil and alcohol into biodiesel. Methanol and ethanol 

are the alcohols used in this context. At supercritical condition, both the reaction 

temperature and pressure are above the thermodynamic critical point of alcohol and 

thus when mixed with oil, only one phase exists. This is because at supercritical 

condition, the properties of the alcohol are intermediate between those of gases and 

liquids and can be easily manipulated. The supercritical point for methanol is at a 

temperature of 240 °C and a pressure of 8.09 MPa (79.8 atm) whereas for ethanol is 

at a temperature of 243 °C and a pressure of 6.14 MPa (60.6 atm) (Warabi et al., 

2004).  

 

1.4 Problem Statement 

Biodiesel or fatty acid methyl ester as an alternative fuel for diesel engines 

has attracted considerable attention during the past decade as a renewable, 

biodegradable and non-toxic fuel to overcome the shortage of petroleum derived 

diesel in the coming era while protecting the environment. However, currently, more 

than 95 % of the biodiesel produced worldwide is from edible oil. Thus, fatty acid 

methyl ester which is derived from non-edible oil such as Jatropha curcas L. has a 

better potential to replace petroleum-derived diesel fuel as it does not compete with 

food resources.  

  

Currently in the biofuel industry, biodiesel is mostly produced using a batch 

process with homogeneous catalyst such as sodium and potassium methoxides and 
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hydroxides. However, homogeneous base catalyzed process suffers from many 

limitations that translate into high production costs for biodiesel. One of them is the 

base catalyst used have to be neutralized in the reconditioning step with inorganic 

acids like sulfuric acid, H2SO4. Subsequently, a significant amount of inorganic salts 

will be formed which must be removed in the purification step. These additional 

complex reconditioning and purification steps will increase the processing cost of 

biodiesel unnecessarily. Furthermore, the purification step will produce a lot of 

wastewater which must be disposed off properly, which again adds cost to the 

processing step. Another limitation of the homogeneous base catalytic process is the 

requirement of oil feedstock with high purity.  

 

Non-edible oil normally contains FFA ranging from 3 % to 40 %. When the 

amount of FFA in the feedstocks exceeds 0.5 wt%, the use of base homogeneous 

technology for the production of biodiesel, which employs sodium hydroxide as 

catalysts, is not recommended due to soap formation in the product mixture leading 

to additional cost required for the separation of soap from the biodiesel. Soap is 

formed when metal hydroxide catalyst reacts with FFA in the feedstock. Apart from 

that, the formation of soap will also lead to the loss of triglycerides molecules that 

can otherwise be used to form biodiesel.  Hence, it will make the downstream 

separation and purification of biodiesel more complex and difficult, making the cost 

of biodiesel not economical as compared to petroleum-derived diesel. Jatropha 

curcas L. oil contains about 14% FFA, which is far beyond the limit that can be 

tolerated by homogeneous alkaline catalyst.  
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 Some researchers proposed the use of two step acid-base catalyzed 

transesterification for oil with high FFA such as Jatropha curcas L. oil. In the first 

step, acid catalyst is used to reduce the FFA in oil to less than 1% by esterifying it to 

biodiesel. In the subsequent step, transesterification reaction with an alkaline catalyst 

follows. However, the requirement of this two-step method is not efficient because if 

appropriate strong heterogeneous acid catalyst is used, the catalyst can catalyze 

transesterification and esterification reactions simultaneously for oil with high FFA 

content. 

 

After summarizing all the problems faced by the biodiesel industry, 

production of biodiesel from Jatropha curcas L. oil using heterogeneous acid 

catalyst was chosen in this study. The use of Jatropha curcas L. oil provides an 

alternative non-edible oil feedstock to overcome the food security issue. Moreover, 

heterogeneous acid catalytic transesterification reaction provides a more promising 

solution to overcome the problem faced by homogeneous base catalytic 

transesterification reaction like complex separation, reconditioning and purification 

steps and the requirement of feedstocks with high purity.  

 

1.5 Scope 

This study consists of three major sections; oil extraction, synthesize of 

heterogeneous acid catalyst and transesterification process study. For the oil 

extraction, Jatropha curcas L. oil was extracted from the seeds using soxhlet hexane 

extraction base on the optimum conditions reported by Machmudah et al. (2008). 

The purpose of the extraction stage is to obtain the oil require throughout this study. 
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The extracted oil was then characterized based on Malaysian Palm Oil Board 

(MPOB) standard to acquire its basic properties such as density and fatty acid 

compositions. 

 

For the preparation of heterogeneous acid catalyst, two different methods 

were used; direct sulfation of zirconia oxide method and solvent-free method. In this 

study, solvent-free method was used as a comparison with direct sulfation of zirconia 

oxide method since the use of solvents such as sulfuric acid is not environmentally 

friendly as they are very harmful to human and the environment and therefore is 

eliminated.  Subsequently, only one of the optimized heterogeneous acid catalysts 

was selected from this two catalyst preparation methods for the transesterification 

process study. The life span of the heterogeneous acid catalyst was also investigated 

using the optimum transesterification process conditions obtained previously. Finally, 

the biodiesel obtained was characterized. 
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1.6 Objective 

i. To synthesize heterogeneous acidic catalyst using direct sulfation of zirconia 

oxide method and solvent- free method. 

ii. To study and optimize the calcination variables (temperature and duration) 

for the two different preparation methods and correlate the effect with 

characterization results. 

iii. To study and optimize the transesterification process variables (temperature, 

duration, molar ratio of methanol to oil, catalyst loading). 

iv. To study the reusability and lifespan of the catalyst and the possible 

regeneration route (re-sulfation method). 

v. To characterize the biodiesel produced according to ASTM D6751. 

 

1.7 Organization of the Thesis 

This thesis consists of five chapters. Chapter One gives an outline of the 

overall research project covering some introduction of biodiesel, current scenario on 

the development of biodiesel, possible use of non-edible oil feedstock for the 

production of biodiesel and transesterification reaction. Problem statement is then 

defined after reviewing the existing limitations faced by the biodiesel industry. 

Hence, this stresses on the need of this research project to overcome the limitations. 

The objectives of this research project are carefully set with the aim to solve the 

problems faced by the biodiesel industry. Next the scope of this study is given. 

Finally, the organization of the thesis highlights the content and arrangement of each 

chapter. 
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 Chapter Two gives an overall review of various research works reported in 

the literature in this area of research. The various research works reported include oil 

extraction, production of biodiesel from Jatropha curcas L. oil, types of 

heterogeneous acid catalyst used in the production of biodiesel and their preparation 

methods, catalyst recycling, biodiesel characterization and design of experiment. 

This review is aimed at reporting the feasibility and advantages of using Jatropha 

curcas L. oil and heterogeneous acid catalyst for the production of biodiesel. 

Meanwhile, the review on design of experiment is given to identify the suitable types 

of statistical method and model for this research project. 

 

 Chapter Three discusses the experimental materials and methodologies used 

in this research project. This chapter describes detail information on the overall flow 

of this research work and also several experimental methods used in conducting this 

research project. Besides, detail information on the materials and chemicals used in 

this study is also given. This chapter also includes the mathematical equation 

/information that is required for the calculation of yield and data analysis. 

 

 Chapter Four is the most important chapter in this thesis. It encompasses 

detail discussion in the results obtained in the present research work. This chapter 

consists of six sections which have been divided according to the stages of this 

research work. First section of this chapter presents the results of characterization of 

Jatropha curcas L. oil from the seeds. The second and third section reports the effect 

of calcination variables on catalyst characteristics and the yield of biodiesel through 

two different catalyst preparation methods; (i) direct sulfation of zirconia oxide 
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method and (ii) solvent-free method. Also, the analysis results of catalyst 

characterization using X-ray diffraction (XRD), Fourier Transform Infrared 

Spectroscopy (FTIR), and BET surface area and the optimization of the calcination 

variables are presented. This is then followed by the fourth section which presents 

the process study used to optimize the transesterification variables for optimum yield 

of biodiesel using the optimum catalyst. Section five covers the study on reusability 

and the life span of the catalyst for the transesterification process. At the end of this 

chapter, characterization of biodiesel sample obtained in this project is reported.  

 

 Chapter Five, the last chapter in this thesis, gives the summary on the results 

obtained in this research work. This chapter concludes the overall research finding 

and gives recommendations for future studies related to this research project. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 This chapter reports the literature review related to this research project. 

Possible oil extraction methods and different oil sources used for the production of 

biodiesel were reviewed. Then, the suitability of Jatropha curcas L. oil as non-edible 

oil feedstock for transesterification reaction was discussed. Apart from that, reviews 

on different types of common heterogeneous catalyst used for biodiesel production 

were also reported. This was followed by the review on sulfated zirconia catalyst 

which is claimed as the most promising heterogeneous acid catalyst, highlighting its 

advantages compared with other types of heterogeneous acid catalyst. Besides that, 

the preparation methods to synthesize sulfated zirconia were also reported in detail. 

Then the review on catalyst recycling and biodiesel quality were reported 

subsequently. Review on statistical design of experiment (DOE) was covered at the 

end of this chapter. 

 

2.1 Oil Extraction  

 Generally, there are three different methods to be used for extracting oil from 

oil-containing seed, which are mechanical extraction using screw-presses or ram 

presses, direct solvent extraction and supercritical carbon dioxide (SC-CO2) 

extraction. In recent years, there has been a resurgence of interest in the use of 

continuous, mechanical screw-presses to recover oil from oilseeds. This is a reliable 

extraction method which consists of a number of unit operations such as cleaning, 
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cracking, cooking, and drying of the seed followed by pressing. However, according 

to Marcela et al. (2008), the oil recovery of this extraction method is rather low. This 

statement was supported by Henning (2000) in which it was reported that engine 

driven screw presses extract 75 % to 80 % of the available oil while manual ram 

presses only achieved 60 % to 65 % recovery of oil. Marcela et al. (2008) further 

reported that the thermal treatment before or during pressing and the seed moisture 

content at the time of pressing are the key process variables that effect extraction 

efficiency. Generally the application of thermal treatment improves oil recovery but 

it may adversely influence the oil quality by increasing oxidative parameters. 

However, high moisture content may result in poor oil recovery due to insufficient 

friction during pressing. Hence, the optimum pressing temperature and moisture 

content of seed for highest oil recovery (89.3 %) was reported at 50 °C and 7.5 %, 

respectively.  

  

 Another type of conventional oil extraction method is direct solvent 

extraction by using soxhlet hexane apparatus. In solvent extraction, the duration and 

amount of hexane used for extraction are the important factors that must be 

controlled to ensure maximum possible extraction yield. Zaidul et al. (2007) reported 

the use of soxhlet apparatus for the extraction of palm kernel oil from palm kernel 

using 15 g of palm kernel seed with 200 ml hexane as the extraction solvent. The 

whole extraction process was carried on for 6 hours. The content of oil in the palm 

kernel was found to be 50.1 g oil extracted/ 100 g palm kernel on dry basis. In 

another study, Machmudah et al. (2008) reported that the extraction time for hundred 

percent extraction yield is minimum 8 hours. Apart from that, the amount of hexane 

required varies based on the amount of grounded seed loaded in the extraction vessel 
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(Machmudah et al.; 2008, Zaidul et al., 2007; Molero and Martinez, 2002). 

Machmudah et al. (2008) conducted the extraction process using 35 g grounded seed 

with 250 ml hexane. However, Zaidul et al. (2007) only utilized 15 g seed with 200 

ml hexane in the study.  

 

Lately, supercritical carbon dioxide extraction is another extraction method 

used which utilizes CO2 above its critical point. The critical temperature and pressure 

for carbon dioxide are 31.1 °C and 73.8 atm (7.48 MPa), respectively. Study on 

supercritical carbon dioxide extraction mainly focus on the crucial process variables 

such as pressure and temperature. Machmudah et al. (2008) studied the effect of 

pressure (15 MPa to 19 MPa) on the extraction yield of rosehip, loquat and physic 

nut seeds using supercritical carbon dioxide and subsequently predicted the 

extraction rate using two different models. The results showed that the recovery of 

rosehip seed oil increased with increasing pressure at short extraction time but 

decreased as extraction time progress longer. However, the recovery of loquat seed 

oil increased with decreasing pressure at 60 and 80 °C, but at 40 °C, extraction 

recovery was independent of pressure. For physic nut, increasing pressure allows 

high extraction recovery from 83.7 to 88.7 % at constant temperature. Meanwhile, 

Marcela et al. (2008) studied the extraction process of oil from walnut seeds by 

mechanical pressing followed by supercritical carbon dioxide. The best result for this 

type of extraction (92.6 %) was obtained at 40 MPa, 50 °C and 7.5 % seed moisture.  

Apart from that, Westerman et al. (2006) also investigated the effect of solvent flow 

rate and sample pre-treatment (shell disruption) on the extraction rate and yield. It 

was found that the rate of extraction was only dependent on the solvent flow rate, 

while the yield is dependent on the solvent flow rate and sample pre-treatment. 
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Besides that, Louli et al. (2004) studied the effect of particle sizes on the extraction 

rate. It was shown that an increase of particle size in the seeds decrease the extraction 

rate. Based on all these studies reported, it was found that the operating pressure and 

temperature for supercritical carbon dioxide normally range from 15 MPa to 40 MPa 

and 35 °C to 50 °C, respectively. 

 

Based on the literature review on the various oil extraction methods, it can be 

summarized that mechanical screw-press is not suitable due to the requirement of 

many processing steps and low oil recovery rate. On the other hand, supercritical 

carbon dioxide is not suitable as it requires high operating pressure. Hence, in this 

study, conventional soxhlet hexane extraction method was selected to extract 

Jatropha curcas L. oil from the seed. 

 

2.2 Oil Feedstocks 

 Up until today, the common approach for biodiesel production is by 

transesterification of vegetable oils and animal fats. A variety of vegetable oils has 

been exploited for biodiesel production with varying but promising results. The oils 

used include soybean (Garcia et al., 2008; Xie et al., 2006; Suppes et al. 2004), 

rapeseed (Georgogianni et al., 2009; Kwiecien et al., 2009; Zhang et al., 2006), 

sunflower seed (Lukic et al., 2009), cotton seed (Nabi et al., 2009; Selvi and Rajan, 

2008) and palm oil (Abdullah et al., 2009; Noiroj et al. 2009; Kansedo et al, 2009). 

Different types of vegetable oils have different types of fatty acids which vary in 

terms of their carbon chain length and in the number of double bonds.  
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 According to Gubitz et al. (1999), Jatropha curcas L. oil can be used directly 

as fuel in diesel engines or by blending it with methanol. Takeda (1982) also reported 

that Jatropha curcas L. oil shows a satisfactory engine performance in Thailand 

during an engine test. However, direct use of Jatropha curcas L. oil in engine may 

cause problem in a long run, and therefore, recently researchers have been putting a 

lot of effort to use this non-edible oil for biodiesel production through 

transesterification process. Besides that, the life cycle energy balance of biodiesel 

derived from Jatropha curcas L. oil is reported to be positive (Tobin and Fulford, 

2005). These results showed that it is possible to use Jatropha curcas L. oil as oil 

feedstock for the production of biodiesel.  

 

Bechmans and Hirata (2008) and Tiwari et al. (2007) have developed a 

technique to produce biodiesel from Jatropha curcas L. oil with high FFA content 

(15 % FFA). Two stages transesterification process was selected to improve methyl 

ester yield. The first stage involved sulfuric acid pretreatment process to reduce the 

FFA level of crude Jatropha seed oil to less than 1 % (1.43 % v/v H2SO4, 0.28 v/v 

methanol to oil ratio, 88 minutes reaction time, reaction temperature at 60 °C) and 

second stage was the alkali base catalyzed transesterification process that can give 

90 % methyl ester yield (0.16 v/v methanol to oil ratio, 24 minutes reaction time, 

reaction temperature at 60 °C). In the pretreatment stage, maximum conversion of 

FFA was obtained at high acid concentration and methanol to oil ratio. Reaction time 

showed an insignificant effect on the conversion of FFA. In transesterification stage, 

methanol to pretreat oil ratio showed the most significant effect on the conversion 

follow by reaction time. However, the interactions of variables for both stages also 

affect the conversion of FFA and conversion of oil. 
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Apart from that, Lu et al. (2009) also studied biodiesel production from 

Jatropha curcas L. oil in a two-step process consisting of pre-esterification and 

transesterification. In the first step, FFA in the oil was converted to methyl esters 

using sulfuric acid or sulfated titanium oxide as catalyst. The yield of biodiesel was 

compared between both types of catalyst in the pre-esterification step. Then, KOH 

was used as the catalyst in the transesterification process and 98 % of biodiesel yield 

was achieved. In the pre-esterification step using sulphuric acid as catalyst, increased 

reaction temperature, time, methanol to oil ratio could reduce the acid value of oil to 

below 1 mg KOH/ g. The optimum conditions were at 70 °C, 2 hours reaction time, 

12 wt% methanol and 1 wt% H2SO4. Apart from that, in the pre-esterification step 

using sulfated titanium oxide, the yield increased when reaction time and catalyst 

loading increase, however, reaction time longer than 3 hours and catalyst loading 

over 4 wt% did not change the yield anymore. Apart from that, increasing reaction 

temperature from 70 °C to 90 °C increased the yield but further increase of reaction 

temperature reduces the yield. The use of excessive methanol was also reported to 

increase the reaction rate and promote the completion of reaction. Hence, the optimal 

conditions obtained were at 90 °C, 2 hours, methanol to oil ratio at 20 and 4 wt% 

catalyst loading. In the transesterification reaction, the results showed that higher 

methanol to oil ratio led to greater yield for a given reaction time. Also, higher yield 

was obtained at a higher reaction temperature between 35 °C to 65 °C. Therefore, an 

optimal yield over 90 % was reported at the following optimum conditions at 64 °C 

in 20 minutes with 1.3 % KOH as catalyst and methanol to oil ratio at 6. 

 

Amish et al. (2009) studied the transesterification of Jatropha curcas L. oil 

with methanol catalyzed by potassium nitrate loaded on alumina, KNO3/Al2O3. In 
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addition, the effect of various variables was also studied such as reaction time, 

catalyst loading, methanol to oil molar ratio and the agitation speed. The result 

showed that the effect of reaction time on yield of biodiesel become insignificant 

after the process had reached equilibrium. Besides that, the yield of biodiesel was 

reported to increase with initial increase in catalyst loading, but further increase in 

the catalyst amount decreased the yield of biodiesel. Also, the yield of biodiesel 

increased when higher methanol loading was used. Apart from that, the results 

showed that an efficient mixing of the reagents was essential to reach a high yield of 

biodiesel. Therefore, under optimum conditions, biodiesel yield of 84 % was attained 

(70 °C, 6 hours, 6 wt% catalyst, methanol to oil molar ratio of 12, agitation speed at 

600 rpm) by using Jatropha curcas L. oil as oil feedstock. Hence, Jatropha curcas L. 

oil is a potential candidate in the production of biodiesel replacing edible oil which 

has been heavily criticized due to the food security issue. Table 2.1 summarized the 

work done by the researchers.  
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Table 2.1: Production of biodiesel with different routes using Jatropha curcas L. oil. 

