
Universitat Politècnica de Catalunya
Programa de Doctorat de Matemàtica Aplicada

Departament de Matemàtica Aplicada III

Paving the path towards automatic hexahedral
mesh generation

by Xevi Roca Navarro

Doctoral thesis
Advisor: Josep Sarrate
Barcelona, June 8, 2009

Contents

Contents iii

List of Figures vii

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Generating hexahedral meshes . 3

1.3 Automatic hexahedral mesh generation 5

1.4 Goals and outline . 7

2 A new affine method for sweeping: fundamentals 11

2.1 Introduction . 11

2.2 Problem statement . 14

2.3 Theoretical and comparative analysis 19

2.4 Minimizing functional H is preferable 25

2.5 Concluding remarks . 28

3 A new affine method for sweeping: implementation 31

3.1 Introduction . 31

3.2 Drawbacks of standard affine methods 32

3.3 Preserving offset data . 35

3.4 Algorithm implementation . 38

3.5 Testing offset data preservation . 43

3.6 Concluding remarks . 53

4 A new sweeping scheme based on affine methods 55

iii

Contents

4.1 Introduction . 55

4.2 Generation of surface meshes . 56

4.3 Generation of inner nodes and elements 61

4.4 Numerical examples and applications 64

4.5 Concluding remarks . 69

5 Local dual contributions 71

5.1 Introduction . 71

5.2 2D motivation . 73

5.3 Algorithm proposal . 76

5.4 3D theory . 77

5.5 Adding local dual contributions . 85

5.6 Application to block-meshing . 93

5.7 Examples . 96

5.8 Concluding remarks . 103

6 EZ4U: developing a new mesh generation framework 105

6.1 Introduction . 105

6.2 Requirements . 106

6.3 Design and architecture . 108

6.4 Geometry and meshing modules . 109

6.5 Geometry and meshing API . 119

6.6 Commands kernel . 119

6.7 Execution modes . 121

6.8 Mesh generation features . 124

6.9 Concluding remarks . 130

7 Summary and future work 131

7.1 Summary and contributions . 131

7.2 Future work . 133

A Proofs of Chapter 2 137

A.1 Linear algebra results . 137

A.2 Properties of functionals . 139

A.3 Rank analysis . 140

A.4 Equivalences between functionals . 141

iv

Contents

A.5 Exact mapping characterization . 144

B Proofs of Chapter 3 147

B.1 Pseudo-normal of a loop of nodes . 147

B.2 Algorithm implementation . 150

C Determining polygon candidates 153

C.1 Intersection points for planar dual surfaces 153

D Management and development of a mesh generation environment 157

D.1 Development paradigms and techniques 157

D.2 Project management . 160

D.3 Tools . 160

D.4 Libraries . 162

Bibliography 163

v

List of Figures

2.1 Sweeping process of an extrusion volume (a) geometry, (b) available data,

i.e. surface meshes, and (c) shrunk hexahedral mesh. 12

2.2 (a) The inner nodes of the source quadrilateral mesh (marked with ◦) are

mapped according to map φ. Available data is: the set X (marked with

•) and the set Y (marked with �). (b) The image of set X by ϕ, marked

with ◦, approximates the set Y according to E. 16

2.3 Geometric representation of the translation of the sets of points X and Y

(a) to the origin and (b) to cY − cX . 17

2.4 (a) Example of a geometry where cY − cX lies in the same plane than

the source surface and the boundary of the inner layer. (b) Geometric

representation of the translation of the sets of points X and Y to the

origin and additional vectors uX and uY 18

2.5 Illustration of the flattening effect: (a) projecting a non-planar mesh with

planar boundary into a planar boundary loop; (b) projecting a non-planar

mesh with planar boundary into a non-planar boundary loop; and (c)

projecting a non-planar mesh into a planar boundary loop. 26

2.6 (a) A non-planar surface with planar boundary; (b) cross-section view of

the surface and its image minimizing G (dotted line) and H (thin solid line). 27

2.7 Least-squares approximation of an affine mapping between a circular shaped

set of points X and an elliptical shaped set of points Y 27

vii

List of Figures

3.1 Graphical representation of the undesired effects. (a) A non-planar mesh

with planar boundary is projected to a loop. A planar mesh is obtained;

(b) a non-planar mesh is projected to a planar loop. A planar mesh is

also obtained; (c) a non-planar loop is projected to another non-planar

loop curved on the opposite direction. Offset data direction is inverted;

and (d) a non-planar loop is projected to another non-planar loop. Offset

data length is scaled. 34

3.2 A non-planar mesh is projected to a non-parallel loop A skewed mesh is

obtained. The desired profile is depicted with a dotted curve. 35

3.3 Geometrical interpretation of the pseudo-area vector. 37

3.4 Flattening test. (a) Perspective view of the wire-frame model; (b) front

view of the wire-frame model; and (c) surface mesh. 44

3.5 Central cross-section and shape quality values of the obtained mesh by (a)

minimizing functional F ; and (b) using the proposed algorithm. 44

3.6 Distribution of the elements according to the shape quality measure: (a)

histogram for functional F ; (b) histogram for functional H; and (c) sta-

tistical values for both functionals. 45

3.7 Measures of the shape of the inner layers. Distances between two consecu-

tive layers for (a) the minimization of functional F and (b) the minimiza-

tion of functional H. In addition, (c) angle between two adjacent edges

at the middle node. 45

3.8 Flipping test. (a) Perspective view of the wire-frame model; (b) front view

of the wire-frame model; and (c) surface mesh. 47

3.9 Central cross-section and shape quality values of the obtained mesh by (a)

minimizing functional F ; and (b) using the proposed algorithm. 47

3.10 Distribution of the elements according to the shape quality measure: (a)

histogram for functional F ; (b) histogram for functional H; and (c) sta-

tistical values for both functionals. 48

3.11 Angle between two adjacent mesh edges at middle node. 48

3.12 Wire-frame model of the geometry used for the offset scaling test: (a)

perspective view; and (b) front view. 49

3.13 Central cross-section and shape quality values of the obtained mesh by (a)

minimizing functional F ; and (b) using the proposed algorithm. 50

viii

List of Figures

3.14 Distribution of the elements according to the shape quality measure: (a)

histogram for functional F ; (b) histogram for functional H; and (c) sta-

tistical values for both functionals. 50

3.15 Minimum, maximum and middle node distances from one level to next one:

(a) for the minimization of functional F ; and (b) for the minimization of

functional H. 51

3.16 Wire-frame model of the geometry used for the skewing test: (a) perspec-

tive view; and (b) front view. 52

3.17 Central cross-section and shape quality values of the obtained meshes (a)

minimizing functional G; and (b) using the proposed algorithm. 52

3.18 Distribution of the elements according to the shape quality measure: (a)

histogram for functional G; (b) histogram for functional H; and (c) sta-

tistical values for both functionals. 53

3.19 Minimum, maximum and middle node distances from one level to next

one for: (a) the minimization of functional G; and (b) the minimization

of functional H. 53

4.1 (a) Boundary nodes of a non simple connected surface; (b) discretization

of a linking side using r − 1 inner levels. 59

4.2 S-shaped sweep volume. (a) Equidistant nodes on the edges and folded

elements; (b) well positioned edge nodes for the linking-sides structured

mesh generation. 61

4.3 Extrusion volume with non planar cap surfaces and inner nodes placed

according the weighted interpolation. (a) Surface mesh; (b) inner elements. 63

4.4 Examples of extrusion geometries meshed with the developed sweep al-

gorithm. (a) Mill head with twisted sweep path; (b) one-hole extrusion

volume with twisted and curved sweep path. 65

4.5 Volume with varying elliptical cross-sections along a twisted sweep path.

(a) Final mesh; (b) layer of hexahedral elements at fourth-level; (c) mid-

dle layer of hexahedral elements. 65

4.6 Sweep volume with convex source face and a target face with some con-

cavities. (a) Whole mesh; (b) layer of hexahedral elements at level six;

(c) layer of hexahedral elements at level eleven. 66

ix

List of Figures

4.7 Cube with non uniform element size distribution. (a) Detail of the final

mesh at the corner where high element concentration is prescribed; (b)

view of target surface mesh; (c) inner layer of hexahedral elements. . . . 67

4.8 Power chain discretization. (a) CAD model block decomposition; (b)

hexahedral mesh. 68

4.9 Application of the proposed algorithm to the discretization of extrusion

geometries defined by several one-to-one volumes: (a) crank shaft; and (b)

heat sink. 68

4.10 Application of the proposed algorithm to the discretization of a gear com-

posed defined by several one-to-one volumes. 69

5.1 Desired dual curves for a rectangular domain: (a) required rows of quadri-

laterals; (b) coarsest quadrilateral mesh; (c) connecting opposite edges;

and (d) desired dual curves. 73

5.2 Dual curves for a Tri-to-Quad mesh: (a) reference mesh; (b) Tri-to-Quad

mesh; (c) connecting opposite edges; and (d) dual curves. 74

5.3 Two topologically equivalent representations of dual curves. Curved rep-

resentation: (a) curved dual curves; (b) curved dual over the reference

mesh; and (c) three curved contributions per triangle. Straight represen-

tation with poly-lines: (d) poly-line dual curves; (e) poly-line dual curves

over the reference mesh; and (f) three segment contributions per triangle. 75

5.4 Selecting parts of the dual of a tri-quad mesh: (a) initial dual curves; (b)

hard contributions; (c) soft contributions; (d) final dual curves. 76

5.5 Locally valid dual configurations: (a) no dual surfaces; (b) one dual sur-

face; (c) one dual curve; and (d) one dual point. 77

5.6 Required meshes around feature curves of type: (a) end, (b) corner, and

(c) reversal. 79

5.7 Reference element entities: (a) vertices; (b) edges; (c) faces. 80

5.8 Splitting of a tetrahedron: (a) tetrahedron and (b) decomposition into

four hexahedra. 81

5.9 Topologically equivalent pieces of the dual in a reference element: (a)

curved representation and (b) planar representation. 82

5.10 Intersection points of a planar dual representation inside a reference el-

ement: (a) points on edge e14; (b) points on face f134; and (c) points

inside the reference element. 82

x

List of Figures

5.11 Classification of all possible candidates: (a) face candidates; (b) edge

candidates; and (c) vertex candidates. 84

5.12 A detailed example for each type of contribution: (a) face candidate for

face f1234; (b) edge candidate for edge e13 and face f134; and (c) vertex

candidate for vertex v3 and edge e34. 84

5.13 Hierarchical scheme for adding local dual contributions from: (a) faces

(red); (b) edges (cyan and orange); and (c) vertices (blue and yellow). . 87

5.14 Advancing fronts of edges and faces from a corner curve: (a) initial front;

(b) new front at first iteration; and (c) new front at second iteration. . . 95

5.15 Block-meshing process for the brick-shaped domain: (a) domain; (b) local

dual contributions; (c) dual regions; and (d) unstructured block mesh. . 97

5.16 Block-meshing for the L-shaped domain: (a) domain; (b) local dual con-

tributions; (c) dual regions; and (d) unstructured block mesh. 98

5.17 Block-meshing for the domain with non-sweepable protrusions: (a) do-

main; (b) local dual contributions; (c) dual regions; and (d) unstructured

block mesh. 99

5.18 Block-meshing for the half of a gear domain: (a) dual regions and (b)

unstructured block mesh. 101

5.19 Block-meshing for the thin domain with holes: (a) dual regions and (b)

unstructured block mesh. 101

5.20 A rounded and closed loop geometry: (a) dual regions and (b) unstruc-

tured block mesh. 102

5.21 Geometry with a 4-valent protrusion (pyramid): (a) dual regions and (b)

unstructured block mesh. 103

6.1 Architecture in layers of EZ4U. 108

6.2 Topological representation of two surfaces: (a) A domain composed by two

surfaces that share an edge; (b) hierarchical organization of the entities. 111

6.3 Shape class hierarchy diagram. 113

6.4 Element and Mesh class hierarchy and collaboration diagram. 114

6.5 Mesher class hierarchy diagram. 117

6.6 Hierarchical mesh generation process corresponding to the discretization

of the domain presented in figure 6.2. (a) 0D mesh; (b) 1D mesh; and

(c) 2D mesh. 119

xi

List of Figures

6.7 KeyManager and Key classes mediate collaboration between geometry/topology,

attributes, and meshing functions. 120

6.8 A sketch of the GUI of the environment for geometry-based simulations. 122

6.9 Screenshot of the GUI of the mesh generation environment. 123

6.10 Unstructured quadrilateral mesh over the surface of a snap harness. . . . 125

6.11 Multi-sweep meshes: (a) a crankshaft and (b) a connecting rod. 127

6.12 Hexahedral mesh for a half of a gear with the submapping technique by

Ruiz-Gironès and Sarrate (2008). 128

6.13 Two meshes of an airplane: (a) general view and detail of the linear mesh;

(b) general view and detail of the mesh with exact boundary representation.129

xii

List of Tables

3.1 Definition of vectors uX and uY according to the sets X and Y 41

5.1 Call graph for adding local dual contributions. 86

5.2 Mesh entities used for the brick-shaped domain. 98

5.3 Mesh entities used for the L-Shaped domain. 99

5.4 Mesh entities used for the domain with non-sweepable protrusions. . . . 100

5.5 Mesh entities used for the half of a gear example. 101

5.6 Mesh entities used for the thin domain with holes. 102

5.7 Mesh entities used for the rounded loop example. 102

5.8 Mesh entities used for the 4-valent protrusion example. 102

xiii

Chapter 1

Introduction

1.1 Motivation

Spatial discretizations, represented by a mesh, have been related with computational

methods since the appearance of the first electronic computers. Later, the evolution

of computer graphics capabilities has induced to use meshes in new areas of appli-

cation such as medical imaging, scientific visualization and 3D animation. However,

automatic mesh generation was first prompted by many applications of computa-

tional methods in applied science and engineering. Specifically, the generation of a

mesh is a pre-requisite for the application of several numerical techniques including

the finite difference method (FDM), the finite element method (FEM), and the finite

volume method (FVM).

The application of the above numerical techniques to 3D simulations leads to

meshes composed by polyhedral elements. In these applications the most common

types are the tetrahedral (four triangular faces) and hexahedral (six quadrilateral

faces) elements. Three fast and robust approaches have been developed to auto-

matically generate tetrahedral meshes for arbitrary domains: the advancing front

technique (Lohner et al., 1985; Peraire et al., 1987, 1988; Lohner and Parikh, 1988),

Delaunay based methods (Baker, 1987; George et al., 1988), and the Octree approach

(Shephard and Georges, 1991; Yerry and Shephard, 1984). In these methods local

connectivity modifications are a crucial step. However, in hexahedral meshes the con-

nectivity modifications propagate through the mesh. Therefore, hexahedral meshes

are more constrained and only a limited type of geometries can be automatically

meshed with high-quality hexahedral elements.

1

1. Introduction

In industrial applications, the semi-automatic process for obtaining a hexahedral

mesh, see Section 1.2, is often the most time-consuming task of the whole analysis.

Nevertheless, hexahedral elements are preferred in a wide range of applications, for

instance:

• In elastic and elasto-plastic analysis, eigenvalues of stiffness matrix for hexahe-

dra are smaller than those for tetrahedra. Specifically, the tetrahedron is too

stiff and locks in bending tests (Benzley et al., 1995).

• In structural analysis empirical studies have shown that hexahedral elements

provide more accuracy than tetrahedral elements for the same computational

cost (Cifuentes and Kalbag, 1992; Weingarten, 1994). To obtain similar ac-

curacy a tetrahedral mesh usually requires between four and ten times more

elements than a hexahedral mesh.

• In Navier-Stokes computations elements with high aspect ratio are required at

boundary layers. Stretched hexahedra perform better than stretched tetrahedra

capturing the anisotropy of the flow field over such viscous regions.

• In structural dynamics simulations of composite materials elements strictly

aligned with material features are required. Hexahedral elements reproduce

better than tetrahedra the anisotropic properties of composite materials.

These advantages hold when comparing trilinear hexahedra versus linear tetrahedra

but not in the case of their high-order versions. Quadratic tetrahedra require less

computational effort than quadratic hexahedra to obtain similar accuracy (Cifuentes

and Kalbag, 1992; Weingarten, 1994). However, hexahedra can also be suitable for

high-order applications of the FEM. For instance, the spectral element method (SEM)

is an accurate and efficient technique that explodes the characteristics of hexahedral

elements (Patera, 1984). Efficiency is achieved by using the tensor product of Gauss-

Lobatto points to determine the location of both interpolation and integration points.

This results in diagonal mass matrices and the adequacy to parallel implementations.

Therefore, special attention is focused on developing automatic algorithms to generate

hexahedral meshes.

2

1.2. Generating hexahedral meshes

1.2 Generating hexahedral meshes

During the last decades the FEM, the FVM, and the FDM have become essential

tools in applied science and engineering. However, in industrial applications, they are

often hampered by the conversion of the computer aided design (CAD) model into

a mesh adapted to the details of the geometry and to the prescribed distribution of

the element size. Generating a mesh of the model can represent the ninety per cent

of the analysis time (Halpern, 1997). In this process the most time-consuming tasks

are:

• Geometry healing. The CAD model is repaired in order to obtain a water-tight

geometry of the domain to analyze: rebuilding missing curves and surfaces;

eliminating duplicated entities; and matching points, curves and surfaces prop-

erly.

• Geometry de-featuring. The details not relevant to the analysis being performed

are removed.

• Geometry decomposition. It could be required to decompose the healed and

de-featured geometry into simpler sub-volumes.

• Generating meshes. Finally, the user sets the meshing parameters and assigns

the desired mesh algorithm to each one of the sub-volumes.

For tetrahedral meshes, once the geometry is healed and de-featured the user can

generate meshes without performing geometry decomposition. The mesh generation

process is fast, robust and automatic. However, for hexahedral meshes, the geometry

decomposition task is the bottleneck of process.

1.2.1 Geometry representation

Mesh generation begins with a proper representation of the geometry to be meshed.

The three most usual methodologies to represent geometry are:

• Constructive solid geometry (CSG). The domains are defined by means of

Boolean unions, differences and intersections of a set of primitive geometric

shapes including boxes, spheres, ellipsoids, and cones.

3

1. Introduction

• Faceted representations. The geometry of the boundaries is described with

polygonal meshes, usually composed by triangular and quadrilateral elements.

• Boundary representation (B-rep). The geometry is defined in terms of pa-

rameterized curves and surfaces that determine the boundaries of the domain.

In CAD applications these parameterizations are usually determined by non-

uniform rational B-splines (NURBS), see Piegl and Tiller (1997).

In this dissertation we assume that we have a B-rep of a CAD model. Hence,

the model is determined by a set of topological and geometrical entities. On the

one hand, the connectivity between different model entities is determined by a set

of topological entities: vertices (0D), edges (1D), faces (2D), and solids (3D). On

the other hand, the shape of the model is represented by the following geometrical

entities: point (0D), curve (1D), surface (2D), and volume (3D).

1.2.2 Geometry decomposition

To generate a hexahedral mesh, experienced engineers have to manually decompose

the healed and de-featured geometry into simpler sub-volumes. This process is re-

peated until each sub-volume can be meshed with existent automatic hexahedral mesh

generators. There are two main decomposition strategies: the divide and conquer ap-

proach, and the multi-block approach. To apply these approaches powerful graphical

mesh generation environments have been developed, see Chapter 6. These packages

provide a set of graphical tools for manual and semi-automatic decomposition of

domains.

Divide and conquer approach. In this approach the initial geometry is de-

composed until each sub-volume can be meshed with existent automatic hexahedral

mesh generators, such as mapping (Cook and Oakes, 1982), submapping (Whiteley

et al., 1996; Ruiz-Gironès and Sarrate, 2009, 2008), and sweeping (Knupp, 1998, 1999;

Blacker, 1996; Mingwu and Benzley, 1996; Staten et al., 1999; Scott et al., 2005). In

general a large number of the resulting sub-volumes are extrusion geometries that

can be meshed with the sweeping technique. Hence, it is of the major importance

to improve the robustness and the mesh quality of this technique, see Chapters 2, 3,

and 4.

The decomposition is mainly a geometrical and interactive process, where the

engineer has to decide how to divide a given domain. To this end, several mesh gen-

4

1.3. Automatic hexahedral mesh generation

eration environments have been developed during the last decades (Sandia National

Labs, 2009; ANSYS, 2009b; Simulia, 2009). These environments provide a set of spe-

cific geometric operations that are not usually available in the CAD packages. These

operations allow performing the decomposition by cutting existing entities with: pla-

nar and cylindrical surfaces, extensions of surfaces, surfaces filling holes between

curves, and extrusions of curves.

Multi-block approach. In this approach the domain is manually divided in an

ultra-coarse hexahedral mesh, blocks. Then, structured hexahedral meshes can be

generated within each block. The regularity of the meshes inside each block allows

storing them in data structures with a low memory cost. Furthermore, the numerical

solvers for these meshes have also a simple and fast implementation.

For complex geometries a large number of blocks have to be generated. Therefore,

an experienced user is needed to perform this task with the help of multi-block graph-

ical user interfaces (Program Development Company, 2009; Pointwise, 2009; ANSYS,

2009a). Nevertheless, this is the preferred mesh generation method for computational

fluid dynamics (CFD) simulations. This methodology provides the required control

and layering of the mesh near the viscous boundaries.

1.3 Automatic hexahedral mesh generation

During the last decades several general-purpose algorithms for fully automatic hexa-

hedral mesh generation have been proposed. These algorithms are described and clas-

sified in the surveys by Owen (1998), Blacker (2001), Tautges (2001), Baker (2005),

and Shepherd (2007). Note that none of the existent algorithms is robust, automatic

and generates high-quality meshes for any initial geometry. On the one hand, grid-

based methods (Yerry and Shephard, 1984; Shephard and Georges, 1991; Schneiders

and Bünten, 1995; Schneiders, 1996; Zhang and Bajaj, 2006; Zhang et al., 2005) are

the only family of robust and fully automatic hexahedral mesh generation algorithms.

However, the meshes obtained with grid-based methods have several disadvantages,

low quality hexahedra can be generated near the boundary, the mesh depends on

the coordinate axes orientation, and it is difficult to obtain a conformal transition

of the element size. On the other hand, the rest of the hexahedral mesh generation

algorithms can generate high-quality meshes for several configurations but are not

robust and fully automatic.

5

1. Introduction

Several authors have proposed hexahedral-meshing algorithms based on the dual.

The whisker weaving algorithm proposed by Tautges et al. (1996) builds the topol-

ogy, not the geometry, of the dual of a hexahedral mesh using an advancing front

method (Folwell and Mitchell, 1999; Ledoux and Weill, 2007). Mueller-Hannemann

(1999) proposed a purely topological method to decompose a geometry bounded by

a quadrilateral surface mesh into hexahedra. In their work, the decomposition is

guided by the topology of the closed dual curves of the surface mesh. Calvo and Idel-

sohn (2000) presented a decomposition approach where closed dual curves are used

to recursively divide the topology of the dual of the surface mesh into two topological

balls. All of these dual algorithms use the combinatorial information contained in

the topology of the dual but do not construct its geometric representation.

All the above dual approaches to hexahedral mesh generation start from a pre-

scribed quadrilateral mesh that over-constrains the problem. Hence, these methods

usually require modifying the prescribed boundary mesh. In order to relax hexahedral

meshing problem and avoid these modifications, Staten et al. (2005, 2006) recently

presented the unconstrained plastering approach. This primal approach consists in

generating hexahedral elements in an advancing front manner without the constraint

of respecting a bounding quadrilateral mesh. Note that this method is an uncon-

strained version of the plastering method proposed by Blacker and Meyers (1993).

The unconstrained paradigm is also used by the medial axis decomposition meth-

ods (Price et al., 1995; Price and Armstrong, 1997; Sheffer et al., 1999; Sheffer and

Bercovier, 2000) based on the work by Tam and Armstrong (1991). These methods

use the medial axis, the locus of the points that are roughly along the middle of a

domain, as a reference to decompose the domain in a coarse hexahedral mesh.

Unconstrained dual surface insertion algorithms, where both the topology and the

geometry of the dual are determined, have only been sketched in the literature. In

particular, Murdoch et al. (1997) briefly introduce the twist plane insertion algorithm,

and Calvo (2005) speculates about the free stroking1 method. However these authors

did not implement these methods because a methodology to represent, intersect and

insert continuous dual surfaces is not available.

1Named “libre trazado” in the original work in Spanish.

6

1.4. Goals and outline

1.4 Goals and outline

Hexahedral mesh generation has been an important and active research area over

the last decades. However, a fully automatic hexahedral mesh generation algorithm

for any geometry is still not available. Therefore, further research has still to be

developed in order to obtain a general-purpose algorithm that generates a high quality

hexahedral mesh for any volume.

This dissertation is devoted to develop several techniques that facilitate the gen-

eration of high quality hexahedral meshes for a wide range of geometries. We be-

lieve that industry will benefit from any improvement in the available hexahedral

meshing techniques as well as any novel approach to automatically generate hexa-

hedral meshes. On the one hand, advances in technology such as graphical meshing

environments or the sweeping technique have shown being indispensable to semi-

automatically generate hexahedral meshes in industrial applications. On the other

hand, previous attempts to automatically obtain hexahedral meshes have provided

more insight in the understanding of the hexahedral mesh generation problem. Hence,

in this dissertation we consider five goals:

• Proposing a new affine method for sweeping that leads to a set of

normal equations with full rank. Sweep methods are one of the most

robust techniques to generate hexahedral meshes in extrusion volumes. The

main issue in sweep algorithms is the projection of cap surface meshes along

the sweep path. From the computational point of view, the most competitive

technique to determine this projection is to find a least-squares approximation

of an affine mapping. Several functional formulations have been defined to carry

out this least-squares approximation. Different versions of this technique are

known as affine methods. However, the minimization of these functionals may

lead to a rank deficient set of normal equations with singular system matrix. To

overcome this drawback, in Chapter 2 we propose a new functional that depends

on two vector parameters. Moreover, we present a comparative analysis between

the new and the classical functionals. In this analysis we prove the equivalence

between the functionals. In addition, we prove under which conditions the

minimization of the analyzed functionals leads to a full rank linear system. The

proofs of the analysis presented in Chapter 2 are included in Appendix A.

7

1. Introduction

• Developing an automatic projection algorithm for sweeping that pre-

serves offset data. In Chapter 3 we present a new and automatic node pro-

jection algorithm to generate hexahedral meshes in extrusion geometries. It is

designed to preserve the shape of the cap surfaces in the inner layers of a sweep-

ing mesh. The algorithm is based on the new functional presented in Chapter 2.

We first report that the functionals that have been traditionally used to compute

the affine mapping generate four undesired effects on the inner layers of nodes.

To overcome these drawbacks we introduce the concept of the pseudo-area and

pseudo-normal vectors defined by a loop of nodes. In addition, we prove several

geometrical properties of these two vectors. Based on the properties of the new

functional and of the pseudo-normal vector, we detail a new projection algo-

rithm that automatically selects the functional vector parameters. The aim of

Chapter 3 is to provide the implementation details to developers, although we

also present the theoretical background of the algorithm. Finally, several mesh

examples are discussed to assess the properties of the proposed algorithm. The

theoretical details of the algorithm implementation are included in Appendix

B.

• Presenting a sweeping scheme based on the proposed affine method.

Chapter 4 presents a new algorithm to map a given mesh over a source surface

onto a target surface. This projection is carried out by means of a least-squares

approximation of an affine mapping defined between the parametric spaces of

the surfaces. Once the new mesh is obtained on the parametric space of the

target surface, it is mapped up according to the target surface parameteriza-

tion. Therefore, the developed algorithm does not require solving any root

finding problem to ensure that the projected nodes are on the target surface.

Afterwards, the projection algorithm presented in Chapter 3 is included in a

sweep-meshing tool. To generate inner layers of nodes both cap surface meshes

are directly projected to the current layer. This new scheme allows parallelizing

the generation of the inner layers of nodes.

• Proposing a novel approach for block meshing by representing the

geometry and the topology of a hexahedral mesh dual. Chapter 5 is

devoted to obtaining a valid topological decomposition in blocks of a given

domain without a previous discretization of the boundary. To this end, we

8

1.4. Goals and outline

propose an approach to directly construct a valid dual of the block mesh. The

proposed algorithm is composed by two main steps: first, we create a reference

mesh, a tetrahedral mesh, of the domain to decompose into blocks; and second,

we create the dual of the block mesh by using the new concept of local dual

contributions. These contributions are planar surfaces inside the tetrahedra

of the reference mesh. The union of these contributions defines a discretized

version of the dual surfaces arrangement. To this end, we hierarchically add

local dual contributions following a set of matching rules. These rules ensure

that the local dual contributions match with the proper multiplicity and do not

present gaps between them. Practical results suggest that the proposed types of

local dual contributions and the set of matching rules provide enough freedom

to describe the dual arrangement of a block mesh.

• Starting-up and developing a new mesh generation framework. At

the time of starting this dissertation several non-commercial frameworks that

integrate a CAD engine and meshing algorithms were available. However, these

environments did not fulfill our needs in quadrilateral and hexahedral mesh gen-

eration. Hence, in Chapter 6 we present an overview of a new mesh generation

framework designed and developed from zero to provide the required technol-

ogy. Specifically, this framework has been used to develop and implement:

the projection method presented in Chapter 3, the sweeping scheme proposed

in Chapter 4, and the block meshing approach of Chapter 5. Moreover, the

tool incorporates several meshing tools not available in similar non-commercial

packages.

9

Chapter 2

A new affine method for sweeping:
fundamentals and comparative
analysis

2.1 Introduction

A fully automatic hexahedral mesh generation algorithm for any arbitrary geometry

is still not available. To generate hexahedral meshes the domains are decomposed

into several simpler-subvolumes, see Section 1.2 of Chapter 1. It is common that a

large number of extrusion volumes result from this decomposition. Therefore, special

attention has been focused on algorithms to mesh this specific type of geometries.

These extrusion or sweep volumes are obtained by extruding a surface along a curved

path. That is, they are defined by a source surface, a target surface and a series of

linking sides, see Figure 2.1. In order to ensure that a one-to-one geometry is a sweep

volume, the following requirements have to be accomplished:

(i) Source and target surfaces must be topologically equivalent (they must have

the same number of holes and logical sides). However, they may have different

areas and curvatures.

(ii) Linking-sides must be mappable, or equivalently, defined by four logical sides.

(iii) Sweep volume has one source surface and one target surface.

(iv) Sweep volume must be defined by only one axis.

11

2. A new affine method for sweeping: fundamentals

source surface

sweep direction

target surface

linking sides

(a) (b) (c)

Figure 2.1: Sweeping process of an extrusion volume (a) geometry, (b) available data,
i.e. surface meshes, and (c) shrunk hexahedral mesh.

A detailed presentation on constraints which must be met for a volume to be

sweepable, in a generic sense, are presented in White and Tautges (2000). Based

on the definition of extrusion geometry, the traditional procedure to generate an

all–hexahedral mesh by sweeping consists in the following five steps:

(i) To generate a structured or unstructured quadrilateral mesh on the source sur-

face. This mesh determines the topology of the obtained mesh along the sweep

direction.

(ii) To map the source mesh into the target surface. Hence, the target surface mesh

has the same topology as the source surface mesh.

(iii) To generate a structured quadrilateral mesh over the linking sides. This mesh

defines the ribs that join each node on the boundary of the source surface with

its corresponding node on the boundary of the target mesh. Moreover, it also

defines the boundary of the inner layers of nodes.

(iv) To generate the inner layers of nodes. The topology of the source surface mesh

is copied along the sweeping direction. The node location has to capture the

transition between the curvatures of both cap surfaces.

(v) To generate the hexahedral elements by connecting the nodes of two consecutive

layers.

12

2.1. Introduction

Several robust quadrilateral surface mesh generation algorithms have been devel-

oped which greatly simplify the surface meshing process involved in the first step

(Cass et al., 1996; Sarrate and Huerta, 2000b,a). The gridding of the linking sides

involved in the third step must be generated using any standard structured quadri-

lateral surface mesh generator (Thompson et al., 1999). Hence, the two main issues

to be dealt by any sweep algorithm are the second and fourth step. In both steps,

the meshes to be generated (i.e. the mesh over the target surface and the inner layer

meshes) must be topologically equivalent to the source surface mesh.

2.1.1 Affine methods: projecting surface meshes

We have seen above that projecting surface meshes between loops of nodes is the

main issue of sweeping algorithms. To generate inner layers of hexahedra an initial

mesh is extruded along the sweep path. These inner layers are delimited by several

loops of nodes that belong to the structured meshes of the linking sides, see Figure

2.1(b). Specifically, for every layer there is one outer loop, and one inner loop for each

hole in the sweep volume. Several algorithms have been developed in order to gen-

erate the inner layer of nodes. Mingwu and Benzley (1996) presented a method that

geometrically determines the position of inner nodes. Staten et al. (1999) developed

the BMSweep algorithm which uses barycentric co-ordinates in a background mesh

to locate inner nodes. Blacker (1996) first developed a projection algorithm based

on a least-squares weighted residual functional which does not require the creation

of a background mesh. Knupp (1998) detailed a projection method in which the in-

ner nodes are located using a least-squares approximation of a linear transformation

between the boundary nodes of the source surfaces and the boundary nodes of the

inner layers.

Although all the previous algorithms to generate the inner layer of nodes have

their strengths and weaknesses, projection algorithms based on a least-squares ap-

proximation of an affine mapping are the fastest option, see Scott et al. (2005) for a

comparative analysis. These projections are usually referred as affine methods and

they generate high-quality meshes, especially in translatable, rotatable, scalable, and

shearable geometries. That is, between loops of points that are almost affine. If

the loops of nodes are not affine, then an additional smoothing step may be needed.

However, this smoothing step is also needed in other methods (Mingwu and Benzley,

1996; Goodrich, 1997). Two steps compose the standard procedure of a projection

13

2. A new affine method for sweeping: fundamentals

algorithm. First, starting at the meshes of the cap surfaces, the location of a new

layer of nodes is computed from the previous one in an advancing front manner, see

Knupp (1998); Mingwu and Benzley (1996). Second, to increase the robustness of

the projection algorithm, the final location of the inner nodes is computed averaging

the nodal position obtained starting from the meshes of both cap surfaces.

