ASSESSMENT OF THE CLINICAL TREATMENT OUTCOMES AND DIRECT MEDICAL COSTS AMONG TYPE 2 DIABETES MELLITUS OUTPATIENTS AT THE HOSPITAL UNIVERSITI SAINS MALAYSIA

by

SALWA SELIM IBRAHIM ABOUGALAMBOU

Thesis submitted in fulfillment of the requirements For the degree of Doctor of philosophy

2011

DEDICATION

This thesis is dedicated......

The greatest person and greatest teacher in my life

Prophet Mohammad

I would like to dedicate this work with lots of love and respect to my family

My father Selim Ibrahim Abougalambou, for giving me strength and support.

To my beloved mother Etidal Taha Ahamed, for her prayers, doa a, unflagging love, tremendous sacrifices, sufferings and pains. She was a constant source of inspiration

to my life. Your supports have pulled me throughout my difficult times....

.....to my best friends

My beloved brothers Ayman Abougalambou and Ashraf Abougalambou who kept my spirit up when the endurance failed me. Without help me this thesis seemed interminable, I doubt it should ever have been completed.

......To my wonderful friends

My beloved sisters, Samia, Eman and Najlaa Abougalambou their joy in others and unconditional love and be loved touches my heart. Thank you, for not only you are my sisters, but also my friends. I love you

I ask Allah Almighty to bless all of you.

ACKNOWLEDGEMENT

Praise be to Allah S.W.T the most compassionate and most merciful, whose blessing have helped me throughout the study until the completion of thesis.

This thesis is one of the most difficult academic challenges I have ever had to face during my graduate studies at the Universiti Sains Malaysia.

Firstly, I would like to take this opportunity to express my gratitude to my supervisor, *Assoc. Prof. Dr. Syed Azhar Syed Sulaiman* the Dean of School of Pharmaceutical Sciences, Universiti Sains Malaysia for his supervision and guidance throughout the writing of this thesis. He could not even realize how much I have learned from him. I owed him lots of gratitude for having me shown this way of research.

Secondly, I would like to thank my advisor *Dr Mohamed Azmi Hassali* for his assistance, guidance, and patience given to me throughout this work. This research would have been impossible without their help and concern and I would also like to thank *Professor Dato' Dr. Mafauzy Mohamed* for his help during the beginning of endeavor, I will always appreciate and remember.

The statistical work was only possible with the help and instruction from *Professor Syed Hatim Noor* his patience, continued willingness to help is greatly appreciated and for his recommendations on statistical analysis and data presentation. I would like to thank him.

This thesis cannot be completed without the help given by medical clinic and staff at HUSM. In addition to that, I would like to express my thanks to my bother *Dr*. *Ayman Selim Abougalambou* for his help and contribution in different forms. I would also like to record my appreciation to my sister *Eman Abougalambou* who supported and helped me.

I owe my most sincere gratitude to all my faculty lecturers, for constructive comments and valuable revisions to establish the validity phase of this research. It is with deep gratitude and appreciation that I acknowledge the assistance of everyone who has contributed to this research.

To colleague Ahamed Ibrahim, Abdulla Aldahabli & friends, especially Sarah Zabidi, Saud Dahaman, Amal Turki, Enas Sakura, Shima Abd Ealgbar, Sally Almanasra and Eftikhar Turki thank you for their continues support & encouragement. Special thanks to Professor Fawaz aljudy to help me in correction of my thesis.

Last but not least, my deepest gratitude and thanks to my dear family, who missed me over four years, thanks for endless patience and my most sincere and heartfelt appreciation to my family for the sacrifice they have made over the last four years. My dear parents *Mr. Selim Ibrahim Abougalambou and Ms Etidal Taha Ahamad*, my brothers *Ashraf, and ayman Abougalambou my sisters Samia, Eman and Najlaa Abouglambou* have been and will always be the driving force and motivation behind everything I do.

To all my friends and my family thank you for understanding and waiting for me to rejoin your lives. I love you all dearly.

Finally, I would like to express my thanks to USM for the financial support (fellowship).

This work is dedicated to you all, together with all my patients, past, present and to come.

TABLE OF CONTENTS

Titl	e	Page
DE	DICATION	i
ACKNOWLEDGMENTS		ii
TA	BLE OF CONTENTS	iv
LIS	T OF TABLES	xviii
LIS	T OF FIGURES	xxii
LIS	T OF ABBREVIATIONS	xxiii
AB	STRAK	xxviii
AB	STRACT	xxxii
СН	APTER ONE - INTRODUCTION	1
1.0	Introduction	2
1.1	Background	2
1.2	Prevalence of diabetes in the world	4
1.3	Prevalence of diabetes in Asia	4
1.4	Diabetes in Malaysia	5
1.5	Effectiveness of diabetes treatment	6
1.6	Economic burden of type 2 Diabetes Mellitus	6
	1.6.1 Economic cost of type 2 diabetic mellitus	6
	1.6.2 Cost management of type 2 Diabetes Mellitus	8
1.7	Research questions.	9
1.8	Rationale of the study	10
1.9	Significance of the study	10