Optimum 
condition 

               Researchers 

Tiwari et al. 
(2007) 

Lu et al. 

(2009) 

Amish et al. 
(2009) 

       Pre-treatment 

Temperature 60 °C 70 °C 90 °C - 

Time 88 minutes 120 minutes 120 
minutes 

- 

Methanol  0.29 % v/v 12 wt% 20 molar 
ratio 

methanol to 
FFA 

- 

Sulfuric acid 1.43 % v/v 1 wt% 4 wt% 
(sulfated 
titanium 
oxide) 

- 

 Conversion of 
FFA 

Acid value 
below 1.0 mg 

KOH/ g 

Acid value 
below 1.0 mg 

KOH/ g 

97% - 

       Transesterification 

Temperature 60 °C 64 °C 70 °C 

Time 24 minutes 20 minutes 6 hours 

Methanol to 
oil molar ratio 

0.16 % v/v 6 12 

Catalyst 5.5 g KOH/ 
liter oil 

1.3 wt% KOH 6 wt% 
KNO3/Al2O3 

Yield of 
biodiesel 

99 % 98 % 84 % 

 

2.3 Heterogeneous Catalyst 

There are two types of heterogeneous catalysts which are acid and base. 

Heterogeneous acid catalyst is preferable than heterogeneous base catalyst as the 

latter require oil with higher purity or otherwise it could lead to undesire 
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saponification side reaction. Soap production is undesirable because it reduces the 

ester yields and makes the recovery of glycerol considerably more difficult, due to 

the formation of emulsions (Vicente et al., 2004). In the case when the amount of 

FFA in the feedstock exceeds 0.5 %, the use of heterogeneous base catalyst is not 

recommended (Xie et al., 2007). However, heterogeneous acid catalyst allows the 

transesterification of vegetable oils or animal fats even with high content of FFA 

(Tiwari et al., 2007). 

 

 There are many types of heterogeneous acid catalyst such heteropoly acids, 

ion exchange resins (Amberlyst and Nafion-H) and zeolites. However, each of these 

catalysts has its own limitations towards the transesterification reaction (Ahmed et 

al., 2008; Reddy et al., 2005). Ahmed et al. (2008) reported that heteropoly acids 

easily loose their activity at higher temperature due to collapse in structure and thus 

is not suitable for use in biodiesel production where high reaction temperature is 

required. Another researcher, Kiss et al. (2006) investigated various heterogeneous 

acid catalysts which included ion exchange resins and zeolites in the esterification of 

dodecanoic acid with 2-ethylhexanol, 1-propanol and methanol at 130-180 °C. The 

results showed that ion exchange resins only showed high initial activity and 

deactivated after 2 hours reaction duration. This made ion exchange resins not 

suitable for continuous industrial process, where a long catalyst lifetime is essential. 

Besides that, zeolites showed only a small increase of conversion (1-4 %) compared 

to non-catalyzed reaction. It was suggested that zeolites are not suitable for 

production of biodiesel due to its small pores (micropores) that caused diffusion 

limitations of large fatty acid molecules. Thus the catalytic reaction probably takes 

place only on the external surface. Moreover, the hydrophilic catalyst surface leads 
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to deactivation of catalytic sites due to strong adsorption of polar by products such as 

glycerol and water.  

 

Due to all these limitations, there are ongoing efforts to develop stronger 

heterogeneous acid catalyst which have better characteristics such as water tolerant, 

stable at high temperature and suitable for both liquid and vapor phase reaction 

conditions. Among various heterogeneous superacid catalysts reported, sulfated 

zirconia is a catalyst that possesses strong acid site and possesses all the advantages 

of heterogeneous catalysts (Zhao et al., 2008). This catalyst has been found to exhibit 

high catalytic activity for skeletal isomerization of light paraffins, n-alkane 

isomerization, alkylation, acylation, dehydration of ethanol, esterification, etc. 

(Ahmed et al., 2008; Zhao et al., 2008; Ardizzone et al., 2004). Sulfated zirconia is a 

potential replacement for mineral acids like sulfuric acid, H2SO4, nitric acid, HNO3 

and hydrofluoric acid, HF in esterification and transesterification reactions since it 

has superacid sites that could contribute to high catalytic activity (Ni and Meunier, 

2007; Jitputti et al., 2006; López et al., 2005).  

 

Apart from that, under appropriate reaction conditions, sulfated zirconia 

allows the simultaneous esterification of FFA and transesterification of triglycerides 

for oil with high FFA content (Suwannakarn et al., 2008). This will eliminate the 

requirement of complicated two-step process for the production of biodiesel which 

includes acid-catalyzed esterification process and alkali base catalyzed 

transesterification process as reported by some of the researches (Tiwari et al., 2007; 

Berchmans and Hirata, 2008). The catalytic behavior of sulfated zirconia is 

controlled by its surface phenomenon and generally larger surface area will have 
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higher catalytic activity. Against all the positive points of sulfated zirconia, its 

relatively small surface area and non-uniform pore size limit its potential applications 

in catalytic reactions. Therefore, sulfated zirconia must be supported on materials 

with high surface area to improve its textural properties, such as alumina. Alumina 

was more preferred as a support than other supports in the production of biodiesel 

through transesterification reaction (Zabeti et al., 2009).  

 

Several studies have been conducted concerning the preparation method, 

catalyst characterization and possible application of sulfated zirconia in the 

production of biodiesel. In particular, it has been shown that acidic and catalytic 

properties of sulfated zirconia catalyst depend heavily on sulfation procedure 

(Comeli et al., 1995) and calcination temperature (Monterra et al., 1996). Variation 

in any of these variables can drastically affect the resultant catalytic activity of 

sulfated zirconia. 

 

Ahmed et al. (2008) studied the effect of calcination temperature and the 

effect of incorporation of sulfate ion (SO4
2-) in zirconia oxide (ZrO2) (wet 

impregnation method) on the structural properties of the catalyst using X-ray 

diffraction, nitrogen adsorption at -196 °C and adsorption of pyridine at room 

temperature. XRD showed that the sample contain mixture of tetragonal and 

monoclinic zirconia phases. The percentage of tetragonal zirconia phase was found 

to depend on sulfate content and calcination temperature. Figure 2.1 showed the x-

ray diffraction patterns of sulfated zirconia catalyst (10% polyvinyl alcohol, 30 wt% 

sulfates) at different calcination temperature. The monoclinic phase peaks were 

located at 2θ = 28.16 °, 31.44 ° and that for tetragonal phase peaks at 2θ = 30.15 °. 
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The sample calcined at 400 °C was mainly amorphous. For samples calcined at 500 

°C the predominant phase is the tetragonal phase. By increasing calcination 

temperature to 600 °C and 700 °C, the percentage of tetragonal phase decreased 

gradually up to 700 °C at which monoclinic phase become the predominant phase. 

Apart from that, the surface area of the investigated samples was influenced with the 

sulfate content and calcination temperature as well. A continuous decrease in surface 

area was observed with the rise of calcination temperature from 400 °C to 700 °C. 

Besides that, acidity studies demonstrated the presence of mixture of Brónsted and 

Lewis acid sites. In summary, it was reported that sulfate ions concentration and 

calcination temperature at 15 wt% and 500 °C, respectively, resulted to the highest 

content of tetragonal phase and largest surface area in sulfated zirconia catalyst.  

 

 
 

Figure 2.1: X-ray diffraction patterns of sulfated zirconia catalyst (10% 
polyvinyl alcohol, 30 wt% sulfates) at different calcination temperature (Ahmed et 

al., 2008). 
 

Mekhemer (2006) investigated the effect of calcination temperature (500 °C 

to 800 °C) on pure zirconia oxide and sulfated zirconia which was prepared by wet 

impregnation method. The samples were analysed using X-ray powder 
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diffractometry, N2 sorptiometry and FTIR spectroscopy of adsorbed pyridine 

molecules. Figure 2.2 showed the x-ray powder diffractogram of sulfated zirconia as 

a function of calcination temperature. It was obvious that the tetragonal phase peak 

was formed at 500 °C and 600 °C with a few weak peaks assignable to a minor 

proportion of monoclinic phase. At temperature higher than 700 °C, the monoclinic 

phase peak was dominant. Table 2.2 showed the surface area and particle size of 

pure and sulfated zirconia. Sulfated zirconia showed higher surface area than pure 

zirconia oxide within the range of calcination temperature studied. Apart from that, 

increasing calcination temperature from 500 °C to 700 °C, surface area for both pure 

and sulfated zirconia decreased but with increasing of particle size. These results 

may indicate that the presence of sulphate ions was capable to stabilize the surface 

area of sulfated zirconia and these incorporated sulphate ions retard the formation of 

larger crystalline of zirconia. Apart from that, acidity studies revealed that pure 

zirconia oxide has no Brónsted acidic sites which indicate that the surface only 

contains Lewis acid sites. However, sulfated zirconia showed both Brónsted and 

Lewis acid sites that enhanced its acidic strength.  
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Figure 2.2: X-ray powder diffractogram of sulfated zirconia as a function of 
calcination temperature (Mekhemer, 2006). 

 

Table 2.2: Surface area and particle size of pure and sulfated zirconia with different 
calcination temperature (Mekhemer, 2006). 

 
 Calcination temperature 

500 °C 600 °C 700 °C 800 °C 

Pure Sulfated Pure Sulfated Pure Sulfated Pure Sulfated 

SBET 
(m2/g) 

88 110 54 100 38 72 21 39 

Particle 
size 
(nm) 

13.0 12.2 20.3 13.6 30.5 17.5 37.3 23.0 
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Li and Li (2002) studied on the phase transformation of sulfated zirconia 

which was calcined at different temperature by investigating the XRD patterns of 

sulfated zirconia sample. As shown in Figure 2.3, broad peaks of the tetragonal 

phase were detected for sample calcined at 500 °C. These indicated that the sample 

was in an intermediate amorphous to tetragonal form. The peaks of tetragonal phase 

become stronger when the sample was calcined at 600 °C as that of the peaks of 

monoclinic phase. The peak intensities of the monoclinic phase grow steadily and 

those of the tetragonal phase decline with the increase in calcination temperature 

from 700 °C to 800 °C. For the sample calcined at 800 °C, the monoclinic phase was 

predominant. Hence, it was revealed that the increase of calcination temperature leds 

to crystalline growth due to loss of sulfate group, which leads to instability of 

tetragonal phase. The phase change of sulfated zirconia was significantly retarded 

with the presence of surface sulfate groups. 

 

 

 

Figure 2.3: XRD patterns of sulfated zirconia calcined at 500 °C, 600 °C, 
700 °C, 800 °C (Li and Li, 2002). 
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Zhao et al. (2008) prepared a novel mesoporous heterogeneous acid catalyst 

system by loading sulfated zirconia into mesostructured γ-Al2O3 and mobil 

composition of matter no. 41 (MCM-41). The textural and structural properties as 

well as acid properties of the catalysts were characterized. The results showed that a 

novel mesoporous solid acid with large surface area and pore volume were 

successfully synthesized by loading sulfated zirconia into mesostructural γ-Al2O3. 

This catalyst has equivalent acid strength to sulfated zirconia but with more acid sites 

(with both Lewis and Bronsted acid sites). Besides that, zirconia in the mesoporous 

catalysts exhibits only tetragonal phase. It was also shown that sulfated zirconia 

supported with alumina exhibits a better textural and structural properties than 

supported with MCM-41. Hence, the novel mesoporous solid acids are more active 

than sulfated zirconia and MCM-41 supported zirconia. Besides that, Prescott et al. 

(2004) studied the preparation, physical surface properties, surface acidity and 

catalytic activity of sulfated zirconia catalysts supported on silicon dioxide (SiO2), γ-

Al2O3 and montmorillonite K-10. It was reported that the catalytic activity was 

higher than that of bulk sulfated zirconia with the use of a support. Apart from that, it 

was revealed that the physical surface properties play a secondary role in the 

catalytic activity in comparison to other factors, such as surface acidity.  Also, it was 

shown that Brónsted acid sites have a greater effect on the catalytic activity 

compared to Lewis acid sites.  

 

Apart from that, Kiss et al. (2006) reported that sulfated zirconia was found 

to be a good candidate for the esterification of fatty acids with a variety of alcohols 

(2-ethlyhexanol, 1-propanol, and methanol) under specific process conditions due to 

its active, selective and stable state. The catalyst was prepared using two-step 
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synthesis procedure with modification and calcined for 3 hours at 650 °C. The 

following characteristics were reported; 118 m2/g surface area, 0.099 cm3/g of 

specific pore volume and 3 nm of average pore size. The initial rate of the catalyzed 

reaction was about three times higher compared to that of non-catalyzed reaction. 

Even after 20 minutes of reaction, the conversion of the catalyzed reaction was 

double to that of non-catalyzed reaction. Apart from that, the catalyst has high 

reusability where by even after five consecutive runs, with no treatment between the 

runs, the activity only dropped to 90 % of the original value and remained constant 

thereafter. Recalcination of this (slightly) deactivated catalyst can restore it to the 

original activity.  

 

Kansedo et al. (2009) investigated the performance of sulfated zirconia 

supported by alumina as a heterogeneous catalyst in the transesterification of sea 

mango oil. The yield of biodiesel obtained under optimized conditions (180 °C, 3 

hours, methanol to oil molar ratio at 8, 6wt% of catalyst) was 83.8 %. Suwannakarn 

et al. (2008) studied the use of sulfated zirconia in the acid catalyzed alcoholysis of 

triglycerides using a model triglyceride compound, tricaprylin (TCP) and three low 

molecular weight alcohols; methanol, ethanol and n-butanol. The reaction was 

carried out for 2 hours at 120 °C and 6.8 atm in a Parr batch reactor with typical 

molar ratio of alcohols to TCP at 12:1 and catalyst concentration at 10 wt% based on 

the weight of TCP. It was found that the catalytic activity for TCP conversion 

decreased as the number of carbons in the alkyl chain of alcohol increased from 

methanol (84 %), ethanol (45 %) to butanol (37 %), most likely as a result of 

increased steric hindrance.  
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Chen and Wang (2006) studied the production of biodiesel from cottonseed 

oil using sulfated zirconia catalyst. Sulfated zirconia was prepared by mounting 

immersed H2SO4 on zirconium hydroxide (Zr(OH)4) and then followed by calcining 

at  550 °C. In the case of using 2 wt% of the catalyst with methanol to oil molar ratio 

at 12 to 1, an optimum yield of biodiesel (80.0 wt%) can be obtained under desired 

reaction temperature at 230 °C for 7 hour. Table 2.3 shows the comparison of 

biodiesel yield obtained with sulfated zirconia catalyst under different reaction 

conditions.  

 

Table 2.3: Comparisons of biodiesel yield obtained with sulfated zirconia catalyst 
under different reaction conditions. 

Optimum  

reaction  

condition 

Researchers 

Chen and Wang  

(2006) 

Kansedo et al. 

 (2007) 

Suwannakarn et al. 

(2009) 

Oil feedstock Cottonseed oil Sea mango oil Tricaprylin (TCP) 

Alumina supported no yes no 

Temperature 230 °C 180 °C 120 °C 

Duration 7 hours 3 hours 2 hours 

Methanol to oil 
molar ratio 

12 8 12 

Catalyst loading 2 wt%  6 wt% 10 wt% 

Yield of biodiesel 80.0 % 83.8 % 84 % 
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2.4 Preparation of Sulfated Zirconia Catalyst 

The acidic and catalytic properties of sulfated zirconia highly depends on the 

preparation method, preparation procedure and calcination conditions (Reddy et al., 

2005; Ahmed et al., 2008). There are various methods for the preparation of sulfated 

zirconia catalyst, which can be generally classified into two types. The first one is a 

two steps process starting from precipitation followed by impregnation. The other 

one is sol-gel method, which is a single step method.  

 

In the two steps method, zirconium hydroxide, Zr(OH)4 is synthesized during 

the first step followed by sulfate impregnation in the second step. In the first step, 

precipitation process is carried out by using precipitated agents to precipitate starting 

material (which is zirconium compounds) to Zr(OH)4. There are various zirconium 

compounds that can be used such as zirconium nitrate, Zr(NO3)2.5H2O, zirconium 

chloride, ZrCl4, zirconyl chloride octahydrate, ZrOCl2.8H2O and zirconium 

isopropoxide, Zr(OC3H7)4.C3H7OH. Ammonium hydroxide, NH4OH and urea are 

normally use as the precipitating agents. In the second step, sulfate impregnation is 

carried out by introducing sulfating agent to Zr(OH)4. The most commonly used 

sulfating agent is H2SO4 and ammonium sulfate, (NH4)2SO4. Some sulfur 

compounds such as hydrogen sulfide, H2S and sulfur dioxide, SO2 have also been 

used. However, it has been observed that the use of H2SO4 as the sulfating agent 

shows higher sulfate concentrations and higher specific surface area. Figure 2.4 

shows the schematic diagram which summarize this method. 

 

Tichit et al. (1996) synthesized sulfated zirconia using this preparation 

method for the isomerization of n-hexane. Zr(OH)4 with specific area in the range of 
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60 to 300 m2/g were obtained in aqueous media by hydrolysis of ZrOCl2.8H2O salt 

solutions (0.4 M) with adjusted quantities of NH4OH (6 M). These compounds were 

then sulfated by impregnation with 15 and 35 ml of aqueous 0.5 M H2SO4. It was 

reported that the solids remain amorphous up to at least 400 °C and then crystallize 

in the tetragonal and monoclinic phases. However, Kiss et al. (2006) performed a 

modification on the two-step catalyst synthesis method for the esterification of 

dodecanoic acid with alcohol. 50 g of ZrOCl2.8H2O was dissolved in 500 ml water 

followed by precipitation of Zr(OH)4 at pH 9 using 25 wt% NH3 solution. The 

resulting Zr(OH)4 was washed with water to remove the chloride salts. In the second 

step, Zr(OH)4 was dried for 16 hours at 120 °C, impregnated with 1 N H2SO4 (15ml 

H2SO4 per 1g Zr(OH)4) and calcined in air for 3 hours at 650 °C. The result showed 

that sulfated zirconia synthesis by this method is appropriate to apply in the 

production of biodiesel under appropriate process conditions. However, optimization 

of the process variables was not performed in this study. 

  

 

 

 

 

 

 

 

 

 

 

Calcination 

Drying at 120°C 

Zirconia precursor Precipitating agent 

Zr(OH)4 

Dried Zr(OH)4 

 

SO4
2-/Zr(OH)4 

SO4
2-/ZrO2 

 

Sulfating agents 

 

Figure 2.4: Two step preparation procedure for sulfated zirconia (Reddy and 

Patil, 2009). 
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Apart from that, sol gel technique is another way to produce sulfated zirconia. 

This method has the advantage of high chemical homogeneity, require low 

processing temperature and offers possibility of controlling the size and morphology 

of the resulting particles. Furthermore, the sol gel-derived materials provide excellent 

matrixes for a variety of organic and inorganic compounds. Due to these huge 

advantages, it has attracted a lot of researchers to study the preparation of sulfated 

zirconia via sol gel method (Melada et al, 2004; Ben Hamouda et al., 2000; 

Armendariz et al., 1997).  However, the procedures employed by each researcher 

may differ slightly from one to another to suite specific needs.  