2.1.2 Contributions and outline

Several functionals have been defined to compute this least-squares approximation,

see Section 2.2. However, the minimization of some of these functionals does not

always generate an acceptable projected mesh. For several usual geometric config-

urations the minimization of the proposed functionals may lead to a set of normal

equations with a singular system matrix or may introduce several undesired geometri-

cal effects on the final mesh. These previously unknown drawbacks were first reported

in Roca et al. (2005b). In this chapter we extend this work. Here we develop an in

depth theoretical study on the least-squares fitting of affine transformations defined

between two finite sets of points. This analysis provides the necessary theoretical

background for the projection algorithms presented in Knupp (1998), and in Chap-

ters 3 and 4. The main contributions presented in this chapter are:

• To propose a new functional formulation that maintains the performance of

standard affine methods, see Section 2.2.

• To develop a theoretical and comparative analysis between standard affine

methods and the new formulation, see Section 2.3. In addition, we prove under

which conditions standard formulations fail.

• To prove that our formulation overcomes the shortcomings of classical formu-

lations. That is, our formulation leads to a set of normal equations with full

rank, see Section 2.4.

2.2 Problem statement

2.2.1 The original formulation

Let X = {xi}i=1,...,m ⊂ Rn be a set of source points, and Y = {yi}i=1,...,m ⊂ Rn be

a set of target points with m ≥ n. From the practical point of view, two cases are

14

2.2. Problem statement

important: n = 2 used to sweep curves on a plane, and n = 3 used to project meshes

along a given path in a sweep algorithm. In a 3D sweep application the source layer

is a quadrilateral mesh. This mesh is composed by a set of boundary points, X, and

a set of inner nodes, see figure 2.2(a). The initial layer is the source surface mesh.

Our goal is to map this quadrilateral mesh onto a target layer bounded by the set

of points Y . Note that there is not exist an underlying surface defining this target

layer. That is, the set of boundary points Y is the only available data for generating

the new inner nodes of the quadrilateral mesh of the target layer. Therefore, we are

looking for a mapping φ : Rn → Rn such that yi = φ(xi) for i = 1, . . . ,m. Once this

mapping is obtained, we will use it to map the inner nodes of the source quadrilateral

mesh to the target layer.

The fastest method to sweep a mesh is to approximate φ by an affine mapping

ϕ from Rn to Rn. This affine mapping is determined by a least-squares fitting of the

given data. Thus, we want to find ϕ such that it minimizes the functional

E(ϕ) =
m∑

i=1

∥∥yi −ϕ(xi)
∥∥2
. (2.1)

From the geometrical point of view, the minimization of (2.1) means that the optimal

affine mapping is such that the sum of the squares of the distances between the target

points and images of the source points is minimized, see figure 2.2(b). We also define

cX :=
1

m

m∑

i=1

xi and cY :=
1

m

m∑

i=1

yi, (2.2)

as the geometric centers of the sets X and Y , respectively.

Remark 2.1. Any affine mapping ϕ from Rn to Rn can be written as ϕ(x) = Ax+b′,

where A ∈ L(Rn) is a linear transformation, and b′ ∈ Rn is the affine part. If we

define

b := b′ + AcX , (2.3)

then we can write ϕ as

ϕ(x) = A(x− cX) + b. (2.4)

Taking into account Remark 2.1 we can write, without loss of generality, the initial

least-squares problem (2.1) as the minimization of the functional

E(A,b) :=
m∑

i=1

∥∥yi −A(xi − cX)− b
∥∥2
, (2.5)

15

2. A new affine method for sweeping: fundamentals

X

Y

φ

(a)

ϕ

X

Y

cx

cy

O

(b)

Figure 2.2: (a) The inner nodes of the source quadrilateral mesh (marked with ◦) are
mapped according to map φ. Available data is: the set X (marked with •) and the
set Y (marked with �). (b) The image of set X by ϕ, marked with ◦, approximates
the set Y according to E.

where A ∈ L(Rn) and b ∈ Rn.

Proposition 2.2. If (AE,bE) ∈ L(Rn)× Rn is such that

E(AE,bE) = min
(A,b)∈L(Rn)×Rn

E(A,b),

then bE = cY .

Proof. The minimization of functional E is equivalent to solving the overdetermined

linear system

A(xi − cX) + b = yi, i = 1, · · · ,m. (2.6)

Note that the unknowns of the previous overdetermined linear system are the coef-

ficients of the n × n matrix, A, and the coefficients of the n-dimensional vector, b.

According to Equation (2.3) we set b′ = b−AcX . Hence, Equation (2.6) is equivalent

to Axi + b′ = yi, for i = 1, · · · ,m. By applying the well known normal equations to

the previous least-squares problem we obtain

A
m∑

i=1

xi +mb′ =
m∑

i=1

yi.

16

2.2. Problem statement

cx

cy

X

Y

O X

Y

(a)

X

Y

O

X

Y

cx

cy

cy - cx

cy - cx

(b)

Figure 2.3: Geometric representation of the translation of the sets of points X and
Y (a) to the origin and (b) to cY − cX .

Taking into account the definitions of cX and cY we obtain b′ = cY −AcX . Finally,

according to Equation (2.3) we conclude that b = cY .

Remark 2.3. Proposition 2.2 has a geometrical meaning. It states that the optimal

solution (AE,bE) maps the center cX into the center cY . This result follows from

Proposition 2.2 and Equation (2.4).

2.2.2 Alternative formulations

According to Remark 2.3, the new coordinates x = x − cX and y = y − cY are

introduced, see Knupp (1998) for details. These new coordinates can be interpreted

as translating the sets of point X and Y to the origin, see Figure 2.3(a). Using these

new coordinates the following functional is also introduced in Knupp (1998):

F (A) :=
m∑

i=1

∥∥yi − cY −A(xi − cX)
∥∥2

=
m∑

i=1

∥∥yi −Axi
∥∥2
. (2.7)

Therefore, we are looking for a linear mapping A such that it transforms, in the

least-squares sense, X = {xi}i=1,...,m into Y = {yi}i=1,...,m. Functional (2.7) is used in

Knupp (1998) in order to simplify the statement of the least-squares approximation of

the affine mapping between the source and target points of a sweep volume. However,

functional F has an important drawback: if the set of source points determines a

hyperplane (for instance, a plane for 3D problems or a straight line for 2D problems),

17

2. A new affine method for sweeping: fundamentals

cx

cy cy cx

X

Y
 -

Source
loop

Target
loop

cx

cy

X

Y

O X

Y

ux
uy

ux

uy

(a) (b)

Figure 2.4: (a) Example of a geometry where cY −cX lies in the same plane than the
source surface and the boundary of the inner layer. (b) Geometric representation of
the translation of the sets of points X and Y to the origin and additional vectors uX

and uY .

then the minimization of (2.7) induces a set of normal equations with a singular

system matrix. Note that this geometrical configuration is usual in practical CAD

models.

In order to avoid this drawback, the functional

G(A) :=
m∑

i=1

∥∥yi − cX −A(xi − cX + cY − cX)
∥∥2

=
m∑

i=1

∥∥y i −Ax
i∥∥2

(2.8)

is also proposed in Knupp (1998), where the new coordinates x = x− cX + cY − cX

and y = y − cX are introduced. These new coordinates have a clear geometric

interpretation: the sets of points X and Y are translated to cY − cX , see Figure

2.3(b). Therefore, by minimizing functional G we are looking for a linear mapping

A such that it approximately transforms, in the least-squares sense, X = {x i}i=1,...,m

into Y = {y i}i=1,...,m. From the practical point of view, the minimization of functional

G is only used for source surfaces with planar boundaries. However, we will prove

that functional (2.8) also leads to a set of normal equations with singular matrix if

the vector cY −cX lies in the hyperplane determined by the source points, see Figure

2.4(a).

18

2.3. Theoretical and comparative analysis

2.2.3 A new functional formulation

In order to overcome the shortcomings presented by functionals (2.7) and (2.8), while

maintaining the performance of these methods we propose the new functional

H(A; uX ,uY) :=
m∑

i=1

∥∥yi − cY −A(xi − cX)
∥∥2

+
∥∥uY −AuX

∥∥2
(2.9)

=
m∑

i=1

∥∥yi −Axi
∥∥2

+
∥∥uY −AuX

∥∥2
,

where uX and uY are two vector parameters that belong to Rn. Note that vectors uX

and uY in (2.9) can be properly selected in order to obtain several desired properties

of functional H. Therefore, we are looking for a linear mapping A such that it

approximately transforms, in the least-squares sense, X = {xi}i=1,...,m into Y =

{yi}i=1,...,m, and uX to uY , see Figure 2.4(b).

2.3 Theoretical and comparative analysis

Functionals E (2.5), F (2.7), G (2.8), and H (2.9) have been defined in order to find

an optimal affine mapping, in the least-squares sense, between the set of points X

and Y . The aim of this section is to analyze their relationships and to prove that

functional H is preferable.

2.3.1 Preliminary definitions and results

Linear algebra

In this analysis we only consider sets of points X of dimension n−1 and n. That is, we

do not consider sets of points X that generate linear varieties of dimension less than

n− 1. For instance, in R3 we do not consider source surfaces that degenerate to lines

or points, because it does not make sense to sweep them in practical applications.

Definition 2.4 (Hyperplanar set). A set of points X = {xi}i=1,...,m is hyperplanar if

there exists only one hyperplane through all the points in X. In other words, if we

take any point of X, the differences between the rest of points of X and the selected

point determine a subspace of dimension n− 1.

19

2. A new affine method for sweeping: fundamentals

Definition 2.5 (Unitary normal vector). Let X be a set of points and 0 the origin.

A unitary normal vector to X is a vector nX ∈ Rn with ‖nX‖ = 1 such that <

nX ,xi − 0 >= c, for i = 1, . . . ,m and c ∈ R.

Definition 2.6 (Homogeneous hyperplane). Let X be a hyperplanar set of points.

The homogeneous hyperplane of X is the subspace of vectors

H = {v ∈ Rn| < nX ,v >= 0},

where nX ∈ Rn is a unitary normal vector to X.

Remark 2.7. IfX is a hyperplanar set of points and uX /∈ H, then Rn = span(uX)⊕H.

Thus, for every v ∈ Rn there exist λ ∈ R and vH ∈ H such that v = vH + λuX .

Lemma 2.8. Let X be a hyperplanar set of points. Assume that uX /∈ H, uY ∈ Rn,

and A ∈ L(Rn) are given. Then, the mapping Θ[A,uX ,uY] : Rn → Rn defined by

Θ[A,uX ,uY](v) := AvH + λuY (2.10)

is such that:

(i) Θ[A,uX ,uY] ∈ L(Rn)

(ii) Θ[A,uX ,uY](vH) = AvH, ∀vH ∈ H

(iii) Θ[A,uX ,uY](uX) = uY .

Proof. Mapping Θ[A,uX ,uY] accomplishes the properties by construction.

Remark 2.9. From the geometrical point of view Lemma 2.8 states that the linear

mapping Θ[A,uX ,uY] can be used to take into account the offset data of a non-

planar surface mesh delimited by a planar boundary, i.e. planar loop of nodes. On

one hand it states that the linear mapping Θ[A,uX ,uY] maps any vector that belongs

to the homogeneous hyperplane according to A. On the other hand it maps the first

parameter vector uX (that does not belong to H) onto the second parameter vector

uY .

Remark 2.10. Given a matrix Z it is well known that Z ZT has full rank if and only

if Z has full rank, see Gill et al. (1991). On the contrary, we can prove that Z ZT is

rank deficient if we prove that Z is rank deficient, too.

20

2.3. Theoretical and comparative analysis

2.3.2 Rank analysis

In this section we prove that the minimization of functionals F and G could lead

to a rank deficient set of normal equations. On the contrary, the minimization of

functionals H can always lead to a full rank set of normal equations.

Proposition 2.11. Let X = {xi}i=1,...,m ⊂ Rn be a hyperplanar set of points. Then,

the minimization of functional F is equivalent to solving n uncoupled overdetermined

linear systems of rank n− 1.

Proof. The minimization of functional F is equivalent to imposing the following m

constraints:

A(xi − cX) = yi − cY , i = 1, · · · ,m. (2.11)

Defining

A :=




a1,1 . . . a1,n

...
...

an,1 . . . an,n


 , X :=




x1
1 − cX1 . . . xm

1 − cX1
...

...

x1
n − cXn . . . xm

n − cXn


 ,

and

Y :=




y1
1 − cY1 . . . ym

1 − cY1
...

...

y1
n − cYn . . . ym

n − cYn


 (2.12)

we can write (2.11) as AX = Y. Hence, the minimization of F is equivalent to

solving the following n uncoupled overdetermined linear systems

X
T
ak = yk, k = 1, · · · , n, (2.13)

where ak := (ak,j) for j = 1, · · · , n and yk = (yl
k− cYk), for l = 1, · · · ,m. To conclude

we have to prove that X
T

has rank n − 1. By Lemma A.1, and taking into account

that dim H = n− 1, we have that

rank X
T

= dim
{

span(x1 − cX , . . . ,xm − cX)
}

= dim H = n− 1.

Remark 2.12. The set of normal equations corresponding to the minimization of

functional F can be obtained from equation (2.13) as

X X
T
ak = X yk, k = 1, · · · , n, (2.14)

According to Remark 2.10 the system matrix X X
T

is singular if the set of points X

is hyperplanar, and it is regular if the set of points X spans Rn.

21

2. A new affine method for sweeping: fundamentals

Proposition 2.13. Let X be a hyperplanar set of points. If cY − cX ∈ H then

the minimization of functional G is equivalent to solving n uncoupled overdetermined

linear systems of rank n− 1. Otherwise, the rank is n.

Proof. The proof is detailed in Section A.3 of Appendix A.

Remark 2.14. If X is hyperplanar and cY − cX ∈ H then the minimization of func-

tional G leads to a set of normal equations with singular system matrix. However, if

X is hyperplanar and cY − cX /∈ H then the system matrix is regular.

Proposition 2.15. Let X be a hyperplanar set of points and assume that uY ∈ Rn.

If uX ∈ H then the minimization of functional H is equivalent to solving n uncoupled

overdetermined linear systems of rank n− 1. Otherwise, the rank is n.

Proof. The proof is detailed in Section A.3 of Appendix A.

Remark 2.16. In sweeping applications if X is hyperplanar we can always select

uX /∈ H. Therefore, the minimization of H leads to a set of normal equations with

regular system matrix.

2.3.3 Equivalences between functionals

In this section we prove under which conditions the minimization of functionals F ,

G and H are equivalent to minimizing functional E.

Proposition 2.17. Let AE ∈ L(Rn), bE ∈ Rn and AF ∈ L(Rn) be such that

E(AE,bE) = min
(A,b)∈L(Rn)×Rn

E(A,b)

F (AF) = min
A∈L(Rn)

F (A).

Then:

(i) min
(A,b)∈L(Rn)×Rn

E(A,b) = min
A∈L(Rn)

F (A)

(ii) E(AF , cY) = E(AE, cY)

(iii) F (AE) = F (AF).

Proof. The proof is detailed in Section A.4 of Appendix A.

22

2.3. Theoretical and comparative analysis

Remark 2.18. The number of degrees of freedom involved in the minimization of F is

smaller than in the minimization of E. Hence, it is preferable to minimize F because

it simplifies the projection algorithm.

Proposition 2.19. Let X be a hyperplanar set of points, and assume that cY −cX /∈
H. If AF ∈ L(Rn) and AG ∈ L(Rn) are such that

F (AF) = min
A∈L(Rn)

F (A)

G(AG) = min
A∈L(Rn)

G(A).

Then:

(i) min
A∈L(Rn)

G(A) has one and only one solution

(ii) min
A∈L(Rn)

F (A) = min
A∈L(Rn)

G(A)

(iii) AG = Θ[AF , cY − cX , cY − cX]

(iv) F (AG) = F (AF).

Proof. The proof is detailed in Section A.4 of Appendix A.

Remark 2.20. Property (iii) of Proposition 2.19 states that the optimal solution of

the minimization of functional G, AG, can be computed from the optimal solution of

the minimization of functional F , AF , when cY − cX /∈ H (note that this property

is not used in the original work by Knupp (1998)). In this case we have that AG =

Θ[AF , cY − cX , cY − cX]. Moreover, by Lemma 2.8 if cY − cX /∈ H and taking

uX = uY = cY − cX , we have that cY − cX = AG(cY − cX). That is, cY − cX is a

fixed vector of AG.

Proposition 2.21. Let X be a hyperplanar set of points, and assume that uX /∈ H
and uY ∈ Rn. If AF ∈ L(Rn) and AH ∈ L(Rn) are such that

F (AF) = min
A∈L(Rn)

F (A)

H(AH ; uX ,uY) = min
A∈L(Rn)

H(A; uX ,uY).

Then:

(i) min
A∈L(Rn)

H(A; uX ,uY) has one and only one solution

23

2. A new affine method for sweeping: fundamentals

(ii) min
A∈L(Rn)

F (A) = min
A∈L(Rn)

H(A; uX ,uY)

(iii) AH = Θ[AF ,uX ,uY]

(iv) F (AH) = F (AF).

Proof. The proof is detailed in Section A.4 of Appendix A.

Remark 2.22. Property (iii) of Proposition 2.21 states how to compute the optimal

solution of the minimization of functional H, AH , from the optimal solution of the

minimization of functional F , AF , when X is hyper-planar. In this case, AH =

Θ[AF ,uX ,uY]. Taking into account the basic properties of Θ, see Lemma 2.8, we

have that uY = AHuX and AHvH = AF vH for vH ∈ H. In other words, the optimal

solution of the minimization of H maps uX into uY . Moreover, it is equal to the

optimal solution of the minimization of F over H.

Proposition 2.23. Let X be a non-hyperplanar set of points and assume that uY ∈
Rn. If AF ∈ L(Rn) and AH ∈ L(Rn) are such that

F (AF) = min
A∈L(Rn)

F (A)

H(AH ; 0,uY) = min
A∈L(Rn)

H(A; 0,uY).

Then:

(i) min
A∈L(Rn)

F (A) = min
A∈L(Rn)

H(A; 0,uY)− ‖uY ‖2

(ii) F (AH) = F (AF).

Proof. The proof is detailed in Section A.4 of Appendix A.

Remark 2.24. Proposition 2.23 extends the equivalence between the minimization of

F and H to non-hyperplanar sets of points. The requirement is that uX = 0.

2.3.4 Exact mapping characterization

When the least-squares fitting of affine mappings is applied in a sweep algorithm, it

is important to characterize under which conditions we can exactly map the set of

points X to the set of points Y by means of an affine mapping. The proofs of the

following exact mapping characterizations are detailed in Section A.5 of Appendix A.

24

2.4. Minimizing functional H is preferable

Proposition 2.25. There exists an affine mapping ϕ such that ϕ(xi) = yi, for

i = 1, . . . ,m, if and only if

min
A∈L(Rn)

F (A) = 0.

Proposition 2.26. Assume that X is hyperplanar and cY − cX /∈ H. Then, there

exists an affine mapping ϕ such that ϕ(xi) = yi, for i = 1, . . . ,m, if and only if

min
A∈L(Rn)

G(A) = 0.

Proposition 2.27. There exists an affine mapping ϕ such that ϕ(xi) = yi, for

i = 1, . . . ,m, if and only if there exist uX ,uY ∈ Rn such that

min
A∈L(Rn)

H(A; uX ,uY) = 0.

2.4 Minimizing functional H is preferable

In this section we summarize the shortcomings of functionals F and G. In addition,

we highlight that it is always possible to select a vector uX such that the minimization

of H overcomes these drawbacks.

Flattening. We have seen that the minimization of functional F has two main

shortcomings:

• If the set of source points, X, is hyperplanar (for instance a source surface

mesh with planar boundary), then the minimization of F leads to a set of

normal equations with singular system matrix, see Proposition 2.11. In practice

singular value decomposition, SVD, may be used to solve the set of normal

equations. In this case, the inner part of the projected mesh will be planar.

Hence, a flattening effect will be introduced and the shape of the inner part of

the source surface mesh will be lost, see Figures 2.5(a) and 2.5(b).

• If a given mesh is projected over an inner layer with a hyperplanar boundary

by minimizing F , then the projected mesh will always have a planar inner part,

see Figure 2.5(c). Thus, a flattening effect is also introduced.

25

2. A new affine method for sweeping: fundamentals
S

w
ee

p
 d

ir
ec

ti
o
n

(a)
S

w
ee

p
 d

ir
ec

ti
o
n

(b)

S
w

ee
p
 d

ir
ec

ti
o
n

(c)

Figure 2.5: Illustration of the flattening effect: (a) projecting a non-planar mesh with
planar boundary into a planar boundary loop; (b) projecting a non-planar mesh with
planar boundary into a non-planar boundary loop; and (c) projecting a non-planar
mesh into a planar boundary loop.

Functional G was introduced to overcome the first drawback of F . In particular,

Proposition 2.19 states the equivalence between both functionals. However, if X is

hyperplanar and cY − cX ∈ H then the minimization of G also leads to a set of

normal equations with a singular system matrix, see Proposition 2.13. Hence, the

minimization of G also introduces the flattening effect.

Note that, on the one hand Proposition 2.21 holds in the case that the source

points are hyperplanar. On the other hand, Proposition 2.21 holds even in the case

of cY − cX ∈ H. Recall that in these cases the minimization of F and G lead to a set

of normal equations with a singular system matrix. Thus, the minimization of H is

always preferable in these two cases because it is always possible to choose a vector

uX /∈ H such that a set of normal equations with a regular system matrix is obtained.

Skewing. Functional G has an additional drawback when the projection algo-

rithm is applied to planar sets of points, even in the case of cY − cX /∈ H. Consider

a non-planar source surface with planar boundary, see Figure 2.6(a). Assume that

we want to project this source surface mesh into an inner layer (of a sweep volume)

defined by a planar boundary, but non-parallel to the source surface. Figure 2.6(b)

shows a cross-section of the source surface (thick solid line), the cross-section of the

obtained solution minimizing functionals G (dotted line) and the cross-section of the

obtained solution minimizing functionals H (thin solid line). Since cY − cX is a fixed

vector of AG, see Remark 2.20, the cross-section obtained with AG (dotted line in the

top cross section of Figure 2.6(b)) does not preserve the shape of the original surface.

On the contrary, Remark 2.22 states the optimal solution of the minimization of H,

26

2.4. Minimizing functional H is preferable

(a)

cy cx
-

cx

cy

X

Y

(b)

Figure 2.6: (a) A non-planar surface with planar boundary; (b) cross-section view of
the surface and its image minimizing G (dotted line) and H (thin solid line).

cx cycy cx
-

X Y A
G

X

X=YX=

Figure 2.7: Least-squares approximation of an affine mapping between a circular
shaped set of points X and an elliptical shaped set of points Y .

AH , maps uX into uY . If we select uX = nX and uY = nY , then the normal of the

source boundary is mapped into the normal of the target boundary. Therefore, its

shape is preserved (thin solid line in the top cross section of Figure 2.6(b)). This ex-

ample illustrates that the minimization of functional H is preferable since its optimal

solution is not affected by the skewing introduced by the minimization of functional

G and tends to preserve the shape of the original surface. This property was first

reported in Roca et al. (2005b).

27

2. A new affine method for sweeping: fundamentals

Not capturing affinities. If X is hyperplanar and cY −cX ∈ H then Proposition

2.26 does not hold. In this case, if the set X and Y are affine, then the minimization

of functional G could provide an affine mapping that does not exactly map X to

Y . To illustrate this we consider two affine and coplanar sets of points X = {xi :=

(cos ti, sin ti, 0)}i=0,...,11 ⊂ R3 and Y = {yi := (5 + 2 cos ti, sin ti, 0)}i=0,...,11 ⊂ R3,

where ti = i 2π/12 for i = 0, . . . , 11, see Figure 2.7. In this case cX = (0, 0, 0)

and cY = cY − cX = (5, 0, 0). Note that in this example cY − cX ∈ H. We solve

the corresponding sets of normal equations by means of the SVD which supplies the

solution with the smallest norm, and we obtain the following linear transformations:

AF =




2 0 0

0 1 0

0 0 0


 , AG =




52/51 0 0

0 1 0

0 0 0


 and AH =




2 0 0

0 1 0

0 0 1


 .

These linear transformations verify that F (AF) = 0, G(AG) = 100/17 and H(AH) =

0. Thus, AF and AH exactly map the circular shaped set X (black solid line in Figure

2.7) into an elliptical shaped set Y (black dotted line in Figure 2.7). On the contrary,

AG maps the circular shaped set X (grey solid line in Figure 2.7) into an almost

circular set of points AGX (grey dotted line in Figure 2.7), whereas the set of target

points Y is elliptical. Note that in this example both solutions, AF and AG, map

the normal component of H into zero. Thus, all the offset information that the inner

part of the source loop of points may contain will be lost (volumetric distributions

of points are mapped into planar distributions). Hence, the minimization of H is

preferable.

2.5 Concluding remarks

In this chapter we present a new theoretical and comparative analysis of several

functionals that are extensively used in sweeping tools. We prove that minimizing F

leads to a set of normal equations with a singular system matrix if the set of source

points X is hyperplanar. To avoid this drawback we prove the equivalence between

minimizing F and G. However, we prove that minimizing G also leads to a set of

normal equations with a singular system matrix if, in addition, cY − cX lies in the

same hyperplane that X. To overcome these drawbacks we introduce functional H

and we prove the equivalence between minimizing F and H. Note that this result

does not depend on where the vector cY − cX lays. Moreover, we also prove that

28

2.5. Concluding remarks

we can always enforce that minimizing H leads to a set of normal equations with a

regular system matrix.

Minimizing H has two additional advantages over minimizing F and G. On the

one hand, if the source surface is non-planar but has a planar boundary, then the

numerical solution obtained from the minimization of F generates planar inner layers

of nodes. However, minimizing the new functional H we obtain non-planar inner

layers of nodes. On the other hand, if the source surface is non-planar but has a

planar boundary and cY − cX /∈ H, then the minimization of H avoids the skewing

effect introduced by G. Therefore, the minimization of H tends to preserve the shapes

of cap surfaces on inner layers.

The source and the target loops of nodes are not affine in a wide range of appli-

cations. Therefore, it is not possible to obtain an affine transformation that exactly

maps the source to the target. In these situations an additional smoothing step may

be required in order to improve the quality of the final mesh. We claim that the min-

imization of functional H provides better initial node location than the minimization

of functionals F and G. Moreover, this projection algorithm may provide an excellent

initial guess for morphing procedures.

29

Chapter 3

A new affine method for sweeping:
preserving offset data and
implementation

3.1 Introduction

In Chapter 2 we have presented a theoretical and comparative analysis of several

affine methods that have been extensively used to compute the inner layers of nodes

in a sweep procedure. In spite of the computational efficiency of standard affine

methods (both in terms of cpu time and memory), they present several drawbacks.

For instance, the application of these methods may lead to a set of normal equations

with a singular system matrix for very common geometrical configurations. In addi-

tion, the obtained mesh may present undesired effects such as the flattening and the

skewing of the shape of the inner layers.

In order to overcome these shortcomings, in Chapter 2 we have introduced a

new functional, H, that depends on two vector parameters, uX and uY , that can be

selected by the user. However, only a feasible selection of these parameters, without

a theoretical analysis, was provided. Moreover, we have proved the relationship

between the optimal solution of the standard functionals, E, F and G, and the

optimal solution of the functional H. Based on this relationship and on the definition

of the pseudo-normal vector, we develop the main contributions of this chapter:

• To report two new drawbacks of standard affine methods. Two ad-

ditional undesired effects haven been observed in hexahedral meshes that are

obtained by minimizing standard functionals. We denote these effects as flip-

31

3. A new affine method for sweeping: implementation

ping and offset scaling.

• To define a measure of the direction of offset data. At this point, we

have reported four undesired effects of standard affine methods: flattening,

skewing, flipping and offset scaling. We claim that these four effects are due

to the inability of standard functionals to preserve the length, direction and

orientation of offset data. In order to overcome these drawbacks, we propose

a definition of a measure of the area enclosed by a given loop of nodes and a

measure of the vector normal to this loop. We denote these vectors as pseudo-

area and pseudo-normal, respectively. Note that, in sweeping applications, the

loops of nodes that define the inner layers are not supported by an underlying

surface. Hence, the area or the normal of a loop of nodes cannot be defined in

the classical geometrical form. In addition, we also prove several geometrical

properties of these vectors.

• To implement a new projection algorithm for sweeping. We propose

an algorithm that automatically selects the vector parameters, uX and uY ,

of the new functional formulation. These parameters are selected in order to

preserve the offset data. Moreover, to increase the computational efficiency

of the proposed algorithm, the minimization of the new functional adequately

reuses the optimal solution of the classical functional and the related singular

value decomposition.

The rest of the chapter is organized as follows. In Section 3.2 we report the

undesired effects that can be observed on hexahedral meshes that are obtained by

means of a least-squares approximation of an affine mapping using functionals F

and G. In order to preserve offset data in Section 3.3 we introduce the pseudo-area

and pseudo-normal vectors and analyze their properties. Section 3.4 deals with the

theoretical background of the projection algorithm and its implementation details.

3.2 Drawbacks of standard affine methods

Meshes generated by minimizing functional F , see Equation (2.7), may present three

main problems that are illustrated in Figure 3.1:

32

3.2. Drawbacks of standard affine methods

• Flattening. Given a non-planar mesh the projection algorithm generates a pla-

nar mesh in the following two cases:

– If a non-planar mesh with planar boundary, see Figure 3.1(a), is projected

to another loop of nodes (planar or not), then the minimization of func-

tional F leads to a set of normal equations with singular system matrix,

see Chapter 2. In practice, the singular value decomposition is used to

solve the set of normal equations. In this case the inner part of the pro-

jected mesh will be planar. Hence, the shape of the source surface mesh

will be lost.

– If a non-planar mesh is projected to an inner layer with a planar boundary

by minimizing F , see Figure 3.1(b), then the projected mesh will always

be planar, see Chapter 2.

• Flipping. If a loop of nodes is curved towards one direction of the sweep path

and it is projected to another loop curved in the opposite direction, see Figure

3.1(c), then the solution of the minimization of F projects offset data inversely

to the expected orientation. This may lead to tangled meshes or to distorted

hexahedral elements.

• Offset scaling. Figure 3.1(d) shows a curved loop that is projected to another

loop that is less curved in the same direction. In this case offset data is pro-

portionally scaled. This increment in the scale of offset data may also lead to

distorted hexahedral meshes.

Functional G, see Equation (2.8), also presents two important shortcomings:

• If the set of source points, X, is hyperplanar and cY − cX ∈ H, then the

minimization of functional G leads to a set of normal equations with singular

system matrix, see Chapter 2.

• Skewing. If a non-planar surface mesh with planar boundary is projected to

an inner layer which is non-parallel to the boundary of the source surface, see

Figure 3.2, then the projected nodes do not preserve the shape of the original

surface mesh and a skewing effect is introduced, see Section 2.4 of Chapter 2

for details.

33

3. A new affine method for sweeping: implementation

S
w

ee
p

d
ir

ec
ti

on
(a)

S
w

ee
p

d
ir

ec
ti

on

(b)

Thickness

Thickness

S
w

ee
p

d
ir

ec
ti

on

Desired
projection

(c)

S
w

ee
p

d
ir

ec
ti

onThickness

Thickness

Max. length

Max. length

Desired
projection

(d)

Figure 3.1: Graphical representation of the undesired effects. (a) A non-planar mesh
with planar boundary is projected to a loop. A planar mesh is obtained; (b) a
non-planar mesh is projected to a planar loop. A planar mesh is also obtained; (c)
a non-planar loop is projected to another non-planar loop curved on the opposite
direction. Offset data direction is inverted; and (d) a non-planar loop is projected to
another non-planar loop. Offset data length is scaled.

There are two main strategies to project meshes using the previous functionals.

The first one always projects from the cap surfaces mesh to inner layers. The second

one projects, starting from the cap surfaces, from one layer to the next one in an

advancing front manner. Note that the previous flattening, flipping, offset scaling

and skewing effects do not depend on the strategy used to project meshes. However,

for particular geometrical configurations some of them can be magnified if the first

34

3.3. Preserving offset data

Skewness
angle

Desired
projection

Figure 3.2: A non-planar mesh is projected to a non-parallel loop A skewed mesh is
obtained. The desired profile is depicted with a dotted curve.

option is used.

In order to overcome the drawbacks arising from the minimization of functionals

F and G, in Chapter 2 we have introduced the functional H (2.9) that depends on

two vectors uX and uY .

In Proposition 2.21, see Chapter 2, we prove that if the set of source points is

planar it is always possible to select a vector uX such that the minimization of H leads

to a set of normal equations with a full rank matrix. However, given any arbitrary

geometry, no algorithm has already been established to properly define vectors uX

and uY in order to preserve offset data of projected meshes. One of the goals of

this chapter is to determine how to select vectors uX and uY in order to define an

automatic and robust algorithm to sweep meshes in a one-to-one volume. Hence, these

two vector parameters can be properly selected in such a way that the minimization

of functional H generates inner layer meshes with the desired geometrical properties.

3.3 Preserving offset data

3.3.1 Pseudo-normal of a loop of nodes

This section is devoted to the definition of a measure of the vector normal to a given

loop of nodes. Recall that in projection algorithms the inner layers are described by

a loop of nodes. That is, there is not an underlying surface carrying any geometrical

information. Moreover, in a wide range of applications the loops of nodes are not

35

3. A new affine method for sweeping: implementation

planar. Therefore the normal vector to this kind of loops is not defined. However,

given a loop of nodes we will define the pseudo-normal vector and we will relate it to

the preservation of the shape of the inner part of the projected mesh, the offset data.

Definition 3.1 (Loop). Given a set of points X = {xi}i=1,...,m ⊂ R3, a loop is the

closed poly-line constructed by joining xi with xi+1 for i = 1, . . . ,m. We consider

that xm+1 ≡ x1.