 

Ward and Ko (1994) reported an efficient method to synthesize sulfated 

zirconia aerogels in a one step synthesis through sol gel method followed by 

supercritical drying for n-butane isomerization. During the sol gel formation of the 

aecogel, sulfuric acid solution was added to the zirconium n-propoxide in n-propanol 

and reacted with water and nitric acid, in order to incorporate sulfate functional 

group into the alcogel network, leading to the formation of a zirconium sulphate 

cogel. Then, sulfated zirconia aerogel was obtained after supercritical drying with 

carbon dioxide which was used to remove the alcohol solvent.  

 

Apart from that, Melada et al. (2004) investigated the effect of preparative 

variable (water/ alkoxide molar ratio) in the preparation of sulfated zirconia xerogels 

by a single step sol gel method. Zirconium n-propoxide (as precursor) was mixed 

with 2-propanol (as solvent) and sulfuric acid was added dropwise with stirring. 

Sulfuric acid was used both as the sulfating agent and as the catalyst of the 

polycondensation reaction in the gel formation. When the exothermic reaction was 
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accomplished, a water/ 2-propanol solution was introduced drop by drop with stirring 

for 2 hours. The water/ alkoxide molar ratio was varied in the starting mixtures at 1.4, 

14, 60 and 143. After ageing and drying process, the dried xerogels were calcined. 

The characterization results showed that water/ alkoxide molar ratio is an important 

factor in the development of a high surface area and in the retention of sulfur after 

the calcination step. However, it does not influence the final structure of the catalyst.  

 

Although a lot of researchers preferentially use sol gel method for the 

synthesis of sulfated zirconia, but modifications are made to the standard method in 

order to get specific catalytic characteristics such as larger surface area or to produce 

mesoporous structure of sulfated zirconia. Sun et al. (2005) used a solvent free 

preparation method to synthesis nanosized sulfated zirconia with brønsted acidic 

sites using a simple calcination step. In this method, zirconyl chloride octahydrate 

(ZrOCl2.8H2O) and ammonium sulfate ((NH4)2SO4) were grounded in an agate 

mortar for 20 minutes at room temperature (25 °C) with a molar ratio of 1:6. After 

placement for 18 hours at room temperature, the sample was calcined for 5 hours at 

600 °C. By using this preparation route, an average size of 7 nm of sulfated zirconia 

was obtained and the catalyst also exhibited high surface area (165-193 m2/g). The 

catalytic tests showed that the sulfated zirconia synthesis by solvent free method 

exhibits much higher activity than conventional sulfated zirconia in catalytic 

esterification of cyclohexanol with acetic acid. Conventional sulfated zirconia gives 

40 % conversion of cyclohexanol, while the sulfated zirconia synthesis by solvent 

free method exhibits 62 % conversion, both for 300 minutes reaction duration.  
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2.5 Catalyst Recycling 

 One of the main advantages of heterogeneous acid catalysts over liquid acids 

is that the former can be easily recovered from the reaction mixture. Apart from that, 

it can be regenerated and reused. Thus, the life span of sulfated zirconia can then be 

evaluated. 

 

 Suwannakarn et al. (2008) carried out the recycling studies of sulfated 

zirconia catalyst by recovering the used catalysts after 2 hours transesterification 

reaction and reusing them (without pretreatment) with fresh reagents in the 

subsequent reaction cycle. The reaction were carried out using Tricaprylin (TCP) 

with three different types of alcohol; methanol, ethanol and butanol. However, the 

result showed continuous activity loss for all reactions. The TCP conversion dropped 

significantly from the initially run to the third run of alcoholysis; 80 % to 30 % (with 

methanol), 45 % to 5 % (with ethanol) and 38 % to 3 % (with butanol). The sulfated 

zirconia catalyst was deactivated with subsequent reaction runs in all cases due to the 

leaching of sulfate ion species. However, the degree of sulfur removal was dependent 

on the alcohol size. Larger alcohol size leads to higher degree of catalyst deactivation.  

 

 Garcia et al. (2008) investigated the reusability of sulfated zirconia catalyst in 

the transesterification of soybean oil with methanol. The reaction product was 

filtered to separate the catalyst. Then, the separated catalyst sample was exhaustively 

washed with hexane, dried for 1 hour at 60 °C and reuse in the subsequence reaction 

with fresh reagents. The results showed that yield of biodiesel dropped significantly 

when using recycle catalyst. After the fourth reaction run, the yield of biodiesel was 



40 

 

only 14 % compared to 90 % at the initial run. This revealed that the activity of 

sulfated zirconia was limited due to its rapid deactivation. The catalysts could be 

recycled, however, they start losing their catalytic activities after the second reuse. 

Hence, a more effective catalyst regeneration route should be studied. 

 

 Jitputti et al. (2006) studied the life span of sulfated zirconia with and without 

pretreatment. The used catalyst obtained from transesterification was tested to 

determine whether the one-time used sulfated zirconia was fully deactivated. The 

used catalyst was recovered by filtering the product mixture with nylon membrane 

filter. The recovered catalyst was then dried at 100 °C and directly added to the 

reactor to test for crude palm kernel oil transesterification with fresh reactants. 

However, the results showed that the reaction catalyzed by spent sulfated zirconia 

only gave a biodiesel yields of 27.7 wt%, which was much lower than biodiesel 

produced by fresh sulfated zirconia catalyst (90 wt%). This indicates that the used 

catalyst was fully deactivated and cannot be directly reused for transesterification 

without further treatment. Therefore, the used catalyst was regenerated by immersing 

the reused catalyst in a 0.5 M H2SO4 solution for 30 minutes, filtered and dried at 

110 °C for 24 hours to form the sulfated sample again. Then, the regenerated catalyst 

was calcined at 500 °C for 2 hours prior to use. In this case, the regenerated catalyst 

gave high biodiesel yield (90 wt%) as in the case of freshly prepared catalyst. Hence, 

this showed that the used catalyst from transesterification can be easily regenerated 

and results in the same activity as in fresh catalyst.  
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2.6 Biodiesel Quality 

 The properties of biodiesel vary with their production methods and ways of 

handling. Hence, biodiesel produced should be compare with the international 

standard and the properties should falls within the range of specification. There are 

two major standards including ASTM International D6751 and European standard 

EN 14214.  

 

 Tiwari et al. (2007) studied the production of biodiesel from Jatropha curcas 

L. oil with two-step process consisting of pre-esterification and transesterification 

using sulfuric acid and potassium hydroxide as catalyst. The product obtained was 

subjected to biodiesel property test and the results compared with the American 

Society Testing and Materials standard (ASTM D6751) and European standards 

(DIN EN 14214). The properties tested include density, kinematic viscosity at 40 °C, 

flash point, water content, ash content, carbon residue and acid value. Table 2.4 

shows the fuel properties and the biodiesel standards. 

 

 Amish et al. (2009) studied the production of biodiesel through 

transesterification of Jatropha curcas L. oil using potassium nitrate as heterogeneous 

catalyst. Apart from that, Lu et al. (2009) also studied the production of biodiesel 

from Jatropha curcas L. oil with two-step process using sulfuric acid and potassium 

hydroxide as catalyst. Both of the biodiesel fuel properties were tested and 

summarized in Table 2.4. 
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Table 2.4: Fuel properties of Jatropha biodiesel and biodiesel standards. 

Property Unit Jatropha biodiesel Biodiesel standards 

Tiwari et al. 
(2007) 

Amish et al. 
(2009) 

Lu et al. 
(2009) 

ASTM 
D6751 

DIN EN 
14214 

Density kg m-3 880 862 881 860-900 860-900 

Viscosity 
at 40 °C 

mm2 
s-1 

4.8 4.5 5.13 1.9-6.0 3.5-5.0 

Flash 
point 

°C 135 110 164 >130 >120 

Water 
content 

%  0.025 - - <0.03 <0.05 

Ash 
content 

% 0.012 - - <0.02 <0.02 

Carbon 
residue 

% 0.20 - - - <0.03 

Acid 
value 

mg 
KOH 
g-1 

0.40 - 0.29 <0.80 <0.50 

 

2.7 Statistical Design of Experiment 

 Statistical design of experiment refers to the process of planning experiment 

so that appropriate data will be collected and analyzed by statistical methods, 

resulting in valid and meaningful conclusions. Apart from that, the application of 

statistical experiment design techniques followed by optimization can results in 

enhanced yields, close conformance of the process response to target requirements 

and reduced process variability, development time and cost. A statistical design of 

experiment is a combination of two aspects which includes the design of experiment 

and statistical analysis of the data (Montromery, 2001). 
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2.7.1 Response Surface Methodology (RSM) 

RSM is a collection of mathematical and statistical techniques employed for 

multiple regression analysis by using quantitative data obtained from properly 

designed experiments to solve multivariate equations simultaneously. The graphical 

representations of these equations are called response surfaces, which can be used as 

tools to understand complex processes and to describe the individual, cumulative and 

interactive effects of the variables on the process yield. Thus, it is useful for 

modelling and analysis of problems in which a response of interest is influenced by 

several variables and the objective is to optimize the response. Based on 

Montgomery (2001), the ultimate objective of RSM is to determine the optimum 

operating conditions for the system or to determine a region of the factor space in 

which operating requirements are satisfied. In most RSM problems, the form of 

relationship between variables and response are unknown. Therefore, figuring out a 

suitable approximation for the true functional relationship between variables and 

response is one of the important functions in RSM and the approximate function is 

expressed in polynomial model. Usually, a lower-order polynomial in some region of 

the independent variables is employed. The general form of the first-order model for 

linear function of the variables is as follow: 

 

              (2.1) 

 

 Besides that, polynomial model is employed for curvature system. In most 

cases, once experiments are performed, second-order model is used where the 

coefficient of polynomial model is calculated using the equation shown in Equation 
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2.2. The term i and j are linear, quadratic coefficients, respectively, while ‘β’ is 

regression coefficient, n is the number of variables studied and optimized in the 

experiment and ‘ε’ is random error (Balusu et al., 2005).  

 

               (2.2) 

 

The coefficients in the approximating polynomial are estimated using least 

square method. The surface response is then performed using the fitted surface. If the 

fitted surface is an adequate approximation of the true function, then the analysis of 

the fitted surface will be approximately the analysis of the actual system. The model 

variables can be approximated effectively with a proper experimental design using 

variables with appropriate range.  

 

2.7.2 Central Composite Design (CCD) 

A full factorial central composite experimental design is used to acquire the 

data required to fit an empirical quadratic polynomial model involving several 

factors. Researchers apply this standard RSM design in different area of interest and 

it has become the most favourable design for fitting a quadratic surface. Generally, 

CCD consists of three groups of design points, first is the two-level (2n) factorial or 

fractional factorial design points, where n is the design factor or number of 

independent variables in the design system, second is the axial points and the third is 

the center points (Montgomery, 2001) 



45 

 

 The two-level factorial design points consist of all possible combinations of 

the high coded (+1) and the low coded (-1) levels of the factors. The axial points are 

located at ( , 0, 0), (0, , 0) and (0, 0, ) where α is the distance of the axial 

point from center and makes the design rotatable. The center points are use to 

estimate the overall curvature effect and in the position of (0, 0, 0). The distance α of 

the axial runs from the design center and the number of center points have to be 

specific when designing a CCD system. The choice of α determines the rotatability 

of the CCD. The value for α for rotatability depends on the number of points in the 

factorial portion of the design. Rotatability is a reasonable basis for the selection of a 

response surface design. Rotatability in the CCD is important to provide equal 

precision of estimation in all directions in the design system. 

 

Up until now, there is no study in the literature that reports on the use of 

statistical design of experiments for the optimization of transesterification of 

Jatropha curcas L. oil with heterogeneous acid catalyst. Most of the optimization 

studies reported were done manually using the conventional optimizing procedure in 

which one single variable is optimize at one time while remaining the rest constant. 

However, statistical design of experiment has been applied in the process 

optimization for transesterification reaction of other oil feedstocks such as palm oil 

and waste rapeseed oil. Yuan et al. (2008) investigated biodiesel production by 

alkaline catalyst using response surface methodology and 24 full-factorial central 

composite design. The objectives were to optimize the reaction conditions for 

maximum yield of biodiesel and understand the significance and interaction of the 

factors affecting biodiesel production. The results showed that catalyst loading and 

reaction duration were the limiting factors and little variation in their value would 
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alter the yield of biodiesel significantly. At the same time, there was a significant 

mutual interaction between catalyst loading and reaction duration. The maximum 

yield of biodiesel (83.3 %) was obtained at reaction temperature of 48.2 °C, reaction 

duration of 65.4 minutes, methanol to oil molar ratio of 6.5 and catalyst loading of 

1 %. 

 

Apart from that, Hammed et al. (2009) applied RSM based on CCD to 

optimize three important reaction variables; methanol to oil molar ratio, reaction 

duration and catalyst loading for the production of biodiesel from palm oil using 

potassium fluoride supported by zinc oxide (KF/ZnO) catalyst. The reaction 

temperature was controlled at 65 °C by heater. The optimum conditions for biodiesel 

production were found as follows: methanol to oil molar ratio of 11.43, reaction 

duration of 9.72 hours and catalyst loading of 5.52 wt%. The optimum biodiesel 

yield was 89.23 %. Abdullah et al. (2009) reported the optimization of mesoporous 

K/SBA-15 catalyzed transesterification of palm oil using RSM. The influence of 

reaction variables on biodiesel yield were studied using CCD. It was found that at 

optimum conditions (reaction temperature at 70 °C, 5 hours reaction duration, 

methanol to oil molar ratio of 11.6, catalyst loading of 3.91 wt%), 93 % of biodiesel 

yield can be achieved. Apart from that, the results reveals that the effect of catalyst 

loading and reaction duration were relatively more dominant in affecting the 

biodiesel yield.  
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2.8 Summary 

From the literature review, it is clear that Jatropha curcas L. oil can be used 

as an oil feedstock for production of biodiesel. Its non-edible characteristics offer 

possible replacement for the current edible oil used in biofuel production and 

ultimately resolve the food versus fuel issue. The fatty acid compositions of Jatropha 

curcas L. oil which is similar to edible oil such as palm oil, positive life cycle energy 

balance and satisfactory engine performance test has further make it a promising 

candidate to replace edible oil as biofuel feedstock.  

 

Among the extraction methods, conventional soxhlet hexane extraction 

method is selected to extract Jatropha curcas L. oil from the seed. Mechanical 

screw-press is not selected since this method requires a lot of machinery for the 

extraction process and thus is not applicable in a lab-scale project. Besides that, from 

the literature review, it was reported that supercritical carbon dioxide extraction 

could not completely extract oil from the seed as compared to soxhlet extraction 

using hexane. The extracted oil yield was less than 90 % even a very high pressure 

was applied on the extraction process. Hence, conventional soxhlet extraction 

method is selected which can completely extract the oil from seed within an 

acceptable duration. 

 

Currently, most of the biodiesel industries are using homogeneous base 

catalyst to catalyze the transesterification reaction. However, there are limitations of 

using such type of catalyst such as soap formation. Thus, the limitation of 

homogeneous catalyst in the production of biodiesel has caused an increase in the 
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development of heterogeneous catalyst. There are two types of heterogeneous 

catalysts, which are base and acid catalyst. Since base catalyst is not suitable for oil 

with high FFA content such as Jatropha curcas L. oil. Therefore, heterogeneous acid 

catalyst has been chosen in this study for the transesterification reaction of Jatropha 

curcas L. oil. Based on the literature review, among heterogeneous acid catalyst, 

sulfated zirconia has shown promising results in the production of biodiesel.  

 

Generally, there are two methods to prepare sulfated zirconia which are 

precipitation followed by impregnation method and sol-gel method. Besides that, 

there are also a lot of modifications done by researchers on these catalyst preparation 

methods. In this study, a direct sulfation of zirconia oxide method and solvent-free 

method are selected in the synthesizing of sulfated zirconia. Alumina is being use as 

the support for both of the methods. The use of both simple and direct preparation 

methods is attempted to minimize the quantity of chemicals used and to reduce the 

preparation variables, such as pH. Involving less preparation variables would mean 

that it is easier to control the final texture and performance of the catalyst.  

 

In this research work, statistical design of experiment is used in the planning 

of experiments data collection and analysis. The results obtained are then use to 

optimize the yield of biodiesel. Response surface methodology (RSM) is the 

technique applied in this study in which the complex transesterification process is 

then presented graphically. The individual, cumulative and interactive effects of the 

variables on the process yield are then investigated. A central composite design 

(CCD) which is one of the standard RSM design was applied to study the process. 
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This method is suitable for fitting a quadratic surface and it helps to optimize the 

effective variables with a minimum number of experiments. Hence, the process study 

and optimization are then performed systematically by using this mathematical and 

statistical technique.  
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CHAPTER THREE 

MATERIALS AND METHODOLOGY 

 

 This chapter describes in detail the experimental works carried out in this 

study covering raw materials and chemicals, reactor system, characterization of raw 

materials and products, experimental procedures, analytical method and design of 

experiments. This chapter is divided into seven sections according to these categories. 

First section gives information on the raw materials and chemicals used in the study. 

The reactor system used to conduct the transesterification reaction is presented 

subsequently; including the schematic diagram of the reactor. Experimental 

procedures to conduct the experiment work are presented next. In the following 

section, it gives the type of characterization performed on the raw materials and 

products samples obtained from this present work. Then, the analysis of samples and 

sample calculation method are presented. Lastly, at the end of the chapter, the design 

of experiment gives detail information on the process variables studied and 

experimental matrix designed using Design-Expert software.  

 

3.1 Raw Materials and Chemicals 

 In this study, there are several different types of raw materials and chemicals 

required at different stages of experiment such as for the oil extraction, synthesis of 

heterogeneous catalyst, transesterification reaction and gas chromatography analysis.  
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3.1.1 Raw Materials 

 Jatropha curcas L. seed is the major and the most important raw material 

required in this study especially for the oil extraction process. Planting grade seed 

was purchased from a local company in Malaysia, Misi Bumi Alam Sdn. Bhd.  The 

extracted oil was then used in the transesterification reaction for the production of 

biodiesel after evaporation of n-hexane and filtration steps. 

 

3.1.2 Chemicals 

 For catalyst preparation, the chemicals used were zirconium oxide, alumina 

and sulfuric acid for the direct sulfation method, while zirconyl chloride octahydrate 

and ammonium sulfate were used for the solvent-free method. Apart from that, in the 

transesterification reaction, methanol was used as the reagent and nitrogen gas was 

used as an inert gas to pressurize the reactor. Reference standards, such as methyl 

palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl 

heptadecanoate were used as the internal standards for gas chromatography analysis. 

Apart from that, n-hexane was used as extraction solvent in the oil extraction process 

and also used as a solvent for gas chromatography analysis. All the chemicals used 

were of analytical reagent grade. The list of raw materials and chemicals used is 

summarized in Table 3.1.  
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Table 3.1: Source and purity of raw materials and chemicals used in this study. 

No Chemicals Purity 
(%) 

Source Purpose of use 

1 Jatropha curcas L. 
seed 

- Misi Bumi Alam Sdn. 
Bhd. 

Extracted to 
obtain Jatropha 

curcas L. oil 

2 Zirconium oxide, 
ZrO2 

97.0 R & M Marketing, 
Essex, U.K 

As active metal in 
direct sulfation 

method 

3 Alumina, Al2O3 98.0 R & M Marketing, 
Essex, U.K 

As catalyst’s 
support in direct 

sulfation and 
solvent-free 

method 

4 Zirconyl chloride 
octahydrate, 
ZrOCl2.8H2O 

≥ 99.0 Sigma-Aldrich Chemie 
GmbH 

As zirconia 
precursor in 
solvent-free 

method 

5 Ammonium sulfate, 
(NH4)2SO4 

≥ 99.0 Sigma-Aldrich Chemie 
GmbH 

As sulfating agent 
in solvent-free 

method 

6 Sulfuric acid, H2SO4 95.0-
97.0 

Sigma-Aldrich Chemie 
GmbH 

As sulfating agent 
in direct sulfation 

method 

7 Nitrogen gas 99.999 Air Products STB Sdn. 
Bhd. 

As inert gas to 
pressurize reactor 

8 Methanol 99.8 R & M Marketing, 
Essex, U.K 

As reactant for 
transesterification 

reaction 

9 n-Hexane 96.0 Merck KGaA As solvent in 
dilution of sample 

prior to GC 
analysis 

10 Sodium chloride, 
NaCl 

pure Fisher Scientific As washing 
solvent in 
biodiesel 

purification 
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Table 3-1. Continued 

No Chemicals Purity 
(%) 

Source Purpose of use 

11 Sodium sulfate 
anhydrous, Na2SO4 

>99.5 Fisher Scientific As drying agent 
in biodiesel 
purification 

12 Methyl 
heptadecanoate 

≥ 99.5 Fluka Chemie, 
Germany 

As internal 
standard 

13 Methyl palmitate ≥ 99.5 Fluka Chemie, 
Germany 

As standard 
reference 

14 Methyl stearate ≥ 99.5 Fluka Chemie, 
Germany 

As standard 
reference 

15 Methyl oleate ≥ 99.5 Fluka Chemie, 
Germany 

As standard 
reference 

16 Methyl linoleate ≥ 99.5 Fluka Chemie, 
Germany 

As standard 
reference 

 

3.2 Experimental Procedure 

The experimental procedure in this section will be described according to the 

flow of this study. Figure 3.1 shows the overall research methodology used in this 

study. Initially, oil will be extracted from Jatropha curcas L. seed using conventional 

soxhlet hexane extraction method to obtain Jatropha curcas L. oil as the oil 

feedstock for the whole research work. Subsequently, two different catalyst 

preparation methods (direct sulfation of zirconia oxide and solvent-free method) 

were used to synthesize the catalyst required in this study. During catalyst 

preparation, calcination variables (calcination temperature and duration) were 

optimized for both preparation methods to obtain catalyst with the highest catalytic 

activity for transesterification reaction. At this stage of study, only the calcination 

variables were varied while the process variables for the transesterification reaction 

were held constant. After optimization, only one of the optimized catalysts which 
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have the highest activity in the transesterification process was selected for the 

subsequent part of this study. In the transesterification process study, the following 

reaction variables were studied and subsequently optimized; reaction temperature, 

duration, molar ratio of methanol to oil and catalyst loading. Finally, the reusability 

of the catalyst was tested. Apart from that, characterization on the catalyst used and 

biodiesel obtained were conducted whenever appropriate.  

 

3.2.1 Oil Extraction  

Jatropha curcas L. oil was extracted from Jatropha curcas L. seed using 

soxhlet hexane extraction. Figure 3.2 shows the schematic diagram of the oil 

extraction apparatus. The process variables for the extraction process namely 

extraction temperature, extraction duration, weight of grounded seed and amount of 

solvent used were selected base on the optimum conditions reported by Marchmudah 

et al. (2008). The values were fixed for all batches of extraction. Initially, 30 g of 

grounded seed was loaded into a cellulose thimble and then inserted into the inner 

tube of the soxhlet extractor. Then, it was connected to a reflux condenser and a 

round bottom flask, which contained the extraction solvent (150 ml hexane). The 

whole apparatus then placed on a heater where the solvent was boiled in the round 

bottom flask to a temperature above its boiling point (approximately 80 °C). After 8 

hours, hexane was separated from the extracted oil by using rotary evaporator and 

subsequently reused.   
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Figure 3.1: Overall research methodology flow diagram. 
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Figure 3.2: Schematic diagram of soxhlet hexane extraction apparatus. 

 

3.2.2 Catalyst Preparation 

 Sulfated zirconia loaded on alumina was synthesized using two different 

preparation methods i.e. direct sulfation of zirconia oxide and solvent- free method.  

 

3.2.2 (a) Direct Sulfation of Zirconia Oxide Method 

 8 g of commercial zirconia oxide, ZrO2 was dipped into 60 ml of 2.5 M 

sulfuric acid, H2SO4. After continuous stirring for 20 hours, 4 g of alumina, Al2O3 

was introduced into the mixture and stirring was continued for 2 hours. The mass 

ratio of zirconia oxide to alumina was 2:1. The mixture was then filtered using a 
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vacuum pump. Subsequently, the filtrate was calcined in a furnace for a specific 

temperature and duration. After calcination, the sulfated zirconia supported on 

alumina catalyst was grounded in a mortar. The calcination temperature and 

calcination duration were varied from 300 °C to 700 °C and 1 hour to 5 hour, 

respectively according to the experiment matrix obtained from design expert 

software, which all will be discussed in the later part of this chapter. 

 

3.2.2 (b) Solvent- free Method 

 The preparation of sulfated zirconia using the solvent-free method was 

accomplished according to the procedure described by Sun et al. (2005) but with the 

addition of alumina as support. 1 g of Zirconyl chloride octahydrate, ZrOCl2.8H2O 

(molecular weight of 322.25 g/mole) and 2.46 g of ammonium sulfate, (NH4)2SO4 

(molecular weight of 132.14 g/mole) were grounded in an agate mortar for 20 

minutes at room temperature (25 °C) using a molar ratio of 1:6. Then, 1.73 g of 

alumina, Al2O3 was introduced. The mixture was grounded for another 20 minutes. 

The mass ratio of alumina and the mixture of zirconyl chloride octahydrate with 

ammonium sulfate is 1:2. After leaving for 18 hours at room temperature, the 

mixture was calcined using a furnace at a specific temperature and duration. Similar 

as for the direct sulfation method, the calcination temperature and calcination 

duration were varied from 300 °C to 700 °C and 1 hour to 5 hour, respectively 

according to the experiment matrix obtained from design expert software. 
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3.2.3 Transesterification Process Study 

In this study, a batch- type reactor was used to carry out the 

transesterification reaction. It consists of a metal cup, a metal cover, a magnetic 

stirrer, a heater and jacket and a thermocouple. Figure 3.3 shows the schematic 

diagram of the reactor. Initially, mixture of Jatropha curcas L. oil, sulfated zirconia 

loaded on alumina catalyst and methanol was charged into the reactor. Then, the 

reactor was pressurized to ensure that most of the reactants remain in liquid phase. 

The mixing speed of the magnetic stirrer was set at 350-400 rpm, which was 

sufficient to ensure uniform temperature and suspension. After the reaction, the 

mixture was filtered and residual methanol was separated from the liquid phase by 

using rotary evaporator. The upper layer of the liquid phase was separated from the 

bottom layer by using decanter and was analyzed to detect biodiesel content. The 

process variables (reaction temperature, reaction duration, molar ratio of methanol to 

oil and catalyst loading) were varied according to the experiment matrix obtained 

from design expert software.  
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Figure 3.3: Schematic diagram of reactor. 

 

3.2.4 Catalyst Reusability 

 The life span or reusability of the catalyst for transesterification was tested by 

subjecting the used catalyst (catalyst after the first run of reaction and without 

pretreatment) with repeated transesterification reaction and measuring the resulting 

yield. The conditions for the transesterification was the optimize condition obtained 

in the transesterification process study. After each transesterification reaction, the 

reaction mixture was filtered to separate out the wet heterogeneous acid catalyst. 

Then, the used catalyst was exhaustively washed with hexane and dried at 70 °C for 

1 hour to evaporate the remaining hexane attach on the catalyst. After drying, the 

used catalyst was subjected to transesterification with fresh Jatropha curcas L. oil 

and methanol under the same conditions as the initial reaction. This was repeated for 
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several runs to investigate the life span of the heterogeneous acid catalyst. Apart 

from that, regeneration of the used catalyst was also investigated. The catalyst 

regeneration study was carried out by recovering the used catalyst and reusing them 

with fresh reagents in a subsequent reaction cycle after pretreatment steps. In the 

pretreatment steps, the used catalyst was dipped into 2.5 M sulfuric acid with 

continuous stirring for 2 hours after washing with hexane and dried at 70 °C. 

Subsequently, the catalyst was filtered using vacuum pump and calcined in a furnace 

at the optimum calcination condition determined previously at 400 °C for 4 hours.  

 

3.3 Characterization 

3.3.1 Jatropha curcas L. Oil 

The properties of the extracted Jatropha curcas L. oil used in this study were 

characterized based on fatty acid composition (%), moisture content (%w/w), free 

fatty acid (%w/w), acid value (mKOH/moil, mg/g), saponification value (mKOH/moil, 

mg/g), density, flash point (°C), kinematic viscosity (mm2/s) and ash content (%w/w) 

of Jatropha curcas L. oil according to Malaysian Palm Oil Board (MPOB) standard 

by My CO2 Sdn. Bhd., Malaysia. The average molecular weight was then calculated 

from the acid value and saponification value of Jatropha curcas L. oil. The average 

molecular weight of Jatropha curcas L. oil is calculated using Equation 3.1. 

 

M = 56.1 × 1000 × 3/ (SV – AV)                                                                            (3.1)                      

where; AV is the acid value and SV is the saponification value. 
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3.3.2 Sulfated Zirconia loaded on Alumina Catalyst 

 The catalyst prepared in this study was characterized based on the following 

analysis. 

 

3.3.2 (a) X-ray diffraction (XRD) 

The sulfated zirconia loaded on alumina were characterized by X-ray 

diffraction (XRD), recorded on  a Siemens D-5000 diffractomer, employing Cu Kα 

radiation (λ= 1.5412) generated at 40 kV and 40 mA and a graphite secondary beam 

monochromator. The radiation angle used is in the 5° to 70° 2θ range. Intensity was 

measured by step scanning in the 2µ range of 108-808 with a step of 0.028 and a 

measuring time of 2s per point.  

 

3.3.2. (b) Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier Transform Infrared Spectroscopy (FTIR) measurements were 

performed to investigate the presence of acidic functional group in the catalyst. This 

was performed using Perkin Elmer System 2000 spectrometer with potassium 

bromide (KBr) pellet technique. In this technique, catalyst was mixed with KBr with 

a mass ratio of 1:10. Then, the mixture was grounded to a fine, homogeneous powder 

which was then poured into a mould. The powder was densified and compacted 

using a hydraulic press applying pressure of 8 tons to form thin pellet (thickness ≈ 

100µm). Finally, the thin and transparent pellet was placed on a sample holder for 

analysis. Before analysis, calibration of the spectrometer was performed by using 

polystyrene as control sample. Each spectrum was obtained in the transmission mode 
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over 32 scans, in the range from 4000 to 400cm-1 with a resolution of 1cm-1. 

Background spectra were obtained before each sampling. Data analyses were carried 

out using the spectrum BX II.  

 

3.3.2. (c) Pyridine FTIR 

Characterization on the type of acid sites (Bronsted or Lewis acidic sites) on 

the surface of catalyst was determined by pyridine adsorption at room temperature. 

0.06 g of catalyst sample was degassed for 1 hour at 200 °C to reduce the amount of 

adsorbed molecular water. Then, it was cooled to room temperature and subsequently 

2 drops of pyridine were dropped on the samples and left for 1 hour to facilitate the 

adsorption process. After that, the samples were heated for 1 hour at 150 °C, prior to 

analysis by FTIR.  

 

3.3.2 (d) BET Surface Area 

The catalyst was also subjected to nitrogen adsorption measurement 

performed at -196 °C by using a Micromeritis ASAP2010 surface area and porosity 

analyzer to determine the specific surface area of the catalyst. The calculation for the 

specific surface area of the catalyst was determined from the adsorption isotherms 

using the Brunauer-Emmett-Teller (BET) method. 
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3.3.3 Biodiesel Characterization 

 The properties of biodiesel fuel are closely related to the fatty acid content in 

the Jatropha curcas L. oil. After the transesterification reaction and separation steps, 

the upper layer of the product which contains biodiesel was subjected to purification 

steps; biodiesel was washed with 20 wt% sodium chloride (double the volume of 

biodiesel) for three times (Binney et al., 2005; Mondala et al., 2009). After washing, 

the upper layer of the liquid phase was separated from the bottom layer using 

decanter. The upper layer was dried over sodium sulfate anhydrous and the mixture 

was stirred for 3 minutes (Qian et al., 2008). Then, the mixture was filtered to 

separate hydrated sodium sulfate. After the purification steps, the biodiesel was ready 

for characterization. The properties of biodiesel obtained including density, 

kinematic viscosity, flash point, water content, ash content and acid value were 

measured and compared with the American Society Testing and Materials (ASTM) 

standard. The properties of the biodiesel were characterized by My CO2 Sdn. Bhd., 

Malaysia. Biodiesel properties not complying with the standard could lead to 

problems in the fuel system (Lu et al., 2009).  

 

3.4 Sample Analysis using Gas Chromatograph 

The resulting products from the transesterification process were analyzed 

using Gas Chromatography (GC) which was equipped with NukolTM column (15 m x 

0.53 mm, 0.5 μm film) to identify the presence of fatty acid methyl esters (biodiesel) 

in the sample. Helium was used as the carrier gas. Oven temperature at 110 °C was 

initially hold for 0.5 minute and then increased to 220 °C (held for 8 minutes) at a 

rate of 10 °C min-1. The temperature of the injector and detector were set at 220 °C 
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and 250 °C respectively. A quantity of 1 μl from each sample was injected into the 

column. Methyl heptadecanoate was used as internal standard for the calculation of 

yield. 

 

3.5 Calculation of Biodiesel Yield 

Methyl esters yield in this study was calculated based on the peak areas of the 

methyl esters recorded in the GC chromatogram. Figure C.1 (refer to Appendix C) 

shows a typical GC chromatogram for biodiesel sample. The individual peak of the 

spectrum was identified by comparing the retention time of reference compound and 

shown in Table C.4. The weight of methyl esters was calculated using the basis of 

ratio of peak area to each standard according to Equation 3.2. The yield of the 

transesterification processes were calculated as sum of weight of biodiesel produced 

to weight of Jatropha oil used, multiplied by 100. The formula is given by Equation 

3.3.  

 

                                             (3.2) 

 

           (3.3) 

 

where;  
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CIS = Concentration of internal standard used which is 1.00g/L. 

V = Volume of Jatropha oil used (mL) 

DF= Dilution factor 

 

3.6 Design of Experiment 

 In this research work, statistical design of experiment was used throughout 

the experiment planning and data collection according to the experimental matrix 

generated by design expert software version 6.0.6 (STAT-EASE Inc., Minneapolis, 

USA). The data obtained were subsequently analyzed and used for optimization 

purpose, again using the same software. There were two main sections in this study 

that utilized design of experiment; one was to study the effect of catalyst calcination 

variables on the yield of biodiesel and the other one on the effect of 

transesterification process variables on the yield of biodiesel. The types of DOE 

selected were the factorial design of experiments and Response Surface 

Methodology (RSM), originally developed by Box and Wilson (1951). The 

experimental design selected for this study was Central Composite Design (CCD) 

and the yield of biodiesel was the selected response for both studies. Regression 

model equation was developed to correlates the response to the variables studied and 

the adequacy of the model developed were evaluated based on the coefficients of 

correlation and analysis of variance (ANOVA). 
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3.6.1 Effect of Catalyst Calcination Variables 

Two sets of DOE were used in this section, one set for each preparation 

method: (a) Direct sulfation of zirconia oxide, (b) Solvent-free method. Two 

calcination variables were studied; calcination temperature and calcination duration. 

The range of both the calcination variables for both preparation methods are given in 

Table 3.2. It was fixed based on literature review and preliminary studies. The value 

of α for th is CCD was fixed at 2 and there are 5 levels for each of the calcination 

variable studied (-2, -1, 0, +1, +2). Table 3.3 shows the complete experimental 

matrix. Generally, the experimental matrix consists of 2n factorial runs with 2n axial 

runs and nc center runs. Therefore, for two variables (n=2), the total number of 

experiments were 13 (4 factorial points, 4 axial points, 5 center points). Factorial 

points are variables which at the level of -1.0 and +1.0. All variables at zero level 

constitute to the center points and the combination of each of the variables at either 

its lowest (-2.0) level or highest (+2.0) level with the other variables at zero 

constitute the axial points. Experimental runs were randomized. In this section, the 

conditions for the transesterification reaction were fixed as follows; reaction 

temperature of 150 °C, duration of 3 hours, methanol to oil molar ratio of 8 and 

catalyst loading of 8 wt% with respect to Jatropha curcas L. oil. 40 ml Jatropha 

curcas L. oil was used in each experimental run.  

                             

Table 3.2: Independent variables and levels used for the Central Composite Design 
(CCD) for direct sulfation of zirconia oxide method and solvent- free methods. 

Variable Symbols Unit Levels 

(-α) (-1) 0 (+1) (+α) 

Calcination temperature x1 °C 300 400 500 600 700 

Calcination duration x2 hour 1 2 3 4 5 
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Table 3.3: Experiment design matrix for direct sulfation of zirconia oxide method. 

Run Point type Coded independent variable levels  

Calcination temperature, x1 

 (°C) 

Calcination duration, x2  
(hour) 

1 Fact -1  -1  

2 Fact +1  -1  

3 Fact -1  +1  

4 Fact +1  +1  

5 Axial -2  0  

6 Axial +2  0  

7 Axial 0  -2  

8 Axial 0  +2  

9 Center 0  0  

10 Center 0  0  

11 Center 0  0  

12 Center 0  0  

13 Center 0  0  
 

3.6.2 Effect of Transesterification Process Variables 

In this section, the four transesterification process variables studied were 

reaction temperature, reaction duration, methanol to oil ratio and catalyst loading. 

Table 3.4 lists the range and levels of the four independent variables studied. It was 

fixed based on literature review and preliminary studies. The value of α for this CCD 

was fixed at 2. Table 3.5 shows the complete experimental matrix. For four variables 

(n=4), the total number of experiments is 30 calculated from Equation 3.4. The 

order in which the runs were made was randomized to avoid systematic errors. In this 

study, 40ml Jatropha curcas L. oil was used in each experimental runs.  
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N= 2n + 2n + nc = 24 + 2x4 + 6= 30                                                                          (3.4)            

 

Table 3.4: Independent variables and levels used for the Central Composite Design 
(CCD) for transesterification process study. 