In several applications it is necessary to sweep a non-simple connected surface

along the extrusion path. These surfaces are defined by one outer boundary and as

many inner boundaries as holes they have. Therefore, we need to consider sets of

points composed by several loops. Specifically, one counter-clockwise oriented loop

corresponding to the outer boundary, and several clockwise oriented loops correspond-

ing to the inner holes.

Definition 3.2 (Multi-loop). A set of points X = {xi}i=1,...,m ⊂ R3 is a multi-loop

if it is organized in p loops X1, . . . , Xp.

Definition 3.3 (Pseudo-area). Given a point c ∈ R3, the pseudo-area of a loop

X = {xi}i=1,...,m ⊂ R3 is

aX
pseudo :=

1

2

m∑

i=1

(xi − c)× (xi+1 − c).

The pseudo-area of a multi-loop X = X1 ∪ · · · ∪Xp organized in p loops is

aX
pseudo := aX

pseudo,1 + · · ·+ aX
pseudo,p,

where aX
pseudo,1, . . . , a

X
pseudo,p are the pseudo-areas of loops X1, . . . Xp, respectively.

Note that ‖(xi − c) × (xi+1 − c)‖ is twice the area of the triangle x̂ixi+1c, see

Figure 3.3. Moreover, if X is a planar multi-loop, then the pseudo-area, aX
pseudo, is

equal to the area enclosed by X.

In order to prove that pseudo-area is well defined, the next proposition states

that the pseudo-area vector does not depend on the selected c ∈ R3. Moreover,

the pseudo-area is invariant under translations, and its norm is also invariant under

orthogonal transformations.

Proposition 3.4 (Invariance of pseudo-area). Let X = {xi}i=1,...,m ⊂ R3 be a set of

points. The pseudo-area vector verifies:

36

3.3. Preserving offset data

c

x1

x2

x4

x5

x6

x3

a=
∑7

i=1(x
i - c) - (xi+1 - c)

x7

Figure 3.3: Geometrical interpretation of the pseudo-area vector.

(i) Given c ∈ R3 then

aX
pseudo =

1

2

m∑

i=1

(xi − c)× (xi+1 − c) =
1

2

m∑

i=1

xi × xi+1.

(ii) Given t ∈ R3 the pseudo-area of X is equal to the pseudo-area of

X + t = {xi + t}i=1,...,m.

(iii) Given an orthogonal transformation N, then the pseudo-area of

NX = {Nxi}i=1,...,m is NaX
pseudo.

Proof. The proof is detailed in Section B.1 of Appendix B.

Thus, given a loop X, we have proved that the norm of the pseudo-area vector is

a geometrical invariant associated to the loop. Furthermore, it only depends on the

ordering and the relative geometrical location of the points.

Proposition 3.5 (Projected area). If a multi-loop X is projected on an orthogonal

plane to its pseudo-area vector, aX
pseudo, then the obtained polygon has area equal to

||aX
pseudo||.

Proof. The proof is detailed in Section B.1 of Appendix B.

Hence, the view of the loop from the direction of the pseudo-area has an area equal

to the norm of the pseudo-area of X. Therefore, we can interpret the direction of

the pseudo-area as a vector normal to the loop. Moreover, according to Proposition

3.7 the pseudo-area vector is the direction that provides the view of the loop with

maximum area.

37

3. A new affine method for sweeping: implementation

Definition 3.6 (Pseudo-normal). The pseudo-normal of a multi-loopX is the unitary

vector

nX
pseudo := aX

pseudo/||aX
pseudo||,

where aX
pseudo is the pseudo-area of X.

Proposition 3.7 (Maximum projected area). Let v ∈ R3 be a unitary vector. Con-

sider the signed area enclosed by the projection of a multi-loop X to the orthogonal

plane to v. Then, this area is maximized when v = nX
pseudo. Moreover, the value of

the enclosed area is ||aX
pseudo||.

Proof. The proof is detailed in Section B.1 of Appendix B.

3.3.2 Offset data

Note that if X is a planar loop, the pseudo-normal nX
pseudo is equal to the unitary

normal nX to X. The pseudo-normal provides a measure of the normal direction

when there is not an underlying surface, and only the loop of points is available. All

the information along the direction of the pseudo-normal is understood as offset data.

We claim that in order to avoid flattening, flipping, offset scaling and skewing effects

we have to obtain affine mappings that preserve the length, direction and orientation

of offset data.

3.4 Algorithm implementation

In this section we detail the algorithm that we have developed in order to (i) properly

select the parameters uX and uY , and (ii) obtain the affine projection. The basic

idea is that we can efficiently use the minimization of functional F to minimize H.

The key issue is to realize that AH = Θ[AF ,uX ,uY] when X is hyperplanar, see

Proposition 2.21 of Chapter 2. Therefore, the optimal solution of functional H can

be computed from one of the optimal solutions of functional F if a proper criterion

to select the vectors uX and uY is defined.

The general algorithm, for hyperplanar and non-hyperplanar set of points X,

consists of four steps. First, the optimal solution AF is computed. Second, we find

the singular value decomposition of AF . Third, we define a criterion to select the

vectors uX and uY taking into account the singular value decomposition of AF . In

38

3.4. Algorithm implementation

Algorithm 3.1: Obtain the affine projection.

Input: Coordinate matrix for source loop, X
Input: Coordinate matrix for target loop, Y
Output: Affine mapping ϕ

1. Compute the optimal solution of minimizing H: AF := Y U W
+

V
T

.

2. Compute the SVD of the optimal solution: AF = UWVT .

3. Set the values of uX and uY :

3.a If wi > 0, for i = 1, . . . , n.
Set uX = nX

pseudo and uY = nY
pseudo.

3.b If wi > 0, for i = 1, . . . , n− 1, and wn = 0.
Set uX = vn and uY = un.

3.c If wi ≥ 0, for i = 1, . . . , n− 2 and wn−1 = wn = 0.
Degenerate case. Stop the algorithm.

4. For any x ∈ Rn compute the linear part of the affine projection as

A(x) = AF (x− < x,uX > uX)+ < x,uX > uY .

Compute the desired affine mapping according to Equation (2.4)

ϕ(x) := A(x− cX) + cY .

addition, if the set of points X and/or Y are hyperplanar (a planar source and/or

target surfaces in 3D applications) a geometrical interpretation of the chosen vectors

uX and uY is also presented. Finally, in the fourth step we compute the affine

mapping by first computing its linear part. Algorithm 3.1 summarizes the proposed

implementation.

3.4.1 First step: computation of the optimal solution AF

In order to minimize functional F we compute the minimum norm solution of Equa-

tion (2.14). To this end, we use the singular value decomposition of the system

matrix

X
T

= U W V
T
, (3.1)

39

3. A new affine method for sweeping: implementation

where U is an m× n matrix with orthogonal columns, W is a n× n diagonal matrix

with positive or zero entries (the singular values)

W :=




w1

. . .

wn


 ,

such that w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0, and V is an n × n orthogonal matrix.

We denote by vi ∈ Rn, for i = 1, . . . , n, the columns of matrix V.

We minimize functional F by computing the minimum norm solution of Equation

(2.14). To this end, we use the singular value decomposition of matrix X
T

presented

in (3.1). Specifically, we compute AF as

AF = Y U W
+

V
T
, (3.2)

where Y is the matrix of the target coordinates centered at point cY , see Equation

(2.12) of Chapter 2, and

W
+

:=




w +
1

. . .

w +
n


 and w +

i =





0 if wi = 0

1
wi

if wi 6= 0
for i = 1, . . . , n.

3.4.2 Second step: singular value decomposition of AF

Once we have computed the optimal solution AF according to (3.2), we compute its

singular value decomposition

AF = UWVT , (3.3)

where U and V are two n×n orthogonal matrices, and W is a n×n diagonal matrix

with positive or zero entries (the singular values)

W :=




w1

. . .

wn


 ,

such that w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0. We denote by ui ∈ Rn and vi ∈ Rn, for

i = 1, . . . , n, the columns of matrices U and V respectively.

40

3.4. Algorithm implementation

Y hyperplanar Y non-hyperplanar

X hyperplanar
dim Ker AF = 1

uX = nX = nX
pseudo

uY = nY = nY
pseudo

dim Ker AF = 1
uX = nX = nX

pseudo

uY = un

X non-hyperplanar
dim Ker AF = 1

uX = vn

uY = nY = nY
pseudo

dim Ker AF = 0
uX = nX

pseudo

uY = nY
pseudo

Table 3.1: Definition of vectors uX and uY according to the sets X and Y .

3.4.3 Third step: selection of vectors uX and uY and

geometrical interpretation

From Equation (3.1) we realize that when the set of points X is hyperplanar the

diagonal matrix W has a null singular value: wn = 0. In this case, the singular value

decomposition of the optimal solution AF will also have a null singular value: wn = 0.

Therefore, to properly select uX and uY we have to analyze Ker AF and Range AF .

Remark 3.8. Let M be an m × n matrix, and M = UMWMVT
M its singular value

decomposition. On one hand, the columns of the orthogonal matrix VM with an

associated singular value equal to zero span Ker M. On the other hand, the columns of

the orthogonal matrix UM with an associated positive singular value span Range M,

see references Gill et al. (1991); Lawson and Hanson (1974).

Lemma 3.9. Let X be a hyperplanar set of points and AF the optimal solution of

functional F computed according to Equation (3.2). If nX is a unitary normal vector

to X and dim Ker AF = 1, then

Ker AF = Ker X
T

= span(vn) = span(vn) = span(nX).

Proof. The proof is detailed in Section B.2 of Appendix B.

Lemma 3.10. If Y is a hyperplanar set of points, dim Ker AF = 1, and nY is a

unitary normal vector to Y , then (Rank AF)⊥ = span(un) = span(nY).

41

3. A new affine method for sweeping: implementation

Proof. The proof is detailed in Section B.2 of Appendix B.

On one hand, in our algorithm we select uX = vn. That is, we choose uX as the

vector that generates Ker AF when dim Ker AF = 1. On the other hand, we also

propose to select uY = un. In other words, we select uY as the vector that generates

the orthogonal space to Range AF when dim Ker AF = 1. Therefore, Lemma 3.9

states that if X is a hyperplanar set of points, then our algorithm selects uX as the

unitary normal vector to X: uX = nX , which is in fact the natural choice. Moreover,

Lemma 3.10 states that if Y is a hyperplanar set of points, then our algorithm selects

uY as the unitary normal vector to Y : uY = nY , which is also the obvious choice.

Table 3.1 presents the geometrical interpretation of the proposed selection of vectors

uX and uY .

Note that, according to Table 3.1, when both loops of nodes X and Y are non-

hyperplanar we select uX and uY as nX
pseudo and nY

pseudo, respectively. That is, we

select uX and uY as a measure of the normal directions to the loops X and Y . In

this case, and according to property (iii) of Lemma 2.8 of Chapter 2, we are mapping

the component in the direction of the pseudo-normal of loop X to the pseudo-normal

of loop Y .

3.4.4 Fourth step: computation of the affine mapping

Once we have selected vectors uX and uY , for any centered vector x ∈ Rn we compute

the linear part of the affine projection as

A(x) := AF (x− < x,uX > uX)+ < x,uX > uY .

In the case that X is a hyperplanar set we can decompose, by Lemma 2.8 of Chapter

2, x as xH +λuX. Therefore, the obtained linear transformation maps xH into AF xH

and λuX to λuY. Hence, by Proposition 2.21 of Chapter 2 we know that this linear

mapping is the optimal solution of the minimization of functional H, obtained by

means of minimizing F .

Finally, we compute the desired affine mapping according to Equation (2.4)

ϕ(x) = A(x) + cY = A(x− cX) + cY .

That is, to obtain the optimal solution AH , we first find the optimal solution AF ,

and based on its singular value decomposition we select the vectors uX and uY .

42

3.5. Testing offset data preservation

3.5 Testing offset data preservation

In this section we test the capability of the projection algorithm to reproduce the

shape of the inner part of the projected mesh. Specifically, we show that the pro-

posed algorithm avoids the flattening, flipping, offset scaling, and skewing effects. To

highlight the analyzed capabilities we have selected four simple geometries and we

have discretized them with a coarse mesh, as suggested in Tautges et al. (2004). In

all examples we first project the source surface onto the target surface, see Chapter

4. Second, we obtain a structured mesh on the linking sides using a transfinite in-

terpolation algorithm (TFI) (Thompson et al., 1999). Third, we compute the inner

node location starting from each cap surface and computing the position of the new

layer from the previous one in an advancing front manner. Finally, we compute the

final inner node position by weighting the position obtained from both cap surfaces,

see Chapter 4. Note that in these examples neither the boundary error correction

(Blacker, 1996; White et al., 2004; Scott et al., 2005) nor any smoothing procedure

is applied to the generated meshes. It is important to point out that in the four ex-

amples all the boundary loops are affine. That is, given two boundary loops an affine

mapping exists than exactly maps one into the other. Therefore, functionals F and

G become null in each projection (see Chapter 2 for details) and the boundary error

correction will not improve the initial mesh since there is not error in the projection

of the boundaries. The inner layers are numbered starting at the inner level next to

the bottom cap surface. In order to measure the quality of the hexahedral mesh we

use the hexahedron shape metric, fshape, defined in Knupp (2001). Note that fshape

is a normalized measure. Therefore, it always lies in the range [0, 1].

Flattening test. The goal of the first example is to illustrate that the flattening

effect introduced by the minimization of functional F can be avoided using the pro-

posed algorithm. In this example, the extrusion volume has a straight sweep path

and two non-planar surfaces that have the inner part curved in the same orientation,

see Figures 3.4(a) and 3.4(b). A constant element size is prescribed and 12 inner

layers are generated along the extrusion path, see Figure 3.4(c).

Figures 3.5(a) and 3.5(b) show the central cross-section and the mesh quality

of the obtained meshes minimizing functionals F and using the proposed algorithm,

respectively. The boundary loops of the cap surfaces are such that while the sweeping

process advances from one layer to the next one, the boundary loops become flatter

and flatter until a planar boundary loop is reached at one quarter of the sweep path,

43

3. A new affine method for sweeping: implementation

(a)

0
.5

0
1

.0
0

2
.0

0
2

.0
0

(b) (c)

Figure 3.4: Flattening test. (a) Perspective view of the wire-frame model; (b) front
view of the wire-frame model; and (c) surface mesh.

0.70 0.75 0.80 0.85 0.90 0.95 1.00

(a)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

(b)

Figure 3.5: Central cross-section and shape quality values of the obtained mesh by
(a) minimizing functional F ; and (b) using the proposed algorithm.

see Figure 3.4(c). Therefore, the flattening and offset scaling effects produced by the

minimization of functional F appear, being the flattening effect the most important.

That is, in each projection the inner shape of the projected mesh becomes more

44

3.5. Testing offset data preservation

0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Shape quality

N
um

be
r

of
 e

le
m

en
ts

(a)

0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Shape quality

N
um

be
r

of
 e

le
m

en
ts

(b)

Functional F H
Minimum 0.6785 0.8145
Maximum 0.9995 0.9921
Mean 0.9516 0.9273
Std. dev. 0.0581 0.0458

(c)

Figure 3.6: Distribution of the elements according to the shape quality measure: (a)
histogram for functional F ; (b) histogram for functional H; and (c) statistical values
for both functionals.

1 2 3 4 5 6 7 8 9 10 11 12
0.4

0.6

0.8

1

1.2

1.4

Level

D
is

ta
nc

e

Middle node
Minimum
Maximum

(a)

1 2 3 4 5 6 7 8 9 10 11 12
0.4

0.6

0.8

1

1.2

1.4

Level

D
is

ta
nc

e

Middle node
Minimum
Maximum

(b)

1 2 3 4 5 6 7 8 9 10 11 12
150

160

170

180

Level

A
ng

le

Functional F
Functional H

(c)

Figure 3.7: Measures of the shape of the inner layers. Distances between two con-
secutive layers for (a) the minimization of functional F and (b) the minimization of
functional H. In addition, (c) angle between two adjacent edges at the middle node.

planar. When the planar loop at one quarter of the extrusion path is reached, see

Figure 3.5(a), a planar projected mesh is obtained and the offset data of the cap

surfaces is completely lost. Nevertheless, the proposed algorithm also imposes that

the optimal solution has to map uX into uY. According to our selection of these

vectors, we take into account the offset data of the surface meshes, and in each

projection, the location of the inner nodes of the new layer resemble the shape of the

cap meshes, see Figure 3.5(b).

Figures 3.6(a) and 3.6(b) show the histograms of the distribution of the elements

according to the shape quality measure for the generated meshes. Note that using the

45

3. A new affine method for sweeping: implementation

proposed algorithm we are able to increase the minimum quality value, min(fshape).

However, the minimization of F generates elements with a higher value of max(fshape).

The general behavior, which we have also observed in other examples, is that the

proposed algorithm tends to increase the minimum quality value and to concentrate

the quality of the elements around the mean value. Figure 3.6(c) details the statistical

values of the quality of the mesh obtained minimizing both functionals.

For each inner layer of the generated meshes we compute the minimum and the

maximum distance between two consecutive nodes in the extrusion direction. Note

that the node at which these distances are reached may be different for each pair of

two consecutive inner layers. We denote by middle node the mesh node located at the

center of the cap surfaces, marked with a • in Figure 3.5. In addition, we compute the

distance between the middle node locations for each two consecutive layers. Figures

3.7(a) and 3.7(b) plot the obtained values. Note that the minimization of functional

F generates inner layers with a wide range of variation for these distances. On the

contrary, the proposed algorithm maintains these three distances almost constant in

all layers. Figure 3.7(c) presents for each layer the angle defined between the two

mesh edges adjacent to the middle node and contained in the cutting plane presented

in Figure 3.5. The bottom cap surface corresponds to the first level and the top

cap surface corresponds to the twelfth level. Note that for the mesh obtained by the

minimization of functional F the value of this angle first increases from 160o to 180o

where a planar inner layer is generated. Then, it decreases again to 160o. On the

contrary, for the mesh obtained by the proposed algorithm the value of the angle

monotonically decreases from 160o to 155o.

Flipping test. In the second example we illustrate the ability of the proposed

algorithm to avoid the flipping effect introduced by the minimization of functional

F . In this example we discretize an extrusion volume defined by two non-planar cap

surfaces and a straight sweep path, see Figures 3.8(a) and 3.8(b). Due to the shape of

the boundary loops of the cap surfaces, the loops of nodes that define the boundary

of the inner layers are curved towards the top surface except the first one which is

curved towards the bottom surface, see Figure 3.8(c). Therefore, the minimization of

functional F introduces the flipping effect. Figure 3.9(a) shows that all inner layers

ranging from the second to the eighth layer are curved towards the bottom cap surface,

whereas their boundary loops are curved towards the top cap surface. However,

according to the proposed algorithm we are able to detect the proper direction of

46

3.5. Testing offset data preservation

(a)

0
.1

6
1
.0

01
.0

0
1
.0

0

(b) (c)

Figure 3.8: Flipping test. (a) Perspective view of the wire-frame model; (b) front
view of the wire-frame model; and (c) surface mesh.

0.70 0.75 0.80 0.85 0.90 0.95 1.00

(a)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

(b)

Figure 3.9: Central cross-section and shape quality values of the obtained mesh by
(a) minimizing functional F ; and (b) using the proposed algorithm.

vectors uX and uY . Hence, the shape of the cap surfaces is properly reproduced in

the inner layers of nodes and a high quality mesh is generated, see Figure 3.9(b).

Figure 3.10 presents the distribution of the elements according to their shape

47

3. A new affine method for sweeping: implementation

0.7 0.8 0.9 1
0

100

200

300

400

500

600

Shape quality

N
um

be
r

of
 e

le
m

en
ts

(a)

0.7 0.8 0.9 1
0

100

200

300

400

500

600

Shape quality

N
um

be
r

of
 e

le
m

en
ts

(b)

Functional F H
Minimum 0.7214 0.9156
Maximum 0.9994 0.9982
Mean 0.9656 0.971
Std. dev. 0.0401 0.0177

(c)

Figure 3.10: Distribution of the elements according to the shape quality measure: (a)
histogram for functional F ; (b) histogram for functional H; and (c) statistical values
for both functionals.

1 2 3 4 5 6 7 8 9 10 11
160

170

180

190

Level

A
ng

le

Functional F
Functional H

Figure 3.11: Angle between two adjacent mesh edges at middle node.

quality. Note that the proposed algorithm increases the minimum quality value,

min(fshape), of the shape quality measure and generates a mesh with a better quality

distribution. Moreover, the distribution of the elements is reduced to the interval

fshape ∈ [0.91, 0.99]. Similar to the first example we mark the middle node with a •
in Figure 3.9. Figure 3.11 presents, for each layer, the angle defined between the two

mesh edges adjacent at the middle node and contained in the cross-section presented

in Figure 3.9. It clearly shows that the flipping effect appears when functional F

is minimized since the angle increases from 170o in the first inner layer to 190o in

the sixth inner layer, and then decreases to 170o in the eleventh inner layer. On the

contrary, for the mesh obtained by the proposed algorithm the value of the angle

monotonically decreases from 169o to 164o.

48

3.5. Testing offset data preservation

(a)

1
.0

0
0
.0

8

1
.0

0
1
.0

0

(b)

Figure 3.12: Wire-frame model of the geometry used for the offset scaling test: (a)
perspective view; and (b) front view.

Offset scaling test. The goal of the third example is to illustrate how the

proposed algorithm reduces the offset scaling effect. Figure 3.12 presents two views

of the wire-frame model of the geometry corresponding to this example. Two non-

planar cap surfaces and a straight extrusion path define the geometry. Since the

thickness of the top boundary is higher than the thickness of the bottom boundary,

see Figure 3.12(b), the offset scaling effect will appear when the mesh is obtained

minimizing functional F . Figure 3.13(a) shows the cross-section and the quality of

the obtained mesh when functional F is minimized. Note that the inner layers of

elements are more curved at the bottom of the extrusion path leading to highly

distorted hexahedral elements at the top of the sweep path. On the contrary, Figure

3.13(a) presents the cross-section and the quality of the generated mesh when the new

algorithm is used. Note that in this case a more graded distribution of the element

size is obtained along the sweep path, and the inner layers of elements reproduce the

shape of the cap surfaces.

Figures 3.14(a) and 3.14(b) show the element distribution according to the shape

quality of the element for the meshes obtained by means of functional F and H,

respectively. Figure 3.6(c) details the statistical values of the quality for both meshes.

Note that using the proposed algorithm the minimum value of the quality measure is

more than two times higher than the minimum value obtained minimizing functional

F .

For each one of the generated meshes, Figures 3.15(a) and 3.15(b) plot the max-

imum and the minimum distance between two consecutive nodes in the extrusion

49

3. A new affine method for sweeping: implementation

0.40 0.50 0.60 0.70 0.80 0.90 1.00

(a)

0.40 0.50 0.60 0.70 0.80 0.90 1.00

(b)

Figure 3.13: Central cross-section and shape quality values of the obtained mesh by
(a) minimizing functional F ; and (b) using the proposed algorithm.

0.4 0.6 0.8 1
0

100

200

300

400

500

600

Shape quality

N
um

be
r

of
 e

le
m

en
ts

(a)

0.4 0.6 0.8 1
0

100

200

300

400

500

600

Shape quality

N
um

be
r

of
 e

le
m

en
ts

(b)

Functional F H
Minimum 0.3949 0.9163
Maximum 0.9972 0.9981
Mean 0.8345 0.9700
Std. dev. 0.1190 0.0178

(c)

Figure 3.14: Distribution of the elements according to the shape quality measure: (a)
histogram for functional F ; (b) histogram for functional H; and (c) statistical values
for both functionals.

50

3.5. Testing offset data preservation

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Level

D
is

ta
nc

e
Middle node
Minimum
Maximum

(a)

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Level

D
is

ta
nc

e

Middle node
Minimum
Maximum

(b)

Figure 3.15: Minimum, maximum and middle node distances from one level to next
one: (a) for the minimization of functional F ; and (b) for the minimization of func-
tional H.

direction. In addition, they also plot the distance between the middle node loca-

tions in two consecutive layers. Similar to the first example, the proposed algorithm

maintains these three distances almost constant in all layers.

Skewing test. In the fourth example we illustrate the ability of the proposed

algorithm to avoid the skewing effect introduced by the minimization of functional

G. In this example a non-planar surface with a planar boundary is swept along a

circular extrusion path. Figure 3.16 presents a wire-frame model of the geometry.

Since the boundary loop of the cap surfaces is planar we know that the minimization

of functional F will generate planar inner layers. Therefore, we do not present the

meshes obtained by minimizing F . The minimization of functional G generates non-

planar inner layers, see Figure 3.17(a). Since the planar loop of nodes that define each

layer are non-parallel and the vector cY − cX is a fixed vector of the optimal solution

of the minimization of G (see Chapter 2 for details), the skewing effect appears on

the generated mesh. Figure 3.17(a) presents a cross-section and the quality of the

obtained mesh minimizing functional G. Note that the shape of the inner layers is

skewed towards the center of the extrusion path. Moreover, distorted hexahedra are

generated in the layers located at one half of the extrusion path. On the contrary,

Figure 3.17(b) shows a cross-section and the quality of the mesh generated using the

proposed algorithm. In this case, the inner layers are not skewed and reproduce the

shape of the cap surfaces.

51

3. A new affine method for sweeping: implementation

(a)

1
.5

0

(b)

Figure 3.16: Wire-frame model of the geometry used for the skewing test: (a) per-
spective view; and (b) front view.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

(a)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

(b)

Figure 3.17: Central cross-section and shape quality values of the obtained meshes
(a) minimizing functional G; and (b) using the proposed algorithm.

Figures 3.18(a) and 3.18(b) present the distribution of the elements according to

the shape quality measure for the meshes generated minimizing functional G and

using the proposed algorithm. Note that the minimum value of the shape quality is

increased if the proposed algorithm is used. Figure 3.6(c) details the statistical values

of the quality of the mesh obtained minimizing both functionals.

Figure 3.19 shows the minimum, maximum and middle node distances for each

pair of consecutive inner layers corresponding to the meshes generated by means of

functionals G and H. Both functionals generate meshes with the same values for the

minimum and the maximum distances. However, the distance between consecutive

locations of the middle point reach a minimum value at the middle of the extrusion

path whereas the proposed algorithm maintains almost constant this distance.

52

3.6. Concluding remarks

0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Shape quality

N
um

be
r

of
 e

le
m

en
ts

(a)

0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Shape quality

N
um

be
r

of
 e

le
m

en
ts

(b)

Functional G H
Minimum 0.6621 0.7648
Maximum 0.9828 0.9920
Mean 0.8792 0.8973
Std. dev. 0.0595 0.0629

(c)

Figure 3.18: Distribution of the elements according to the shape quality measure: (a)
histogram for functional G; (b) histogram for functional H; and (c) statistical values
for both functionals.

1 3 5 7 9 11 13 15 17 19 21
0.5

1

1.5

2

Level

D
is

ta
nc

e Middle node
Minimum
Maximum

(a)

1 3 5 7 9 11 13 15 17 19 21
0.5

1

1.5

2

Level

D
is

ta
nc

e

Middle node
Minimum
Maximum

(b)

Figure 3.19: Minimum, maximum and middle node distances from one level to next
one for: (a) the minimization of functional G; and (b) the minimization of functional
H.

3.6 Concluding remarks

In this chapter we have proposed and detailed a node projection algorithm to obtain

hexahedral meshes in one-to-one sweep geometries. Note that one-to-one projection

procedures belong to the core of many-to-many sweep algorithms. The main target

of the developed algorithm is to preserve non-planar shape of the cap surfaces in

the inner layers of the hexahedral mesh. To this end, we first have introduced the

53

3. A new affine method for sweeping: implementation

pseudo-area and pseudo-normal vectors. In addition, we have also proved several

useful geometrical properties of these vectors. Then, we have detailed an algorithm

that allows us to select the two vector parameters of functional H. We claim that

the presented algorithm generates inner layers that preserve the shape of the cap

surfaces. Moreover, several test geometries show that this algorithm overcomes flat-

tening, skewing, offset scaling, and flipping effects introduced by the minimization of

the traditional functionals.

54

Chapter 4

A new sweeping scheme based on
affine methods

4.1 Introduction

Taking into account the definition of extrusion geometry, in Chapter 2 we have pre-

sented the traditional procedure to generate an all–hexahedral mesh by sweeping: (i)

to generate a structured or unstructured quadrilateral mesh on the source surface; (ii)

to map the source mesh into the target surface; (iii) to generate a structured quadri-

lateral mesh over the linking sides; (iv) to generate the inner layers of nodes; and

(v) to generate the hexahedral elements by connecting the nodes of two consecutive

layers.

In this chapter we present an update of the new sweeping scheme introduced in

(Roca et al., 2006). Specifically, we detail the implementation for the second and the

fourth steps. In both steps, a method for projecting surface meshes along the sweep

path is required. The meshes over the target surface and the inner layer meshes must

be topologically equivalent to the source surface mesh. The main contributions of

this chapter are:

• To propose a fast surface mesh projection between parameterized

surfaces. Several algorithms have been developed to map meshes between sur-

faces (Goodrich, 1997). Most of them involve an orthogonal projection of nodes

onto the target surface. These projections are expensive from a computational

point of view since it is necessary to solve as many root finding problems as

internal points are on the grid of the source surface. In order to overcome this

shortcoming, in this chapter we present a new and efficient algorithm to map a

55

4. A new sweeping scheme based on affine methods

given mesh over the source surface onto the target surface. This projection is

determined by means of a least-squares approximation of an affine mapping de-

fined between the parametric representation of the loops of boundary nodes of

the cap surfaces. Once the new mesh is obtained on the parametric space of the

target surface, it is mapped up according to the target surface parameterization.

• To generate the inner layers of nodes by directly projecting from the

source and the target. The classical strategy to generate inner layers is to

project the cap meshes from one layer to the next one in an advancing front

manner. Therefore, the node location of an inner layer of nodes depends on

the location of the previous and next layers. We propose a new scheme where

the inner layers are generated by projecting directly from both cap surfaces.

Hence, the location of the inner nodes only depends on the cap surface meshes

and the procedure can be parallelized. Note that the developed algorithm to

map meshes between cap surfaces can not be directly applied in order to gen-

erate the inner layer of nodes, since these layers are not defined by parametric

surfaces. In fact, the available data to determine the position of the inner

layers of nodes is the loops of nodes on the linking surfaces, and the cap sur-

face meshes. Therefore, the projection algorithm detailed in Chapter 3 is used.

Then, the inner nodes are located using a weighted least-squares approximation

of the transformation between the boundary nodes of the cap surfaces and the

boundary nodes of the layer as in (Blacker, 1996).

The remainder of this chapter is organized as follows. In Section 4.2 we explain

how the surfaces of the extrusion volume are discretized. Specifically, we present the

fast projection between parameterized surfaces. To finalize the implementation of the

proposed sweeping method, in Section 4.3 we detail the generation of the inner layers

of nodes. In Section 4.4 we present several examples to show the capabilities of the

proposed sweep method.

4.2 Generation of surface meshes

Sweep volumes are usually defined by commercial CAD packages in industrial appli-

cations. Hence, source and target surfaces might be trimmed surfaces. We assume

that a geometrical kernel is available, such that surfaces are parameterized. In fact,

56

4.2. Generation of surface meshes

this kernel must provide query functions to obtain the physical coordinates of a para-

metric point.

4.2.1 Meshing the source

The source surface mesh can be generated with any unstructured quadrilateral mesh

generator that deals with trimmed and parameterized surfaces. Specifically, we

use an extended version to parametric surfaces of a previously developed unstruc-

tured quadrilateral mesh generator by Sarrate and Huerta (2000b,a). However, other

quadrilateral mesh generators can be used such as Blacker and Stephenson (1991);

Cass et al. (1996).

4.2.2 Meshing the target: fast projection of surface meshes

Once the source surface, S, is meshed the next step in the sweep algorithm is to

map it onto the target surface, T . As it has been previously noted, most of the

developed algorithms to map meshes between surfaces have to solve several root

finding problems. In order to overcome this drawback, a new and efficient algorithm

is devised to map meshes between trimmed surfaces. In fact, the mapping is defined

between the parametric spaces of the surfaces, DS and DT . Then, the obtained mesh

is mapped up according to the target surface parameterization. For some surfaces,

it might be necessary to smooth the new surface mesh. Note that this smoothing is

also needed in other methods (Goodrich, 1997).

First of all, we will show that determining a projection between trimmed surfaces

is equivalent to finding out a projection between their parametric spaces. To this

end, assume that the source and target surfaces are trimmed surfaces. Let

ψS : VS ⊂ R2 → R3

ψT : VT ⊂ R2 → R3

be their extended parameterization, where VS and VT are two open and bounded

sets of R2. Note that the domain of a trimmed surface, in general, is not a rectangle

[a, b]×[c, d] ⊂ R2 in the parametric space. We assume that ψS and ψT are continuous

and injective, then the Brouwer’s theorem on invariance of domain (Hatcher, 2002)

states that they are also open mappings. Therefore, their restrictions (the definition

57

4. A new sweeping scheme based on affine methods

of the trimmed surfaces)

ψS|DS
: DS ⊂ VS → S ⊂ R3 ψT |DT

: DT ⊂ VT → T ⊂ R3,

are homeomorphisms in DS and DT respectively. Hence, we have

S = ψS(DS) T = ψT (DT).

Recall that our aim is to determine a mapping φ̃ : S → T such that, given a mesh,

MS, over the source surface, it yields a mesh, MT , onto the target surface with the

same connectivities. Since S and T have the same topology we can assume that φ̃ is

also a homeomorphism.

Taking into account that ψS|DS
, ψT |DT

and φ̃ are homeomorphisms, it is possible

to define

φ := ψT |−1
DT
◦ φ̃ ◦ψS|DS

,

such that

S ⊂ R3
eφ−−−−−→ T ⊂ R3

ψS|DS
↑ ↑ ψT |DT

DS ⊂ R2 φ−−−−−→ DT ⊂ R2

(4.1)

Under these conditions, the diagram of mappings (4.1) is a commutative diagram.

Hence, it is feasible to find first the projection φ, homeomorphism between the para-

metric domains DS and DT , and then, mapping up the new mesh onto the target

surface, T , according to its parameterization, ψT |DT
, as

φ̃ = ψT |DT
◦ φ ◦ψS|DS

−1. (4.2)

Note that it is not required to deduce the analytical expression of the inverse function

ψS|DS

−1. It suffices to store the pre-images of nodal coordinates of MS by ψS|DS
.

This can be achieved if the application stores both the physical and the parametric

coordinates of each mesh node.

Therefore, special attention has to be focused on to settle the projection between

DS and DT from the available data. Let m, with m ≥ 3, be the number of nodes

on all the boundary loops of the cap surfaces. We assume that each cap surface

is delimited by one outer boundary and one inner boundary for each hole. These

boundaries are previously meshed, and a series of loops of nodes on the boundary

of the surface are obtained (see Figure 4.1(a)). Let US = {ui
S}i=1,...,m ⊂ R2 and

58

4.2. Generation of surface meshes

�n

(a)

level 1

level 2

level r-2

level r-1

Target surface (level r)

Source surface (level 0)

S
w

ee
p

d
ir
ec

ti
on

.

.

.

.

.

(b)

Figure 4.1: (a) Boundary nodes of a non simple connected surface; (b) discretization
of a linking side using r − 1 inner levels.

UT = {ui
T}i=1,...,m ⊂ R2 be the parametric coordinates of all boundary nodes of the

source and target surfaces, respectively. It is important to point out that the physical

coordinates of these points (i.e. their images by ψS|DS
and ψT |DT

) do not necessarily

determine planar loops. The goal is to find a function φ such that

φ(ui
S) = ui

T , i = 1, . . . ,m. (4.3)

In this algorithm, the homeomorphism φ is approximated by an affine mapping

uT = φ(uS) ≈ A(uS − cUS) + cUT , (4.4)

where uS and uT are points on DS and DT respectively, A is a linear transformation,

and

cUS :=
1

m

m∑

i=1

ui
S, and cUT :=

1

m

m∑

i=1

ui
T .

Note that in practical applications the loop of source points are not aligned be-

cause they lay on the boundary of a non-degenerated surface. Under these conditions

Proposition 2.11 states that the minimization of functional F leads to a full rank

system of normal equations. Therefore, the optimal solution AF of the minimization

of functional F , see implementation details in Section 3.4 of Chapter 3, determines

the affine approximation

ϕF (uS) := AF (uS − cUS) + cUT . (4.5)

59

4. A new sweeping scheme based on affine methods

In conclusion, an affine mapping (4.5) between parametric spaces has been found that

fits, in the least-squares sense, the loops of boundary data. This transformation ϕF

is used to approximate the map φ between meshes from DS to DT .

Finally, to obtain the mesh MT it is only needed to map up the nodes onto the

target surface T . To this end, according to (4.2) we approximate φ̃ by

ϕ̃F (p) := ψT |DT

(
ϕF
(
ψS|DS

−1(p)
))
, p ∈ S. (4.6)

Note that, since the values of ψS|DS

−1 are known in all nodes of MS, the new mesh

on the target surface can be defined as

MT := ϕ̃F (MS).

4.2.3 Linking-sides mesh generation

Since linking-sides are always defined by four logical sides (each logical side can

be composed by several edges), they can be meshed using any standard structured

quadrilateral mesh algorithm, for instance, transfinite mapping (TFI) (Haber et al.,

1981). In order to apply the TFI method it is required that opposite logical sides

will have the same number of nodes. It is important to have high quality structured

meshes on the linking-sides. Note that these meshes determine the loops of nodes that

are used later to generate the inner volume nodes in a layer by layer procedure (see

Figure 2.1). Thus, if these surface meshes contains folded or low quality elements,

then tangled meshes, reverse oriented or low quality hexahedral elements are obtained.

A hard test for a sweep algorithm is to mesh an extrusion volume with an S-

shaped changing sweep direction, see Figure 4.2. It is well known that obtaining

a good structured mesh over an S-shaped surface is non–trivial. If nodes are gen-

erated equidistant along the edges of the S-shaped surface, then some segments of

the structured surface mesh cross over each other, see Figure 4.2(a). Thus, folded

quadrilateral elements are obtained in the middle part of the surface mesh. Therefore,

tangled hexahedral elements are generated inside of the sweep volume.

To solve this drawback, we have implemented an edge mesher procedure that is

able to “follow” nodes on the opposite edge of the S-shaped surface. To this end,

the distance between two opposite nodes across the surface is minimized. Using this

procedure, consecutive joining segments will not cross each other at the middle part

of the surface, see Figure 4.2(b). The details of this edge mesher are out of the scope

60

4.3. Generation of inner nodes and elements

(a) (b)

Figure 4.2: S-shaped sweep volume. (a) Equidistant nodes on the edges and folded
elements; (b) well positioned edge nodes for the linking-sides structured mesh gener-
ation.

of this work. However, it is important to note that no surface mesh smoothing is

required in this procedure.

4.3 Generation of inner nodes and elements

Once all boundaries are meshed, inner nodes of the extrusion volume have to be

generated. These nodes have to be placed, layer by layer, along the sweep direction.

Each layer is delimited by several loops of nodes that belongs to the structured meshes

of the linking-sides (see Figure 2.1). In fact, for every layer there is one outer loop, and

one inner loop for each hole in the sweep volume. Note that the method developed

in section 4.2.2 can not be used here because no surface parameterization, ϕT |DT
, is

available for these layers. Hence, the projection algorithm presented in Section 3.4 of

Chapter 3 is used. Note that we can project from source level and from target level.

Thus, a weighted least-squares approximation is developed, similar to those proposed

in Knupp (1998, 1999); Blacker (1996).

Assume that r − 1 inner levels of nodes have been generated on the linking-sides

along the sweep direction (see Figure 4.1(b)). Then, r − 1 layers of inner nodes

61

4. A new sweeping scheme based on affine methods

have to be generated. Let X0 = {xi
0}i=1,...,m ⊂ R3, Xr = {xi

r}i=1,...,m ⊂ R3 and

Xk = {xi
k}i=1,...,m ⊂ R3 with k = 1, . . . , r − 1 be the physical coordinates of the

boundary nodes of: the source surface (level 0), the target surface (level r) and the

k-th level, respectively.

For each level k, we look for a mapping φ0
k such that

xi
k = φ0

k(xi
0), i = 1, . . . ,m. (4.7)

We approximate φ0
k by an affine mapping ϕ0

k that preserves offset data. To this

end, we use the affine method detailed in Algorithm 3.1.

A similar process could be defined using the target surface as initial surface instead

of the source surface. Hence, we can obtain an affine mapping ϕr
k that maps points

of the target surface to the k-th level.

Let Z0 = {zj
0}j=1,...,l ⊂ R3, Zr = {zj

r}j=1,...,l ⊂ R3, and Zk = {zj
k}j=1,...,l ⊂ R3 with

k = 1, . . . , r − 1 be the physical coordinates of the inner nodes of: the source mesh

MS, the target mesh MT , and the k-th level, respectively. Note that the points in

Zr are the projections of the points in Z0 to the target surface, see Section 4.2.2. We

have two affine mappings ϕ0
k and ϕr

k that allow to map the source meshMS and the

target meshMT to the k-th level. Thus, according to Blacker (1996) we consider the

following weighted transformation

zj
k :=

(
1− k

r

)
ϕ0

k(zj
0) +

k

r
ϕr

k(zj
r), (4.8)

where zj
0 ∈MS, zj

r ∈MT , k = 1, . . . , r − 1, and j = 1, . . . , l.

Finally, hexahedral elements are generated by joining the corresponding nodes

between adjacent layers of quadrilateral meshes.

Figure 4.3 presents the discretization of an extrusion volume defined by two non-

planar cap surfaces with different curvature. Figure 4.3(a) shows the surface mesh,

and Figure 4.3(b) shows a detail of the shape of the inner hexahedral elements. Note

that the weighted function (4.8) generates layers of elements with a smooth transition

of the curvature from the source surface to the target surface. No smoothing was

applied to obtain this mesh.

4.3.1 Implementation

Algorithm 4.1 details an implementation of the above method for generating the

inner layers of nodes. It is a parallel implementation that considers a modification

62

4.3. Generation of inner nodes and elements

(a) (b)

Figure 4.3: Extrusion volume with non planar cap surfaces and inner nodes placed
according the weighted interpolation. (a) Surface mesh; (b) inner elements.

Algorithm 4.1: Generate inner nodes

Input: number of levels, r
Input: number of inner nodes per level, l
Input: coordinates for boundary nodes at different levels, X0, . . . , Xr

Output: coordinates for inner points at different levels, Z0, . . . , Zr

parallel block1

shared variables: r,l,X0, . . . , Xr,Z0, . . . , Zr2

private variables: k, i,ϕ0
k,ϕ

r
k, E0, Er3

parallel for k = 1, . . . , r − 1 do4

ϕ0
k :=obtain affine mapping(X0, Xk)5

ϕr
k :=obtain affine mapping(Xr, Xk)6

E0:=boundary error(X0, Xk, Z0)7

Er:=boundary error(Xr, Xk, Zr)8

for j = 1, . . . , l do9

zj
k := (1− k

r
)(ϕ0

k(zj
0) + ej

0) + k
r
(ϕr

k(zj
r) + ej

r)10

11

of Equation (4.8) to include a boundary error correction procedure (Blacker, 1996;

White et al., 2004):

• Parallelization. Standard methods for generating the inner layers of nodes

proceed in an advancing front manner. To obtain the inner nodes of the k-th

level a projection from previous and next level are performed. On the contrary,

we propose a method to obtain the k-th level by means of a projection from

63

4. A new sweeping scheme based on affine methods

the source and the target meshes. Therefore, the location of the inner nodes of

k-th level do not depend on the inner nodes of the previous and the next levels.

According to it, the main loop can be parallelized and the location of the inner

nodes can be shared between different threads.

• Boundary error. Since the boundary nodes of the k-th level are known, we

can calculate the error of the mappings at the boundary nodes

εi
k,0 = xi

k −ϕ0
k(xi

0)

εi
k,r = xi

k −ϕr
k(xi

r),

where i = 1, . . . ,m. Then, these errors can be interpolated to obtain the er-

ror for the inner nodes. To this end, we consider the boundary error method

proposed in Blacker (1996) and detailed in White et al. (2004). Applying this

method we obtain the sets Ek,0 = {ej
k,0}j=1,...,l and Ek,r = {ej

k,r}j=1,...,l. These

sets contain the error interpolation for the inner nodes projected from the source

and the target respectively. Thus, we consider a modification of Equation (4.8)

zj
k :=

(
1− k

r

)
(ϕ0

k(zj
0) + ej

0) +
k

r
(ϕr

k(zj
r) + ej

r) (4.9)

where zj
0 ∈MS, zj

r ∈MT , k = 1, . . . , r − 1, and j = 1, . . . , l.

4.4 Numerical examples and applications

4.4.1 Testing sweeping algorithm

In order to asses the quality of the sweep algorithm described in this chapter, five

examples are presented. The geometry of the examples is defined using several com-

mercial CAD softwares. The user assigns the element size, and the application auto-

matically determines the cap surfaces and the linear or non linear sweeping direction.

The first example shows the discretization of a mill head with linear sweeping axis

and rotated cap surfaces, see Figure 4.4(a). It is composed by 1170 hexahedral el-

ements. As it can be seen, an unstructured quadrilateral mesh is generated over

the cap surfaces. Although the sweeping axis is twisted, high quality elements are

generated without a posteriori mesh smoothing.

In the second example, a source surface defined by two squares centered at the

same point with sides in a ratio of 0.4 and rotated 90o is extruded following a twisted

64

4.4. Numerical examples and applications

(a) (b)

Figure 4.4: Examples of extrusion geometries meshed with the developed sweep al-
gorithm. (a) Mill head with twisted sweep path; (b) one-hole extrusion volume with
twisted and curved sweep path.

(a) (b) (c)

Figure 4.5: Volume with varying elliptical cross-sections along a twisted sweep path.
(a) Final mesh; (b) layer of hexahedral elements at fourth-level; (c) middle layer of
hexahedral elements.

and curved sweep path. The final mesh is presented in Figure 4.4(b). It is composed

by 5104 hexahedral elements. As it can be seen, a non-structured quadrilateral mesh

is generated over the cap surfaces. Note that, although the sweeping axis is twisted

and curved, high quality elements are generated without a posteriori mesh smoothing.

65

4. A new sweeping scheme based on affine methods

(a) (b) (c)

Figure 4.6: Sweep volume with convex source face and a target face with some con-
cavities. (a) Whole mesh; (b) layer of hexahedral elements at level six; (c) layer of
hexahedral elements at level eleven.

The third example shows the discretization of a extrusion volume defined by

varying and rotating cross-sections along the sweep path. These cross-sections are

elliptical-shaped with different size, and just on the middle of the extrusion path

becomes circular. Moreover, the cap surfaces are rotated 90 degrees. The final mesh

is composed by 2373 elements, see figure 4.5(a). It is important to point out that to

obtain the final mesh no smoothing was applied on surface and inner nodes. In order

to show the quality of elements inside the volume, figure 4.5(b) shows the fourth layer

of hexahedral elements and figure 4.5(c) presents the middle layer with one circular

bounding loop.

The fourth example shows an application of the developed algorithm to an ex-

trusion volume defined by two non-affine cap surfaces. In this case, a smoothing

algorithm had been applied on the target surface mesh. Note that in this example

source surface is convex and target surface has concavities. Therefore, folded quadri-

lateral elements appear near the concavity of the target surface. In order to unfold

these quadrilateral elements it is mandatory to smooth the target surface mesh. For

this example we have used the smoothing technique presented in Sarrate and Huerta

(2004). In figure 4.6(a) the whole mesh, composed by 8000 hexahedral elements, is

presented. Two inner layers are showed in figures 4.6(b) and 4.6(c). Although the

cap surfaces are not affine, no additional 3D global smoothing algorithm has been

required in this case.

66

4.4. Numerical examples and applications

(a) (b) (c)

Figure 4.7: Cube with non uniform element size distribution. (a) Detail of the final
mesh at the corner where high element concentration is prescribed; (b) view of target
surface mesh; (c) inner layer of hexahedral elements.

In the fifth example, the discretization of a cube with a non–constant element size

distribution is presented. A high element concentration is prescribed at one corner

of the source surface. Hence, the boundary loops of nodes are not mutually affine.

Figure 4.7 shows the final mesh composed by 1090 elements. Two smoothing steps

were required: the first one to smooth the target surface mesh, and the second one

to improve the overall quality of the hexahedral mesh.

4.4.2 Application to geometry decomposition

The aim of this section is to illustrate that the developed algorithm, coupled with

volume decomposition, can be successfully used to mesh industrial CAD models.

Other issues such as the application to skewed and twisted sweep paths, layers defined

by non-affine or non-convex boundaries have been already addressed, in Section 4.4.1.

Power chain. The first example shows the application of the developed algorithm

to an extrusion geometry composed by several sweep volumes. Figure 4.8(a) presents

the geometry model of a power chain. The final mesh is composed by 33940 hexa-

hedral elements. A detail of the obtained discretization is presented in figure 4.8(b).

Note that a conformal mesh is generated over the shared surfaces that compose the

pieces of this decomposed geometry.

Crank shaft. Figure 4.9(a) shows the mesh obtained for a crank shaft model. A

conformal mesh is generated over the shared surfaces that define this model.

67

4. A new sweeping scheme based on affine methods

(a) (b)

Figure 4.8: Power chain discretization. (a) CAD model block decomposition; (b)
hexahedral mesh.

(a) (b)

Figure 4.9: Application of the proposed algorithm to the discretization of extrusion
geometries defined by several one-to-one volumes: (a) crank shaft; and (b) heat sink.

68

4.5. Concluding remarks

Figure 4.10: Application of the proposed algorithm to the discretization of a gear
composed defined by several one-to-one volumes.

Heat sink. Figure 4.9(b) presents the mesh generated for a heat sink. Note that

in this example the extrusion path is decomposed in three parts. The first and the

last parts are straight whereas the second one has a circular sweep path. In both

cases hexahedral elements of high quality are obtained.

Gear. The last example, Figure 4.4.2, shows the mesh generated for a gear model.

A conformal mesh is generated over the shared surfaces that define this model.

4.5 Concluding remarks

In this chapter we have detailed the implementation of a sweeping tool based on

affine method developed in Chapter 2 and Chapter 3. First, we have presented a new

algorithm to project meshes between two topologically equivalent parametric surfaces

has been presented. This projection is determined by means of a least-squares ap-

proximation of a transformation defined between the loops of boundary nodes of the

cap surfaces in the parametric spaces. Once the new mesh is obtained in the para-

metric space, it is mapped up according the target surface parameterization. Second,

we have detailed a new scheme for the generation of inner layers of nodes along the

sweep path. To this end, we have proposed to obtain inner layers of nodes by di-

69

4. A new sweeping scheme based on affine methods

rectly projecting from both cap surface meshes. Specifically, the inner layers can be

generated in parallel and the projections are obtained with the projection algorithm

presented in Chapter 3. The resulting sweeping tool is able to mesh extrusion ge-

ometries defined by (i) any CAD application; (ii) non linear sweeping trajectories;

(iii) non constant cross section along the sweep axis; (iv) non parallel cap surfaces;

and (v) cap surfaces with different shape and curvature. The examples show that

high quality hexahedral elements are generated, and that the layers of inner nodes

are distributed in such a way that a smooth transition between the curvatures of

cap surfaces is obtained. Moreover, they also illustrate that the developed algorithm,

coupled with volume decomposition, can be successfully used to mesh a large class of

three dimensional geometries.

70

Chapter 5

Local dual contributions:
representing dual surfaces for
block meshing

5.1 Introduction

In the introduction of this dissertation we have mentioned that hexahedral meshes

are preferred in a wide range of applications. However, a fully automatic hexa-

hedral mesh generation algorithm for any arbitrary geometry is still not available.

In particular, special attention has been focused on the development of algorithms

that automatically decompose the geometry into several simpler sub-volumes. This

chapter is devoted to obtaining decompositions in block elements of a given domain

without respecting a prescribed discretization of the boundary.

The work presented in this chapter has been prompted by the existence of a

well-known and straightforward procedure to create unstructured quadrilateral or

hexahedral meshes from 2D or 3D triangulations respectively. For instance, we can

split each mesh triangle into three quadrilaterals by adding a node at the triangle

barycenter and a middle node on each edge. Similarly, each mesh tetrahedron can

be split into four hexahedra. However, meshes obtained with this procedure do not

provide enough element quality to use them in a numerical simulation. Therefore

one question arises: can we modify a mesh obtained with this procedure in order to

obtain a high quality hexahedral mesh?

Inspired by the above question, we consider the dual of a quadrilateral or hexa-

hedral mesh obtained by splitting a coarse initial triangulation. Can we “use” this

71

5. Local dual contributions

initial dual in order to obtain another dual arrangement that leads to an ultra-coarse

quadrilateral or hexahedral mesh? To this end, we propose to select part of the

entities of the initial dual to obtain a discretized version of the final dual. This se-

lection process can be interpreted as we were directly inserting dual surfaces. That

is, as we were inserting layers of hexahedra to the primal. Then we can dualize

this discretized dual to obtain a topological decomposition of the domain in blocks

(ultra-coarse quadrilaterals or hexahedra).

Unconstrained dual surface insertion algorithms, where both the topology and

the geometry of the dual are determined, have only been sketched in the literature.

A methodology to represent, intersect and insert continuous dual surfaces is not

available; see the literature review in Section 1.3 of the introduction. On the contrary,

in this chapter we propose to obtain a discretized representation of a block mesh dual

by insertion of discretized dual surfaces. The components of the discretized dual are

selected from the initial dual configuration.

Our long-term goal is to use the above paradigm for automatically generating a

decomposition in blocks of a given geometry. To this end in this chapter we consider

two midterm goals:

1. To develop a tool that generates a representation of the final dual arrangement

by using part of the entities composing an initial dual configuration. Moreover,

this tool has to deal with two additional responsibilities. First, it has to ensure

that dual surfaces intersect with proper multiplicity and therefore leading to

valid dual representations. Second, it has to facilitate the insertion of dual

surfaces by only selecting a few leading entities.

2. To automatically select a few leading entities in the initial dual configuration

that must be in the final dual configuration. Now we can use this selection as

the input for the previous representation tool.

In this chapter we develop the former and we also present an initial approach to

the latter. Therefore, our main contribution is to propose a new tool that allows

representing, intersecting and inserting discretized dual surfaces based on the local

dual contributions concept. Moreover, this tool is used to implement an automatic

decomposition tool that deals with blocky geometries. The block-meshing procedure

is based in the proposed unconstrained dual approach for obtaining topological de-

compositions in block elements. Specifically, we use a tetrahedral mesh where we

72

5.2. 2D motivation

(a) (b)

(c) (d)

Figure 5.1: Desired dual curves for a rectangular domain: (a) required rows of quadri-
laterals; (b) coarsest quadrilateral mesh; (c) connecting opposite edges; and (d)
desired dual curves.

directly construct the representation of the block mesh dual to finally obtain the

primal blocks from it.

5.1.1 Outline

The remainder of this chapter is organized as follows. First, we present a 2D motiva-

tion example in Section 5.2. According to this motivation, in Section 5.3 we propose

a block meshing approach. To develop this approach we present the required 3D the-

ory in Section 5.4. Specifically, we introduce the concept of local dual contributions.

Then, in Section 5.5 we detail how to hierarchically add local dual contributions to

represent a valid dual of a hexahedral mesh. The main application of these dual rep-

resentations is the generation of meshes composed by block elements, see Section 5.6.

In Section 5.7 we present several examples that show the capabilities of the proposed

block meshing approach.

5.2 2D motivation

To illustrate and clarify the proposed block-meshing paradigm we present a 2D ex-

ample. Specifically, we consider a rectangular domain to be meshed with ultra-coarse

quadrilateral elements. A natural requirement is that high quality elements must be

placed near the boundary. To this end we require an independent row of quadrilateral

73

5. Local dual contributions

(a) (b)

(c) (d)

Figure 5.2: Dual curves for a Tri-to-Quad mesh: (a) reference mesh; (b) Tri-to-Quad
mesh; (c) connecting opposite edges; and (d) dual curves.

elements that follows each boundary curve, see Figure 5.1(a). The coarsest mesh that

fulfills this constraint is presented in Figure 5.1(b). Connecting each quadrilateral

edge with the opposite one, see Figure 5.1(c), we obtain a set of curves known as

the dual curves of the mesh. We realize that requiring a row of elements for each

boundary curve of a 2D geometry, see Figure 5.1(a), is equivalent to requiring a dual

curve parallel to each boundary curve, see Figure 5.1(b). Note that the configuration

in Figure 5.1(d) is the desired configuration of dual curves because it leads to the

desired quadrilateral mesh in Figure 5.1(b).

Our goal is to generate an initial dual configuration and use it to obtain the desired

one. To create the initial dual configuration we first generate a coarse triangular mesh

of the rectangular domain, see Figure 5.2(a), referred as reference mesh. We split each

triangle in three quadrilaterals to obtain a Tri-to-Quad mesh, see Figure 5.2(b). To

construct the dual curves of this Tri-to-Quad mesh we add for each element two

segments of dual curves connecting opposite quadrilateral edges, see Figure 5.2(c).

These dual edges define a set of dual curves that are in correspondence with rows of

quadrilateral elements and define the initial dual configuration, see Figure 5.2(d).

Consider the initial dual configuration composed by curved dual entities, see Fig-

ure 5.3(a), and add to the foreground the reference mesh triangles, see Figure 5.3(b).

With this representation we conclude that each reference mesh triangle is contribut-

ing to the dual with three pieces of dual curves, one for each edge, see Figure 5.3(c).

Since the dual is a topological representation of the adjacency relations between pri-

74

5.2. 2D motivation

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Two topologically equivalent representations of dual curves. Curved
representation: (a) curved dual curves; (b) curved dual over the reference mesh; and
(c) three curved contributions per triangle. Straight representation with poly-lines:
(d) poly-line dual curves; (e) poly-line dual curves over the reference mesh; and (f)
three segment contributions per triangle.

mal quadrilaterals, we can consider the following representation. Given a reference

mesh triangle, we substitute each curved piece of dual curve by a straight segment

that will represent a piece of dual curve, see Figure 5.3(f). Doing this substitution to

all reference mesh triangles we obtain a dual configuration composed by the straight

contributions to the dual of each triangle, see Figure 5.3(e). Specifically, we obtain a

dual configuration composed by poly-line dual curves, see Figure 5.3(d), that is topo-

logically equivalent to the initial dual representation, see Figure 5.3(a), and therefore

leads to the same quadrilateral mesh.

We have represented with poly-lines the dual curves of the Tri-to-Quad mesh. Now

we consider each straight segment of this representation as a potential contributor

to the final dual, see Figure 5.4(a). That is, we want to select several of these

candidate segments to obtain a final dual configuration. This configuration has to

be topologically equivalent to the desired one, represented in Figure 5.1(d). As a

first approach we can select all those candidate segments that are parallel to the

boundary curves, later referred as hard contributions. Now we have a set of segments

that contribute to the desired dual and lead to an invalid representation with gaps,

see Figure 5.4(b). To fill these gaps we add several segments non-parallel to the

boundary curves, later referred as soft contributions, as in Figure 5.4(c). Thus, we

have a better representation without gaps. However, we still have a shortcoming.

75

5. Local dual contributions

(a) (b)

(c) (d)

Figure 5.4: Selecting parts of the dual of a tri-quad mesh: (a) initial dual curves;
(b) hard contributions; (c) soft contributions; (d) final dual curves.

Note that close to the bottom-left corner there are two intersection points, marked

with bullets in Figure 5.4(c), with three incident segments. This configuration is

not a valid dual representation because the dual of a quadrilateral mesh only has

intersection points with four incident segments. To repair these intersection points

we consider that each group of adjacent segments added at the second step, the soft

contributions, are collapsed into one point, see Figure 5.4(c). As a result we obtain

a new dual configuration, see Figure 5.4(d), which is topologically equivalent to the

desired one, see Figure 5.1(d).

Finally the block mesh is obtained as the dual of the final dual configuration. To

this end we consider the dual regions delimited by the discretized dual curves. Each

dual region is in one-to-one correspondence with a primal node, and each change of

region delimited by hard pieces of dual curves is in one-to-one correspondence with

a primal edge. Therefore we create a primal node inside each dual region and we

connect this node with primal nodes in adjacent regions.

5.3 Algorithm proposal

We propose a new approach to obtain a valid topological block decomposition of a

given domain without a previous discretization of the boundary. The procedure is

structured in three steps described in Algorithm 5.1. In the first step we generate a

tetrahedral mesh, see Section 5.4.2. Then this mesh is used to add planar polygons

76

5.4. 3D theory

(a) (b) (c) (d)

Figure 5.5: Locally valid dual configurations: (a) no dual surfaces; (b) one dual
surface; (c) one dual curve; and (d) one dual point.

that define a discrete version of the dual surfaces, see Section 5.4.3 for definitions and

Section 5.5 for details. This step is equivalent to inserting discrete representations

of the dual surfaces. Finally we obtain the block mesh as the dual of the previously

generated dual, see Section 5.4.4.

Algorithm 5.1: blockMesh

Input: geometry to block mesh G
Output: a block mesh M of G
R := obtainReferenceMesh(G)1

D := addLocalDualContributions(R)2

M := dualize(D)3

5.4 3D theory

In this section we formalize and extend to 3D the concepts presented in Section

5.2. Furthermore, the definitions follow the order of appearance in the motivation

example.

5.4.1 Desired local dual

A valid hexahedral mesh has to fulfill several topological, geometrical and qualitative

requirements in order to be used in a numerical simulation. A detailed exposition

of these conditions for hexahedral meshes can be found in Blacker (2001); Tautges

(2001). Our goal is to construct a representation of a hexahedral mesh dual that

leads to a valid decomposition in blocks. Therefore, the dual representation has also

77

5. Local dual contributions

to meet its own set of topological, geometrical and qualitative conditions. To this

end, we propose to obtain a dual representation that is locally valid, captures the

boundary features and fulfills the boundary constraints. Such a representation is said

to be the desired dual.

Valid local dual

The full set of topological rules to be met by the dual are detailed in Mitchell (1996).

Here we reformulate part of these rules to state that only four local dual configurations

are possible. That is, a dual is locally valid if for each point there exists a ball that

intersects either:

• no dual entities, the ball contains a piece of dual region and does not intersect

with any dual surfaces, curves or points, see Figure 5.5(a); or

• one dual surface, the ball contains a piece of dual surface and does not intersect

with any dual curves or points, see Figure 5.5(b); or

• one dual curve, the ball contains part of a dual curve that is obtained from the

intersection of two dual surfaces and does not intersect with any dual point, see

Figure 5.5(c); or

• one dual point, the ball contains a dual point that is obtained from the inter-

section of three dual surfaces, see Figure 5.5(d).

Boundary features

A hexahedral meshing procedure has to preserve the geometric features near the

boundary curves and vertices. To this end, we consider that a geometry curve at

the boundary is a feature curve if the user or an automatic procedure considers that

at least one stack of hexahedra is required around it. To automatically detect the

features, we consider the angle θ between the normal vectors of the two adjacent

surfaces sharing the curve. According to the notation used for paving (Blacker and

Stephenson, 1991) and submapping (Whiteley et al., 1996) we consider three types

of feature curves:

• End. One stack of hexahedra is required. The user determines this requirement

or it is automatically detected if θ is approximately π/2, see Figure 5.6(a).

78

5.4. 3D theory

(a) (b) (c)

Figure 5.6: Required meshes around feature curves of type: (a) end, (b) corner, and
(c) reversal.

• Corner. Three stacks of hexahedra are required. The user determines this

requirement or it is automatically detected if θ is approximately 3π/2, see Figure

5.6(b).

• Reversal. Four stacks of hexahedra are required. The user determines this

requirement or it is automatically detected if θ is approximately 2π, see Figure

5.6(c).

Moreover, we consider that a geometry vertex is a feature vertex if it is adjacent

to three or more feature curves.

Boundary constraints for the dual

Nowadays requirements on geometry and quality of the dual of a hexahedral mesh

are less understood than the primal ones. Nevertheless, a detailed survey and anal-

ysis of dual constraints associated with hexahedral meshes is presented in Shepherd

and Johnson (2008). For the purposes of this chapter we highlight the boundary

constraints :

1. For each surface of the domain there exists at least one dual surface, with similar

shape to the surface, but offset a certain distance. This ensures at least one

layer of primal elements parallel to boundary surfaces.

2. For each feature curve of the domain there exists at least one dual curve, with

similar shape to the curve, but offset a certain distance. This ensures at least

one stack of hexahedra parallel to boundary curves.

79

5. Local dual contributions

v3

v1

v2

v4

(a)

e12
e13

e14

e23

e24e34

(b)

f234

f134

f124

f123
(c)

Figure 5.7: Reference element entities: (a) vertices; (b) edges; (c) faces.

3. For each feature vertex of the domain there exists at least one dual point offset

a certain distance. This ensures at least one hexahedron on the vertices of the

domain.

Note that the offset distance is a function of the desired primal element size.

5.4.2 Reference mesh

To obtain an initial dual configuration we first generate a tetrahedral mesh of the

domain referred as reference mesh. A tetrahedron of the reference mesh is a reference

element. Moreover, the vertices, edges and faces of a reference element are denoted

by reference vertices, reference edges and reference faces respectively. A reference

element t with vertex points v1, v2, v3 and v4 is denoted by [v1, v2, v3, v4], see Figure

5.7(a). We univocally denote all reference element edges in t by eij := [vi, vj] where

i < j and i, j = 1, . . . , 4. Hence, the six reference edges in t are, see Figure 5.7(b):

e12 := [v1, v2], e13 := [v1, v3], e14 := [v1, v4],

e23 := [v2, v3], e24 := [v2, v4], e34 := [v3, v4].

We univocally denote all reference element faces in t by fijk := [vi, vj, vk] where

i < j < k and i, j, k = 1, . . . , 4. The four reference faces in t are, see Figure 5.7(c):

f123 := [v1, v2, v3], f124 := [v1, v2, v4]

f134 := [v1, v3, v4], f234 := [v2, v3, v4].

80

5.4. 3D theory

(a) (b)

Figure 5.8: Splitting of a tetrahedron: (a) tetrahedron and (b) decomposition into
four hexahedra.

5.4.3 Local dual contributions

The basic idea of the proposed method is to generate a valid dual of a decomposition

in blocks by selecting pieces, called candidates, of an initial dual configuration. These

candidates are planar polygons and determine a planar representation of the dual on

a reference mesh.

Initial dual

From the reference mesh we obtain a hexahedral mesh of the domain by splitting

each reference element, see Figure 5.8(a), in four hexahedra, see Figure 5.8(b). To

this end we use the procedure hexing the tet detailed in Carey (2002). The resulting

mesh is said to be a Tet-to-hex mesh.

Once we obtain the Tet-to-hex mesh, the initial dual configuration is obtained

by assembling the dual contained in each split reference element, see Figure 5.9(a).

Similar to the 2D case we substitute the part of the dual inside each reference element

by four planar surfaces, see Figure 5.9(b). Both representations, curved and planar,

are topologically equivalent. These planes are determined by four plane equations

expressed in barycentric coordinates (α, β, γ, δ):

α = µ, (plane opposite to vertex v1)

β = µ, (plane opposite to vertex v2)

γ = µ, (plane opposite to vertex v3)

δ = µ, (plane opposite to vertex v4),

81

5. Local dual contributions

(a) (b)

Figure 5.9: Topologically equivalent pieces of the dual in a reference element: (a)
curved representation and (b) planar representation.

p14

p41

(a)

p413

p314

p134

(b)

p1234

p2134

p3124

p4123

(c)

Figure 5.10: Intersection points of a planar dual representation inside a reference
element: (a) points on edge e14; (b) points on face f134; and (c) points inside the
reference element.

where µ is a given number such that 0 < µ < 1
4
. Note that we have to add to

each plane equation the barycentric coordinates condition α + β + γ + δ = 1 where

α, β, γ, δ ≥ 0. Moreover, we fix the value of µ for the whole reference mesh to ensure

that planes match properly between different reference elements. Hence, we obtain a

topologically equivalent representation of the curved initial dual with planar surfaces.