Variable Symbols Unit Levels 

(-α) (-1) 0 (+1) (+α) 

Reaction temperature x1 °C 60 90 120 150 180 

Reaction duration x2 hour 1 2 3 4 5 

Molar ratio of 
methanol to oil 

x3 mole 
mole-1 

4 6 8 10 12 

Catalyst loading x4 wt% 2 4 6 8 10 

 

Table 3.5: Experimental design matrix for transesterification process study. 

Run Point type Coded independent variable levels 

Temperature, 
x1  

Duration, 
x2 

 

Molar ratio 

methanol/oil, x3 

Catalyst 
loading, x4 

 

(°C) (hour) (mole mole-1) (wt%) 

1 Fact -1 -1 -1 -1 

2 Fact +1 -1 -1 -1 

3 Fact -1 +1 -1 -1 

4 Fact +1 +1 -1 -1 

5 Fact -1 -1 +1 -1 

6 Fact +1 -1 +1 -1 

7 Fact -1 +1 +1 -1 

8 Fact +1 +1 +1 -1 

9 Fact -1 -1 -1 +1 

10 Fact +1 -1 -1 +1 

11 Fact -1 +1 -1 +1 
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Table 3-5. Continued 

Run Point type Coded independent variable levels 

Temperature, 
x1  

Duration, 
x2 

 

Ratio 

methanol/oil, x3 

Catalyst 
loading, x4 

 

(°C) (hour) (mole mole-1) (wt%) 

12 Fact +1 +1 -1 +1 

13 Fact -1 -1 +1 +1 

14 Fact +1 -1 +1 +1 

15 Fact -1 +1 +1 +1 

16 Fact +1 +1 +1 +1 

17 Axial -2 0 0 0 

18 Axial +2 0 0 0 

19 Axial 0 -2 0 0 

20 Axial 0 +2 0 0 

21 Axial 0 0 -2 0 

22 Axial 0 0 +2 0 

23 Axial 0 0 0 -2 

24 Axial 0 0 0 +2 

25 Center 0 0 0 0 

26 Center 0 0 0 0 

27 Center 0 0 0 0 

28 Center 0 0 0 0 

29 Center 0 0 0 0 

30 Center 0 0 0 0 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

This chapter is divided into six main sub-sections. In the first sub-section, 

characterization results of Jatropha curcas L. oil will be presented. Then, the 

following two sub-sections will discuss the effect of calcination variables on catalyst 

characteristics and the yield of biodiesel through two different catalyst preparation 

method; (i) direct sulfation of zirconia oxide method and (ii) solvent-free method. 

When appropriate, catalyst characterization results using X-ray diffraction (XRD), 

Fourier Transform Infrared Spectroscopy (FTIR), and BET surface area will be given. 

The catalyst calcination variables were then optimized. Next sub-section presents the 

process study used to optimize the transesterification variables for optimum yield of 

biodiesel. Then, the study on reusability and the life span of the catalyst for 

transesterification process is presented. The final sub-section presents the results for 

characterization of biodiesel.  

 

4.1 Properties of Jatropha Curcas L. Oil 

 Table 4.1 shows the properties for Jatropha curcas L. oil. On the basis that 

the measured acid value is 10.37 mKOH/moil and saponification value is 195.5 

mKOH/moil, average molecular weight of Jatropha curcas L. oil was calculated as 

909.09 g/mol. The saponification value of Jatropha curcas L. oil was found to be 

small, indicating high concentration of triglycerides, and therefore Jatropha curcas L. 

oil can be a suitable feedstock for the production of FAME (biodiesel). Nevertheless, 
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the high content of free fatty acids (4.73 %w/w) shows that conventional biodiesel 

production technology using homogeneous base catalytic system is not suitable for 

Jatropha curcas L. oil. Therefore, acidic catalyst is required in transesterification 

reaction for oil with high content of free fatty acid to avoid soap formation problem. 

 

Table 4.1: Properties of extracted Jatropha curcas L.oil. 

Flash point 60 °C 

Kinematic viscosity 48.2 mm2/s 

Ash content 0.09 %w/w 

Moisture content 0.05 %w/w 

Free fatty acid 4.73 %w/w 

Acid value 10.37 mKOH/moil 

Saponification value 195.5 mKOH/moil 

Density 0.9220 g/ml 

Fatty acid composition  

          Palmitic acid, C16:0 14.4% 

          Palmitoleic acid, C16:1 0.1% 

          Stearic acid, C18:0 3.6% 

          Oleic acid, C18:1 43.2% 

          Linolenic acid, C18:2 38.7% 

 

4.2 Catalyst Preparation Study- Direct Sulfation of Zirconia Oxide Method 

4.2.1 Design of Experiment (DOE) 

 Design of experiment was used to study the effect of calcination variables on 

the catalyst characteristics and their effect on the yield of biodiesel. Subsequently, 

optimization on the catalyst calcination variables was carried out. Table 4.2 shows 
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the experimental design matrix and result with different combination of calcination 

variables obtained from DOE.  

 

Table 4.2: Experimental design matrix and results for direct sulfation of zirconia 
oxide method. 

Catalyst 

code 

Level of variables [actual (coded)] Yield of 
biodiesel 

(%) 
Calcination temperature, x1 

(°C) 

Calcination duration, x2 

(hour) 

SZA 01 400 (-1) 2 (-1) 71.41 

SZA 02 600 (+1) 2 (-1) 55.64 

SZA 03 400 (-1) 4 (+1) 84.40 

SZA 04 600 (+1) 4 (+1) 51.12 

SZA 05 300 (-2) 3 (0) 64.76 

SZA 06 700 (+2) 3 (0) 13.36 

SZA 07 500 (0) 1 (-2) 68.64 

SZA 08 500 (0) 5 (+2) 75.54 

SZA 09 500 (0) 3 (0) 64.53 

SZA 10 500 (0) 3 (0) 64.21 

SZA 11 500 (0) 3 (0) 64.16 

SZA 12 500 (0) 3 (0) 64.38 

SZA 13 500 (0) 3 (0) 64.24 

 

4.2.2 Development of Regression Model Equation 

The model equation that correlates the response, Y (yield of biodiesel) to the 

calcination variables (x1, x2) by eliminating the insignificant variable is: 

(4.1)                                              x4.38x- 2.04x6.21x-12.65x - 65.88     Y 21
2
2

2
11 ++=
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4.2.3 Statistical Analysis of Results 

 The quality of the model developed was evaluated based on the coefficients 

of correlation. The value of R-squared for the developed correlation is 0.9729. It 

implies that 97.29 % of the total variation in the yield of biodiesel is attributed to the 

experimental variables studied. Besides that, Figure 4.1 demonstrated that the 

regression model equation provided a very accurate description of the experimental 

data, indicating that it was successful in capturing the correlation between the two 

calcination variables to the yield of biodiesel.  

 

 

Figure 4.1: A comparative plot between experimental yield of biodiesel and 

predicted yield of biodiesel for direct sulfation of zirconia oxide method. 

 

The adequacy of the model was further checked with analysis of variance 

(ANOVA) as shown in Table 4.3. Based on 95 % confidence level, the model was 

tested to be significant as the computed F value (50.26) is much higher than the 
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theoretical F0.05 (5,7) value (3.97) and the p value was less than 0.05. Apart from that, 

all terms in the model except calcination duration (x2) was tested to be significant at 

a 95 % confidence level as the computed F values for x1 (147.07), x1
2 (67.69), 

x2
2(7.27) and x1x2 (5.87) terms were higher than the theoretical F 0.05 (1, 7) value (5.59) 

and the p values were also less than 0.05. On the other hand, the computed F value 

for x2 is 3.12 and the p value was more than 0.05. Value of p greater than 0.05 

indicates that the model term is not significant.  

 

Therefore, from these statistical tests, it was found that the model is adequate 

for predicting the yield of biodiesel within the range of variables studied and 

calcination temperature (x1) is the significant variable that affects the yield of 

biodiesel while calcination duration (x2) gave insignificant effect.  

 

Table 4.3: Analysis of Variance (ANOVA) for the regression model equation and 

Coefficients (direct sulfation of zirconia oxide method). 

Source Sum of  
squares 

Degree of 
freedom 

Mean of 
squares 

F-Test p value 

Model 3283.30 5 656.66 50.26 <0.0001 

x1 1921.54 1 1921.54 147.07 <0.0001 

x2 40.81 1 40.81 3.12 0.1205 

x1
2 884.36 1 884.36 67.69 <0.0001 

x2
2 95.00 1 95.00 7.27 0.0308 

x1x2 76.65 1 76.65 5.87 0.0459 

Residual 91.46 7 13.07 - - 
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4.2.4 Effect of Calcination Variables 

4.2.4 (a) Single Variable Effect 

 Based on the developed model, calcination temperature was found to have the 

most significant negative effect on the yield of biodiesel as indicated by the negative 

value of the regression coefficient estimates. Contrary, calcination duration brings 

insignificant effect on the yield of biodiesel. Apart from that, the degree of 

significance of each variables can also be evaluated according to the F-test value 

obtained using ANOVA. The highest F-test value indicates the most significant 

effect on the yield of biodiesel. By referring to Table 4.3, calcination temperature (x1) 

has the highest F-test value (147.07) while the value for calcination duration (x2) was 

merely 3.12.  

 

 Besides that, these results can also be easily verified by visually inspecting 

Table 4.2. For instance, comparison between runs 1 and 2 (and also for all 

comparable runs), an increase in calcination temperature (while calcination duration 

remain constant) always resulted in lower yield of biodiesel which is in agreement 

with the highest F-test value obtained for calcination temperature in the ANOVA. 

However, an increase in calcination duration was not always resulted in higher yield 

of biodiesel. Based on visual inspection on the results in Table 4.2, an increase in the 

calcination duration (runs 1 and 3, runs 7 and 8) resulted in an increase in the yield of 

biodiesel. But, for runs 2 and 4 and runs 7 and 9, the yield of biodiesel decreases as 

calcination duration increase. This is again consistent with the ANOVA results, 

whereby the F-test value for the term calcination duration is not that high as 

compared to calcination temperature.  
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These results showed that the effect of calcination duration on the yield of 

biodiesel is not solely dependent on its individual effect, but its interaction effect 

with calcination temperature must also be considered. Therefore, the need of using 

design of experiment approach is important in order to study the interaction effect 

between variables efficiently, which will be presented in the subsequent section. 

 

(i) Effect of Calcination Temperature 

As discussed in the previous section, calcination temperature was found to 

have a negative effect on the yield of biodiesel in which higher calcination 

temperature led to lower yield of biodiesel (Figure 4.2). This is most probably due to 

the drop in acidic sites in the SZA catalyst. In order to verify this explanation, SZA 

catalyst calcined at different temperatures were subjected to XRD analysis as shown 

in Figure 4.3. It is obvious that the XRD spectrum for all catalyst exhibited the 

diffraction peaks correspond to crystalline structure of SZA. This finding shows that 

this catalyst preparation method is successful in synthesizing SZA with good 

crystalline structure.  
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Figure 4.2: Yield of biodiesel against calcination temperature (Calcination duration 
at 3 hours) (direct sulfation of zirconia oxide method).  

 

Apart from that, it was also found that zirconia oxide successfully reacts with 

sulfuric acid to form zirconia sulfate tetrahydrate, Zr(SO4)2.4H2O. This sulfated 

compound will supply the acidic sites required for the transesterification reaction. 

The catalyst shows higher crystallinity at lower calcination temperature compare 

with higher calcination temperature (referring to the peak for Zr(SO4)2.4H2O). 

Beyond 500 °C, the crystalline peaks almost disappeared. This shows that at higher 

temperature, the sulfated groups will decompose leading to a significant drop in the 

acidic sites in the catalyst which subsequently lower the yield of biodiesel. This 

finding is indeed consistent with those reported in literature in which decomposition 

of sulfated groups was reported to begin at around 500 °C (Funamoto et al., 2005; 

Matsuhashi et al., 2004). 
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Figure 4.3: XRD patterns of SZA for direct sulfation of zirconia oxide method; 
calcination duration at 3 hours with different temperatures; (A) 300 °C, (B) 400 °C, 

(C) 500 °C, (D) 600 °C, (E) 700 °C 

( ) zirconia sulfate tetrahydrate, ( ) zirconia oxide and ( ) aluminium oxide 

 

Apart from that, the decrease in the yield of biodiesel at higher catalyst 

calcination temperature can be further explained by IR spectra shown in Figure 4.4. 

The IR spectra of SZA calcined at 300 °C and 600 °C exhibited obvious bands at 

1,030 and 1108 cm-1 which are typical bands assigned to chelating bidetate sulfate 

ion coordinated to zirconium cation (Sun et al. 2005; Garcia et al. 2008). However 

these characteristic bands become weaker at higher calcination temperature, again 

supporting the fact that sulfate group in the catalyst decomposed at higher 

temperature.  
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Figure 4.4: IR spectra of SZA for direct sulfation of zirconia oxide method; 
calcination duration at 3 hours with different temperatures; (A) 600 °C and (B) 

300 °C. 

 

Besides that, a broad band at 1633 cm-1 can be ascribed to the bending mode 

(δHOH) or coordinated molecular water due to its interaction with sulfated zirconia 

catalysts (Funamoto at al., 2005; Matsuhashi at al., 2004). In order to further 

characterize the types of acidic sites in the catalyst, pyridine adsorption was carried 

out as shown in Figure 4.5. Both samples were found to contain the Lewis and 

Brónsted acidic sites at the characteristic band of 1486 cm-1 and 1537 cm-1, 

respectively (Ahmed et al. 2008; Zhao et al. 2008; Funamoto et al., 2005; Sun et al. 

2005). However, one interesting finding is that when the catalyst was calcined at 

higher temperature, the type of acidic site shifted from Brónsted to Lewis. Therefore, 

Lewis acidic site might not be effective for transesterification reaction.  
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Figure 4.5: IR spectra of pyridine adsorption for SZA for direct sulfation of zirconia 
oxide method; calcination duration at 3 hours with different temperature; (A): 300 °C 

(B): 600 °C. 

 

As discussed earlier, in this study, increase of calcination temperature from 

300°C to 700°C leads to decrease of the biodiesel yield. This may be due to the 

change in surface area of SZA catalyst when varying calcination temperature. The 

surface area was increase from 0.73 m2/g to 19.20 m2/g when the calcination 

temperature was increase from 300 °C to 400 °C. However, further increase of the 

calcination temperature cause a drop of surface area to 9.97 m2/g (500 °C) and to 

1.62 m2/g (700 °C). The largest surface area (19.20 m2/g) occurs at calcination 

temperature 400°C. However, the surface area of the sulfated catalyst was still much 

better than un-sulfated catalyst at the same calcination temperature (400 °C). The 

surface area of the catalyst was 0.24 m2/g. These results may indicates that the 

presence of sulfate groups lead to a better physicochemical properties of 

heterogeneous acidic catalysts by stabilize the surface area and retard the formation 

of larger crystalline of zirconia (Mekhemer, 2006). Hence, heterogeneous acidic 

catalyst with high calcination temperature resulting in having small surface area and 
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less acidic sites (due to decomposition of the sulfate groups) that brings to low yield 

of biodiesel.  

(ii) Effect of Calcination Duration 

Figure 4.6 shows the effect of calcination duration on the yield of biodiesel. 

In accordance with the low F-test value, the yield of biodiesel did not change much 

with higher calcination duration. When SZA was calcined for 2 hours, the yield 

obtained is about 66 %, but when the calcination temperature was increased to 4 

hours, the yield of biodiesel only increased marginally to 70 %. Figure 4.7- 4.9 show 

the XRD spectra, IR spectra and IR spectra for pyridine adsorption respectively for 

catalyst prepared with different calcination duration. All the results were found to be 

consistence and revealed that there is no significant difference between SZA catalyst 

prepared at different calcination duration. The results indicate that as long as the 

calcination temperature is sufficient, crystallization process occurs almost 

instantaneously to form the sulfated compounds. 
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Figure 4.6: Yield of biodiesel against calcination duration (Calcination temperature 
at 500 °C) (direct sulfation of zirconia oxide method). 

 

 

Figure 4.7: XRD patterns of SZA for direct sulfation of zirconia oxide method; 
calcination temperature at 400 °C with different duration; (A): 5 hour (B): 2 hour (C): 

1 hour. 

( ) zirconia sulfate tetrahydrate, ( ) zirconia oxide and ( ) aluminium oxide 

 

 

 

Figure 4.8: IR spectra of SZA for direct sulfation of zirconia oxide method; 
calcination temperature at 500 °C with different duration; (A): 1 hour (B): 3 hour. 
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Figure 4.9: IR spectra of pyridine adsorption for SZA for direct sulfation of zirconia 
oxide method; calcination temperature at 500 °C with different duration; (A): 4 hour 

(B): 1 hour. 

 

4.2.4 (b) Effect of Interaction between Variables 

According to the ANOVA presented in Table 4.3, the interaction between 

calcination temperature and duration was found to give significant effect on the yield 

of biodiesel as shown in Figure 4.10. As expected and explained in the previous 

section, generally higher calcination temperature leds to lower yield of biodiesel. In 

addition, Figure 4.10 shows that the effect of calcination temperature is more 

prominent at higher calcination duration as compared to lower calcination duration 

indicating the significant interaction between both variables. When the calcination 

duration was fix at 4 hours, the yield of biodiesel drops rapidly with higher 

calcination temperature; on the other hand, the yield of biodiesel drops much slower 

when the calcination duration was fixed at 2 hours.  
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In other words, longer calcination duration was required to obtain higher 

yield at lower calcination temperature (<540 °C); however, at higher calcination 

temperature (>540 °C), longer calcination duration led to lower yield of biodiesel. 

This can be explained as follows. At lower calcination temperature, more time is 

required for the formation of active compounds (sulfate groups) in the catalyst; 

therefore calcinations duration of 4 hours gave higher yield as compared to 2 hours. 

However, at higher calcination temperature, perhaps the decomposition of the sulfate 

group which begin at around 500 °C becomes too fast until it caused a drop in the 

yield of biodiesel. This finding therefore shows that a combination of high 

calcination temperature and long calcination duration is not favourable towards the 

yield of biodiesel.  

 

 

 

Figure 4.10: Yield of biodiesel against calcination temperature and calcination 
duration for direct sulfation of zirconia oxide method. 
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As discussed earlier, calcination duration shows insignificant effect on the 

yield of biodiesel. However, it is only acceptable for a particular calcination 

temperature (540 °C). Figure 4.10 reveals that at lower calcination temperature 

(<540 °C), higher calcination duration leads to higher yield of biodiesel. But, at 

higher calcination temperature (>540 °C), yield of biodiesel is higher for lower 

calcination duration. The results indicate that crystallization process require much 

longer time to form the sulfated compounds in the case of insufficient calcination 

temperature. In terms of energy consumption, calcination temperature at 540 °C 

could be the optimum temperature since increase of calcination duration does not 

bring significant effect on the yield of biodiesel. However, the decomposition of 

sulfated compounds begins at around 500 °C which leads to decrease the yield of 

biodiesel. Lower calcination temperature is preferable to obtain high yield of 

biodiesel but require longer calcination duration.  

 

Hence, this result stress the importance and need of using design of 

experiment approach in order to be able to study the interaction effect between 

variables efficiently and to obtain the optimum calcination variables towards 

achieving high yield of biodiesel.  

 

4.2.5 Optimization of Calcination Variables 

 Based on the previous discussion, the results stressed that apart from the 

individual variables, interaction between calcination variables were also found to 

have significant effect on the yield of biodiesel. Higher calcination temperature led to 

lower yield of biodiesel. Furthermore, the effect of calcination duration is based on 
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its interaction with calcination temperature. Therefore, the optimization process for 

the calcination variables to obtain the optimum yield for the transesterification 

process must be able to take into account all the effects of the individual variables 

and also the interaction between variables.  

 

Thus, in order to perform this task, the mathematical model developed earlier 

was used to obtain the calcination variables that can give the optimum yield of 

biodiesel. This was carried out with the aid of the optimization function embedded in 

Design-Expert software version 6.0.6 (STAT-EASE Inc., Minneapolis, USA). 

Specifically, numerical optimization was selected as it has a comprehensive and up-

to-date description and it focus on the methods that are best suited to practical 

problems in engineering, science and business (Ahn et al., 2008). In this method, the 

yield of biodiesel was set to a maximum range whereas calcination variables were set 

in a range between low and high levels with the coded values of -1 and +1 

respectively.  

 

 It was predicted that an optimum yield of biodiesel of 80.58 wt% can be 

achieved by using SZA prepared with calcination temperature at 400°C and 

calcination duration of 4 hours. In order to verify this prediction, experiments were 

repeated three times using the suggested optimum conditions and it was found that 

the results obtained (84.60 wt%) were comparable with the prediction with less than 

5% error. This shows that the predicted optimum calcination conditions are valid for 

this study. Hence, sulfated zirconia supported with alumina prepared by direct 
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sulfation of zirconia oxide method is a potential catalyst for the production of 

biodiesel from Jatropha curcas L. oil via heterogeneous transesterification. 

 

4.3 Catalyst Preparation Study- Solvent- free Method 

4.3.1 Design of Experiment (DOE) 

 Similar to section 4.2, design of experiment was used again to study the effect 

of calcination variables on the yield of biodiesel and subsequently for optimization. 

However, this time the catalyst is prepared using solvent- free method. Solvent- free 

method is another alternative route to synthesize sulfated zirconia without using 

precipitating agents. This direct use of sulfating agents with the zirconia precursor 

has eliminated the formation of intermediate product (zirconia hydroxide) which 

reduces the preparation variables that must be controlled such as pH of the solution. 

Table 4.4 shows the experimental design matrix and result with different 

combination of calcination variables obtained from DOE.  

 

Table 4.4: Experimental design matrix and results for solvent- free method. 

Catalyst 

code 

Level of variables [actual (coded)] Yield of 
biodiesel 

(%) 

Predicted 

value Calcination 
temperature 

(°C) 

Calcination 
duration 

(hour) 

SZA 01 400 (-1) 2 (-1) 46.42 49.14 

SZA 02 600 (+1) 2 (-1) 59.43 60.03 

SZA 03 400 (-1) 4 (+1) 71.18 71.09 

SZA 04 600 (+1) 4 (+1) 70.18 67.96 

SZA 05 300 (-2) 3 (0) 33.86 32.67 
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Table 4-4. Continued.  

Catalyst 

code 

Level of variables [actual (coded)] Yield of 
biodiesel 

(%) 

Predicted 

value Calcination 
temperature 

(°C) 

Calcination 
duration 

(hour) 

SZA 06 700 (+2) 3 (0) 39.49 40.42 

SZA 07 500 (0) 1 (-2) 56.52 54.99 

SZA 08 500 (0) 5 (+2) 83.59 84.87 

SZA 09 500 (0) 3 (0) 70.80 70.87 

SZA 10 500 (0) 3 (0) 71.23 70.87 

SZA 11 500 (0) 3 (0) 71.05 70.87 

SZA 12 500 (0) 3 (0) 70.96 70.87 

SZA 13 500 (0) 3 (0) 70.82 70.87 

 

4.3.2 Development of Regression Model Equation 

The model equation that correlates the response, Y (yield of biodiesel) to the 

calcination variables (x1, x2) by eliminating the insignificant variables was: 

(4.2)                                              x3.50x-8.58x-7.47x  x1.94  70.87     Y 21
2

121 +++=
 

4.3.3 Statistical Analysis of Results 

The R-squared value for the developed correlation was found to be 0.9926, 

implying that 99.26 % of the total variation in the yield of biodiesel is attributed to 

the experimental variables studied. To further support this finding, Figure 4.11 

shows the predicted vs. experimental yield of biodiesel. The regression model 

equation was found to provide a very accurate description of the experimental data, 
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indicating that it was successful in capturing the correlation between the two 

calcination variables to the yield of biodiesel.  

 

 

 

Figure 4.11: A comparative plot between experimental yield of biodiesel and 
predicted yield of biodiesel for solvent- free method. 

 

The adequacy of the model was also checked with analysis of variance 

(ANOVA) as shown in Table 4.5. Based on 95 % confidence level, the model was 

tested to be significant as the computed F value (187.80) is much higher than the 

theoretical F0.05 (5,7) value (3.97) and the p value is less than 0.05. Besides that, all 

terms in the model except x2
2 was tested to be significant at a 95% confidence level 

as the computed F values for x1 (16.46), x2
 (244.52), x1

2 (616.00) and x1x2 (17.93) 

terms are higher than the theoretical F 0.05 (1, 7) value (5.59) and the p values are also 

less than 0.05. Thus, from these statistical tests, it was found that the model is 

adequate for predicting the yield of biodiesel within the range of variables studied. 
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Table 4.5: Analysis of Variance (ANOVA) for the regression model equation and 
coefficients (solvent- free method). 

Source Sum of 
Squares 

Degree of 
Freedom 

Mean of 
Squares 

F-Test p value 

Model 2571.50 5 514.30 187.80 <0.0001 

x1 45.09 1 45.09 16.46 0.0048 

x2 669.65 1 669.65 244.52 <0.0001 

x1
2 1686.97 1 1686.97 616.00 <0.0001 

x2
2 1.28 1 1.28 0.47 0.5169 

x1x2 49.11 1 49.11 17.93 0.0039 

Residual 19.17 7 2.74   

 

4.3.4 Effect of Calcination Variables 

4.3.4 (a) Single Variable Effect 

Up to this point, it is clear that both the calcination variables studied have 

significant effect on the yield of biodiesel. This can be easily verified by observing 

Table 4.4, in which experiments were carried out with SZA catalyst prepared using 

various combination of calcination variables but with fix transesterification variables.  

The yield of biodiesel was found to range from 33.86 wt% to 83.59 wt%. Based on 

ANOVA shown in Table 4.5, there are two prominent significant terms that affect 

the yield of biodiesel, one is the linear effect of calcination duration (x2) and the 

other one is the quadratic effect of calcination temperature (x1) as indicated by the 

relatively large value of F-Test value.  
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(i) Effect of Calcination Temperature 

Figure 4.12 shows the quadratic effect of calcination temperature on the 

yield of biodiesel. It was found that the yield of biodiesel increased from 60.3 wt% to 

70.8 wt% when calcination temperature increased from 400 °C to 500 °C. However, 

further increase in calcination temperature led to a drop in the yield of biodiesel. The 

yield of biodiesel decreases to 64.2 wt% at a calcination temperature of 600 °C. This 

data trend was found to be consistent with the characterization results of catalyst 

which will be presented in the subsequent section.  

 

 

 

Figure 4.12: Plot of biodiesel yield against calcination temperature (Calcination 
duration at 3 hours) (solvent- free method). 

 

Based on X-ray diffractograms (XRD) shown in Figure 4.13, the peaks 

assign to tetragonal phase and monoclinic phase of zirconia can be clearly detected 
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for catalyst prepared at 500 °C. The presence of zirconia with a tetragonal structure is 

basically due to the stabilization role of sulfate groups (Ahmed et al., 2008) and the 

presence of sulfate groups is the requirement for the formation of acidic sites (Sun et 

al., 2005). Apart from that, catalyst prepared at 500 °C also showed dominant peaks 

assigned to tetragonal crystalline of zirconia (as compared to monoclinic).  

 

 

 

Figure 4.13: XRD patterns of SZA for solvent- free method; calcination duration at 3 
hours with different temperatures (A), 300 °C (B), 500 °C 

( ) tetragonal phase of zirconia, ( ) monoclinic phase of zirconia and ( ) 
aluminium oxide. 

 

In tetragonal form, each bulk phase zirconium atom is coordinated to eight 

different oxygen atoms. Four Zr-O bonds are significantly shorter than the other four, 

the short Zr-O bonds constitute one distorted tetrahedron and the four longer Zr-O 

bonds constitute another distorted tetrahedron. However, at the surface, zirconium 
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atoms of tetragonal ZrO2 are coordinated to only six oxygen atoms. These two 

anionic vacancies in active sulfated zirconia catalyst produce the stabilization of the 

tetragonal phase by oxygenated sulfur species (Srinivasan et al., 1995). Therefore, 

the presence of tetragonal phase of zirconia shows the formation of acidic sites on 

the catalyst, indirectly.  However, for catalyst prepared at 300 °C, only little of the 

peaks assign to tetragonal phase zirconia was detected and at a lower intensity. This 

results revealed that increasing calcination temperature from 300 °C to 500 °C favors 

the formation of tetragonal phase zirconia and is in agreement with other studies 

using SZA but prepared using different methods utilizing solvent (Ahmed et al., 

2008; Mekhemer 2006).  

 

Apart from that, it was also reported that further increase in calcination 

temperature (>500 °C) leads to instability of tetragonal zirconia phase due to 

decomposition of sulfate groups and therefore it rapidly transformed into monoclinic 

zirconia phase. Sulfated zirconia is not stable in the monoclinic phase suggests that 

the acid site structure is sensitive to the spacing between zirconium and oxygen 

atoms at the oxide surface. Such anionic vacancies defects would be absent in 

monoclinic catalysts (Vera et al., 2002). Thus, at calcination temperature above 

700 °C, monoclinic zirconia phase will be dominant. Hence, the increment in the 

yield of biodiesel up to calcination temperature of 500 °C is due to the formation of 

more prominent tetragonal crystalline phase of zirconia and sulphated groups.  

 

In a typical catalytic process, surface area of the catalyst plays a very crucial 

role in determining its catalytic activity, in which generally catalyst with larger 
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surface area leads to higher catalytic activity. In this study, the surface area of SZA 

catalyst was found to increase from 0.735 m2/g to 20.6 m2/g when the calcination 

temperature was increased from 300 °C to 500 °C. However, subsequently increase 

in calcination temperature to 700 °C caused a drop in surface area to 1.92 m2/g. The 

increment in the surface area of the catalyst up to a calcination temperature 500 °C 

also contributes to the higher yield of biodiesel. However, for calcination 

temperature above 500 °C, the yield of biodiesel decreases gradually. This is in 

tandem with the drop in catalyst surface area and the decomposition of sulphated 

groups.  

 

(ii) Effect of Calcination Duration 

Figure 4.14 shows the effect of calcination duration on the yield of biodiesel 

in which the yield was found to increase linearly with calcination duration. From the 

figure, the highest yield of biodiesel (71.1 wt%) was obtained at a calcination 

duration of 4 hours as compared to merely 49.1 wt% at 2 hours. Figure 4.15 shows 

the XRD patterns of SZA with different calcination duration. It reveals that catalyst 

prepared at higher calcination duration (5 hours) favors the formation of tetragonal 

phase zirconia that can aid the formation of acidic sites. Catalyst which prepared 

with shorter calcination duration (1 hour) does not exhibits much peaks assign to 

tetragonal phase of zirconia. On the other hand, increasing the calcination duration 

from 2 hours to 4 hours led to an increase of catalyst surface area from 4.18 m2/g to 

18.6 m2/g. This BET specific surface area results revealed that the increase in 

catalyst surface area contributed to the higher conversion of triglycerides into 

biodiesel. 
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Figure 4.14: Plot of biodiesel yield against calcination duration (calcination 
temperature at 500 °C) (solvent- free method). 

 

 

 

Figure 4.15: XRD patterns of SZA for solvent- free method; calcination temperature 
at 500 °C with different duration (A), 1 hour (B), 5 hour 

( ) tetragonal phase of zirconia, ( ) monoclinic phase of zirconia and ( ) 
aluminium oxide. 
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Comparison between both catalyst preparation methods, calcination 

temperature was found to have a negative effect on the yield of biodiesel obtained 

using catalyst prepare by direct sulfation of zirconia oxide method. For solvent- free 

method, calcination temperature gives quadratic effect on the yield of biodiesel. The 

difference in the effect of calcinations temperature on the yield of biodiesel showed 

that different catalyst preparation methods led to catalyst with different sulfate 

groups strength where by catalyst prepare by solvent- free method decompose at 

much higher temperature (after 500 °C) than direct sulfation of zirconia oxide 

method (before 500 °C). However, it should be noted that higher yield of biodiesel 

can be obtained at lower calcination temperature for catalyst prepared by direct 

sulfation of zirconia (400 °C) compare to solvent- free method (500 °C).  

 

This may be due to the different structure and behavior of the sulfated 

zirconia compound form with different preparation methods. As can be seen from the 

XRD analysis for both methods, zirconia sulfate tetrahydrate, Zr(SO4)2.4H2O was 

successfully detected using direct sulfation of zirconia oxide. For solvent- free 

method, the presence of sulfate groups within the catalyst cannot be detected directly 

but through the formation of tetragonal phase of zirconia which represents their 

presence availability since sulfate groups create the stabilization required for zirconia 

with tetragonal structure. 

 

On the other hand, the yield of biodiesel did not change much with an 

increase in calcination duration for catalyst prepare by direct sulfation of zirconia 

oxide. However, catalyst prepared by solvent- free method shows a linear effect of 
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calcination duration on the yield of biodiesel. This shows that the crystallization 

process for catalyst prepared by direct sulfation of zirconia oxide method occurs 

spontaneously and the crystal can fully grow as long as the calcination temperature is 

sufficient.  However, for catalyst prepared by solvent- free method, both sufficient 

temperature and time are required for the crystal to grow fully. Again, as discussed 

earlier, this may be due to the different structure and behavior of the sulfated zirconia 

compound formed. Another possible reason is as follows; for solvent- free method 

which involves grinding the intermediate catalyst sample before calcination may 

reduce the catalyst particle size and also might leads to the destruction of surface 

sulfated groups (Li and Li, 2002). Therefore, calcination duration plays a significant 

role for the re-construction of the surface sulfated groups for catalyst prepared using 

solvent- free method.  

 

4.3.4 (b) Effect of Interaction between Variables 

The results so far illustrate the effect of individual effect of calcination 

temperature and duration on the yield of biodiesel. An added advantage of using 

design of experiment approach is that the interaction between both variables can also 

be studied systematically and efficiently. Based on the ANOVA presented in Table 

4.5, apart from the individual calcination variables, the interaction between 

calcination temperature and duration was also found to significantly affect the yield 

of biodiesel. Therefore, this reflects the importance of using design of experiment 

approach.  
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Figure 4.16 shows the effect of interaction between calcination temperature 

and calcination duration on the yield of biodiesel. Two important findings can be 

extracted from Figure 4.16. Firstly, the optimum calcination temperature was found 

to vary, depending on the calcination duration. Referring to Figure 4.16, at 

calcination duration of 2 hours, the optimum calcination temperature was found to 

roughly range between 500 °C to 550 °C, but the optimum range reduces to 450 °C 

to 500 °C for calcination duration of 4 hours. The second finding is as follows; 

although longer calcination duration leads to higher yield of biodiesel (at fixed 

calcination temperature), however, the significance of the effect of calcination 

duration decreases with higher calcination temperature. For example, at 400 °C, the 

percentage difference in the yield of biodiesel when increasing calcination duration 

from 2 hours to 4 hours was 53.4 %, but at 600 °C, the percentage difference drop to 

merely 14.4 % for similar increment in calcination duration.  

 

The reason for this phenomenon could be as follows. At lower calcination 

temperature, longer calcination duration is required for the formation of more 

tetragonal crystalline zirconia phase which subsequently leads to formation of more 

acidic sites and larger catalyst specific surface area. However, at higher calcination 

temperature, longer calcination duration is no longer required to promote the 

formation of tetragonal crystalline zirconia phase. Instead, longer calcination 

duration could cause the decomposition of sulfate groups that led to the drop in the 

yield of biodiesel.  
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Figure 4.16: Plot of yield of biodiesel against calcination temperature and calcination 
duration for solvent- free method. 

 

4.3.5 Optimization of Calcination Variables 

 In the production of biodiesel, an effective catalyst is one of the integral 

requirements for obtaining a high yield for economical feasibility. An effective 

catalyst, can be normally obtain by optimizing the preparation variables of catalyst 

such as calcination conditions including temperature and duration. Based on the 

results presented earlier, apart from individual variables, interaction between the 

calcination variables were also found to have significant effect on the yield of 

biodiesel. Therefore, the optimization process must be able to take into account all 

the effects of the individual variables and also the interaction between variables, in 

order to maximize the yield of biodiesel of the transesterification process. This was 

carried out with the aid of the optimization function embedded in the Design-Expert 

software version 6.0.6 (STAT-EASE Inc., Minneapolis, USA) using the 
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mathematical equation developed. Specifically, numerical optimization was selected 

as it has a comprehensive and up-to-date description and it focus on the methods that 

are best suited to practical problems in engineering, science and business (Ahn et al., 

2008). In this method, the yield of biodiesel was set to a maximum range whereas 

calcination variables were set in a range between low and high levels with the coded 

values of -1 and +1 respectively.  

 

 The software predicted that an optimum biodiesel yield of 78.2 wt% can be 

obtained with the following calcination temperature and duration of 490 °C and 4 

hours respectively. The predicted optimum yield was then verified by carrying out 3 

repeated experimental runs using the suggested optimum condition. The repeated 

experiments gave an average optimum yield of 81.4 wt% which is very close to the 

predicted value (less than 5 % error) indicating that the predicted optimum process 

conditions are valid for this study. 

 

 Table 4.6 shows the optimum calcination conditions and yield of biodiesel 

with two different catalyst preparation methods (direct sulfation of zirconia oxide 

method and solvent- free method). It was clearly shown that the yield of biodiesel 

obtained for direct sulfation of zirconia oxide method were slightly higher than 

solvent- free method. Apart from that, direct sulfation of zirconia oxide method gives 

a lower optimum calcination temperature compared to solvent- free method although 

both methods give the same optimum calcination duration. Since direct sulfation of 

zirconia oxide method requires lower calcination temperature for catalyst preparation, 

the optimized catalyst prepared using this method was selected for subsequent 

transesterification process study. 



101 

 

Table 4.6: Comparison between direct sulfation of zirconia oxide method and 
solvent- free method. 