To obtain the figures in this section we have used µ = 1
5
. In order to highlight local

dual contributions from faces we have used µ = 1
10

in Section 5.7. The selection of

these values is due to aesthetical criteria and does not have influence in the obtained

primal mesh.

82

5.4. 3D theory

Definition and classification of candidates

The assembly of four planar surfaces for each reference element composes our initial

dual configuration. Note that the location of these surfaces is determined by a fixed

number µ. The planar surfaces intersect themselves inside each reference element.

Thus, they can be split in 28 planar polygons. Accordingly, the union of planar

polygons composes the initial dual surfaces. A planar polygon inside a reference

element is a candidate to contribute because it can be selected to compose part of

the desired final dual configuration. Note that these 28 planar polygons decompose

the reference element into 15 sub-volumes.

The candidate polygons inside a reference element t = [v1, v2, v3, v4] are deter-

mined by the intersection points between dual surfaces at reference edges, reference

faces, and inside the reference element. For each edge ei,j = [vi, vj], where i < j and

i, j = 1, . . . , 4, we have two intersection points denoted by pij and pji. The first index

indicates the closest vertex to the intersection point. For instance, the closest vertex

to p43 is the vertex v4. In Figure 5.10(a) we present the two intersection points on

edge e14. For each face [vi, vj, vk] we have three intersection points denoted by pijk,

pjik and pkij, where i < j < k and i, j, k = 1, . . . , 4. The first index indicates the

closest vertex to the intersection point. Thus, the closest vertex to p314 is v3. In

Figure 5.10(b) we present the three points on face f134. Finally, inside a reference

element t we have four intersection points denoted by p1234, p2134, p3124, and p4123.

The first index indicates the closest vertex to the intersection point. For instance, for

p2134 we have that v2 is the closest vertex. Figure 5.10(c) shows all the intersection

points inside the reference element. The list of barycentric coordinates for all the

intersection points in a reference element is included in Section C.1 of Appendix C.

We classify the 28 candidate planar polygons of a reference element in three cat-

egories. First, the face candidates are the candidate polygons that only have inter-

section points inside the reference element, see Figure 5.11(a). For each face f in

a reference element t we have an associated face candidate denoted by c(f ; t). In

Figure 5.12(a) we present the candidate for face f134. Second, the edge candidates are

the candidate polygons that touch reference faces but not reference edges, see Figure

5.11(b). For each adjacent face f to an edge e in a reference element t we have an

associated edge candidate denoted by c(e; f ; t). The candidate for edge e13 and face

f134 is presented in Figure 5.12(b). And last, the vertex candidates are the candidate

polygons that touch reference edges, see Figure 5.11(c). For each adjacent edge e to

83

5. Local dual contributions

(a) (b) (c)

Figure 5.11: Classification of all possible candidates: (a) face candidates; (b) edge
candidates; and (c) vertex candidates.

f134

p1234

p4123

p3124

(a)

p314

p134

p1234

p3124

f134

e13

(b)

p34

p314

p3124
p324

e34

v3

(c)

Figure 5.12: A detailed example for each type of contribution: (a) face candidate for
face f1234; (b) edge candidate for edge e13 and face f134; and (c) vertex candidate for
vertex v3 and edge e34.

a vertex v in a reference element t we have an associated vertex candidate denoted by

c(v; e; t). Figure 5.12(b) shows the candidate for vertex v3 and edge e34. A list of the

28 candidate polygons for a reference element, with intersection points as vertices, is

included in Section C.1.1 of Appendix C.

Definition and classification of local dual contributions

We have of three types of candidate polygons that can be used to contribute to the

final dual configuration. A candidate polygon is considered a local dual contribution

if it is selected to contribute to the final dual surface. To represent a valid desired

dual we have to ensure that local dual contributions capture required local features

of the desired dual, do not present gaps between them, and match properly. To this

84

5.5. Adding local dual contributions

end we consider two types of local dual contribution. The first one is denoted by hard

local dual contribution. This type is used to enforce the required local configurations

of the desired dual. Hard local dual contributions are the selected candidates that

have to be respected to obtain the desired primal mesh. The second type is called

soft local dual contribution. It is used to fill gaps and to match properly the local

dual contributions between them. Soft local dual contributions have to be collapsed,

and therefore ignored, to obtain the primal mesh.

5.4.4 Obtaining the final block mesh

Once we have a valid representation of the dual we can obtain the block mesh as the

dual of this dual. That is, we generate: a primal node for each dual region delimited

by dual surfaces; a primal edge connecting primal nodes generated from adjacent dual

regions; a primal quadrilateral for each piece of dual curve between two dual points;

and a hexahedron for each dual point. However, we have to slightly modify this

procedure to take into account hard and soft local dual contributions. By definition,

hard contributions have to be respected and soft contributions have to be collapsed

into one dual point. According to these definitions, we only generate primal edges

between adjacent dual regions separated by at least one local dual contribution of

type hard. On the contrary, we do not generate a primal edge between adjacent dual

regions that are separated only by local dual contribution of type soft. The last is

equivalent to collapsing each soft local dual contribution in one point. Then we can

create the quadrilateral faces and finally the hexahedral elements that determine the

blocks.

5.5 Adding local dual contributions

This section details how to add local dual contributions on a reference mesh to ob-

tain the desired dual configuration. To this end, we propose a hierarchical scheme

that takes into account a set of matching rules. These rules ensure that adjacent

local dual contributions match properly and define locally valid dual configurations.

Moreover, these rules depend on three functions that classify the reference entities.

These functions enforce that the boundary constraints are fulfilled.

The call graph for the addition of local dual contributions is presented in Table

5.5. Algorithms on the left call algorithms on their right. This is also the order of

85

5. Local dual contributions

presentation for the algorithms along this section. Hence, we present the process of

adding local dual contributions going from less detail to more detail.

Depth 1 Depth 2 Depth 3 Depth 4
Algorithm 5.2 → Algorithm 5.3 → Algorithm 5.6 → Algorithm 5.9

→ Algorithm 5.4 → Algorithm 5.7 → Algorithm 5.10
→ Algorithm 5.5 → Algorithm 5.8 → Algorithm 5.11

Table 5.1: Call graph for adding local dual contributions.

5.5.1 Hierarchical scheme

We propose a hierarchical scheme to simplify the task of obtaining a valid dual by

addition of local dual contributions. This scheme is detailed in Algorithm 5.2 and it is

performed in three steps. First, we add local dual contributions from faces. Second,

we add local dual contributions from edges taking into account the face candidates

previously added. Third, we add local dual contributions from vertices taking into

account the edge candidates added in the previous step. Figure 5.13 depicts these

three steps for an L-shaped geometry.

Algorithm 5.2: addLocalDualContributions

Input: reference mesh R
Output: dual represented by local dual contributions Cf , Ce and Cv
Cf := addLocalDualContributionsFromReferenceFaces(R)1

Ce := addLocalDualContributionsFromReferenceEdges(R, Cf)2

Cv := addLocalDualContributionsFromReferenceV ertices(R, Ce)3

Add local dual contributions from reference faces. Algorithm 5.3 describes

how to add local dual contributions from faces. Specifically, for each face f inside

a reference element t the procedure checks if the face candidate c(f ; t) has to be

added. This checking is performed by the matching rule for faces described later

in Algorithm 5.6. Figure 5.13(a) shows that several face candidates (triangles) are

added as hard local dual contributions (red). These hard local dual contributions are

determining pieces of the desired dual surfaces. Note that there are gaps between

these contributions.

Add local dual contributions from reference edges. Algorithm 5.4 takes

into account face candidates previously added to add local dual contributions from

86

5.5. Adding local dual contributions

(a) (b) (c)

Figure 5.13: Hierarchical scheme for adding local dual contributions from: (a) faces
(red); (b) edges (cyan and orange); and (c) vertices (blue and yellow).

Algorithm 5.3: addLocalDualContributionsFromReferenceFaces

Input: reference mesh R
Output: local dual contributions from faces Cf
foreach reference element t do1

foreach reference face f in t do2

type := matchingRuleForFace(f, t)3

if type 6=none then add c(f ; t) as type in Cf4

edges. That is, given an edge e and an adjacent face f the procedure decides if the

edge candidate c(e; f ; t) has to be considered as part of the final dual. This decision

is performed by the matching rule for edges, see Algorithm 5.7 presented later. For

instance, Figure 5.13(b) shows that several edge candidates (long quadrilaterals) are

added as soft local dual contributions (cyan) to fill the gaps between the added face

candidates. Moreover, several edge candidates are added as hard local dual contri-

butions (orange). These hard contributions determine locally the dual configuration

for obtaining the dual curves. Again we still have gaps between added local dual

contributions.

Algorithm 5.4: addLocalDualContributionsFromReferenceEdges

Input: reference mesh R
Input: local dual contributions from faces Cf
Output: local dual contributions from edges Ce
foreach reference element t do1

foreach reference edge e in t do2

foreach adjacent reference face f to e in t do3

type := matchingRuleForEdge(e, f, t, Cf)4

if type 6=none then add c(e; f ; t) as type in Ce5

87

5. Local dual contributions

Add local dual contributions from reference vertices. Taking into account

previously added local dual contributions from edges, Algorithm 5.5 adds the required

vertex candidates as local dual contributions. That is, given a vertex v and an

adjacent face e we have to decide if the vertex candidate c(v; e; t) has to be considered

as part of the final dual. To this end we use the matching rule for vertices detailed

in Algorithm 5.8. Figure 5.13(c) shows that vertex candidates (small quadrilaterals)

are added as soft local dual contributions (blue) to fill the gaps between the added

face and edge candidates. Furthermore, several vertex candidates are added as hard

local dual contributions (yellow). These hard contributions determine the proper

local dual configuration for representing a dual point. At the end of this step there

are not gaps between local dual contributions.

Algorithm 5.5: addLocalDualContributionsFromVertices

Input: reference mesh R
Input: local dual contributions from edges Ce
Output: local dual contributions from vertices Cv
foreach reference element t do1

foreach reference vertex v in t do2

foreach adjacent reference edge e to v in t do3

type := matchingRuleForV ertex(v, e, t, Ce)4

if type 6=none then add c(v; e; t) as type in Cv5

5.5.2 Classification of reference entities

To state the process of adding local dual contributions we have to classify all reference

entities, both boundary and inner reference entities. We classify reference entities

according to the local dual configuration to be captured around them. Specifically,

using the functions presented in Section 5.5.4 a reference entity is classified as:

• Free, if dual surfaces, dual curves and dual points are not required around the

reference entity. This type applies to reference faces, edges and vertices.

• Layer, if only dual surfaces are required around the reference entity. Note that

dual curves and dual points are not required. This type applies to reference

faces, edges and vertices. To respect the first boundary constraint presented in

Section 5.4.1, all boundary faces have to be considered of this type.

88

5.5. Adding local dual contributions

• Stack, if only dual curves are required around the reference entity. Note that

dual points are not required. This type only applies to reference edges and

vertices. All the feature edges require at least one stack of hexahedra. There-

fore they are also of type stack. This ensures the second boundary constraint

presented in Section 5.4.1.

• Hexahedron, if at least one dual point is required around the reference entity.

This type applies only to reference vertices. All the feature vertices require at

least one hexahedron. Thus, they are also of type hexahedron. This ensures

the third boundary constraint presented in Section 5.4.1.

Note that this classification does not take into account the number of dual entities

required around a reference entity. In Section 5.5.4 we detail our implementation for

the classification of reference: faces (Algorithm 5.9), edges (Algorithm 5.10) and

vertices (Algorithm 5.11).

5.5.3 Matching rules

To ensure that we obtain the desired dual configuration we consider a set of matching

rules. On the one hand, matching rules ensure that added candidates match properly

and represent a dual without gaps. To this end, local dual contributions of type soft

are added. On the other hand, matching rules enforce the desired dual configuration

by adding hard local dual contributions.

Since the addition process is performed in a hierarchical manner there are three

matching rules. That is, there are matching rules for adding local dual contributions

from reference faces, edges and vertices. These rules are based on the classification

of the reference entities and the previously added local dual contributions.

Matching rule for faces. Given a reference face f and its classification we

decide to add local dual contributions from this face according to the rule described

in Algorithm 5.6.

Matching rule for edges. Given an edge e and an adjacent face f we have to

decide if the edge candidate c(e; f ; t) has to be considered as part of the final dual.

Moreover, we have to ensure that the addition of the candidate c(e; f ; t) matches

properly with previously added local dual contributions from faces. To this end we

consider a matching rule determined by the classification of edge e and the type of

local dual contribution added from face f , see Algorithm 5.7.

89

5. Local dual contributions

Algorithm 5.6: matchingRuleForFace

Input: reference face f , element t
Output: type of local dual contribution to add, type
switch classify(f) do1

case free2

type:=none3

case layer4

type:=hard5

Algorithm 5.7: matchingRuleForEdge

Input: reference edge e, face f and element t
Input: local dual contributions from faces Cf
Output: type of local dual contribution to add, type
switch classify(e) do1

case free2

type:=none3

case layer4

if c(f ; t) is not in Cf then type:=soft else type:=none5

case stack6

if c(f ; t) is not in Cf then type:=soft else type:=hard7

Matching rule for vertices. Given a vertex v and an adjacent face e we have to

decide if the vertex candidate c(v; e; t) has to be considered as part of the final dual.

Moreover, we have to ensure that the addition of the candidate c(v; e; t) matches

properly with previously added local dual contributions from faces. Algorithm 5.8

specifies this matching rule according to the classification of vertex v and the type of

local dual contributions added from adjacent edge e.

5.5.4 Classification functions for reference entities

According to the proposed hierarchical scheme, the classification functions for refer-

ence entities are implemented also in a hierarchical manner. Specifically, the classifi-

cation function for vertices depends on the classification function for edges. Similarly,

the classification of edges depends on the classification function for faces. The latter

depends on an initial list L of reference faces. This list contains the inner reference

faces to be considered of type layer. That is, these layer faces determine the inner

cuts of the decomposition process, see details in Section 5.6.1.

90

5.5. Adding local dual contributions

Algorithm 5.8: matchingRuleForVertex

Input: reference vertex v, edge e and element t
Input: local dual contributions from edges Ce
Output: type of local dual contribution to add, type
{f1, f2}:=adjacentFaces(e)1

c1:=c(e; f1; t)2

c2:=c(e; f2; t)3

switch classify(v) do4

case free5

type:=none6

case layer7

if c1 is not in Ce and c2 is not in Ce then8

type:=soft9

else10

type:=none11

case stack12

if c1 is not in Ce and c2 is not in Ce then13

type:=soft14

else if neither c1 is hard nor c2 is hard then15

type:=soft16

else17

type:=none18

case hexahedron19

if c1 is not in Ce and c2 is not in Ce then20

type:=soft21

else if neither c1 is hard nor c2 is hard then22

type:=soft23

else24

type:=hard25

Classification of faces. The implementation details for classifying reference

faces are presented in Algorithm 5.9. Note that this function classifies as layer those

faces being on a geometry surface. That is, the reference faces at the boundary

are determining that at least one layer of hexahedra has to be generated parallel to

boundary surfaces. Therefore, this function enforces the first boundary constraint.

The rest of the dual surfaces are determined by the election of the initial list L.

Moreover, this list determines the classification of reference edges and vertices.

Classification of edges. Algorithm 5.10 presents the implementation for classi-

fying reference edges. This function classifies as stack those edges being on a feature

91

5. Local dual contributions

Algorithm 5.9: classify

Input: reference face f
Input: a list of inner reference faces to be considered as layer faces L
Output: classification of f , classification
if f is on a geometry surface or in L then1

classification:=layer2

else3

classification:=free4

curve. These stack edges are determining that at least one stack of hexahedra has

to be generated parallel to the boundary curves. Hence, this function ensures the

second boundary constraint. The rest of the classification is done according to the

number of adjacent faces of type layer, see line 4. Note that to obtain this number

we have to call the classification function for faces.

Algorithm 5.10: classify

Input: reference edge e
Output: classification of e, classification
if e is on a feature curve then1

classification:=stack2

else3

nOfAdjacentLayerFaces:=number of adjacent faces of type layer4

switch do5

case nOfAdjacentLayerFaces = 06

classification:=free7

case 0 < nOfAdjacentLayerFaces < 38

classification:=layer9

case 3 ≤ nOfAdjacentLayerFaces10

classification:=stack11

Classification of vertices. The implementation of the classification function

for vertices is detailed in Algorithm 5.11. This implementation classifies reference

vertices coincident with geometry vertices as being of hexahedron type. That is,

these vertices are determining that at least one hexahedron has to be generated

close to the boundary vertices. Therefore, this function ensures the third boundary

constraint. The rest of the classification is done according to the number of adjacent

edges of type layer and stack, see lines 4 and 5 respectively. Note that to obtain these

numbers we have to call the classification function for edges.

92

5.6. Application to block-meshing

Algorithm 5.11: classify

Input: reference vertex v
Output: classification of v, classification
if v is on a feature vertex then1

classification:=hexahedron2

else3

nOfAdjacentLayerEdges:=number of adjacent edges of type layer4

nOfAdjacentStackEdges:=number of adjacent edges of type stack5

switch do6

case nOfAdjacentStackEdges = 07

if nOfAdjacentLayerEdges = 0 then8

classification:=free9

else10

classification:=layer11

case 0 < nOfAdjacentStackEdges < 312

classification:=stack13

case 3 ≤ nOfAdjacentStackEdges14

classification:=hexahedron15

5.6 Application to block-meshing

The addition of local dual contributions is performed according to the classification

functions for faces, edges and vertices. These functions depend on an initial list

L of inner reference faces. This list determines the inner reference faces that are

considered to be of layer type. Hence, to automatically generate block meshes with

the proposed algorithm, see Section 5.3, we have to automatically select the layer

faces. To illustrate this, Algorithm 5.12 details a simple procedure to mark reference

faces as layers based on geometrical criteria. Note that we detail an algorithm that

does not deal with reversal curves because the logic is simpler. However, Algorithm

5.12 can be extended to decompose blocky geometries with reversal curves.

5.6.1 Marking faces to determine required layers

The process described in Algorithm 5.12 is performed in three stages:

Creating lists and maps. From lines 1 to 3, the procedure creates an empty

list of faces L and two empty maps Ec and En. The list L is used during the execution

to mark the faces as layers. Both structures, Ec and En, are used to map an indexed

edge to a list of adjacent faces. Specifically, Ec and En store the current and the new

93

5. Local dual contributions

Algorithm 5.12: Mark layers

Input: reference mesh R
Output: faces marked as layers L
L := ∅1

Ec := ∅2

En := ∅3

foreach feature edge e in R do4

if e is on a corner or touches a vertex with valence > 3 then5

add to Ec[e] all boundary faces adjacent to e6

oldNOfLayers := 07

newNOfLayers := 18

while oldNOfLayers < newNOfLayers do9

oldNOfLayers := size of L10

foreach edge e indexed in Ec do11

foreach face f in list Ec[e] do12

candidates :=list of inner faces adjacent to e and different to f13

n :=direction of normal vector to f14

layer :=select in candidates a face with a normal direction similar15

to n
add to L face layer16

foreach edge ef 6= e in face layer do17

if ef is inner edge then add layer to En[ef]18

newNOfLayers := size of L19

Ec := En20

clear En21

fronts respectively.

Creating initial fronts. From lines 4 to 6, the algorithm indexes the boundary

edges that are on a corner or touch a vertex with valence greater than three. For

each indexed edge e its adjacent boundary faces are stored in list Ec[e]. Thus, the

initial front is determined by indexed boundary edges and their adjacent boundary

faces stored in Ec.

Advancing fronts. From lines 9 to 21, new faces are marked as layers in an

advancing front manner. The fronts are advanced using the inner faces adjacent to

the indexed edges in Ec. Those inner faces that have similar normal directions to the

faces stored in indexed lists of Ec are marked as layers. These new layer faces and its

inner edges not in Ec determine a new front stored in En. The fronts are advanced

while new faces are marked as layers. That is, the procedure stops when all fronts

94

5.6. Application to block-meshing

(a) (b) (c)

Figure 5.14: Advancing fronts of edges and faces from a corner curve: (a) initial
front; (b) new front at first iteration; and (c) new front at second iteration.

reach again the boundaries.

To illustrate this advancing front procedure, in Figure 5.14 we present the three

first steps around a corner curve. In Figure 5.14(a), each one of the initial front edges,

dashed lines, has a list of two adjacent boundary faces, grey triangles. The arrows

determine the preferred advancing directions. Figure 5.14(b) shows the optimal faces,

grey triangles, adjacent to initial front edges and the new front edges, dashed lines.

These new faces and edges compose the new front. The next iteration of the advancing

front loop is presented in Figure 5.14(c). A new front is determined by new optimal

inner faces, grey triangles, and inner edges not in the previous front, dashed lines.

5.6.2 Dealing with high-valence vertices

It is well known that discretizing with hexahedra the region around a feature vertex

with valence greater than three is a difficult task. However, it is straightforward to

automatically discretize these regions with tetrahedra. This is one of the advantages

of using a tetrahedral mesh as a reference mesh for adding local dual contributions.

Note that all nodes in a tetrahedron and in a hexahedron are 3-valent. Therefore, for

each feature vertex with valence greater than three the reference mesh is naturally

decomposed in 3-valent vertices. Therefore, we propose to add to the initial front

those edges that touch a vertex with valence greater than three, see Algorithm 5.12.

Then, the front advances through the reference mesh and the obtained layer faces

naturally divide the feature vertex in several 3-valent vertices.

95

5. Local dual contributions

5.7 Examples

In this section we present several examples to illustrate the capabilities of the proposed

approach. The local dual contributions allow capturing the dual of the desired block

mesh for a wide range of convex and non-convex domains. The examples present

geometric features including planar surfaces, curved surfaces, vertices with valence

greater than three, thin configurations, and holes.

We use our implementation to decompose these geometries in coarse blocks. No-

tice that the proposed algorithm focuses on the generation of valid topological decom-

position in blocks. Then, the final node location can be improved using a relaxation

procedure. In addition, a finer mesh can be obtained by meshing each block separately

while keeping the compatibility of the mesh between them.

For the first three examples, we present four figures showing the geometry to

decompose, the representation of the dual surfaces with local dual contributions, the

dual regions delimited by the dual surfaces, and the obtained block mesh. For the

last four examples, which contain a large number of local dual contributions, we only

include the dual regions and the associated block mesh. In all the examples, the

local dual contributions are colored according to their type: hard face local dual

contributions (triangles) are colored in red; edge candidates (long quadrilaterals)

are colored in orange and cyan to indicate hard and soft local dual contributions

respectively; and vertex candidates (small quadrilaterals) are colored in yellow and

blue to indicate hard and soft local dual contributions respectively. The dual regions

are also depicted in different colors: each colored region is associated with a different

primal node of the block mesh. Furthermore, for each example we include a table

with the number of mesh nodes and elements that compose the reference mesh, the

dual surfaces represented with local dual contributions, the dual regions, and the

final block mesh. Note that the number of polygons that define the dual surfaces is

at most 28 times the number of reference elements. On the contrary, the number of

polyhedra that determine the dual regions is always 15 times the number of reference

elements.

Brick-shaped domain. This geometry is a convex domain that is tapered in two

orthogonal directions, see Figure 5.15(a). All the dual surfaces follow the boundary

of the domain and the possible gaps between local dual contributions are filled with

soft local dual contributions, see Figure 5.15(b). Hard local dual contributions from

edges and vertices determine the desired mesh close to feature curves and vertices.

96

5.7. Examples

(a) (b)

(c) (d)

Figure 5.15: Block-meshing process for the brick-shaped domain: (a) domain; (b)
local dual contributions; (c) dual regions; and (d) unstructured block mesh.

Resulting local dual contributions are a discrete representation of the dual surfaces

and divide the domain in several dual regions represented in different colors in Figure

5.15(c). Each one of the dual regions corresponds to a primal node of the final block

mesh, see Figure 5.15(d). In this example, all the vertices are 3-valent. Hence, it

can be meshed with submapping or midpoint subdivision. Specifically, the obtained

decomposition is equivalent to a coarse mesh obtained with these methods. Table 5.2

shows the number of nodes and elements that compose the meshes used to obtain the

final block mesh.

97

5. Local dual contributions

Nodes Elements Type
Reference mesh 16 21 tetrahedra
Dual surfaces 336 406 polygons
Dual regions 368 315 polyhedra
Block mesh 27 8 blocks

Table 5.2: Mesh entities used for the brick-shaped domain.

(a) (b)

(c) (d)

Figure 5.16: Block-meshing for the L-shaped domain: (a) domain; (b) local dual
contributions; (c) dual regions; and (d) unstructured block mesh.

L-shaped domain. This geometry is non-convex and presents a curved surface

determined by a rounding, see Figure 5.16(a). Our meshing tool automatically adds

local dual contributions that follow the surface boundaries and that cut the domain

along the corner curve, see Figure 5.16(b). These local dual contributions divide the

domain in several dual regions represented in different colors in Figure 5.16(c). Each

98

5.7. Examples

Nodes Elements Type
Reference mesh 52 88 tetrahedra
Dual surfaces 1198 1374 polygons
Dual regions 1460 1320 polyhedra
Block mesh 50 22 blocks

Table 5.3: Mesh entities used for the L-Shaped domain.

(a) (b)

(c) (d)

Figure 5.17: Block-meshing for the domain with non-sweepable protrusions: (a)
domain; (b) local dual contributions; (c) dual regions; and (d) unstructured block
mesh.

one of the dual regions corresponds to a primal node of the final block mesh, see

Figure 5.16(d). Note that to generate a hexahedral mesh for this domain we can use

sweeping but not submapping. Table 5.3 shows the number of nodes and elements

that compose the meshes used to obtain the final block mesh.

Domain with non-sweepable protrusions. This non-convex domain presents

two transversal and non-sweepable protrusions. The block meshing tool can decom-

pose the domain with the desired unstructured blocks, see Figure 5.17(a). Note that

neither submapping nor sweeping techniques can generate this decomposition. The

99

5. Local dual contributions

Nodes Elements Type
Reference mesh 57 114 tetrahedra
Dual surfaces 1750 1374 polygons
Dual regions 1807 1710 polyhedra
Block mesh 260 132 blocks

Table 5.4: Mesh entities used for the domain with non-sweepable protrusions.

mesher adds local dual contributions to the reference mesh, see Figure 5.17(b), to de-

termine a valid arrangement of dual surfaces. This arrangement delimits several dual

regions, see Figure 5.17(c), that determine the final block mesh, see Figure 5.17(d).

Table 5.4 shows the number of entities used in the meshing process.

Half of a gear. This non-convex domain presents a large number of corner

curves and protrusions around the revolution axis. The shape and the dual regions

are depicted in Figure 5.18(a). The different dual regions split the domain around

non-convex curves. The resulting block mesh, see Figure 5.18(b), is similar to a coarse

mesh obtained with the sweeping and submapping techniques. Owing to the number

of corner curves we obtain a great amount of local dual contributions, see Table 5.5.

Thin domain with holes. This non-convex domain is curved and has two

square-shaped holes. The dual regions, see Figure 5.19(a), determine two stretched

layers of hexahedra through its thickness, see Figure 5.19(b). Since it is a curved

domain a large number of boundary faces are needed to represent the shape. Hence,

a large number of local dual contributions are needed, see Table 5.6.

Closed loop. This example presents a non-convex domain that can be meshed

with neither submapping nor sweeping. Moreover, this example requires a fully un-

structured hexahedral generator. Figure 5.21(a) shows the obtained dual regions that

lead to the final unstructured block mesh, see Figure 5.21(b). The number of mesh

entities used by the algorithm is presented in Table 5.7.

4-valent-protrusion domain.A parallelepiped base with a pyramidal protrusion

composes the last example. Herein the difficulty to mesh with hexahedral elements is

that the top vertex is 4-valent. Our block mesher splits the space around this feature

vertex by following the reference mesh in an advancing front manner. The resulting

division allows inserting the 3-valent hexahedral elements. Note that the cuts are

propagated along the whole of the domain. The number of entities used along the

meshing process is summarized in Table 5.8.

100

5.7. Examples

(a) (b)

Figure 5.18: Block-meshing for the half of a gear domain: (a) dual regions and (b)
unstructured block mesh.

Nodes Elements Type
Reference mesh 513 1229 tetrahedra
Dual surfaces 16697 20966 polygons
Dual regions 18840 18435 polyhedra
Block mesh 633 336 blocks

Table 5.5: Mesh entities used for the half of a gear example.

(a) (b)

Figure 5.19: Block-meshing for the thin domain with holes: (a) dual regions and (b)
unstructured block mesh.

101

5. Local dual contributions

Nodes Elements Type
Reference mesh 391 1052 tetrahedra
Dual surfaces 13445 15657 polygons
Dual regions 15764 15780 polyhedra
Block mesh 201 96 blocks

Table 5.6: Mesh entities used for the thin domain with holes.

(a) (b)

Figure 5.20: A rounded and closed loop geometry: (a) dual regions and (b) unstruc-
tured block mesh.

Nodes Elements Type
Reference mesh 303 579 tetrahedra
Dual surfaces 7527 8626 polygons
Dual regions 9372 8685 polyhedra
Block mesh 240 112 blocks

Table 5.7: Mesh entities used for the rounded loop example.

Nodes Elements Type
Reference mesh 33 56 tetrahedra
Dual surfaces 891 1312 polygons
Dual regions 924 840 polyhedra
Block mesh 177 92 blocks

Table 5.8: Mesh entities used for the 4-valent protrusion example.

102

5.8. Concluding remarks

(a) (b)

Figure 5.21: Geometry with a 4-valent protrusion (pyramid): (a) dual regions and
(b) unstructured block mesh.

5.8 Concluding remarks

In this chapter we have proposed and detailed a new tool, the local dual contribu-

tions, for directly representing the topology and the geometry of a block mesh dual.

Specifically, the main contribution of this work is to detail how to add local dual

contributions on a reference mesh to represent the desired dual configurations. To

this end, we present a hierarchical scheme and a set of matching rules to ensure that

we obtain a valid dual configuration. That is, the local dual contributions define a

dual of the block mesh with intersections of the proper multiplicity, without gaps and

that reproduces the boundary features of the domain.

Practical results suggest that the proposed types of local dual contributions, hard

and soft, can capture the dual of the desired block mesh for a wide range of geometries.

In particular, soft local dual contributions allow obtaining the same dual configuration

for different reference meshes of the domain.

The computational cost of adding local dual contributions is the time of creating

a tetrahedral reference mesh plus the time of checking all possible candidates to

contribute to the dual. Note that tetrahedral mesh generators are efficient and the

number of candidates is 28 times the number of reference elements. Hence, the local

dual contributions tool has an asymptotic behavior equivalent to the used tetrahedral

mesh generator. Therefore, no effort has been made to optimize the performance of

our implementation. Nevertheless, the performance of the current implementation

can be improved through code optimization.

This tool allows us to state a novel approach to generate block decompositions

103

5. Local dual contributions

of a given domain when there is not a prescribed boundary mesh. The proposed

algorithm is developed in three steps: i) the generation of a coarse reference mesh

composed by tetrahedral elements; ii) the insertion of dual surfaces by addition of

local dual contributions; and iii) the dual regions are dualized to obtained the final

block mesh. We have implemented a block mesh generator to show a first application

of this scheme. To this end, we have presented an automatic procedure to mark inner

reference faces as layers. Several examples show that the current implementation

generates the expected decomposition for several convex and non-convex blocky ge-

ometries. Moreover, we obtain the desired unstructured decomposition in blocks even

in those examples where submapping and sweeping techniques fail. These examples

present different geometrical characteristics such as planar surfaces, curved surfaces,

thin configurations, holes, and vertices with valence greater than three. Specifically,

the tool deals with high-valence vertices due to the use of a reference mesh com-

posed by tetrahedra. The tetrahedral elements provide a natural splitting of the

high-valence vertices in 3-valent nodes.

104

Chapter 6

EZ4U: developing a new mesh
generation framework

6.1 Introduction

In this chapter we present an overview of a new mesh generation framework for ge-

ometry and mesh based numerical methods. It is a multi-platform framework that

integrates a CAD engine and state of the art quadrilateral and hexahedral mesh gen-

eration algorithms. The development of this framework, called EZ4U, has been driven

by the meshing needs of the members of our research group. Moreover, the tool has

evolved with the mesh requirements determined by the techniques presented in this

thesis. At the time of starting the development of EZ4U, several integrated environ-

ments were available. However, these environments did not fulfill our requirements.

The existing tools with quadrilateral and hexahedral meshing capabilities were not

open source (Sandia National Labs, 2009; ANSYS, 2009b; Program Development

Company, 2009; Pointwise, 2009; ANSYS, 2009a; Simulia, 2009). On the contrary,

the available open source projects were oriented to triangular and tetrahedral mesh

generation (Geuzaine and Remacle, 2009; Schorbel, 2009) or were not multi-platform

(Salome, 2009). Hence, we decided to start from zero the development of EZ4U: an

easy, mesh generation environment, for you.

6.1.1 Contributions

The major contribution of EZ4U is to provide the technology required to imple-

menting the hexahedral mesh generation algorithms and data structures presented

in this thesis. That is, the framework incorporates the affine method of Chapter 3,

105

6. EZ4U: developing a new mesh generation framework

the sweeping scheme of Chapter 4, and the block meshing algorithm of Chapter 5.

Moreover, EZ4U is showing to be a productive framework where other researchers

can implement mesh generation algorithms (Ruiz-Gironès and Sarrate, 2009, 2008;

Ruiz-Gironès et al., 2009) or integrate existing codes for triangular and tetrahedral

mesh generation (Shewchuk, 1996; Si, 2007).