 Direct sulfation of 
zirconia oxide method 

Solvent- free 
method 

Optimum calcination temperature (°C) 400 490 

Optimum calcination duration (hour) 4 4 

Optimum yield of biodiesel (wt %) 84.60 81.40 

 

4.4 Process Study for Transesterification of Jatropha Curcas L. Oil 

4.4.1 Design of Experiment (DOE) 

 Design of experiment was used to study the effect of transesterification 

process variables on the yield of biodiesel. In addition to that, the process variables 

were then optimized. Sulfated zirconia loaded on alumina catalyst was required 

throughout the whole process study as the heterogeneous acidic catalyst to catalyze 

the transesterification reaction and was synthesized via direct sulfation of zirconia 

oxide method with optimum calcination conditions. Table 4.7 shows the 

experimental design matrix and result with different combination of process 

variables obtained from DOE. Table 4.8 shows the detail calculation for the molar 

ratio of methanol to oil and weight percentage of catalyst.  
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Table 4.7: Experimental design matrix by CCD for the four independent variables 
used for process study. 

Run Point 
type 

Level of variables [actual (coded)] Yield of 
biodiesel 

 

 

 

(%) 

Temperature, 
x1 

Duration, 
x2 

 

Molar ratio 

methanol/oil, 
x3 

Catalyst 
loading, 

x4 

 

(°C) (hour) (mole mole-1) (wt%) 

1 Fact 90 (-1) 2 (-1) 6 (-1) 4 (-1) 13.22 

2 Fact 150 (+1) 2 (-1) 6 (-1) 4 (-1) 42.93 

3 Fact 90 (-1) 4 (+1) 6 (-1) 4 (-1) 16.22 

4 Fact 150 (+1) 4 (+1) 6 (-1) 4 (-1) 58.58 

5 Fact 90 (-1) 2 (-1) 10 (+1) 4 (-1) 18.82 

6 Fact 150 (+1) 2 (-1) 10 (+1) 4 (-1) 54.39 

7 Fact 90 (-1) 4 (+1) 10 (+1) 4 (-1) 20.54 

8 Fact 150 (+1) 4 (+1) 10 (+1) 4 (-1) 77.61 

9 Fact 90 (-1) 2 (-1) 6 (-1) 8 (+1) 26.46 

10 Fact 150 (+1) 2 (-1) 6 (-1) 8 (+1) 58.31 

11 Fact 90 (-1) 4 (+1) 6 (-1) 8 (+1) 24.66 

12 Fact 150 (+1) 4 (+1) 6 (-1) 8 (+1) 63.04 

13 Fact 90 (-1) 2 (-1) 10 (+1) 8 (+1) 30.65 

14 Fact 150 (+1) 2 (-1) 10 (+1) 8 (+1) 74.48 

15 Fact 90 (-1) 4 (+1) 10 (+1) 8 (+1) 32.65 

16 Fact 150 (+1) 4 (+1) 10 (+1) 8 (+1) 85.52 

17 Axial 60 (-2) 3 (0) 8 (0) 6 (0) 9.67 

18 Axial 180 (+2) 3 (0) 8 (0) 6 (0) 88.90 

19 Axial 120 (0) 1 (-2) 8 (0) 6 (0) 41.79 

20 Axial 120 (0) 5 (+2) 8 (0) 6 (0) 61.86 

21 Axial 120 (0) 3 (0) 4 (-2) 6 (0) 35.56 

22 Axial 120 (0) 3 (0) 12 (+2) 6 (0) 61.83 
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Table 4-7. Continued. 

Run Point 
type 

Level of variables [actual (coded)] Yield of 
biodiesel 

 

 

 

(%) 

Temperature, 
x1 

Duration, 
x2 

 

Molar ratio 

methanol/oil, 
x3 

Catalyst 
loading, 

x4 

 

(°C) (hour) (mole mole-1) (wt%) 

23 Axial 120 (0) 3 (0) 8 (0) 2 (-2) 17.51 

24 Axial 120 (0) 3 (0) 8 (0) 10 (+2) 50.71 

25 Center 120 (0) 3 (0) 8 (0) 6 (0) 44.93 

26 Center 120 (0) 3 (0) 8 (0) 6 (0) 43.16 

27 Center 120 (0) 3 (0) 8 (0) 6 (0) 43.07 

28 Center 120 (0) 3 (0) 8 (0) 6 (0) 44.52 

29 Center 120 (0) 3 (0) 8 (0) 6 (0) 44.38 

30 Center 120 (0) 3 (0) 8 (0) 6 (0) 43.76 

 

Table 4.8: Exact measurement for molar ratio of methanol to oil and weight 
percentage of catalyst for data used in Table 4.7. 

Oil (ml) Methanol/Oil ratio (mol/mol) Catalyst 

Ratio Methanol (ml) % wt Gram, g 

40 4 6.62 2 0.7376 

40 6 9.94 4 1.4752 

40 8 13.25 6 2.2128 

40 10 16.56 8 2.9504 

40 12 19.87 10 3.688 

*Basis volume of Jatropha curcas L. oil used = 40 ml or 36.88 g with density = 0.9220 g/ml 
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4.4.2 Development of Regression Model Equation 

 By using multiple regression analysis, data in Table 4.7 was used to develop 

a mathematical model that correlates the response (yield of biodiesel) to the 

transesterification process variables. By using Design-Expert 6.0.6 software, the 

model equation in terms of actual value after excluding the insignificant terms is: 

(4.3)                                                                                      x1.73x - x2.94x         
 x3.11x 3.07x - 1.36x  6.66x  5.99x 4.15x  20.42x 45.70   Y

4231

21
2

4
2

24321

+
+++++++=

                                                                                                     

4.4.3 Statistical Analysis of Results 

 The quality of the model developed could be evaluated from their coefficients 

of correlation. The value of R-squared for Equation 4.3 is 0.9866. It implies that 

98.66 % of the total variation in the yield of biodiesel response is attributed to the 

experimental variables studied. The deviation is only 1.34 % from the ideal value. 

Besides that, Figure 4.17 demonstrated that the regression model equation provided 

a very accurate description of the experimental data, indicating that it was successful 

in capturing the correlation among the four process variables to the yield of biodiesel.  
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Figure 4.17: A comparative plot between experimental yield of biodiesel and 
predicted yield of biodiesel for process study. 

 

The adequacy of the model was further checked with analysis of variance 

(ANOVA) as shown in Table 4.9. Based on a 95 % confidence level, the model was 

tested to be significant as the computed F value (163.44) was much higher than the 

theoretical F 0.05 (9, 20) value (2.39) and the p value was less than 0.05. Thus, this 

indicates that the model was adequate for predicting the yield of biodiesel within the 

range of variables studied. Besides that, the significance of each term in the model 

was tested at 95 % confidence level by comparing the computed F values for the 

respective terms with the theoretical F 0.05 (1, 20) value (4.35) and checking the p 

values. Values greater than 0.05 indicate the model terms are not significant. From 

Table 4.9, the significant process variables that affect the yield of biodiesel were 

reaction temperature (x1), reaction duration (x2), molar ratio of methanol to oil (x3) 

and catalyst loading (x4). Interactions among some of the four variables also affect 

the yield of biodiesel.  
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Table 4.9: Analysis of Variance (ANOVA) for the regression model equation and 

Coefficients (process study). 

Source Sum of  
squares 

Degree of 
freedom 

Mean of 
squares 

F-Test p value 

Model 13040.58 9 1448.95 163.44 <0.0001 

x1 10008.25 1 10008.25 1128.94 <0.0001 

x2 414.17 1 414.17 46.72 <0.0001 

x3 861.36 1 861.36 97.16 <0.0001 

x4 1064.80 1 1064.80 120.11 <0.0001 

x2
2 52.33 1 52.33 5.90 0.0247 

x4
2 268.50 1 268.50 30.29 <0.0001 

x1x2 154.50 1 154.50 17.43 0.0005 

x1x3 138.30 1 138.30 15.60 0.0008 

x2x4 47.68 1 47.68 5.38 0.0311 

Residual 177.30 20 8.87 - - 

 

4.4.4 Effect of Process Variables 

4.4.4 (a) Single Variable Effect 

  The individual effects of reaction temperature, reaction duration, molar ratio 

of methanol to oil and catalyst loading towards the yield of biodiesel can be 

graphically seen from Figure 4.18 to Figure 4.21, respectively. These four 

individual variables show positive influence towards the yield of biodiesel as shown 

in Equation 4.3. From Table 4.9, it was observed that among the four variables 

studied, reaction temperature (x1) has the greatest effect on the yield of biodiesel 

(due to the highest F value) followed by catalyst loading (x4), molar ratio of 

methanol to oil (x3) and reaction duration (x2).  
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Figure 4.18 indicates that an increase in the reaction temperature led to an 

increase in yield of biodiesel. In this study, the range of reaction temperature studied 

was from 60 °C to 180 °C. The results indicated that the reaction rate is slow at lower 

temperatures as the yield of biodiesel yield was only 9.67 wt% at 60 °C after 3 hours 

of reaction. The yield of biodiesel increases with higher reaction temperature and it 

reached 88.90 wt% at 180 °C. The mechanism of acid catalyzed transesterification is 

different from that of base catalyzed transesterification which comparatively required 

high reaction temperature to facilitate the slow reaction rate of acid catalyzed 

transesterification (Shu et al., 2009).  

 

 

 

Figure 4.18: Yield of biodiesel against reaction temperature for process study 
(reaction duration at 3 hours, molar ratio of methanol to oil at 8, catalyst loading at 6 

wt%). 
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As describe by the Arrhenius equation, rate constant is strongly dependent on 

temperature. An increase in reaction temperature will increase the rate of reaction 

where more particles will have the necessary activation energy resulting in more 

successful collisions (when new bonds are formed between reactants). Hence, 

transesterification reaction should take place at high reaction temperature since 

reaction temperature influence the reaction rate and the yield of biodiesel.  

 

  In Figure 4.19, the yield of biodiesel against reaction duration is presented. It 

can be clearly seen that the yield of biodiesel increased at higher reaction duration 

within the range studied. In a three phase system which involves oil, methanol and 

heterogeneous catalyst, reaction is usually limited by the diffusion of reactants. The 

presence of heterogeneous catalyst leads to slower mass transfer rate due to limited 

contact between catalyst and the liquid reactants (as compared to homogeneous 

catalyst). Hence, longer reaction duration is required for the reactants to diffuse to 

the active sites of the catalyst and therefore higher yield of biodiesel can only be 

obtained at longer reaction duration. Apart from that, the conversion of triglycerides 

involves three consecutive reactions with intermediates (monoglyceride and 

diglyceride) (Chen & Wang, 2006). Therefore, longer reaction duration was acquired 

to complete this sequence of fatty acids substitution from the triglyceride molecules 

and to obtain biodiesel as the desired product (Abdullah, Razali & Lee, 2009).  
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Figure 4.19: Yield of biodiesel against reaction duration for process study (reaction 
temperature at 120 °C, molar ratio of methanol to oil at 8, catalyst loading at 6 wt%). 

 

Transesterification process consists of a sequence of three consecutive 

reversible reactions where by triglyceride is successively transformed into 

diglyceride, monoglyceride and finally into fatty acid methyl esters and glycerin. The 

molar ratio of methanol to oil is one of the important factors that affect the yield of 

biodiesel. Stoichiometrically, three moles of methanol are required for each mole of 

triglyceride, but in practice, a higher molar ratio is employed in the reversible 

reaction in order to shift the equilibrium towards the direction of biodiesel formation 

(Shu et al., 2007; Abdullah et al., 2009).  

 

This phenomenon was also reported by Shu et al. (2009). It was assumed that 

transesterification begins when triglycerides were chemisorbed on the catalyst active 

sites. These were then protonated at the carbonyl group to give a carbocation which 
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can undergo attack by methanol to form methyl esters. When methanol was in excess, 

the approach of methanol molecules to the carbocation was enhanced and there was 

an increase in the yield of biodiesel. In another word, the presence of excess 

methanol in the transesterification reaction leads to essentially breaking the 

glycerine-fatty acid linkages (Miao et al., 2009). In this study, the plot of biodiesel 

yield versus molar ratio of methanol to oil (Figure 4.20) shows that the higher the 

molar ratio of methanol to oil, the greater the yield of biodiesel.  

 

 

 

Figure 4.20: Yield of biodiesel against molar ratio of methanol to oil for process 
study (reaction temperature at 120 °C, reaction duration at 3 hours, catalyst loading 

at 6 wt%). 

 

In a typical heterogeneous acid catalyst such as sulfated zirconia used in this 

study, the presence of sulfate group provides the acidity that is required for 

transesterification of Jatropha curcas L. oil with high free fatty acid content. As 
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noted in Figure 4.21, it was found that higher catalyst loading directly increases the 

yield of biodiesel. This is due to the increase in the total number of available active 

acidic sites resulted in faster reaction rate to reach equilibrium. The active sites 

provided by catalyst were the locations where the reaction takes place and were 

proportional to the amount of catalyst (Li et al, 2010). However, it was noted that the 

yield of biodiesel increased with higher catalyst loading just up until a value in which 

higher increment no longer increased the yield of biodiesel. Further increase in 

catalyst loading beyond its optimum value will have negligible increase in the yield 

of biodiesel.  

 

.  

 

Figure 4.21: Yield of biodiesel against catalyst loading for process study (reaction 
temperature at 120 °C, reaction duration at 3 hours, molar ratio of methanol to oil at 

8). 
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At the beginning of the reaction, the reaction was rate limiting due to the 

immiscibility of Jatropha curcas L. oil and methanol. However, as catalyst is 

introduced in the reaction mixture, it provides an external contact surface area that 

facilitates the formation of biodiesel. As more biodiesel is produced, it eventually 

acted as co-solvent, by dissolving both reactants to become a single-phase reaction 

system (Shu et al., 2007). Subsequently the reaction rate is being controlled by the 

diffusion of the reactants to the active sites, instead of catalyst loading. Hence, 

increasing the catalyst loading in the reaction mixture will have an insignificant 

effect on the yield of biodiesel.  

 

4.4.4 (b) Effect of Interaction between Variables 

The regression model shown in Equation 4.3 indicates that the yield of 

biodiesel is not solely dependent on the individual process variables but also the 

interaction between variable. Equation 4.3 suggested that three interaction terms 

show significant effect on the yield of biodiesel, which are: the interactions between 

reaction temperature (x1) and reaction duration (x2); reaction temperature (x1) and 

molar ratio of methanol to oil (x3) as well as reaction duration (x2) and catalyst 

loading (x4). Hence, it is of great interest to further study these interactions effect 

within the range of process variables studied. The developed model was then used to 

construct an interaction plot to facilitate a straightforward investigation on the 

interaction between variables.  

 

Figure 4.22 shows the interaction between reaction temperature and reaction 

duration (molar ratio of methanol to oil was fixed at 8, catalyst loading was fixed at 6 
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wt%). At shorter reaction duration (2 hours), when the transesterification reaction 

was carried out at 90 °C, the yield of biodiesel was only 25.59 wt%. However, the 

yield of biodiesel increased to 60.21 wt% with increasing reaction temperature to 

150 °C. The same trend was observed at 4 hours of reaction duration but the 

magnitude of the increase in biodiesel yield was more pronounced at this longer 

reaction duration which is from 27.68 wt% to 74.74 wt%. In another words, reaction 

duration has a more significant effect on the yield of biodiesel at higher reaction 

temperature than lower reaction temperature.  

 

 

 

Figure 4.22: Yield of biodiesel against reaction temperature and reaction duration for 
process study (molar ratio of methanol to oil at 8, catalyst loading at 6 wt%). 

 

Similar to the explanation given in the previous section, an increase in 

reaction temperature and reaction duration were found to increase the yield of 
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biodiesel. At lower reaction temperature, the yield of biodiesel was slightly the same 

and less dependent on reaction duration since reaction temperature (x1) is the major 

regressor variable affecting the yield of biodiesel (greatest coefficients) compare to 

reaction duration (x2) as observed in Equation 4.3. The regression coefficients were 

20.42 and 4.15 for both individual effects, respectively. At lower reaction 

temperature, there is insufficient energy to promote extensive collisions among 

reactant particles. Therefore, increasing the reaction duration do not contribute to any 

significant increase in the yield of biodiesel.  

 

However, at higher reaction temperature, the possibility of collision among 

reactant particles became greater since now reactants can easily obtain the necessary 

activation energy. Thus if given longer contact time, most of the reactants will 

collide and react to give higher yield of biodiesel.   

 

Figure 4.23 shows the interaction between reaction temperature and molar 

ratio of methanol to oil (reaction duration was fixed at 3 hours, catalyst loading was 

fixed at 6 wt%). The yield of biodiesel was found to increase with increasing reaction 

temperature and molar ratio of methanol to oil. However, similar to the interaction 

between reaction temperature (x1) and reaction duration (x2), the effect of molar ratio 

of methanol to oil is greater at higher reaction temperature. This is again probably 

because reaction temperature is the most significant variable affecting the yield of 

biodiesel compare to molar ratio of methanol to oil (x3) since it has the largest 

coefficients in the model equation. The regression coefficients were 20.42 and 5.99 

for the both individual effect of reaction temperature and molar ratio of methanol to 
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oil, respectively. Hence, at lower reaction temperature, the yield of biodiesel 

obtained was only 22.23 wt% and 28.32 wt% for molar ratio of methanol to oil at 6 

and 10, respectively. There is only 6.09 wt% increase in the yield of biodiesel when 

increasing the molar ratio of methanol to oil. However, at higher reaction 

temperature, the yield of biodiesel increases from 57.19 wt% to 75.05 wt% by 

increasing molar ratio of methanol to oil from 6 to 10. There is a 17.86 wt% increase 

in the yield of biodiesel.  

 

 

 

Figure 4.23: Yield of biodiesel against reaction temperature and molar ratio of 
methanol to oil for process study (reaction duration at 3 hours, catalyst loading at 6 

wt%). 

 

At lower reaction temperature, again there is not sufficient energy to promote 

extensive collision among the reactants to collide and rect. Therefore, even by 

increasing the amount of reactants available by increasing the molar ratio of 



116 

 

methanol to oil do not bring much benefit to the yield of biodiesel. However, at 

higher reaction temperature, now most of the reactants have more energy, resulting 

to more collisions and reaction and therefore increasing the amount of reactants now 

have more positive effect on the yield of biodiesel.  

 

Figure 4.24 shows the interaction between reaction duration and catalyst 

loading (reaction temperature was fixed at 120 °C, molar ratio of methanol to oil was 

fixed at 8). As can be seen from the model equation, catalyst loading (x4) is a more 

significant regressor variable affecting the yield of biodiesel compared with reaction 

duration (x2). The regression coefficients were 6.66 and 4.15 for the both individual 

effects of catalyst loading and reaction duration, respectively. This can be observed 

in Figure 4.24 where the yield of biodiesel increases more significantly by 

increasing catalyst loading as compared with increasing reaction duration.  

 

Apart from that, it was noticed that at shorter reaction duration, yield of 

biodiesel was significantly increased from 31.44 wt% to 48.21 wt% (increase by 

16.77 wt%) with increasing catalyst loading from 4 wt% to 8 wt%, respectively. 

However, the increase was less pronounced at longer reaction duration (only increase 

by 9.87 wt%). In another words, the effect of catalyst loading reduced with the 

increment of reaction duration. This is a result of negative interaction which was 

correctly reflected by the negative value of regression coefficients for x2x4 

interaction in Equation 4.3 (-1.73).   
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Figure 4.24: Yield of biodiesel against reaction duration and catalyst loading for 
process study (reaction temperature at 120 °C, molar ratio of methanol to oil at 8). 

 

This finding can be explained as follows: the solubility of methanol in 

Jatropha curcas L. oil is limited and thus transesterification reaction can only occur 

at the interface of these two-phases or on the catalyst active sites. Therefore, at 

shorter reaction duration, there is not sufficient time for all the reactants to access the 

active sites especially at low catalyst loading. Thus, when the catalyst loading was 

increased, the yield of biodiesel significantly increases as now the reactants have 

better access to the active sites. However, at longer reaction duration, the amount of 

catalyst is no longer the limiting factor, as the reactants have more time to access the 

active sites. Therefore, increasing the catalyst loading at longer reaction duration, do 

not cause that much significant effect on the yield of biodiesel.  
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4.4.5 Optimization of Transesterification Process Variables 

 Up to this point, apart from the four individual variables, the interactions 

between variables were also found to have significant effect on the yield of biodiesel. 

Therefore, the optimization process must be able to take into account all the effects 

of the individual variables and also the interaction between variables, in order to 

maximize the yield of biodiesel of the transesterification process. In this study, the 

optimization of biodiesel yield was performed using Design-Expert software version 

6.0.6 (STAT-EASE Inc., Minneapolis, USA) to search for an optimum combination 

of conditions that give maximum yield of biodiesel.  

 

In this method, the yield of biodiesel was set to a maximum range whereas 

transesterification variables were set in a range between low and high levels with the 

coded values of -1 and +1 respectively. The software predicted that at the following 

optimum conditions; 150 °C, 4 hours for reaction duration, 9.88 mol/mol for the 

molar ratio of methanol to oil and 7.61 wt% for catalyst loading, an optimum 

biodiesel yield of 85.09 wt% can be obtained. The predicted optimum yield was then 

verified by carrying out 3 repeated experimental runs using the suggested optimum 

condition. The repeated experiments gave an average optimum yield of 90.32 wt% 

which is very close to the predicted value (less than 5 % error) indicating that the 

predicted optimum process conditions are valid for this study. 

 

The result obtained in this optimization study was compared with the results 

reported by other researchers for the production of biodiesel from different oil 

feedstocks with sulfated zirconia catalyst as shown in Table 4.10. It was found that 
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the yield obtained in this study is the highest as compared to those reported by other 

researchers. In addition to that, the transesterification process variables used for 

obtaining the optimum yield was only moderate, in between the conditions reported 

by other researchers. This result therefore show the superiority of the findings in this 

study in synthesizing sulfated zirconia loaded on alumina catalyst and utilizing it to 

convert Jatropha curcas L. oil to biodiesel with high yield.  

 

Table 4.10: Comparisons of biodiesel yield obtained in this study and other 
researchers with the optimum transesterification process conditions. 

Optimum 

reaction 

condition 

Researchers 

Chen and 
Wang 

(2006) 

Kansedo 

et al. 

(2007) 

Suwannakarn 

et al. 

(2009) 

This study 

Oil feedstock Cottonseed 
oil 

Sea mango 
oil 

Tricaprylin 
(TCP) 

Jatropha 
curcas L. oil 

Alumina supported no yes no yes 

Temperature 230 °C 180 °C 120 °C 150 °C 

Duration 7 hours 3 hours 2 hours 4 hours 

Methanol to oil 
molar ratio 

12 8 12 9.88 

Catalyst loading 2 wt% 6 wt% 10 wt% 7.61wt% 

Yield of biodiesel 80.0 % 83.8 % 84.0 % 90.3 % 
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4.5 Catalyst Recycling and Regeneration 

 The catalysts used for transesterification reaction were recycled and re-

utilized after the first run by washing with hexane for several times without any 

pretreatment. Figure 4.25 shows that the yield of biodiesel dropped after the first 

cycle of reaction. Initially, when using the fresh SZA catalyst, the yield of biodiesel 

is 90.32 wt%. However, after recycling the catalyst for the first time, the yield of 

biodiesel decreased to 74.57 wt%, 52.04 wt% in the second cycle, 32.07 wt% in the 

third cycle and 30.86 wt% in the fourth cycle. After the third cycle and onwards, the 

yield of biodiesel remains constant at about 30 wt%, which is similar to the yield of 

biodiesel that would have been obtained without the use of sulfated catalyst.  

 

Thus, it is clear that, the drop in the yield of biodiesel was due to catalyst 

deactivation. Generally, the deactivation process is caused by the free water or 

alcohol which is present in the reaction mixture. Kiss et al. (2006) reported that the 

ionic sulfur species supported on the catalyst surface could be hydrolyze into H2SO4, 

HSO4
- and SO4

2- by the presence of free water in the aqueous phase. The 

accumulation of free water on hydrophilic acidic sites will hydrolyze sulfate groups 

leading to the loss of active sites from the solid surface.  
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Figure 4.25: Effect of the recycling of sulfated zirconia alumina on yield of biodiesel 
(reaction temperature at 150 °C, reaction duration at 4 hours, molar ratio of methanol 

to oil at 9.88, catalyst loading at 7.61 wt%). 

 

Another possible reason that could have cause catalyst deactivation is 

leaching of the sulfate groups. Leaching process could occurs in the organic phase 

even with the presence of a small amount of water and also alcohol (Suwannakarn et 

al., 2008), which are used as reactants in transesterification of Jatropha curcas L. oil. 

However, water is more efficient in removing sulfate groups from the catalyst 

surface, likely due to its higher polarity and stronger hydrogen bonding capacity 

compare to alcohol (Suwannakarn et al., 2008). Thus, it is suggested that even a 

small amount of water present in the reaction mixture, the sulfate groups still could 

be leached out continuously depending on the contact time with water. In short, the 

catalyst deactivation process is due to the presence of water and alcohol in the 

reaction mixture and the degree of sulfur removal depends on the contact time with 

water and alcohol. Thus in this study, it was found that the limitation of SZA catalyst 
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was its fast deactivation and pretretment is necessary to regenerate the catalyst and to 

enhance its performance on the yield of biodiesel.  

 

 Regenerating the spent catalyst is important in order to recycle, reactivate and 

reuse the catalyst. Regeneration of spent catalyst was carried out by washing with 

hexane and stirring with sulfuric acid follow by calcination after every reaction 

cycles. Figure 4.26 shows that the performance of the regenerated catalyst was better 

than the results obtained for catalyst without pretreatment. The yield of biodiesel was 

maintained at an average of 87.1 wt% after the first cycle of regeneration. It may be 

due to the reforming of sulfated groups on the catalyst which plays the role as the 

active component for increasing the yield of biodiesel. Hence, pretreatment step was 

important to overcome the limitation of fast deactivation of the catalyst.   

 

 

Figure 4.26: Effect of regeneration of sulfated zirconia alumina on yield of biodiesel 
(reaction temperature at 150 °C, reaction duration at 4 hours, molar ratio of methanol 

to oil at 9.88, catalyst loading at 7.61 wt%). 
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4.6 Characterization of Biodiesel 

 The properties of extracted Jatropha curcas L. oil, Jatropha biodiesel, 

conventional diesel and biodiesel standard are summarized in Table 4.11. It can be 

seen from this table that the property of Jatropha curcas L. oil was found to have 

values beyond the boundaries of normal range of biodiesel properties, especially acid 

value and kinematic viscosity, thus restricting its direct use as a fuel for diesel 

engines. The kinematic viscosity of the oil was found more than that of conventional 

diesel determined at 40 °C. However, after transesterification reaction, the acid value 

and kinematic viscosity of the oil decreased significantly.  

 

On another note, the resulting flash point of Jatropha biodiesel was found 

much higher than those of conventional diesel which was greater than 100 °C leading 

to safer storage and handling (Amish, Subrahmanyam & Payal, 2009). Acid value for 

biodiesel is primarily an indicator for free fatty acid. Acid value higher than 0.8 mg 

KOH/g might cause deposition of FFA on fuel system leading to shorter fuel pumps 

and filters life span. Also, higher viscosity fuels can cause poor fuel combustion that 

leads to deposit formation. However, the properties of Jatropha biodiesel such as 

acid value, kinematic viscosity, flash point, specific gravity, water content and ash 

content had comparable fuel properties with those of conventional diesel and met the 

biodiesel standard of ASTM D6751 as shown in Table 4.11. 
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Table 4.11: Fuel properties of Jatropha biodiesel with ASTM D6751 standard. 

Property Unit Extracted 

Jatropha  

oil 

Jatropha 
biodiesel 

Diesel Biodiesel 
standards 

ASTM D 
6751 

Acid value mg KOH 
g-1 

10.37 0.29 - <0.80 

Kinematic 
viscosity at 
40 °C 

mm2 s-1 48.2 2.9 2.6 1.9- 6.0 

Flash point °C 60 140 68 >130 

Specific 
gravity 

g ml-1 0.92 0.89 0.85 0.86- 0.90 

Water content % 0.05 0.01 0.02 <0.03 

Ash content % 0.09 0.01 0.01 <0.02 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

 In this study, Jatropha curcas L. oil was successfully extracted from 

Jatropha curcas L. seed using soxhlet extraction with hexane and converted to 

biodiesel using sulfated zirconia loaded on alumina catalysts. The catalysts were 

synthesized using two different methods; direct sulfation of zirconia oxide method 

and solvent-free method. The characterization results revealed that the catalyst 

prepared by these two different methods had good crystalline structure with 

sufficient acidic sites required for the transesterification reaction. 

 

However, the effects of calcination variables on the yield of biodiesel were 

different for both catalyst preparation methods. For the direct sulfation of zirconia 

oxide method, calcination temperature was found to have significant negative effect 

on the yield of biodiesel while calcination duration brings insignificant effect. On the 

other hand, for solvent- free method, calcination temperature shows quadratic effect 

on the yield of biodiesel while the yield of biodiesel was found to increase linearly 

with an increase in calcination duration. The different effect of calcination variables 

on the yield of biodiesel was due to the different acidic strength, chemical structure 

and behavior of the sulfated zirconia catalyst with different preparation methods.  
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Furthermore, the calcination variables for both catalyst preparation methods 

were then optimized in order to obtain the highest yield of biodiesel. The yield of 

biodiesel obtained for direct sulfation of zirconia oxide method (84.60 wt%) was 

slightly higher than that of solvent- free method (81.40 wt%). Apart from that, direct 

sulfation of zirconia oxide method require lower optimum calcination temperature 

(400 °C) compared to solvent- free method (490 °C) although both methods require 

similar optimum calcination duration (4 hours). This was again due to the different 

acidic strength of the sulfated groups that was formed with different catalyst 

preparation methods. Therefore, this led to different catalytic behaviors on the 

transesterification reaction. 

 

The transesterification process variables were studied and optimized for 

sulfated zirconia loaded on alumina catalyst prepared using the direct sulfation of 

zirconia oxide method. The results revealed that reaction temperature have the 

greatest effect on the yield of biodiesel among the four process variables studied. 

Also, the interaction effect between the variables also showed significant effect on 

the yield of biodiesel. At the following conditions; 4 hours reaction duration at 

150 °C, methanol to oil molar ratio of 9.88 mol/mol, 7.61 wt% for catalyst loading, 

an optimum biodiesel yield of 90.32 wt% was obtained. 

 

 The reusability and life span of the catalyst for the transesterification process 

were also studied and it was found that after recycling the catalyst for the first time, 

the yield of biodiesel decreased from 90.32 wt% to 74.57 wt%. The yields dropped 

further to 52.04 wt% in the second cycle, 32.07 wt% in the third cycle and 30.86 
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wt% in the fourth cycle. It was due to catalyst deactivation caused by leaching of 

sulfate compounds. However, the catalyst was successfully regenerated by re-

sulfation method. The yield of biodiesel was maintained at an average of 87.1 wt% 

after the first cycle of regeneration. 

 

 Hence, in the present research work, it discovered that direct sulfation of 

zirconia oxide method was a simple catalyst preparation method which provide an 

easy route for synthesizing sulfated zirconia supported on alumina, but yet with high 

catalytic activity in the production of biodiesel from Jatropha curcas L. oil. Apart 

from that, the fuel properties of Jatropha biodiesel were characterized and it was 

found to meet the biodiesel standard of ASTM D6751. Hence, Jatropha biodiesel 

can be commercially used as biodiesel throughout the world.  

 

5.2 Recommendations 

 

 This study has shown the potential of using Jatropha curcas L. oil as 

feedstock for the production of biodiesel catalyzed by sulfated zirconia loaded on 

alumina. Some recommendations have been made for further improvement of this 

project in the future. 

 

1. Different types of heterogeneous acidic catalysts should be used for 

comparison study. Other types of heterogeneous acidic catalyst that could be 
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used in transesterification of Jatropha curcas L. oil include tungsten oxides, 

Amberlyst 115, Lewatit GF 101, Nafion 1 resins and organosulphonic 

functionalized mesoporous silicas.  

 

2. More variables should be studied during catalyst preparation which includes 

the effect of catalyst particle size and the effect of sulfuric acid concentration 

on the yield of biodiesel. Apart from that, other various types of non-edible 

oil feedstocks should also be studied.  Cerbera odollam oil (sea mango oil) 

could be one of the choices as this feedstock can be found in Malaysia.  

 

3. The study to pro-long the life span of the SZA catalyst should be carried out 

in order to overcome the fast deactivation of the catalyst. The study could 

consists of a new or modified route on catalyst preparation which to 

synthesize catalyst with good acidic characteristics and high reusability. 

 

4. Another possible route for the production of biodiesel is through reactive 

extraction or in situ esterification of Jatropha curcas L. seed. For this method, 

the reactants required are Jatropha curcas L. grounded seed, methanol and 

sulfuric acid. The mode of this study involves both oil extraction step and 

transesterification reaction step to occur simultaneously in a round bottom 

flask equipped with reflux system. Methanol acts as both extraction solvent 

and reaction reagent. This single step reactive reaction process has the 

potential to reduce processing steps and cost. However, the total experiment 

time for each run might become longer as it involves both oil extraction and 

reaction to occur simultaneously. 
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APPENDIX A 

CALCULATION OF DILUTION FACTOR 

 

 

 

Dilution Factor, DF = Dilution with Hexane x Dilution with Internal Standard 

                                = 
L 500
L 1000  

L 500
L 9500

µ
µ

µ
µ x  

                                = 19 x 2 

                                = 38 

 

500 μL sample 9000 μL Hexane 

9500 μL Mixture 

500 μL Mixture 500 μL Internal Standard 

1000 μL Mixture 

1 μL for Gas Chromatography 

Mix 

Mix 
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APPENDIX B 

SULFURIC ACID PREPARATION 

 

ZrO2 + 2 H2SO4 → Zr(SO4)2 + 2H2O      (B.1) 

Basis : For 1 sample, 8g  of ZrO2 used 

Number of Mole for 8g of ZrO2 = 2
2

 ZrOmole 0.0649  g 8  
 ZrOg 123.22

 mole 1
=x  

From Stoichiometry, 1 mole of ZrO2 reacted with 2 mole of H2SO4 

Thus, 0.0649 mole of ZrO2 reacted with (0.0649 x 2 = 0.1298) mole of H2SO4 

Weight of H2SO4 = g 12.7307  mole 1298.0 
mole

g 08.98
=x  

For 2.5 M of H2SO4, Weight of H2SO4 = 3
3 g/cm 2452.0

mole
g 08.98

cm 1000
mole 5.2

=x  

Thus, Volume of H2SO4 needed = 3
3

cm 51.9197  g 12.7307 
g 0.2452

cm 1
=x  
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APPENDIX C 

CALCULATION OF BIODIESEL YIELD 

 

  From (3.3) 

 

 In order to calculate the total weight of methyl esters, area under each peaks 

of the results from Gas Chromatograph are needed. For example, the result of run 18 

from the transesterification process study is used in the sample of calculation. 

 

(A) Calculate ratio area for each of the standard reference methyl esters. 

 

 (C.1) 

 

Table C.1: Ratio area for each of standard reference methyl esters. 

Fatty Acid Methyl 
Ester 

Molecular Weight 
(g/mole) 

Ratio, Rf Concentration 
(mg/mL) 

Methyl Palmitate 270.45 0.891384761 1.00 
Methyl Stearate 298.50 0.986604560 1.00 
Methyl Oleate 296.49 0.983110062 1.00 

Methyl Linoleate 294.47 0.558205670 1.00 
Internal Standard  1.000000000  
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(B) Calculate ratio area for each of methyl esters of the samples 

 

           (C.2) 

 

Table C.2: Ratio area for each of sample methyl esters. 

Fatty Acid Methyl 
Ester 

Molecular Weight 
(g/mole) 

Area Ratio, Rs 

Methyl Palmitate 270.45 1082469.92 2.42393458 
Methyl Stearate 298.50 477254.63 1.06869852 
Methyl Oleate 296.49 3066123.88 6.86585703 

Methyl Linoleate 294.47 2688206.89 6.01960159 
Internal Standard  446575.55 1.00000000 

 

(C) Calculate yield for each of the methyl esters 

 

                                    From (3.2) 

Dilution Factor, DF = 38 

Volume of Jatropha Oil used, V = 40 mL 

Concentration of internal standard used, CIS = 1 mg/ml 

 

Thus, for Methyl Palmitate: 

mL
mg 1 x mL 40 x 38 

891384761.0
42393458.2  Palmitate Methyl ofWeight x=  

                                              = 4133.3224 mg 

                                              = 4.13332236 g 
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Table C.3: Weight of each methyl esters. 

Fatty Acid Methyl 
Ester 

Weight 
(g) 

Methyl Palmitate 4.13332236 
Methyl Stearate 1.64647704 
Methyl Oleate 10.6153961 

Methyl Linoleate 16.3914394 
Total Weight 32.7866349 

 

Total Weight = 4.13332236 + 1.64647704 + 10.6153961 + 16.3914394 

                      = 32.7866349 g 

 

(D) Calculate % yield of biodiesel 

   From (3.3) 

                               %100
 g 36.88

g 32.7866349 x=     

                                = 88.90 % 
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Figure C.1: A typical GC chromatogram for biodiesel sample. 

 

Table C.4: Retention time for each methyl ester peak in GC chromatogram. 

 

Retention time Type of fatty acid methyl esters 
6.49 Methyl palmitate 
7.34 Methyl heptadecanoate (as internal standard) 
8.19 Methyl stearate 
8.36 Methyl oleate 
8.80 Methyl linoleate 
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APPENDIX D 

METHANOL VAPOR PRESSURE FOR ANTOINE’S EQUATION 

 

                                                                                               (D.1) 

Where A = 7.9701, B = 1521.23, C = 234 (valid for temperature range from 65°C to 

214°C). Unit for Pressure, P in mmHg, Temperature, T in °C. 

 

Table D.1: Methanol vapor pressure according to operating temperature. 

Temperature (°C) Pressure (bar) 
60 0.8332 
70 1.2330 
80 1.7796 
90 2.5110 
100 3.4707 
110 4.7078 
120 6.2769 
130 8.2376 
140 10.6547 
150 13.5977 
160 17.1400 
170 21.3590 
180 26.3350 
190 32.1511 
200 38.8923 
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