6.1.2 Outline

The rest of the chapter is organized as follows. First in Section 6.2 we state the

functional and non-functional requirements of the framework. In order to fulfill these

requirements EZ4U is structured in four layers outlined in Section 6.3 and detailed in

the following sections. In Section 6.4 we describe the design and the data structure of

the mesh generation framework. Moreover, we also present the low level modules of

the framework: CAD interface, mesh database, meshes with exact boundary repre-

sentations and high-order nodes, attributes, and hierarchical mesh generation. These

features are encapsulated in an application programming interface (API) presented

in Section 6.5. This API is used to implement all the filing, editing, modeling and

meshing operations available in this framework. These operations and a session man-

ager are included in the commands kernel described in Section 6.6. In Section 6.7 we

overview the final layer of the framework. This layer is composed by the execution

modes that mediate between the user and the commands kernel. In Section 6.8 we

present several examples that show the meshing features of EZ4U.

During the management, design and development of the project we have used

several software engineering techniques, open source tools and libraries. Details on

this information are out of the scope of this chapter. Nevertheless, our election is

included in Appendix D since it can be useful for managers, designers, and developers

of similar projects.

6.2 Requirements

Our goal is to develop a mesh generation framework that minimizes the user input

effort and expertise. On the one hand, it is designed to fulfill the following functional

requirements:

106

6.2. Requirements

• Ease of use. It has to provide an intuitive interface that allows users to generate

meshes with few operations.

• Simple and powerful geometry modeler. The geometry modeler has to allow fast

and easy modeling of middle complexity models. In addition, it has to allow

importing complex CAD designs by means of standard exchange file formats as

STEP and IGES.

• Quadrilateral and hexahedral mesh generation. The meshing module has to

generate structured and unstructured quadrilateral meshes. Furthermore, it

has to generate structured and semi-structured hexahedral meshes.

• Meshes with exact boundary representation. The meshing module has to allow

converting the boundary entities of a linear mesh to curved edges and faces that

define a mesh with exact boundary representation.

• Generation of high-order nodes. It has to allow exporting high-order nodes that

follow the boundaries of the domain.

• Triangles and tetrahedra. It has to integrate existing triangular and tetrahedral

mesh generators.

On the other hand, it has to provide a convenient developing framework that

verifies the following non-functional requirements:

• Unify mesh generation code. All mesh generation code, legacy and research,

has to be integrated in the mesh generation environment.

• Software re-use. In order to improve productivity we have to use available

libraries, adapt legacy code, and implement new classes and methods for later

code re-use.

• Scalability. We have to promote a design and implementation that facilitates

the growing of the application.

• Maintainability. We have to apply several software engineering practices ensur-

ing that a small group can maintain the application.

107

6. EZ4U: developing a new mesh generation framework

Low level

User level

GEOMETRY AND MESHING MODULES

(CAD interface, meshd database, meshing algorithms, and attributes)

GEOMETRY AND MESHING API

(geometry and meshing features, and object manager)

COMMANDS KERNEL

(command objects and session manager)

EXECUTION MODES

(GUI, batch mode, and Python console)

Figure 6.1: Architecture in layers of EZ4U.

• Easy to code. New developers should be productive in short-term. That is,

they should be able to add new features without understanding the whole of

the source code.

• Cross-platform. The environment has to work, at least, in Windows and Linux

platforms.

6.3 Design and architecture

EZ4U is organized in four layers: geometry and meshing modules, application pro-

gramming interface, commands kernel and the user interfaces. Each layer uses the

features of the previous layer, except the geometry and meshing modules that provide

the low-level features for implementing the application, see Figure 6.1.

• Geometry and meshing modules. This layer is responsible of providing

the low level features required for the implementation of the mesh generation

environment. Five modules compose it: CAD interface, mesh database, meshing

algorithms, and attributes management.

• Geometry and meshing application programming interface (API).

This layer provides a high level interface to the geometry and meshing modules.

The features of the API are the building blocks for implementing the commands

108

6.4. Geometry and meshing modules

kernel. To this end, an object manager focused in the topological entities is im-

plemented. It controls the creation, modification and deletion of model objects

and attributes.

• Commands kernel. This is the middle layer between the user interfaces and

the geometry and meshing API. This kernel has a session history where the

execution order of the command objects is stored. The commands depend

on the input parameters and are implemented using the geometry and meshing

API. Moreover, this layer provides undo and redo capabilities and the possibility

of loading and saving session files.

• Execution modes. This layer is composed by the three possible execution

modes of the environment: the graphical user interface (GUI), the batch mode

and the python console. The user can set input parameters and execute com-

mand to obtain the desired result.

6.4 Geometry and meshing modules

Mesh generation environments require the specification, definition and implementa-

tion of a large amount of data types. Moreover, these data types have to collaborate

in order to represent complex data structures as meshes, solid CAD models or mesh

generation algorithms. To this end, we have adopted the programming paradigms and

software engineering techniques presented in Appendix D. They allow us to define use-

ful and scalable classes of objects. These objects store data and collaborate between

them by means of data aggregation and inheritance. In this section we present the

concepts related to these classes and an overview of their implementation.

6.4.1 CAD interface

This module includes the required features to represent the model to be meshed.

Specifically, it implements: modeling operations, classes for geometrical and topolog-

ical representation, and functions to query geometrical properties. To this end, this

module is interfaced with the OpenCascade library (Open CASCADE, 2007).

109

6. EZ4U: developing a new mesh generation framework

Modeling features

EZ4U provides a set of basic modeling features that allow to define simple and middle

complexity geometries. These features fulfill the necessities of our users in academia.

However, EZ4U can also mesh industrial CAD models. To fulfill this goal, the en-

vironment allows importing exchange files in STEP format obtained in an external

CAD modeler.

Geometrical and topological representation

Similar to the work by Athanasiadis and Deconinck (2003), a combined topological

and geometrical model representation is adopted. In particular, two kinds of entities

are considered:

• Geometrical entities. They are the geometric realizations used to define a do-

main. They are classified in four types: points, curves, surfaces, and volumes.

Note that each realization may have several representations. For instance, a

straight line, a B-spline or a NURB can represent a curve.

• Topological entities. They are the objects that are used to define the adjacency

relationships between geometrical entities. They define the manner in which

geometrical entities are composed and connected. Only one geometrical entity

corresponds to each topological entity.

The data structures used to describe the geometrical and topological structure of

the model follow the STEP representation (TC184 and SC, 2009). Hence, one basic

entity is defined for each dimension. The basic topological entities are:

• Vertex. Topological entity of dimension 0, its geometrical representation is a

point.

• Edge. Topological entity of dimension 1, its geometrical representation is a

curve. Two adjacent edges share at least one vertex.

• Face. Topological entity of dimension 2, its geometrical representation is a

surface. Its boundary is defined by one or more loops of edges. The first loop

defines the outer boundary, and the other loops define the inner holes. Two

adjacent faces share at least one edge.

110

6.4. Geometry and meshing modules

v1

v2

v3

v4

v5

v6

e1

e2

e3

e4

e5

e6

e7

f1

f2

(a)
v1v2 v3 v4v5 v6

e1e2 e3 e4 e5 e6e7

f1 f2

0D

1D

2D

(b)

Figure 6.2: Topological representation of two surfaces: (a) A domain composed by
two surfaces that share an edge; (b) hierarchical organization of the entities.

• Solid. Topological entity of dimension 3, its geometrical representation is a

volume with or without holes. It is defined by one or more loops of faces joined

by edges. Two adjacent solids share at least one face.

We have also defined two additional topological entities:

• Wires. Topological entity of dimension 1 that determines a closed loop of edges.

• Shells. Topological entity of dimension 2 that determines a closed loop of faces.

• Compound solids. Topological entity of dimension 3 that determines a compo-

sition of several adjacent solids.

In order to illustrate these definitions, Figure 6.2 shows the hierarchical represen-

tation of a surface defined by two faces, f1 and f2. These faces are defined by four

edges, and share edge e4. The face f1 is defined by the set of edges {e1, e2, e3, e4},
while face f2 is defined by the set {e4, e5, e6, e7}. Similarly, all the edges are defined

by the set of vertices {v1, v2, v3, v4, v5, v6}. The solid lines in Figure 6.2(b) reveal the

hierarchical relationships and the shared entities. For instance, the solid lines shows

that edge e4 is shared by faces f1 and f2, or that vertices v5 and v6 are shared by

three edges since three solid lines are attached to them.

It is important to point out that for each topological entity there exists one geo-

metrical representation:

111

6. EZ4U: developing a new mesh generation framework

• Point. The geometrical representation of a vertex is a point p in R3.

• Curve. The geometrical representation of an edge is the parameterization of

NURBS curve

γ : [t0, t1] ⊂ R→ R3.

• Surface. The geometrical representation of a face is either the parameterization

of a NURBS surface

ψ : [u0, u1]× [v0, v1] ⊂ R2 → R3,

or the restriction of a NURBS surface to a subset D of [u0, u1]× [v0, v1]

ψ|D : D ⊂ [u0, u1]× [v0, v1] ⊂ R2 → R3.

The latter representation is referred as trimmed surface and allows defining

surfaces with holes and bounded by more than four curves.

• Volume. It is the region of the space determined by the boundary surfaces of

the corresponding solid.

We use an object-oriented programming paradigm to build the interface between

the topological and geometrical entities. Hence, we hide the realization of the geo-

metrical entities (a straight line or a NURBS for curves) of its associated topological

object (an edge). Specifically, in the implementation, the Shape class is abstract and

the rest of topological entities are specializations of this one, see Figure 6.3. That

is, all topological entities are used by means of the same function interface, deter-

mined by the abstract class Shape, and each particular class provides the required

specialized behavior.

Geometrical queries

Finally, mesh algorithms need to query several geometrical properties of the model

to be meshed. This module provides an abstract interface between the geometrical

representation of the CAD model and the meshing module. Specifically, several query

functions are provided for the geometrical entities:

112

6.4. Geometry and meshing modules

Shape

Vertex Edge Wire Face Shell Solid CompoundSolid

Figure 6.3: Shape class hierarchy diagram.

• To obtain the geometrical representation p of a given vertex v.

• Given a parameterized curve γ and a parameter t in [t0, t1] it is required to

obtain the coordinates of γ(t), the derivative value γ̇(t), or the curvature k of

γ at t. Moreover, it is required to obtain the parameter t in [t0, t1] of a point p

over the curve γ.

• Given a parameterized surface ψ and the parameters (u, v) in D ⊂ [u0, u1] ×
[v0, v1] ⊂ R2, it is required to obtain the coordinates of ψ(u, v), the directional

derivative vectors Duψ(u, v) and Dvψ(u, v), and the principal curvature values

k1 and k2 with principal directionsw1 andw2. Moreover, it is required to obtain

the parameters (u, v) in D ⊂ [u0, u1] × [v0, v1] of a point p over the surface ψ,

or a curve γ̃ defined in the parameter space D ⊂ [u0, u1] × [v0, v1] ⊂ R2 such

that γ = ψ ◦ γ̃.

6.4.2 Mesh database

In mesh generation procedures it is required to add, remove and find mesh entities.

Moreover, mesh data structure has to allow querying for adjacencies between the

different mesh entities, i.e. query for the elements that surround a given node, or

for the faces that share and edge. In Figure 6.4 we present the inheritance and

collaboration diagram for the Element and Mesh database classes. Thus, different

types of entities together with their adjacencies compose a mesh. The abstract class

Element represents the common interface for the mesh entities. Each type of mesh

entity is a specialization of this abstract class. Specifically, Node, Edge, Face and

Cell represent the 0D, 1D, 2D and 3D entities of a mesh, respectively. Class Mesh

has four dynamical containers to store nodes, edges, faces and cells.

113

6. EZ4U: developing a new mesh generation framework

Element

Node Edge Face Cell

Mesh

1

0..*

1

0..*

1

0..*

1

0..*

Figure 6.4: Element and Mesh class hierarchy and collaboration diagram.

This module supports the standard element shapes of the finite element method

and the discontinuous Galerkin method: segments, triangles, quadrilaterals, tetrahe-

dra, hexahedra, and prisms. These shapes are implemented as specializations of the

classes Edge, Face, and Cell.

6.4.3 Exact boundary representation and high-order meshes

The mesh generation algorithms of EZ4U generate linear meshes. Nevertheless, these

discretizations can be converted to meshes with exact boundary representation or

high-order meshes. To this end, all the mesh entities store a pointer to the corre-

sponding topological entity of the model. Via this pointer each mesh entity can access

to the properties of the underlying geometrical representation:

• The topological vertices of the model are discretized with mesh nodes. These

mesh nodes can access to the physical coordinates of the associated geometrical

point.

• The topological edges of the model are discretized with mesh nodes and mesh

edges. A mesh node can access to its parametric coordinate t on the associated

parameterized curve γ. In addition, a mesh edge can access to its associated

parameterized curve γ.

• The topological faces of the model are discretized with mesh nodes, mesh edges,

and mesh faces. A mesh node can access to its parametric coordinates (u, v) on

the associated geometric surface ψ. A mesh edge is represented by a physical

114

6.4. Geometry and meshing modules

curve over the parameterized surface ψ. Specifically, this curve is the image by

ψ of a linear segment on the parametric space. The limits of this linear segment

are the parametric coordinates (up, vp) and (uq, vq) of the limit nodes of the edge

p and q respectively. A mesh face can access to its associated parameterized

surface ψ.

• The topological solids of the model are discretized with mesh nodes, mesh edges,

mesh faces, and mesh cells. These mesh entities can access to the associated

topological solid.

The association of the mesh entities with the model entities allows obtaining

meshes with exact boundary representation. That is, the mesh entities of the bound-

ary can be represented by means of the points, curves, and surfaces of the model

boundary:

• Mesh nodes of the boundary. A mesh node of a parameterized curve γ

is represented by its parametric coordinate t. In addition, a mesh node of a

parameterized surface ψ is represented by its parametric coordinates (u, v).

• Mesh edges of the boundary. A mesh edge over a parameterized curve γ

is represented by the restriction of this curve to [tp, tq], where tp and tq are the

parameters of the edge limiting nodes p and q. A mesh edge of a parameterized

surface ψ is represented by a curve over the geometric surface. This curve is the

image by ψ of the straight segment determined by the parametric coordinates

(up, vp) and (uq, vq) of the limiting nodes p and q of the edge.

• Mesh faces of the boundary. A mesh face over a parameterized surface ψ

is represented by the restriction of this surface to the region delimited by its

bounding mesh nodes and mesh edges.

A mesh with exact boundary representation can be used to obtain high-order

meshes of degree p by generating additional inner nodes for the mesh edges, faces,

and cells. To this end, we first generate a Gauss-Lobatto distribution of p+ 1 points

in the interval [−1, 1]. Second, this distribution is mapped to the straight and curved

mesh edges according to the arch length parameter of the underlying geometrical

curve. Then the high-order nodes in the interior of the faces are generated depending

on the element type:

115

6. EZ4U: developing a new mesh generation framework

• Quadrilateral. A transfinite interpolation of the physical coordinates of the

high-order nodes of the edges determines the location of the high-order nodes

of the face interior.

• Triangle. The physical coordinates of the high-order nodes of the edges are

used to obtain an iso-parametric mapping with a smooth Jacobian. This map-

ping is used to map a Fekette distribution of points on a reference element to

obtain the location of the high-order nodes for the face interior. To obtain this

mapping we use the procedure described in (Hesthaven and Warburton, 2008).

Note that the obtained high-order nodes ensure the optimal convergence rate

of the Lagrange interpolation error.

6.4.4 Attributes

Mesh generation environments have to deal with several properties assigned to the

entities that characterize the model to simulate. These properties usually correspond

to boundary conditions and to material properties of the model. We denote these

properties as model attributes and we provide an abstract and generic procedure to

deal with them. The user can mark with labels the topological entities that compose

the model in order to properly assign boundary or material conditions. Each label

can be applied to several entities of the same dimension. In addition, we can apply

different labels to the same entity. Moreover, the user can choose if the labels are

applied over the nodes or over the elements of the topological entities. In the first

case, we can mark with the same label the nodes of a group of vertices, edges, faces

or solids. In the second case, we can mark with the same label: the mesh edges over

a group of model edges; the mesh faces over a group of model faces; or the mesh cells

over a group of model solids.

In several mesh generation environments the attributes are assigned to mesh en-

tities. Therefore, the users need to re-mesh the model each time that an attribute is

modified. We have developed a data structure that overcomes this drawback. Specif-

ically, mesh entities are contained in Mesh objects that are associated to geometrical

entities. When a mesh entity asks for its attributes, the container mesh delegates the

query to the corresponding geometrical entity. Not storing the value of the attributes

in the mesh entities, and querying to the corresponding entity instead, allow avoiding

the time consuming task of remeshing the model when a given attribute is changed.

116

6.4. Geometry and meshing modules

Mesher

doMeshBoundary() : void
doSetBoundary() : void
doMeshInside() : void
run() : void

VertexMesher

EdgeMesher

doMeshInside() : void

WireMesher

FaceMesher

doMeshInside() : void

ShellMesher

SolidMesher

doMeshInside() : void

CompoundSolidMesher

EdgeMesherUniform

doMeshInside() : void

EdgeMesherLinear

doMeshInside() : void

FaceMesherUnstructuredTri

doMeshInside() : void

FaceMesherUnstructuredQua

doMeshInside() : void

void doMeshInside(){
 // Linear interpolation of the
 // prescribed sizes at the start
 // and end vertices of the edge.
}

void doMeshInside(){
 // Generates an uniform
 // distribuition of nodes
 // over the edge.
}

void doMeshInside(){
 // Generates an unstructured
 // triangular mesh by means
 // of a dealaunay algorithm.
}

void doMeshInside(){
 // Generates and unstructured
 // quadrilateral mesh using
 // a divide and conquer algorithm.
}

void run()
{
 doMeshBoundary();
 doSetBoundary();
 doMeshInside();
}

Figure 6.5: Mesher class hierarchy diagram.

6.4.5 Hierarchical mesh generation

Similar to the topological and geometrical description, the meshing algorithms are

also implemented according to a hierarchical structure (Athanasiadis and Deconinck,

2003). Therefore, the meshing algorithms are adapted to the topological and geo-

metrical representation in a natural manner. In this sense, current implementation

allows to add a new mesh generation algorithm overloading only a particular set

of functions. It is important to point out that this structure is essential to ensure

consistency (conformity) between meshes corresponding to adjacent entities.

The basic idea is to start by meshing entities of dimension 0 (vertices), and then

to proceed by meshing entities of dimension 1 (edges), dimension 2 (faces), and finally

entities of dimension 3 (solids). That is, a mesh generation algorithm is assigned to

117

6. EZ4U: developing a new mesh generation framework

each entity of dimension d. These algorithms use as boundary mesh one or several

meshes corresponding to the discretization of the boundaries entities of dimension

d− 1. These boundary meshes have been previously obtained and may be shared by

other entities of dimension d. Therefore, the process always begins by meshing all the

entities of lower dimension. Taking into account this property, we define four abstract

classes for mesh generation algorithms: VertexMesher, EdgeMesher, FaceMesher,

and SolidMesher (one for each type of topological entities). In addition we consider

the abstract classes WireMesher, ShellMesher, and CompoundSolidMesher that al-

low sewing meshes over groups of edges (wires), faces (shells), and solids (compound

solids).

Figure 6.6 shows the hierarchical mesh generation process corresponding to the

discretization of the domain presented in Figure 6.2. In the first step, all the entities

of dimension 0 (vertices) are meshed, see Figure 6.6(a). Taking into account this

discretization, in the second step the seven entities of dimension 1 (edges) are meshed,

see Figure 6.6(b). Finally, the mesh corresponding to the two entities of dimension 2

(faces) are obtained from the discretization of the edges, see Figure 6.6(c).

Object oriented paradigm allows to define a natural class hierarchy for the mesh-

ers and their specializations, see Figure 6.5. The root class is Mesher that provides

the common interface to all meshers. A mesher is executed by means of the run func-

tion, that calls sequentially the not already implemented functions: doMeshBoundary,

doSetBoundary and doMeshInside. First function, doMeshBoundary, calls all the

meshers associated to the boundary entities of the entity to be meshed. Second func-

tion, doSetBoundary, adds to the mesh of the current mesher the boundary nodes

obtained with doMeshBoundary. Third function, doMeshInside, calls the code of the

algorithm used to mesh the inner part of the selected entity. These three functions are

pure virtual, i.e. they are not implemented in the Mesher class and have to be defined

by the particular specializations of the Mesher class. The second level of classes in

the hierarchy override the doMeshBoundary and doSetBoundary functions, but not

doMeshInside. The latter is implemented by the specializations of Mesher that are

on the third level. For instance, EdgeMesherUniform and EdgeMesherLinear override

the doMeshInside function in order to specify a particular EdgeMesher. Similarly

FaceMesherUnstructuredTri and FaceMesherUnstructuredQua are specializations

of FaceMesher that allow to mesh the surface of a face with triangular or quadrilateral

elements, respectively.

118

6.5. Geometry and meshing API

(a) (b) (c)

Figure 6.6: Hierarchical mesh generation process corresponding to the discretization
of the domain presented in figure 6.2. (a) 0D mesh; (b) 1D mesh; and (c) 2D mesh.

6.5 Geometry and meshing API

This layer is responsible of integrating the features of the geometry and meshing

modules. To this end the different classes have to collaborate together. This col-

laboration is represented by many connections between objects, which may reduce

the reusability of the code. Adding more connections can lead to objects that can-

not work without the support of the others. Moreover, little changes in one part of

the source code might be propagated through the rest of the code. To solve these

drawbacks we introduce Key and KeyManager classes that manage the collaboration

between objects, see Figure 6.7. The first one is devoted to mediate collaborations

between the geometry and topology, attributes and meshing functions. For instance,

meshers are related to one shape, and can query for their geometrical properties,

such as: point coordinates, distances, curvatures or tangent vectors. Thus, assigned

attributes over shapes can be obtained for a particular mesh entity. Each key has

one mesher and one mesh corresponding to a particular shape. Each key has at most

one background mesh, and as many attributes as it is required. The second class,

KeyManager, is used to manage the instances of objects. Basically, it allows adding,

removing and finding Key class instances that collaborate to provide the geometry,

topology, attributes and meshing features.

6.6 Commands kernel

This layer integrates a session manager and several command objects. On the one

hand, the session manager controls the command execution history. Thus, the user

119

6. EZ4U: developing a new mesh generation framework

Shape

Mesh BackgroundMesh

Attribute

KeyManager

add(aKey : Key) : void
remove(aKey : Key) : void

Geoometry

Mediation between geometry
and topology; attributes; and
meshing functions.

Meshing functions
Attributes functions

Geometry and
topology functions

Mesher

doMeshBoundary() : void
doSetBoundary() : void
doMeshInside() : void
run() : void

Key

getShape() : Shape
getMesh() : Mesh
getBackgroundMesh() : BackgroundMesh
getAttribute() : void
getMesher() : Mesher
setShape(aShape : Shape) : void
setMesh(aMesh : Mesh) : Mesh
setBackgroundMesh(aBackgroundMesh : BackgroundMesh) : void
setAttribute(anAttribute : Attribute) : void
setMesher(aMesher : Mesher) : void

1 0..*

1 1

1

1

1

0..1

1

1

1 1

1

0..*

Figure 6.7: KeyManager and Key classes mediate collaboration between geome-
try/topology, attributes, and meshing functions.

interfaces can load and save geometry modeling and mesh generation sessions from a

session file. On the other hand, the command objects are designed according to the

command pattern presented in (Gamma et al., 1995). This design provide undo and

redo capabilities to EZ4U. The command objects are called from the user interface

and are grouped in five contexts :

• File context. It includes the entire file input and output commands. Using this

context the user can import and export a CAD model or open/save a previously

developed model.

• Edit context. It enfolds all the edition operations. For instance, the user can

perform operations such as copy, move, rotate, scale, mirror, collapse or delete

a given entity.

• Topology and geometry context. It provides access to commands that create or

repair topological and geometrical entities. For instance, a user can create a

geometrical domain from a set of geometrical primitives.

120

6.7. Execution modes

• Attributes context. It contains commands to assign attributes to a selected

entity. For instance, the user can select an entity and assign to it a scalar or

vector field related to some material properties or boundary conditions.

• Mesh context. It includes commands related to the mesh generation algorithms.

From this context the user selects the mesh generation algorithm and assigns

the required parameters such as the element size, the background mesh, or

type of elements. Moreover, a quantitative analysis of the mesh quality can be

conducted and displayed from this context.

6.7 Execution modes

The end user can access to EZ4U features by means of three execution modes: the

graphical user interface (GUI), the batch mode, and the python console.

6.7.1 Graphical user interface (GUI)

The implemented GUI allows to visually monitoring the steps performed in the mesh

generation process. The user can verify the results of their actions using standard

visual steering tools (i.e. zoom, panning, rotation). The GUI of the mesh generation

environment, see Figure 6.8, is composed by eight widgets:

• Menu bar. It provides access to the five contexts grouped in pop-up menus.

• Tool bar. It includes buttons for activating and deactivating steering tools,

visualization modes and dialog windows.

• Views. It displays one or several views of the current model and meshes.

• Commands by context. It provides access to the commands of the geometry,

attributes, and mesh contexts. The commands are grouped in pages accessible

by means of a tab bar.

• Tool dialog. It shows the user interface for the current command. The user can

set the parameters and execute the command.

• Output and python console. It is used to input commands, and to display log,

warning and error messages.

121

6. EZ4U: developing a new mesh generation framework

Menu bar
Tool bar

Commands by
context

Views (model and mesh)

Session history

Layers

Tool dialog

Output and python console

Status bar

Object
manager

Figure 6.8: A sketch of the GUI of the environment for geometry-based simulations.

• Session history. It shows a list of commands sorted according to the execution

order. The user can directly access to a previous step, or undo and redo the

last command.

• Layers. This dialog allows managing and organizing objects in independent

groups (layers). Thus, the user can manipulate all the model entities in the

same layers at once. For instance, we can turn off, change their display color,

and select all of them with one operation.

• Object manager. It lists the components of the model according to its type.

The selection of a list item is equivalent to select the model entity in the main

view.

122

6.7. Execution modes

Figure 6.9: Screenshot of the GUI of the mesh generation environment.

Figure 6.9 shows a screenshot of the GUI. The central widget shows four views of a

mechanical piece model: one 3D image in perspective; and three 2D images obtained

from the top, left and front of the object. The tool dialog shows the parameters of

the unstructured quadrilateral mesh command. Moreover, this command appears as

executed in the session history. The resulting mesh is shown in the different views

and its quality is listed in the output window. The faces, edges and vertices that

compose the model are listed in the object manager window on the left. Finally, the

layers widget shows that all the model entities are in the same layer.

6.7.2 Batch mode

EZ4U comes with a so-called batch mode that allows the user to generate meshes from

the command line. This mode allows to integrate EZ4U in mesh adaption procedures

123

6. EZ4U: developing a new mesh generation framework

or to generate meshes without user interaction. The batch mode has a series of flags

to determine the geometry file, element type, mesh algorithm, background mesh,

the degree p of a high-order mesh, and the output file. Moreover, the user can run

previously saved sessions in the GUI in a non-interactive mode.

6.7.3 Python console

The end user has full access from the Python console to all the commands contexts

of EZ4U: file, edit, geometry and topology, attributes, and meshing. This interface

allows writing Python scripts that glue the mesh environment with other calculations

or to parameterize the input data of the EZ4U commands. For instance, the user

can automate processes such as: creating parameterized geometries; generating a

succession of finer meshes for convergence studies; or integrating the mesh generator

in an adaptivity procedure.

6.8 Mesh generation features

In this section we present several mesh generation features that are available in EZ4U.

Note that these features are not usually found in commercial and non-commercial

mesh generation tools. They provide to our package an additional value and are of

major importance to fulfill the mesh requirements presented in the introduction.

6.8.1 Quadrilateral mesh generation

In order to obtain a conformal quadrilateral mesh it is required that shared edges of

adjacent surfaces have the same number of nodes, and surface boundaries have to be

discretized with an even number of nodes. The former is satisfied by means of the

adopted hierarchically based mesh paradigm (Athanasiadis and Deconinck, 2003). To

satisfy the latter EZ4U automatically solves a linear integer problem subject to the

parity constrain. The presented framework incorporates algorithms for generating

unstructured and structured conform meshes of quadrilaterals.

Unstructured. To generate unstructured quadrilateral meshes we have imple-

mented an extension to NURBS surfaces (Roca et al., 2005a) of an algorithm pre-

viously developed by Sarrate and Huerta (2000b,a). The algorithm is based on an

automatic and recursive decomposition of the domain until quadrilateral elements are

124

6.8. Mesh generation features

Figure 6.10: Unstructured quadrilateral mesh over the surface of a snap harness.

obtained. Desired element size can be prescribed by means of a background mesh.

Figure 6.10 shows an unstructured quadrilateral mesh for a snap harness.

Structured. The generation of structured meshes is frequently required in several

applications of mesh based numerical methods. To this end, EZ4U includes an imple-

mentation (Ruiz-Gironès and Sarrate, 2009) of the submapping 2D algorithm (White,

1996). This meshing procedure splits the surface into several patches, logically equiv-

alent to a quadrilateral, and then meshes each patch separately. The submapping

algorithm can only be applied to geometries where the angles between consecutive

edges are, approximately, multiples of straight angles. User assigns desired size and

the implemented procedure automatically classifies vertices angles, divides each edge

with a compatible number of segments, and finally generates the structured mesh.

125

6. EZ4U: developing a new mesh generation framework

6.8.2 Hexahedral mesh generation

To obtain hexahedral meshes domains are decomposed into several simpler sub-

volumes. Then these sub-volumes are discretized by means of specific hexahedral

mesh generators such as sweeping or submapping, see Section 1.2 of Chapter 1. The

presented framework incorporates both meshing techniques. Furthermore, it includes

the block meshing technique presented in Chapter 5.

Sweeping. The sweeping technique allows to generate semi-structured hexahe-

dral elements in extrusion volumes, see Chapter 2. The presented framework in-

corporates a fast and robust implementation of the sweeping technique detailed on

chapters 3 and 4. To illustrate the capabilities of this implementation, we present

several sweeping meshes in Section 4.4 of Chapter 4.

Moreover, EZ4U features a new implementation (Ruiz-Gironès, Roca, and Sarrate,

2009) of the many-to-many sweep technique (Blacker, 1996; Mingwu and Benzley,

1996; White et al., 2004). This technique automatically decomposes multi-source and

multi-target extrusion volumes in several one-to-one extrusion volumes. Notice that in

the decomposition process it is required to project inner nodes between loops of nodes

without an underlying surface. To this end, the implemented multi-sweep technique

uses the projection algorithm presented in Chapter 3. Once the decomposition is

finished, the obtained extrusion volumes are meshed with the sweeping core presented

in Chapter 4. To illustrate the multi-sweep approach, in Figure 6.11 we present the

automatic decomposition in extrusion volumes and the resulting meshes for two initial

geometries. Specifically, Figure 6.11(a) shows the mesh for a crankshaft model and

Figure 6.11(b) for the model of a connecting rod. Note that different extrusion

volumes are colored with different colors.

Submapping. The extension to 3D domains of the submapping technique allows

to obtain structured hexahedral meshes in blocky geometries (White and Tautges,

2000; Whiteley et al., 1996). This method relies on a geometric decomposition of

the domain into sub-volumes logically equivalent to an hexahedron. Then, each sub-

volume is meshed separately using a standard structured mesh generation algorithm.

EZ4U incorporates the submapping implementation detailed by Ruiz-Gironès and

Sarrate (2008). Figure 6.12 shows a mesh generated for the half of a gear using the

implemented submapping algorithm.

126

6.8. Mesh generation features

(a)

(b)

Figure 6.11: Multi-sweep meshes: (a) a crankshaft and (b) a connecting rod.

127

6. EZ4U: developing a new mesh generation framework

Figure 6.12: Hexahedral mesh for a half of a gear with the submapping technique by
Ruiz-Gironès and Sarrate (2008).

6.8.3 Meshes with exact boundary representation and

high-order meshes

The data structure of EZ4U allows converting a valid linear mesh of a domain to

a mesh with exact boundary representation or with high-order nodes. If the initial

linear mesh is not valid the resulting mesh can present mesh edges or mesh faces that

cross the boundary surfaces of the domain.

Meshes with exact boundary representation. The main application of this

type of meshes is the NURBS-enhanced finite element method (NEFEM), proposed

by Sevilla et al. (2008); Sevilla (2009). This method requires a mesh where the first

layer of boundary elements represents the exact CAD geometry. Thus, the NEFEM

is able to reproduce with fidelity those features of the solution that depend on the

geometrical properties of the domain. Figure 6.13 shows two discretizations of an

aircraft model. The linear mesh approximates the model geometry, see Figure 6.13(a).

On the contrary, the associated mesh with exact boundary representation reproduces

the original CAD model, Figure 6.13(b).

128

6.8. Mesh generation features

(a) (b)

Figure 6.13: Two meshes of an airplane: (a) general view and detail of the linear
mesh; (b) general view and detail of the mesh with exact boundary representation.

High-order meshes. Several numerical formulations, such as the FEM and

the discontinous Galerkin (DG), need high-order discretizations. EZ4U can convert

a valid linear mesh to a high-order mesh of degree p ≥ 2. This feature generates

high-order nodes according to the procedure presented in Section 6.4.3. In addition,

the high-order nodes are renumbered to reduce the bandwidth of the linear system

matrices of the numerical method. The implemented renumbering procedure is an

extension to high-order meshes of the reverse Cuthill-McKee algorithm (Cuthill and

McKee, 1969).

129

6. EZ4U: developing a new mesh generation framework

6.9 Concluding remarks

In this chapter we have presented an overview of the design, architecture and mesh-

ing features of a new non-commercial mesh generation framework. The design and

implementation of EZ4U is one of the partial goals considered in the introduction

of this dissertation. The project started in order to cover the mesh generation re-

quirements of our research group. In addition, it is the development framework used

to implement: the projection method presented in Chapter 3, the sweeping scheme

proposed in Chapter 4, and the block meshing approach of Chapter 5.

The design and architecture of the framework have shown to provide code re-

use, scalability, and maintainability. That is, EZ4U is a productive framework where

other developers have implemented techniques not considered in this dissertation

such as submapping 2D, submapping 3D, and many-to-many sweeping. Moreover,

the developed data structure provides basic functionality for converting valid lin-

ear discretizations to meshes with exact boundary representation or with high-order

nodes.

To summarize, we have presented a framework focused on quadrilateral and hexa-

hedral mesh generation that provides features not available in similar non-commercial

projects.

130

Chapter 7

Summary and future work

7.1 Summary and contributions

In this thesis we have accomplished five goals addressed to developing hexahedral

mesh generation technology. We have detailed these goals in the central chapters of

this dissertation. Therefore, we just summarize below the main contributions:

1. We have proposed a new affine method for sweeping that leads to

sets of normal equations of full rank. In Chapter 2 we have presented

a new functional formulation for affine methods that depends on two vector

parameters. This new functional has been compared with the standard func-

tional formulations in a detailed theoretical analysis. From this analysis, we

have concluded that the new formulation overcomes the drawbacks of standard

formulations. That is, the two vector parameters of the proposed functional

can be chosen to obtain linear systems of full rank.

Chapter 2 and Appendix A are an extension of the work presented in Roca,

Sarrate, and Huerta (2005b). This work is accepted for publication in the 14th

International Meshing Roundtable special issue of Engineering with Computers.

2. We have developed an automatic projection algorithm for sweeping

that preserves offset data. In Chapter 3 we have presented the theoretical

background and the implementation of an automatic projection algorithm based

on the new affine method presented in Chapter 2. The algorithm specifies the

selection of the two vector parameters of the new formulation and ensures the

preservation of the offset data. We have considered several tests that show

131

7. Summary and future work

that the proposed projection algorithm overcomes all the reported drawbacks

of standard affine methods.

Chapter 3 and Appendix B correspond to the work presented in Roca and

Sarrate (2006). This work has been selected for publication in the 15th Inter-

national Meshing Roundtable special issue of Engineering with Computers.

3. We have proposed a sweeping scheme based on affine methods. To

this end, in Chapter 4 we have detailed two projection procedures based on

affine methods. First, we have proposed a fast surface mesh projection between

parameterized surfaces. The projection is performed by an affine method that

maps the parametric coordinates of the source surface mesh to the parametric

representation of the target surface. Second, we have detailed how to generate

inner layers of nodes by directly projecting from the source and target meshes.

The projection from the source and the target is performed with the projection

algorithm presented in Chapter 3. Notice that, the generation of the inner layers

is parallelizable and preserves offset data. The numerical examples show that

the presented sweeping tool can mesh a wide range of extrusion geometries.

The contents of Chapter 4 are an update of the work by Roca, Sarrate, and

Huerta (2006) published in Communications in Numerical Methods in Engi-

neering.

4. We have proposed a novel approach for block meshing by representing

the geometry and the topology of a hexahedral mesh dual. In Chapter

5 we have presented and detailed the new concept of local dual contributions.

Then, we have stated a novel approach to block meshing based on the addition of

local dual contributions. Given a domain without a prescribed boundary mesh,

the block meshing is developed in three steps: i) generating a coarse reference

mesh composed by tetrahedral elements; ii) inserting dual surfaces by addition

of local dual contributions; and iii) obtaining final block mesh as the dual of the

dual regions. The examples show that the block-meshing algorithm generates

the expected block mesh for convex and non-convex blocky geometries.

The contents of Chapter 5 are an update of the work presented in Roca and

Sarrate (2008). This work has been presented in the 17th International Meshing

Roundtable.

132

7.2. Future work

5. We have started and developed a new mesh generation framework.

In Chapter 6, we have presented an overview of the EZ4U framework. This

framework has provided the meshing technology required to develop and im-

plement the algorithms presented in Chapter 3, Chapter 4, and Chapter 5. In

addition, EZ4U have shown to be a productive framework where developers can

implement their own mesh generation algorithms.

7.2 Future work

The work carried out in this thesis leaves open some research lines that should be

investigated in the near future.

1. Sweeping. The new affine method presented in Chapters 2 and 3 has been

used to detail a new sweeping scheme in Chapter 4.

• The proposed sweeping scheme generates inner layers of nodes by project-

ing directly from the cap surface meshes. On the contrary, the standard

sweeping scheme computes the inner layers of nodes by projecting from

the previous and next layers. Our sweeping scheme shows two advantages,

it is parallelizable and it preserves offset data. However, it would be inter-

esting to implement a standard sweeping scheme that uses our new affine

method and compare it with our sweeping methodology.

• It is planned to incorporate the proposed one-to-one sweeping scheme in a

many-to-many sweeping tool (Blacker, 1996; Mingwu and Benzley, 1996;

White et al., 2004). Moreover, it is also planned to develop a multi-axis

sweep algorithm (Miyoshi and Blacker, 2000). First results in the many-to-

many sweeping technique have been presented in Ruiz-Gironès, Roca, and

Sarrate (2009). This technique automatically decomposes multi-source

and multi-target extrusion volumes in several one-to-one extrusion vol-

umes. Then the resulting volumes can be meshed with the sweeping core

presented in Chapter 4.

2. Local dual contributions and block meshing. The local dual contributions

tool is a recent concept first presented in Roca and Sarrate (2008). Moreover,

obtaining a general-purpose block mesh generator is our long-term goal. In this

133

7. Summary and future work

sense, the work presented in Chapter 5 present several issues that should be

investigated and solved in the near future.

• Additional logic might be incorporated to apply the proposed approach to

more complicated geometries: assembly models (contiguous domains with

shared curves and surfaces) and non-blocky geometries (smooth domains

without sharp features).

• We have to improve the advancing front procedure for marking faces as

layers. Specifically, we have to reduce the propagation through the mesh

of the cuts that start at high-valence vertices.

• It is scheduled to analyze and reduce the dependence of the algorithm from

the reference mesh.

• We have to analyze if a fine reference mesh, adapted to a prescribed element

size, can be used to generate hexahedral meshes by means of adding local

dual contributions.

• The current approach adds local dual contributions on the potential set

of all the polygon candidates of an initial dual arrangement. We have

considered the possibility of first adding all the polygon candidates as hard.

This is equivalent to obtain a tet-to-hex mesh. Then, this initial dual can

be modified iteratively to obtain a better dual configuration according

to a heuristic that controls the quality of the dual. To this end, several

local dual contributions can be removed or converted to soft local dual

contributions at each iteration.

• It would be interesting to develop a graphical user interface (GUI) that

helps to add by hand dual surfaces represented with local dual contribu-

tions. This tool could be used to semi-automatically decompose geometries

in hex-meshable sub-volumes.

3. Mesh generation framework. The mesh generation framework developed

in this thesis, has a GUI that integrates a CAD module and several meshing

algorithms. It is planned to solve several issues of the current version of the

framework.

134

7.2. Future work

• It is scheduled to improve the usability of the current GUI.

• The current version of EZ4U is only interfaced with the Open Cascade

library. This library provides boundary representation (B-rep) geometry.

However, it is frequently required to mesh geometries described with a

faceted representation. For instance, legacy geometries are described in

the faceted STL format. Therefore, it would be interesting to incorporate

a faceted geometry engine. To this end, we have planned to integrate

a virtual geometry engine that encapsulates both boundary and faceted

geometry representations.

• The current data structure allows converting a linear mesh to a mesh with

exact boundary representation or with high-order nodes. The resulting

mesh can present edges and faces that cross the model boundaries. To

solve this drawback it is required to generate finer meshes. However, mesh

based numerical methods that use these types of meshes fully advocate

for the use of coarse meshes. Therefore, we have planned to investigate

how to generate valid coarse meshes with exact boundary representation

or with high-order nodes.

• The development of EZ4U has been focused on the implementation of

quadrilateral and hexahedral mesh generation algorithms. Thus, it is

scheduled to improve the performance and capabilities of the incorporated

triangular and tetrahedral mesh generation features.

135

Appendix A

Proofs of Chapter 2

A.1 Linear algebra results

The next three lemmas are linear algebra results needed to develop the proofs of

results in Chapter 2.

Lemma A.1. Let X = {xi}i=1,...,m ⊂ Rn be a hyperplanar set of points. There exists

a set of indices {i1, . . . , in} ⊂ {1, . . . ,m} such that

H = span(xi1 − xin , . . . ,xin−1 − xin) = span(xi1 − cX , . . . ,xin−1 − cX).

Proof. Since X is hyperplanar, the affine hyper-plane xm + H passes through all the

points in X. Therefore, the homogeneous hyperplane verifies

H = span(x1 − xm, . . . ,xm−1 − xm).

Taking into account that H has dimension n− 1 and that cX lies in the hyperplane

determined by the points in X, see Roca et al. (2005b), it is straightforward to show

that there exists a set of indices {i1, . . . , in} ⊂ {1, . . . ,m} such that

H = span(x1 − xm, . . . ,xm−1 − xm)

= span(xi1 − xin , . . . ,xin−1 − xin)

= span(xi1 − cX , . . . ,xin−1 − cX)

137

A. Proofs of Chapter 2

Lemma A.2. Let U = {ui}i=1,...,n be a set of vectors in Rn such that:

dim{span(u1, . . . ,un−1)} = dim{span(u1, . . . ,un−1,un)} =

dim{span(u1 − un, . . . ,un−1 − un)} = n− 1.

If v ∈ Rn is such that v /∈ span(u1, . . . ,un−1) then

span(u1, . . . ,un−1,v) = span(u1 + v, . . . ,un + v).

Proof. Since un ∈ span(u1, . . . ,un−1), un can be written as linear combination of the

other vectors. In other words,

un =
n−1∑

i=1

λiui, λi ∈ R, i = 1, . . . , n− 1. (A.1)

For later use in this proof, we will first prove that
∑n−1

i=1 λ
i 6= 1. Assume that∑n−1

i=1 λ
i = 1, then we can write

n−1∑

i=1

λiun =
n−1∑

i=1

λiui,

grouping terms we obtain
n−1∑

i=1

λi(ui − un) = 0.

Hence, we have a non-trivial linear combination of ui−un, i = 1, . . . , n− 1, which is

the null vector. That is, dim{span(u1−un, . . . ,un−1−un)} < n−1. On the contrary,

by hypothesis of this Lemma, we have that dim{span(u1−un, . . . ,un−1−un)} = n−1.

Hence, we conclude that
∑n−1

i=1 λ
i 6= 1.

Taking into account this partial result, and starting with the span(u1+v, . . . ,un+

v), we will prove the lemma. If we subtract the linear combination of the first n− 1

vectors of the span
∑n−1

i=1 λ
i(ui + v) to the last term, then

span(u1 +v, . . . ,un +v) = span

(
u1 +v, . . . ,un−1 +v,un−

n−1∑

i=1

λiui +
(

1−
n−1∑

i=1

λi
)
v

)
.

Moreover, using equation (A.1) we have that

span(u1 + v, . . . ,un + v) = span

(
u1 + v, . . . ,un−1 + v,

(
1−

n−1∑

i=1

λi
)
v

)
.

138

A.2. Properties of functionals

Finally, dividing by (1 −
∑n−1

i=1 λ
i) 6= 0 the last term of the previous equation, and

then subtracting v to the first n− 1 terms we have

span(u1 + v, . . . ,un + v) = span(u1, . . . ,un−1,v).

A.2 Properties of functionals

Lemma A.3 states several basic relationships between the functionals E,F , G, and

H.

Lemma A.3. For every A ∈ L(Rn):

(i) E(A, cY) = F (A)

(ii) E
(
A, cX + A(cY − cX)

)
= G(A)

(iii) E(A, cY) = H(A; uX ,AuX)

Proof. The proof follows from the definitions of functionals E,F , G, and H.

The following three lemmas prove that functionals F , G and H can be written in

terms of linear mapping Θ.

Lemma A.4. Let X be a hyperplanar set of points, and assume that uX /∈ H and

uY ∈ Rn. If A ∈ L(Rn) then F
(
Θ[A,uX ,uY]

)
= F (A).

Proof. Since X is hyperplanar, xi−cX ∈ H, for i = 1, . . . ,m. Therefore, by property

(ii) of Lemma 2.8 we have that Θ[A,uX ,uY](xi−cX) = A(xi−cX), for i = 1, . . . ,m.

The proof follows from the definition of the functional F , see Equation (2.7).

Lemma A.5. Let X be a hyperplanar set of points, and assume that cY − cX /∈ H.

If A ∈ L(Rn) then:

(i) F
(
Θ[A, cY − cX , cY − cX]

)
= F

(
A
)

(ii) G
(
Θ[A, cY − cX , cY − cX]

)
= F

(
Θ[A, cY − cX , cY − cX]

)

Proof. Assume that uX = cY − cX and uY = cY − cX . Then, property (i) is a

particular case of Lemma A.4. Property (ii) follows from the definition of functional

G, see Equation (2.8), and Lemma 2.8.

139

A. Proofs of Chapter 2

Lemma A.6. Let X be a hyperplanar set of points, and assume that uX /∈ H and

uY ∈ Rn. Then H
(
Θ[A,uX ,uY]; uX ,uY

)
= F

(
Θ[A,uX ,uY]

)
.

Proof. This result follows from the definitions of functionals F and H, and Lemma

2.8.

A.3 Rank analysis

In this section we detail the proofs for propositions 2.13, and 2.15 of Section 2.3.2 in

Chapter 2.

Proposition (2.13). Let X be a hyperplanar set of points. If cY − cX ∈ H then

the minimization of functional G is equivalent to solving n uncoupled overdetermined

linear systems of rank n− 1. Otherwise, the rank is n.

Proof. Similar to Proposition 2.11, if we define

X :=




x1
1 − cX1 + cY1 − cX1 . . . xm

1 − cX1 + cY1 − cX1
...

...

x1
n − cXn + cYn − cXn . . . xm

n − cXn + cYn − cXn


 ,

then the minimization of functional G is equivalent to solving the following n uncou-

pled overdetermined linear systems

X
T
ak = yk, k = 1, · · · , n, (A.2)

where ak := (ak,j) for j = 1, · · · , n and yk = (yl
k − cXk), for l = 1, · · · ,m. Since the

set of points X is hyperplanar, by Lemma A.1, we can assume that we have already

reordered the points in X in such a way that dim{span(x1 − cX , . . . ,xn−1 − cX)} =

dim{span(x1 − xn, . . . ,xn−1 − xn)} = n − 1. If we apply Lemma A.2 considering

v = cY − cX , then

rank(X) = dim
{

span(x1 − cX + cY − cX , . . . ,xn − cX + cY − cX)
}

= dim
{

span(x1 − cX , . . . ,xn−1 − cX , cY − cX)
}
.

Therefore, if cY − cX ∈ H then rank(X) = n− 1. Otherwise, if cY − cX /∈ H we have

rank(X) = n.

140

A.4. Equivalences between functionals

Proposition (2.15). Let X be a hyperplanar set of points and assume that uY ∈ Rn.

If uX ∈ H then the minimization of functional H is equivalent to solving n uncoupled

overdetermined linear systems of rank n− 1. Otherwise, the rank is n.

Proof. Similar to Proposition 2.11, if we define

X̂ :=




x1
1 − cX1 . . . xm

1 − cX1 uX
1

...
...

...

x1
n − cXn . . . xm

n − cXn uX
n




and

Ŷ :=




y1
1 − cY1 . . . ym

1 − cY1 uY
1

...
...

...

y1
n − cYn . . . ym

n − cYn uY
n


 ,

then the minimization of functional H is equivalent to solving the following n uncou-

pled overdetermined linear systems

X̂T ak = ŷk, k = 1, · · · , n, (A.3)

where ak := (ak,j) for j = 1, · · · , n and ŷk = (y1
k − cYk , · · · , ym

k − cYk , uY
k). Since X

is hyperplanar, by Lemma A.1, we can assume that we have already reordered the

points in X in such a way that dim{span(x1− cX , . . . ,xn−1− cX)} = dim{span(x1−
xn, . . . ,xn−1−xn)} = n−1. If uX ∈ H then rank X̂ = dim{span(x1−cX , . . . ,xn−1−
cX ,uX)} = n − 1. Otherwise, uX /∈ H, we have that rank X̂ = dim{span(x1 −
cX , . . . ,xn−1 − cX ,uX)} = n.

A.4 Equivalences between functionals

In this section we detail the proofs for propositions 2.17, 2.19, 2.21, and 2.23 of Section

2.3.3 in Chapter 2.

Proposition (2.17). Let AE ∈ L(Rn), bE ∈ Rn and AF ∈ L(Rn) be such that

E(AE,bE) = min
(A,b)∈L(Rn)×Rn

E(A,b)

F (AF) = min
A∈L(Rn)

F (A).

Then:

141

A. Proofs of Chapter 2

(i) min
(A,b)∈L(Rn)×Rn

E(A,b) = min
A∈L(Rn)

F (A)

(ii) E(AF , cY) = E(AE, cY)

(iii) F (AE) = F (AF)

Proof. We have that

F (AF) ≤ F (AE) since AF minimizes F

= E(AE, cY) by Lemma A.3

≤ E(AF , cY) since (AE, cY) minimizes E by Proposition 2.2

= F (AF) by Lemma A.3.

Note that the first and the last terms in the previous expression are the same. Then,

the inequalities are in fact equalities. All properties follow from rewriting and re-

ordering the chain of equalities.

Proposition (2.19). Let X be a hyperplanar set of points, and assume that cY −cX /∈
H. If AF ∈ L(Rn) and AG ∈ L(Rn) are such that

F (AF) = min
A∈L(Rn)

F (A)

G(AG) = min
A∈L(Rn)

G(A).

Then:

(i) min
A∈L(Rn)

G(A) has one and only one solution

(ii) min
A∈L(Rn)

F (A) = min
A∈L(Rn)

G(A)

(iii) AG = Θ[AF , cY − cX , cY − cX]

(iv) F (AG) = F (AF)

Proof. Property (i) follows from Proposition 2.13 and Remark 2.14. Assume we have

(AE,bE) ∈ L(Rn)× Rn such that E(AE,bE) = min
(A,b)∈L(Rn)×Rn

E(A,b). Then:

F (AF) = E
(
AE,bE

)
by Proposition 2.17

≤ E
(
AG, cX + AG(cY − cX)

)
(AE,bE) minimizes E

= G
(
AG
)

by Lemma A.3

≤ G
(
Θ[AF , cY − cX , cY − cX]

)
since AG minimizes G

= F
(
Θ[AF , cY − cX , cY − cX]

)
= F (AF) by Lemma A.5.

142

A.4. Equivalences between functionals

Note that the first and the last terms in the previous expression are the same. Then,

the inequalities are in fact equalities, and property (ii) follows. From the previous

sequence of equalities, we have proved that Θ[AF , cY −cX , cY −cX] and AG minimize

functional G. Thus, property (iii) is also proved since G has a unique solution.

Property (iv) follows from Lemma A.5 and property (iii) of this Proposition.

Proposition (2.21). Let X be a hyperplanar set of points, and assume that uX /∈ H
and uY ∈ Rn. If AF ∈ L(Rn) and AH ∈ L(Rn) are such that

F (AF) = min
A∈L(Rn)

F (A)

H(AH ; uX ,uY) = min
A∈L(Rn)

H(A; uX ,uY).

Then:

(i) min
A∈L(Rn)

H(A; uX ,uY) has one and only one solution

(ii) min
A∈L(Rn)

F (A) = min
A∈L(Rn)

H(A; uX ,uY)

(iii) AH = Θ[AF ,uX ,uY]

(iv) F (AH) = F (AF)

Proof. Property (i) follows from Proposition 2.15 and Remark 2.16. We define

R(A; uX ,uY) := ‖uY − AuX‖2. Hence, H(A; uX ,uY) = F (A) + R(A; uX ,uY).

We consider the following sequence of equalities and inequalities:

F (AF) ≤ F (AH) since AF minimizes F

≤ F (AH) +R(AH ; uX ,uY) since R(A; uX ,uY) ≥ 0

= H(AH ; uX ,uY) definitions of R(A; uX ,uY) and H

≤ H
(
Θ[AF ,uX ,uY]; uX ,uY

)
since AH minimizes H

= F
(
Θ[AF ,uX ,uY]

)
= F (AF). by Lemmas A.6 and A.4.

Note that the first and the last terms are the same. Thus, all the inequalities are

in fact equalities. Therefore, properties (ii) and (iv) hold. From the previous se-

quence of equalities, we have also proved that Θ[AF ,uX ,uY] and AH minimize the

functional H. Since the minimization of H has a unique solution we have that

AH = Θ[AF ,uX ,uY], and property (iii) holds.

143

A. Proofs of Chapter 2

Proposition (2.23). Let X be a non-hyperplanar set of points and assume that uY ∈
Rn. If AF ∈ L(Rn) and AH ∈ L(Rn) are such that

F (AF) = min
A∈L(Rn)

F (A)

H(AH ; 0,uY) = min
A∈L(Rn)

H(A; 0,uY).

Then:

(i) min
A∈L(Rn)

F (A) = min
A∈L(Rn)

H(A; 0,uY)− ‖uY ‖2

(ii) F (AH) = F (AF)

Proof. Observe that, from the definitions of functionals F and H we have that

H(A; 0,uY) = F (A) + ‖uY ‖2. In other words, H differs from F only by a con-

stant that does not depend on A. Hence, both properties follow.

A.5 Exact mapping characterization

In this section we detail the proofs for propositions 2.25, 2.26, and 2.27 of Section

2.3.4 in Chapter 2.

Proposition (2.25). There exists an affine mapping ϕ such that ϕ(xi) = yi, for

i = 1, . . . ,m, if and only if

min
A∈L(Rn)

F (A) = 0.

Proof. Assume that there exists an affine mapping ϕ such that ϕ(xi) = yi for i =

1, . . . ,m. Taking into account Equation (2.4) and Proposition 2.2, this is equivalent

to imposing yi − cY −A(xi − cX) = 0 for i = 1, . . . ,m. Thus F (A) = 0.

On the other hand, assume that min
A∈L(Rn)

F (A) = 0. In this case there exists a

linear transformation AF ∈ L(Rn) such that F (AF) = 0. From the definition of F

we have that
∑m

i=1

∥∥yi− cY −AF (xi− cX)
∥∥2

= 0. Since all the summation members

are non-negative, and defining ϕ(x) := AF (x − cX) + cY , we have that ϕ(xi) = yi,

for i = 1, . . . ,m.

Proposition (2.26). Assume that X is hyperplanar and cY − cX /∈ H. Then, there

exists an affine mapping ϕ such that ϕ(xi) = yi, for i = 1, . . . ,m, if and only if

min
A∈L(Rn)

G(A) = 0.

144

A.5. Exact mapping characterization

Proof. This result follows directly from property (ii) of Proposition 2.19 and Propo-

sition 2.25.

Proposition (2.27). There exists an affine mapping ϕ such that ϕ(xi) = yi, for

i = 1, . . . ,m, if and only if there exist uX ,uY ∈ Rn such that

min
A∈L(Rn)

H(A; uX ,uY) = 0.

Proof. It is proved analogously to Proposition 2.25.

145

Appendix B

Proofs of Chapter 3

B.1 Pseudo-normal of a loop of nodes

Proposition (3.4). Let X = {xi}i=1,...,m ⊂ R3 be a set of points. The pseudo-area

vector verifies:

(i) Given c ∈ R3 then

aX
pseudo =

1

2

m∑

i=1

(xi − c)× (xi+1 − c) =
1

2

m∑

i=1

xi × xi+1.

(ii) Given t ∈ R3 the pseudo-area of X is equal to the pseudo-area of

X + t = {xi + t}i=1,...,m.

(iii) Given an orthogonal transformation N, then the pseudo-area of

NX = {Nxi}i=1,...,m is NaX
pseudo.

Proof. Given c ∈ R3, and taking into account that X is a loop, i.e. xm+1 ≡ x1, then

aX
pseudo =

1

2

m∑

i=1

(xi − c)× (xi+1 − c)

=
1

2

[m∑

i=1

xi × xi+1 +
m∑

i=1

c× (xi − xi+1) +
m∑

i=1

c× c

]

=
1

2

m∑

i=1

xi × xi+1.

Given t ∈ R3, property (ii) is a direct consequence of property (i) applied to

c = −t.

147

B. Proofs of Chapter 3

By property (i) and taking into account that N is orthogonal we have that

aNX
pseudo =

m∑

i=1

Nxi ×Nxi+1 =
m∑

i=1

N(xi × xi+1) = NaX
pseudo.

Proposition (3.5). If a multi-loop X is projected on an orthogonal plane to its

pseudo-area vector, aX
pseudo, then the obtained polygon has area equal to ||aX

pseudo||.

Proof. By definition of pseudo-area of a multi-loop, it suffices to prove the result

for a single loop. Given a loop X, the projection of the points {xi}i=1,...,m on the

orthogonal plane to aX
pseudo are the points xi

a⊥ := xi − xi
a, where

xi
a :=

< xi, aX
pseudo >

< aX
pseudo, a

X
pseudo >

aX
pseudo.

Hence, we have that xi = xi
a + xi

a⊥ for i = 1, . . . ,m. The pseudo-area of X is

aX
pseudo =

1

2

m∑

i=1

xi × xi+1 =
1

2

m∑

i=1

(xi
a + xi

a⊥)× (xi+1
a + xi+1

a⊥
)

=
1

2

m∑

i=1

xi
a × xi+1

a⊥
+ xi

a⊥ × xi+1
a + xi

a⊥ × xi+1
a⊥

Note that xi
a × xi+1

a⊥
and xi

a⊥ × xi+1
a are orthogonal to aX

pseudo. Thus, their sum is

also orthogonal to aX
pseudo. Furthermore, xi

a⊥ × xi+1
a⊥

is parallel to aX
pseudo. Therefore,

xi
a × xi+1

a⊥
+ xi

a⊥ × xi+1
a cannot contribute to the parallel component to aX

pseudo and it

has to be null. Hence, we have that

aX
pseudo =

1

2

m∑

i=1

xi
a⊥ × xi+1

a⊥
,

which is the area of the polygon obtained from the projection of the loop X on the

plane orthogonal to aX
pseudo.

Lemma B.1. Let v ∈ R3 be a given vector with ||v|| = 1. Let x ∈ R3 and y ∈ R3 be

two arbitrary vectors. We decompose these vectors as x = xv+xv⊥ and y = yv+yv⊥,

where xv :=< x,v > v, xv⊥ := x− xv, yv :=< y,v > v, and yv⊥ := y − yv. Then,

< x× y,v >=< xv⊥ × yv⊥ ,v > .

148

B.1. Pseudo-normal of a loop of nodes

Proof. Taking into account the proposed decomposition of vectors x and y, and that

< ·, · > is bilinear we have that

< x× y,v > = < xv × yv,v > + < xv × yv⊥ ,v >

+ < xv⊥ × yv,v > + < xv⊥ × yv⊥ ,v > .

Therefore, since xv × yv, xv × yv⊥ and xv⊥ × yv are orthogonal to v, we have that

< x× y,v >=< xv⊥ × yv⊥ ,v >.

Proposition (3.7). Let v ∈ R3 with ||v|| = 1 be an arbitrary unitary vector. Consider

the signed area enclosed by the projection of a multi-loop X to the orthogonal plane

to v. Then, this area is maximized when v = nX
pseudo. Moreover, the value of the

enclosed area is ||aX
pseudo||.

Proof. The value of the signed area of the projection of X onto a plane orthogonal

to v is

aX
v⊥ :=

1

2

m∑

i=1

< xi
v⊥ × xi+1

v⊥
,v > .

Taking into account Lemma B.1 and that < ·, · > is bilinear we have that

aX
v⊥ =<

1

2

m∑

i=1

xi × xi+1,v > .

By means of Proposition 3.4 we have that

aX
v⊥ =< aX

pseudo,v > .

Then,

max
v∈R3

||v||=1

1

2

m∑

i=1

< xi
v⊥ × xi+1

v⊥
,v >= max

v∈R3

||v||=1

< aX
pseudo,v > . (B.1)

To finalize, the maximization problem (B.1) is solved for

v =
aX

pseudo

||aX
pseudo||

= nX
pseudo,

and the maximum value is

< aX
pseudo,n

X
pseudo >=< aX

pseudo,
aX

pseudo

||aX
pseudo||

>= ||aX
pseudo||.

149

B. Proofs of Chapter 3

B.2 Algorithm implementation

Lemma B.2. If dim Ker AF = 1, then Ker AF = span(vn).

Proof. Since dim Ker AF = 1 and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0 we have that

wi > 0 for i = 1, . . . , n − 1 and wn = 0. To finalize, by Remark 3.8 we know that

Ker AF = span(vn).

Lemma B.3. If dim Ker AF = 1, then (Range AF)⊥ = span(un), where ⊥ denotes

the orthogonal space.

Proof. Since dim Ker AF = 1 and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0 we have that

wi > 0 for i = 1, . . . , n − 1, and wn = 0. Taking into account Remark 3.8, we know

that Range AF = span(u1, . . . ,un−1). To finalize, since U is orthogonal we have that

< un,ui >= 0, for i = 1, ..., n− 1. Therefore (Range AF)⊥ = span(un).

It is important to point out that if dim Ker AF = 1 then the vectors un and

vn have a geometrical interpretation. Specifically, Lemma 3.9 states that if X is

a hyperplanar set of points, then vn and nX generate Ker AF (i.e. they are two

parallel vectors). Moreover, if Y is a hyperplanar set of points, then un and nY

generate (Range AF)⊥ (i.e. they are also two parallel vectors).

Lemma B.4. If X is a hyperplanar set of points and nX is a unitary normal vector

to X, then Ker X
T

= span(vn) = span(nX).

Proof. Since X is hyperplanar then Rank X
T

= n − 1, see Chapter 2. That is,

dim Ker X
T

= 1. Therefore, Ker X
T

= span(vn), see Remark 3.8. Since nX is a

unitary normal vector we have that X
T
nX = 0, see definition (2.6). Hence, nX ∈

Ker X
T

. Thus, span (nX) = Ker X
T

= span(vn).

Lemma (3.9). Let X be a hyperplanar set of points and AF the optimal solution of

functional F computed according to Equation (3.2). If nX is a unitary normal vector

to X and dim Ker AF = 1, then

Ker AF = Ker X
T

= span(vn) = span(vn) = span(nX).

Proof. Since V is an orthogonal matrix we have that V
T
vn = (0 · · · 0 1)T . Moreover,

since X is hyperplanar and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0, we have that wn = 0.

Therefore, W
+
V

T
vn = W

+
(0 · · · 0 1)T = 0. Hence

AF vn = Y U W
+

V
T
vn = 0.

150

B.2. Algorithm implementation

That is, vn ∈ Ker AF . Since dim Ker AF = 1 we have that Ker AF = span(vn). To

finalize, we only have to apply Lemmas B.2 and B.4.

Lemma (3.10). If Y is a hyperplanar set of points, dim Ker AF = 1, and nY is a

unitary normal vector to Y , then (Rank AF)⊥ = span(un) = span(nY).

Proof. First, since Y is hyperplanar then Y
T
nY = 0, or equivalently

(nY)T Y = 0T . (B.2)

Next, we will prove that (nY)T UWVT = 0T

(nY)T UWVT = (nY)T AF by Equation (3.3)

= (nY)T Y U W
+
V

T
by Equation (3.2)

= 0T by Equation (B.2) .

Since V is orthogonal it is invertible. Thus

(nY)T UW = 0T ,

which is equivalent to the following set of conditions:

(nY)T u1w1 = 0
...

(nY)T un−1wn−1 = 0

(nY)T unwn = 0.

Since dim Ker AF = 1, then wi > 0, for i = 1, . . . , n− 1, and wn=0. Therefore, nY is

orthogonal to u1, . . . ,un−1 (the first n − 1 columns of matrix U). To finalize, using

Lemma B.3, we have that span(un) = (Range AF)⊥ = span(nY).

151

Appendix C

Determining polygon candidates

C.1 Intersection points for planar dual surfaces

Here we list the barycentric coordinates of the intersection points for the planar dual

surfaces in a reference element. Specifically, we include the intersection points at

reference edges, reference faces an inside a reference element. To this end, let us

consider a fixed number µ such that 0 < µ < 1
4
. This number determines the position

of the planar dual surfaces inside a reference element. The twelve intersection points

at reference edges are

p12 = (λe, µ, 0, 0), p21 = (µ, λe, 0, 0),

p13 = (λe, 0, µ, 0), p31 = (µ, 0, λe, 0),

p14 = (λe, 0, 0, µ), p41 = (µ, 0, 0, λe),

p23 = (0, λe, µ, 0), p32 = (0, µ, λe, 0),

p24 = (0, λe, 0, µ), p42 = (0, µ, 0, λe),

p34 = (0, 0, λe, µ), p43 = (0, 0, µ, λe),

where λe := 1− µ. Note that the first index i of an intersection point pij determines

the position of λe in the barycentric coordinates. The twelve intersection points at

reference faces are

p234 = (0, λf , µ, µ), p324 = (0, µ, λf , µ), p423 = (0, µ, µ, λf),

p413 = (µ, 0, µ, λf), p314 = (µ, 0, λf , µ), p134 = (λf , 0, µ, µ),

p142 = (λf , µ, 0, µ), p214 = (µ, λf , µ, 0), p412 = (µ, µ, 0, λf),

p312 = (µ, µ, λf , 0), p213 = (µ, λf , µ, 0), p123 = (λf , µ, µ, 0),

153

C. Determining polygon candidates

where λf := 1−2µ. Note that the first index i of an intersection point pijk determines

the position λf in the barycentric coordinates. The four inner intersection points are

p1234 = (λt, µ, µ, µ), p2134 = (µ, λt, µ, µ),

p3124 = (µ, µ, λt, µ), p4123 = (µ, µ, µ, λt),

where λt := 1−3µ. Note that the first index i of an intersection point pijkl determines

the position λt in he barycentric coordinates.

C.1.1 All candidate polygons

In this section we list the 28 possible candidates inside a reference element: the face

candidates, edge candidates and vertex candidates. All the candidates are expressed

according to the intersection points of the planar dual surfaces, see Section C.1. The

four possible face candidates are expressed in terms of the inner intersection points:

c(f234; c1234; t) = [p2134, p3124, p4123]

c(f134; c1234; t) = [p4123, p3124, p1234]

c(f124; c1234; t) = [p1234, p2134, p4123]

c(f123; c1234; t) = [p3124, p2134, p1234].

The twelve edge candidates are expressed in terms of inner and face intersection

points:

c(e12; f123; t) = [p213, p123, p1234, p2134]

c(e12; f124; t) = [p124, p214, p2134, p1234]

c(e13; f134; t) = [p314, p134, p1234, p3124]

c(e13; f123; t) = [p123, p312, p3124, p1234]

c(e14; f134; t) = [p134, p413, p4123, p1234]

c(e14; f124; t) = [p412, p124, p1234, p4123]

c(e23; f234; t) = [p234, p324, p3124, p2134]

c(e23; f123; t) = [p312, p213, p2134, p3124]

c(e24; f234; t) = [p423, p234, p2134, p4123]

c(e24; f124; t) = [p214, p412, p4123, p2134]

c(e34; f234; t) = [p324, p423, p4123, p3124]

c(e34; f134; t) = [p413, p314, p3124, p4123].

154

C.1. Intersection points for planar dual surfaces

The twelve vertex candidates are expressed in terms of inner, face and edge intersec-

tion points:

c(v1; e12; t) = [p12, p123, p1234, p124]

c(v1; e13; t) = [p13, p123, p1234, p134]

c(v1; e14; t) = [p14, p124, p1234, p134]

c(v2; e12; t) = [p21, p213, p2134, p214]

c(v2; e23; t) = [p23, p213, p2134, p234]

c(v2; e24; t) = [p24, p214, p2134, p234]

c(v3; e13; t) = [p31, p312, p3124, p314]

c(v3; e23; t) = [p32, p312, p3124, p324]

c(v3; e34; t) = [p34, p314, p3124, p324]

c(v4; e14; t) = [p41, p412, p4123, p413]

c(v4; e24; t) = [p42, p412, p4123, p423]

c(v4; e34; t) = [p43, p413, p4123, p423].

155

Appendix D

Management and development of a
mesh generation environment

The management and development process of a mesh generation environment requires

the use of good software engineering practices. In this section we provide useful

information for managers, designers and developers of similar projects. First, we

discuss programming paradigms and techniques that have been followed to develop

the mesh generation environment. Second, we present an overview of the project

management process. Third, we summarize the Open Source tools that we have used

to develop the environment. Finally, we detail our selection of Open Source Libraries

that provide high-level features for modeling and Graphical User Interface (GUI)

creation.

D.1 Development paradigms and techniques

In order to deal with software development complexity we have used several modern

programming paradigms and techniques. On the one hand, they improve scalability

and maintainability of the software project. On the other hand they are oriented to

ensure that the development process is oriented to a clear and affordable goal.

Object oriented. We adopted the Object Oriented programming (OOP) pa-

radigm to promote flexibility and scalability of the program. That is, we design

and implement our application by means of objects that collaborate together. Each

object is capable of receiving messages, processing data and sending messages to other

objects. Several OOP languages are available. However, we use C++ (Stroustrup,

2000; Koenig and Moo, 2000) because it is: a mature language, faster than other

157

D. Management and development of a mesh generation environment

OOP languages, and widely used in software industry. Moreover, there are a large

amount of available libraries.

Agile methodology. Several agile software development methodologies have

appeared during last decade. They focus on development processes that are more re-

sponsive to customer needs, “agile”, than traditional methods. In particular, eXtreme

Programming (Beck, 2000; Newkirk and Martin, 2001) provides traditional engineer-

ing practices and takes them to ‘extreme” levels. In our project we have adopted part

of the eXtreme Programming practices. In particular:

• Pair programming. We frequently program in couples. Two programmers de-

veloping on the same machine create better quality code. The code is reviewed

at the same time it is typed. Hence, the source code knowledge is shared.

• Small steps. Each developer is responsible of coding a particular and small

feature. Developers try to implement only the required feature and not future

features. We use the tickets concept of Trac (Trac, 2007) for assigning small

tasks to developers.

• Unit testing. For each new-implemented feature, a test case is added to the

unit tests. Once a new feature is added all the tests in the unit are run. Unit

testing ensures that after a modification is performed, the program still works

and is able to run the previously developed features. We have selected CppUnit

(CppUnit, 2007) as unit testing library.

• Refactoring. Developers use refactoring (Fowler, 1999) in order to simplify and

make clear the source code. Code duplication is not allowed, and each time it is

found developers create adequate abstractions (Gamma et al., 1995; Kerievsky,

2004). Unit testing ensures that the program has the same functionality after

refactoring.

• Sharing the source code. All the developers share source code of a centralized

repository. The developers can verify and change any part of the source code.

To properly manage code sharing we use Subversion (Subversion, 2007) as a

version control system.

• Continuous integration. After a new feature is correctly implemented, it is

committed to the source code repository. That is, new features are continuously

158

D.1. Development paradigms and techniques

integrated in the shared source code. Subversion and distributed compilation

with distcc (distcc, 2007) facilitates new features integration.

Design patterns. The development of a mesh generation environment requires

the design of a complex system, with a high number of classes collaborating together.

These classes collaborate through inheritance and aggregation in order to represent

complex data structures such as meshes and solid models. Several issues that ap-

pear during the design process of the environment are software engineering common

problems. For this reason when a design problem is identified the adequate pattern

(Gamma et al., 1995; Freeman et al., 2004; Shalloway and Trott, 2004) is used to

solve the problem. In addition, we take into account design patterns during code

refactoring (Kerievsky, 2004).

Source code guidelines and checking. Code guidelines (Sutter and Alexan-

drescu, 2004; KDE, 2007b) help developers to write cleaner code, simplify mainte-

nance, improve code communication, reduce coding time, and improve quality. More-

over, code guidelines are a good resource for design and programming tips (Sutter

and Alexandrescu, 2004; Meyers, 1997, 1995; Sutter, 2004, 2002). Code guidelines

provide to developers rules on:

• Organizational and policy issues. Tools and techniques for writing solid code,

such as: version control systems, compiler flags, code reviewing, and automatic

building tools.

• Design style. Software engineering good design practices, such as: write simple

classes, avoid premature optimization, reduce class dependencies and encapsu-

late data.

• Coding style. Coding issues, such as: how to use #include guards, avoid cyclic

dependencies, always initialize variables, and prefer compiler and linker errors

to run-time errors.

• Implementation. Tips and rules related to the implementation of the design

concepts, such as: prefer composition to inheritance, when we have to use in-

heritance or templates, object construction and destruction, automatic memory

management or error handling.

To verify that code guidelines are followed we use pair programming and code

reviews of the new code. In addition, we automatically check part of the rules with

159

D. Management and development of a mesh generation environment

the Krazy (Krazy, 2007) tool, which is part of English Breakfast Network (EBN,

2007). Krazy looks for some issues that should be fixed for reasons of policy, design,

coding or implementation.

D.2 Project management

We adopt part of eXtreme Programming agile methodology using Trac (Trac, 2007).

Trac is an Open Source tool for web-based software project management. Moreover,

it provides wiki implementation, issue tracking system and an interface to Subversion.

The flow of the development can be driven with Trac using the Milestone con-

cept. Each Milestone represents a group of common Tickets (enhancements, tasks

and defects) that define a new version (or an iteration in the eXtreme Programming

context) of the program. Users of the environment can report bugs and wish lists

creating new tickets. In this sense, tickets provide issue-tracking functionality to

Trac. The Roadmap shows a view of the current state of the project by means of the

number of open and closed tickets per milestone. Trac allows to link tickets from: the

wiki, other tickets, and commit messages of Subversion. Developers can access to the

Subversion repository from a web interface. Finally, the wiki facilitates communica-

tion between developers. We use the wiki to dynamically add or change: guidelines,

programming tips, comments on common programming errors, documentation and

useful information for developers.

D.3 Tools

Several Open Source tools are used in order to: analyze, design, implement, manage,

compile and document the source code of the environment. Below we provide our

particular selection of Open Source tools.

• Kubuntu (Kubuntu, 2007) is a GNU/Linux distribution based on textitKDE,

the K Desktop Environment (KDE, 2007a). KDE is built on the Qt library

(Trolltech, 2007). Therefore, development with Qt library is natural in this

platform.

• KDevelop (KDevelop, 2007) is an easy to use Integrated Development Envi-

ronment (IDE) for developing KDE applications. Since KDE is based on Qt,

160

D.3. Tools

KDevelop it is also a suitable IDE to develop with Qt. Among its features

we highlight: C++ and Qt project management, debugger, profiler, and visual

GUI designer.

• GCC (gnu, 2007a) is the GNU Compiler Collection. It provides compilers

for several languages, in particular for C++. It is the standard compiler for

development under GNU/Linux. In addition, it provides a good C++ standard

implementation.

• distcc (distcc, 2007) accelerates source code builds by means of distributed

compilation on several machines. Thus, it improves productivity since code,

compile, test, and debug cycle time is reduced.

• Subversion (Subversion, 2007) is a version control system with similar interface

and features to CVS (CVS, 2007). However, it also provides:

– version control of directories, copies, and renames.

– revision numbers are assigned in terms of per-commit and not in per-file

terms.

– efficient operations in terms of memory and CPU time.

Moreover, several mature GUI front-ends are available for Subversion. These

front-ends facilitate usual operations such as: commit, merge, blame, diff or

patch. In particular, we have selected TortoiseSVN (TortoiseSVN, 2007) for

Windows, and KDESvn (KDESvn, 2007) for Kubuntu.

• CMake (Kitware, 2007), the cross-platform make, is used to automate the build

process. It creates the makefiles and workspaces for a particular platform and

compiler.

• GDB (gnu, 2007b), the GNU project debugger, provides standard debugging

features and can be called from KDevelop.

• Valgrind (Valgrind, 2007) is a complete tool for debugging and profiling Linux

programs. KDevelop integrates Valgrind in the IDE. Current version provides

four tools:

161

D. Management and development of a mesh generation environment

– Memory error detector. This tool allows to automatically checking for

memory errors such as: uninitialized memory, bad memory access, read

and write out of limits of allocated memory, and memory leaks.

– cache (time) profiler. It provides time cost analysis in order to improve

the computational efficiency of the program.

– Call-graph profiler. It analyzes the call relationships between functions of

an application.

– Heap profiler. It analyzes where, when and how much memory is allocated

during the program execution.

• Doxygen (van Heesch, 2007) generates, from the source code, documentation

for several languages, in particular for C++. The user can configure the output

and obtain documentation in: HTML, LATEX, RTF, MS-Word, PostScript, and

Unix man pages. Moreover, it can extract the source code structure and create

UML inheritance and collaboration class diagrams.

D.4 Libraries

In the development process we have used the following three open source libraries:

• Open CASCADE (Open CASCADE, 2007) is a powerful Open Source geometry

and topology kernel that provides essential features for solid modeling, CAD

data exchange, and rapid application development. It is used by several Open

Source mesh generation environments such as: GMSH (Geuzaine and Remacle,

2009), SALOME (Salome, 2009), and NetGen (Schorbel, 2009).

• Qt (Trolltech, 2007) is a standard cross-platform library for rapid GUI devel-

opment with C++. The GUI of our environment is fully implemented with Qt.

Several tool bars, dock windows and a central widget with the current 3D view

compose it.

• GLPK (gnu, 2007c), the GNU Linear Programming Kit, is a C library for the

resolution of large scale Linear Programming (LP) and Mixed Integer Program-

ming (MIP) problems. This library is used to ensure edge division compatibil-

ity between adjacent faces in unstructured quadrilateral and submapping mesh

generation algorithms.

162

Bibliography

ANSYS (2009a). ANSYS ICEM CFD. http://www.ansys.com/products/icemcfd.

asp.

ANSYS (2009b). Gambit. http://www.ansys.com/products/workbench/meshing/.

Athanasiadis, A. and H. Deconinck (2003). Object-oriented three-dimensional hybrid

grid generation. International Journal for Numerical Methods in Engineering 58,

301–318.

Baker, T. J. (1987). Three dimensional mesh generation by triangulation of arbitrary

point sets. In 8th Computational Fluid Dynamics Conference, pp. 255–271.

Baker, T. J. (2005). Mesh generation: Art or science? Progress in Aerospace Sci-

ences 41 (1), 29–63.

Beck, K. (2000). Extreme programming explained: embrace change. Addison-Wesley

Longman Publishing Co., Inc.

Benzley, S., E. Perry, K. Merkley, B. Clark, and G. Sjaardema (1995). A comparison

of all-hexahedral and all-tetrahedral finite element meshes for elastic and elasto-

plastic analysis. In 4th International Meshing Roundtable, pp. 179–191. Sandia

National Laboratories.

Blacker, T. D. (1996). The Cooper tool. In 5th International Meshing Roundtable.

Blacker, T. D. (2001). Automated conformal hexahedral meshing constraints, chal-

lenges and opportunities. Engineering with Computers 17 (3), 201–210.

Blacker, T. D. and R. J. Meyers (1993). Seams and wedges in Plastering: a 3-D

hexahedral mesh generation algorithm. Engineering with computers 9 (2), 83–93.

163

http://www.ansys.com/products/icemcfd.asp
http://www.ansys.com/products/icemcfd.asp
http://www.ansys.com/products/workbench/meshing/

Bibliography

Blacker, T. D. and M. B. Stephenson (1991). Paving: A new approach to automated

quadrilateral mesh generation. International Journal for Numerical Methods in

Engineering 32 (4), 811–847.

Calvo, N. A. (2005). Generación de mallas tridimensionales por métodos duales. Ph.

D. thesis, Universidad Nacional del Litoral.

Calvo, N. A. and S. R. Idelsohn (2000). All-hexahedral element meshing: Generation

of the dual mesh by recurrent subdivision. Computer Methods in Applied Mechanics

and Engineering 182 (3-4), 371–378.

Carey, G. F. (2002). Hexing the tet. Communications in Numerical Methods in

Engineering 18 (3), 223–227.

Cass, R. J., S. Benzley, R. J. Meyers, and T. D. Blacker (1996). Generalized 3-D

paving: An automated quadrilateral surface mesh generation algorithm. Interna-

tional Journal for Numerical Methods in Engineering 39 (9), 1475–1490.

Cifuentes, A. O. and A. Kalbag (1992). A performance study of tetrahedral and

hexahedral elements in 3-D finite element structural analysis. Finite Elements in

Analysis and Design 12 (3-4), 313 – 318.

Cook, W. A. and W. R. Oakes (1982). Mapping methods for generating three-

dimensional meshes. Computers in mechanical engineering 8, 67–72.

CppUnit (2007). CppUnit - C++ port of JUnit. http://sourceforge.net/

projects/cppunit.

Cuthill, E. and J. McKee (1969). Reducing the bandwidth of sparse symmetric

matrices. In Proceedings of the 1969 24th national conference, pp. 157–172. ACM

Press New York, NY, USA.

CVS (2007). CVS - Concurrent Versions System. http://www.nongnu.org/cvs.

distcc (2007). distcc: a fast, free distributed c/c++ compiler. http://distcc.

samba.org.

EBN (2007). English breakfast network. http://www.englishbreakfastnetwork.

org.

164

http://sourceforge.net/projects/cppunit
http://sourceforge.net/projects/cppunit
http://www.nongnu.org/cvs
http://distcc.samba.org
http://distcc.samba.org
http://www.englishbreakfastnetwork.org
http://www.englishbreakfastnetwork.org

Bibliography

Folwell, N. T. and S. A. Mitchell (1999). Reliable whisker weaving via curve contrac-

tion. Engineering with Computers 15 (3), 292–302.

Fowler, M. (1999). Refactoring: improving the design of existing code. Addison-

Wesley Longman Publishing Co., Inc.

Freeman, E., B. Bates, and K. Sierra (2004). Head First Design Patterns. O’ Reilly

& Associates, Inc.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design patterns: elements

of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.

George, P. L., F. Hecht, and E. Saltel (1988). Constraint of the boundary and

automatic mesh generation. In Numerical grid generation in computational fluid

mechanics, pp. 589–597.

Geuzaine, C. and J. F. Remacle (2009). Gmsh: a three-dimensional finite element

mesh generator with built-in pre- and post-processing facilities. http://www.geuz.

org/gmsh/.

Gill, P. E., W. Murray, and M. H. Wright (1991). Numerical Linear Algebra and

Optimization. Addison-Wesley.

gnu (2007a). Gcc, the gnu compiler collection. http://gcc.gnu.org.

gnu (2007b). Gdb - the gnu project debugger. http://sourceware.org/gdb/.

gnu (2007c). Glpk (gnu linear programming kit). http://www.gnu.org/software/

glpk/.

Goodrich, D. (1997). Generation of all-quadrilateral surface meshes by mesh morph-

ing. Master’s thesis, Brigham Young University.

Haber, R., M. S. Shephard, J. F. Abel, R. H. Gallagher, and D. P. Greenberg (1981).

A general two-dimensional, graphical finite element preprocessor utilizing discrete

transfinite mappings. International Journal for Numerical Methods in Engineer-

ing 17 (7), 1015–1044.

Halpern, M. (1997). Industrial requirements and practices in finite element meshing:

a survey of trends. In 6th International Meshing Roundtable, pp. 399–411.

165

http://www.geuz.org/gmsh/
http://www.geuz.org/gmsh/
http://gcc.gnu.org
http://sourceware.org/gdb/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

Bibliography

Hatcher, A. (2002). Algebraic Topology. Cambridge University Press.

Hesthaven, J. S. and T. Warburton (2008). Nodal Discontinuous Galerkin Methods.

Springer.

KDE (2007a). The k desktop environment. http://www.kde.org.

KDE (2007b). Kde developer’s corner - howtos and faqs. http://developer.kde.

org/documentation/other/index.html.

KDESvn (2007). Kdesvn. http://www.alwins-world.de/wiki/programs/kdesvn/.

KDevelop (2007). Kdevelop - an integrated development environment. http://www.

kdevelop.org.

Kerievsky, J. (2004). Refactoring to Patterns. Pearson Higher Education.

Kitware (2007). Cmake - cross platform make. http://www.cmake.org.

Knupp, P. M. (1998). Next-generation sweep tool: a method for generating all-hex

meshes on two-and-one-half dimensional geometries. In 7th International Meshing

Roundtable, pp. 505–513.

Knupp, P. M. (1999). Applications of mesh smoothing: copy, morph, and sweep on

unstructured quadrilateral meshes. International Journal for Numerical Methods

in Engineering 45 (1), 37–46.

Knupp, P. M. (2001). Algebraic mesh quality metrics for unstructured initial meshes.

Finite Elements in Analysis and Design 39 (3), 217–241.

Koenig, A. and B. Moo (2000). Accelerated C++: practical programming by example.

Addison-Wesley Longman Publishing Co., Inc.

Krazy (2007). Krazy. http://techbase.kde.org/Development/Tutorials/Code_

Checking.

Kubuntu (2007). Kubuntu - the kde desktop. http://www.kubuntu.org.

Lawson, C. and R. Hanson (1974). Solving Least Squares Problems. Prentice-Hall.

Ledoux, F. and J. C. Weill (2007). An Extension of the Reliable Whisker Weaving

Algorithm. In 16th International Meshing Roundtable, pp. 215–232. Springer.

166

http://www.kde.org
http://developer.kde.org/documentation/other/index.html
http://developer.kde.org/documentation/other/index.html
http://www.alwins-world.de/wiki/programs/kdesvn/
http://www.kdevelop.org
http://www.kdevelop.org
http://www.cmake.org
http://techbase.kde.org/Development/Tutorials/Code_Checking
http://techbase.kde.org/Development/Tutorials/Code_Checking
http://www.kubuntu.org

Bibliography

Lohner, R., K. Morgan, J. Peraire, and O. C. Zienkiewicz (1985). Finite element

methods for high speed flows. In 7th Computational Fluid Dynamics Conference,

pp. 403–410. AIAA.

Lohner, R. and P. Parikh (1988). Generation of three-dimensional unstructured grids

by the advancing-front method. International Journal for Numerical Methods in

Fluids 8 (10), 1135–1149.

Meyers, S. (1995). More Effective C++: 35 New Ways to Improve Your Programs

and Designs. Addison-Wesley Longman Publishing Co., Inc.

Meyers, S. (1997). Effective C++: 50 specific ways to improve your programs and

designs. Addison-Wesley Longman Publishing Co., Inc.

Mingwu, L. and S. E. Benzley (1996). A multiple source and target sweeping method

for generating all-hexahedral finite element meshes. In 5th International Meshing

Roundtable, pp. 217–225.

Mitchell, S. A. (1996). A characterization of the quadrilateral meshes of a surface

which admit a compatible hexahedral mesh of enclosed volume. Lecture Notes in

Computer Science 1046, 465–478.

Miyoshi, K. and T. D. Blacker (2000). Hexahedral mesh generation using multi-axis

cooper algorithm. In 9th International Meshing Roundtable, pp. 89–97.

Mueller-Hannemann, M. (1999). Hexahedral mesh generation by successive dual cycle

elimination. Engineering with Computers 15 (3), 269–279.

Murdoch, P., S. Benzley, T. D. Blacker, and S. A. Mitchell (1997). The spatial twist

continuum: A connectivity based method for representing all-hexahedral finite el-

ement meshes. Finite Elements in Analysis and Design 28 (2), 137–149.

Newkirk, J. and R. Martin (2001). Extreme Programming in Practice. Addison-

Wesley Longman Publishing Co., Inc.

Open CASCADE (2007). Open CASCADE Technology, 3D modeling & numerical

simulation. http://www.opencascade.org.

Owen, S. J. (1998). A survey fo unstructured mesh generation technology. In 7th

International Meshing Roundtable, pp. 239–267.

167

http://www.opencascade.org

Bibliography

Patera, A. T. (1984). A spectral element method for fluid dynamics-laminar flow in

a channel expansion. Journal of Computational Physics 54 (3), 468–488.

Peraire, J., J. Peiro, L. Formaggia, K. Morgan, and O. C. Zienkiewicz (1988). Fi-

nite element Euler computations in three dimensions. International Journal for

Numerical Methods in Engineering 26 (10), 2135–2159.

Peraire, J., M. Vahdati, K. Morgan, and O. C. Zienkiewicz (1987). Adaptive remesh-

ing for compressible flow computations. Journal of computational physics 72 (2),

449–466.

Piegl, L. A. and W. Tiller (1997). The NURBS book. Springer.

Pointwise (2009). Gridgen - Reliable CFD Meshing. http://www.pointwise.com/

gridgen/.

Price, M., C. Armstrong, and M. Sabin (1995). Hexahedral mesh generation by

medial surface subdivision: Part I. Solids with convex edges. International Journal

for Numerical Methods in Engineering 38 (19), 3335–3359.

Price, M. A. and C. G. Armstrong (1997). Hexahedral mesh generation by medial

surface subdivision: Part II. Solids with flat and concave edges. International

Journal for Numerical Methods in Engineering 40 (1), 111–136.

Program Development Company (2009). GridPro - High quality grid generation.

http://www.gridpro.com/.

Roca, X. and J. Sarrate (2006). An automatic and general least-squares projection

procedure for sweep meshing. In 15th International Meshing Roundtable, pp. 437–

506.

Roca, X. and J. Sarrate (2008). Local dual contributions on simplices: A tool for

block meshing. In 17th International Meshing Roundtable, pp. 513–531.

Roca, X., J. Sarrate, and A. Huerta (2005a). Generación de mallas de cuadriláteros

sobre superficies paramétricas. In Congreso de Métodos Numéricos en Ingenieŕıa,

Granada, Spain.

Roca, X., J. Sarrate, and A. Huerta (2005b). A new least–squares approximation of

affine mappings for sweep algorithms. To appear in Engineering with Computers.

168

http://www.pointwise.com/gridgen/
http://www.pointwise.com/gridgen/
http://www.gridpro.com/

Bibliography

Roca, X., J. Sarrate, and A. Huerta (2006). Mesh projection between parametric

surfaces. Communications in Numerical Methods in Engineering 22, 591–603.

Ruiz-Gironès, E., X. Roca, and J. Sarrate (2009). Automatic generation of hexahedral

meshes using the multi-sweeping method. In Congreso de Métodos Numéricos en

Ingenieŕıa, Barcelona, Spain.

Ruiz-Gironès, E. and J. Sarrate (2008). Automatic generation of structured hexahe-

dral meshes for non-simply connected geometries using submapping. In The Sixth

International Conference on Engineering Computational Technology.

Ruiz-Gironès, E. and J. Sarrate (2009). Generation of structured meshes in multi-

ply connected surfaces using submapping. To appear in Advances in Engineering

Software.

Salome (2009). Salome: The open source integration platform for numerical simula-

tion. http://www.salome-platform.org.

Sandia National Labs (2009). Cubit - geometry and mesh generation toolkit. http:

//cubit.sandia.gov.

Sarrate, J. and A. Huerta (2000a). Automatic mesh generation of nonstructured

quadrilateral meshes over curved surfaces in R3. In 3th ECCOMAS, Barcelona,

Spain.

Sarrate, J. and A. Huerta (2000b). Efficient unstructured quadrilateral mesh gener-

ation. International Journal for Numerical Methods in Engineering 49 (10), 1327–

1350.

Sarrate, J. and A. Huerta (2004). A new approach to minimize the distortion of

quadrilateral and hexahedral meshes. In 4th ECCOMAS, Jyväskylä, Finland.

Schneiders, R. (1996). A grid-based algorithm for the generation of hexahedral ele-

ment meshes. Engineering with Computers 12 (3), 168–177.

Schneiders, R. and R. Bünten (1995). Automatic generation of hexahedral finite

element meshes. Computer Aided Geometric Design 12 (7), 693–707.

Schorbel, J. (2009). Netgen - automatic mesh generator. http://www.hpfem.jku.

at/netgen/.

169

http://www.salome-platform.org
http://cubit.sandia.gov
http://cubit.sandia.gov
http://www.hpfem.jku.at/netgen/
http://www.hpfem.jku.at/netgen/

Bibliography

Scott, M. A., M. N. Earp, S. E. Benzley, and M. B. Stephenson (2005). Adaptive

sweeping techniques. In 14th International Meshing Roundtable, pp. 417–432.

Sevilla, R. (2009). The NURBS-Enhanced Finite Element Method (NEFEM). Ph. D.

thesis, Universitat Politènica de Catalunya.

Sevilla, R., S. Fernández-Méndez, and A. Huerta (2008). NURBS-enhanced finite

element method (NEFEM). International Journal for Numerical Methods in En-

gineering 76 (1), 56–83.

Shalloway, A. and J. Trott (2004). Design Patterns Explained: A New Perspective

on Object-Oriented Design. Addison-Wesley Professional.

Sheffer, A. and M. Bercovier (2000). Hexahedral meshing of non-linear volumes

using Voronoi faces and edges. International Journal for Numerical Methods in

Engineering 49, 329–351.

Sheffer, A., M. Etzion, A. Rappoport, and M. Bercovier (1999). Hexahedral mesh

generation using the embedded Voronoi graph. Engineering with Computers 15 (3),

248–262.

Shephard, M. S. and M. K. Georges (1991). Automatic three-dimensional mesh

generation by the finite octree technique. International Journal for Numerical

Methods in Engineering 32 (4), 709–749.

Shepherd, J. F. (2007). Topologic and geometric constraint-based hexahedral mesh

generation. Ph. D. thesis, The University of Utah.

Shepherd, J. F. and C. R. Johnson (2008). Hexahedral mesh generation constraints.

Engineering with Computers 24 (3), 195–213.

Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quality Mesh Generator and

Delaunay Triangulator. Lecture Notes in Computer Science 1148, 203–222.

Si, H. (2007). A quality tetrahedral mesh generator. http://tetgen.berlios.de/.

Simulia (2009). Abaqus/CAE. http://www.simulia.com/products/abaqus_cae.

html.

Staten, M. L., S. A. Canann, and S. J. Owen (1999). BMSweep: locating interior

nodes during sweeping. In Engineering with computers, pp. 212–218.

170

http://tetgen.berlios.de/
http://www.simulia.com/products/abaqus_cae.html
http://www.simulia.com/products/abaqus_cae.html

Bibliography

Staten, M. L., R. A. Kerr, S. J. Owen, and T. D. Blacker (2006). Unconstrained

paving and plastering: Progress update. In Proceedings, 15th International Meshing

Roundtable, pp. 469–486. Springer.

Staten, M. L., S. J. Owen, and T. D. Blacker (2005). Unconstrained paving and

plastering: A new idea for all hexahedral mesh generation. In 14th International

Meshing Roundtable.

Stroustrup, B. (2000). The C++ Programming Language. Addison-Wesley Longman

Publishing Co., Inc.

Subversion (2007). Subversion. http://subversion.tigris.org.

Sutter, H. (2002). More exceptional C++: 40 new engineering puzzles, programming

problems, and solutions. Addison-Wesley Longman Publishing Co., Inc.

Sutter, H. (2004). Exceptional C++ Style: 40 New Engineering Puzzles, Programming

Problems, and Solutions. Pearson Higher Education.

Sutter, H. and A. Alexandrescu (2004). C++ Coding Standards: 101 Rules, Guide-

lines, and Best Practices. Addison-Wesley Professional.

Tam, T. K. H. and C. G. Armstrong (1991). 2D finite element mesh generation by

medical axis subdivision. Advances in engineering software and workstations 13 (5-

6), 313–324.

Tautges, T. J. (2001). The generation of hexahedral meshes for assembly geometry:

survey and progress. International Journal for Numerical Methods in Engineer-

ing 50 (12), 2617–2642.

Tautges, T. J., T. D. Blacker, and S. A. Mitchell (1996). The whisker weaving

algorithm: A connectivity-based method for constructing all-hexahedral finite ele-

ment meshes. International Journal for Numerical Methods in Engineering 39 (19),

3327–3350.

Tautges, T. J., D. R. White, and R. W. Leland (2004). Twelve ways to fool the

masses when describing mesh generation performance. In 13th International Mesh-

ing Roundtable, pp. 181–190.

171

http://subversion.tigris.org

Bibliography

TC184, I. and I. SC (2009). 10303-42-part 42: Industrial automation systems and

integration – product data representation and exchange – integrated generic re-

sources: Geometric and topological representation. http://www.iso.org/iso/

iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37846.

Thompson, J. F., B. Soni, and N. Weatherill (1999). Handbook of Grid Generation.

CRC Press.

TortoiseSVN (2007). Tortoisesvn. http://tortoisesvn.tigris.org.

Trac (2007). The trac project - trac. http://trac.edgewall.org.

Trolltech (2007). Qt - code less. create more. http://trolltech.com/products/qt.

Valgrind (2007). Valgrind. http://valgrind.org.

van Heesch, D. (2007). Doxygen. http://www.stack.nl/~dimitri/doxygen/.

Weingarten, V. (1994). The controversy over hex or tet meshing. Machine de-

sign 66 (8), 74–76.

White, D. (1996). Automatic, quadrilateral and hexahedral meshing of pseudo-

cartesian geometries using virtual subdivision. Master’s thesis, Brigham Young

University.

White, D. R., S. Saigal, and S. J. Owen (2004). CCSweep: automatic decomposition

of multi-sweep volumes. Engineering with Computers 20 (3), 222–236.

White, D. R. and T. J. Tautges (2000). Automatic scheme selection for toolkit hex

meshing. International Journal for Numerical Methods in Engineering 49 (1-2),

127–144.

Whiteley, M., D. R. White, S. Benzley, and T. D. Blacker (1996). Two and three-

quarter dimensional meshing facilitators. Engineering with Computers 12 (3-4),

144–154.

Yerry, M. A. and M. S. Shephard (1984). Automatic three-dimensional mesh genera-

tion by the modified-octree technique. International Journal for Numerical Methods

in Engineering 20 (11), 1965–1990.

172

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37846
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37846
http://tortoisesvn.tigris.org
http://trac.edgewall.org
http://trolltech.com/products/qt
http://valgrind.org
http://www.stack.nl/~dimitri/doxygen/

Bibliography

Zhang, Y. and C. Bajaj (2006). Adaptive and quality quadrilateral/hexahedral mesh-

ing from volumetric data. Computer Methods in Applied Mechanics and Engineer-

ing 195 (9-12), 942–960.

Zhang, Y., C. Bajaj, and B. S. Sohn (2005). 3D finite element meshing from imaging

data. Computer Methods in Applied Mechanics and Engineering 194 (48-49), 5083–

5106.

173

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Generating hexahedral meshes
	1.3 Automatic hexahedral mesh generation
	1.4 Goals and outline

	2 A new affine method for sweeping: fundamentals
	2.1 Introduction
	2.2 Problem statement
	2.3 Theoretical and comparative analysis
	2.4 Minimizing functional H is preferable
	2.5 Concluding remarks

	3 A new affine method for sweeping: implementation
	3.1 Introduction
	3.2 Drawbacks of standard affine methods
	3.3 Preserving offset data
	3.4 Algorithm implementation
	3.5 Testing offset data preservation
	3.6 Concluding remarks

	4 A new sweeping scheme based on affine methods
	4.1 Introduction
	4.2 Generation of surface meshes
	4.3 Generation of inner nodes and elements
	4.4 Numerical examples and applications
	4.5 Concluding remarks

	5 Local dual contributions
	5.1 Introduction
	5.2 2D motivation
	5.3 Algorithm proposal
	5.4 3D theory
	5.5 Adding local dual contributions
	5.6 Application to block-meshing
	5.7 Examples
	5.8 Concluding remarks

	6 EZ4U: developing a new mesh generation framework
	6.1 Introduction
	6.2 Requirements
	6.3 Design and architecture
	6.4 Geometry and meshing modules
	6.5 Geometry and meshing API
	6.6 Commands kernel
	6.7 Execution modes
	6.8 Mesh generation features
	6.9 Concluding remarks

	7 Summary and future work
	7.1 Summary and contributions
	7.2 Future work

	A Proofs of Chapter 2
	A.1 Linear algebra results
	A.2 Properties of functionals
	A.3 Rank analysis
	A.4 Equivalences between functionals
	A.5 Exact mapping characterization

	B Proofs of Chapter 3
	B.1 Pseudo-normal of a loop of nodes
	B.2 Algorithm implementation

	C Determining polygon candidates
	C.1 Intersection points for planar dual surfaces

	D Management and development of a mesh generation environment
	D.1 Development paradigms and techniques
	D.2 Project management
	D.3 Tools
	D.4 Libraries

	Bibliography