Title	page
1.10 Study objectives	12
1.10.1 General Objectives	12
1.10.2 Specific objectives	12
CHAPTER TWO - LITERATURE REVIEW PART ONE: ASSESSMENT OF THE CLINICAL TREATMENT OUTCOMES OF TYPE 2 DIABETES MELLITUS OUTPATIENTS AT THE UNIVERSITI SAINS MALAYSIA 2.1 Background	14 15
2.2 Definition of type 2 diabetes mellitus	15
2.3 Diagnosis and classification of diabetes mellitus	16
2.4 Epidemiology of type 2 diabetes mellitus	16
2.5 Risk factors for type 2 diabetes mellitus	18
2.5.1 Modifiable risk factors	19
2.5.2 Non modifiable risk factors	20
2.6 Pathogenesis of type 2 diabetes mellitus	20
2.6.1 Pathophysiology of hyperglycemia	20
2.6.2 Insulin resistance	21
2.6.3 Insulin secretion in type 2 diabetes mellitus	22
2.6.4 Glucose toxicity	22
2.6.5 Lipotoxicity	23
2.7 Heredity influence in type 2 diabetes mellitus	23
2.8 Genetic factors in type 2 diabetes mellitus	23
2.9 Diabetic outpatients	24
2.9.1 Compliance of type 2 diabetes mellitus	24
2.9.1(a)Diet	25

Title	page
2.9.1(b) Exercise	25
2.9.2 Diabetic outpatient consultations	26
2.9.3 Several benefits of the diabetic outpatient clinic	27
2.10 List of standards of care for diabetic patients	28
2.11 Characteristics of clinical variables of patients with diabetes	29
2.11.1 Glycaemic control	29
2.11.1(a) Glycoslated hemoglobin (HbA1c)	31
2.11.1(b) Fasting plasma glucose (FPG)	32
2.11.1(c) Postprandial plasma glucose	33
2.11.1(d) Importance of good glycaemic control	34
2.11.1(e) Self blood glucose monitoring (SBGM)	35
2.11.1(f) Targets for type 2 diabetes mellitus levels	35
2.11.1(g) Goals of type 2 DM management	36
2.11.2 Body mass index (BMI) and waist circumference (WC)	36
2.11.3 Dyslipidaemia and diabetes	37
2.11.3(a) Treatment of dyslipidaemia in patients with diabetes	38
2.12 Factors influencing glycaemic control	41
2.13 Management of type 2 diabetes mellitus	44
2.13.1 Non-pharmacologic therapy	44
2.13.2 Pharmacotherapy of type 2 diabetes mellitus	44
2.14 Types of antidiabetic medications	46
2.14.1 Oral antidiabetic agents	47
2.14.1(a) Insulin secretagogues and meglitinides	47

Page

i- Sulfonylureas	47
ii- Meglitinides	50
2.14.1(b) Insulin sensitising agents (Biguanide)	50
2.14.1(c) Alpha-glucosidase inhibitors (AGIs)	53
2.14.1(d) Thiazolidinediones (TZDs)	53
2.14.2 Insulin therapy in type 2 DM	55
2.14.2(a) Barriers to insulin therapy	57
2.14.3 Novel drugs for type 2 diabetes mellitus	58
2.14.3(a) Glucagon-like peptide 1 agonists (GLP-1)	58
2.14.3 (b) Amylin agonists (pramlintide)	59
2.14.3 (c) Dipeptidyl-Peptidase 4 Inhibitors (DPP-4 Inhibitors)	59
2.15 Combination therapy for treatment of type 2 diabetes mellitus	60
2.15.1 Dual combination therapy of oral antidiabetic medications	60
2.15.2 Dual combination therapy of oral antidiabtic medication with Insulin	62
2.15.3 Triple combination therapy for treatment of type 2 diabetes mellitus	64
2.16 Diabetic complications	66
2.16.1 Macrovascular complications	67
2.16.1(a) Factors affecting in development of macrovascular complications	67
2.16.2 Microvascular complications	70
2.16.2(a) Factors influencing the development of microvascular complications	70
2.16.3Diabetic retinopathy (DR)	74
2.16.4 Diabetic neuropathy	73
2.16.4 Diabetic nephropathy (DN)	75

Title
2.17 Type 2 diabetes mellitus and hypertension
2.17.1 Hypertension therapy among type 2 DM patients with hypertension
CHAPTER THREE - METHODOLOGY
3.0 Introduction.
3.1 Background of study location
3.2 Ethical approval of the study
3.3 Ethical considerations
3.4 Study population and sample
3.4.1 Reference population
3.4.2 Study population source
3.5 Inclusion and exclusion criteria
3.5.1 Inclusion criteria
3.5.2 Exclusion criteria.
3.6 Study design for part one the assessment of clinical treatment outcomes among type 2 diabetic outpatients
3.7 Sampling method.
3.8 Sample size calculation
3.9 Research instrument
3.10 Data collection
3.10.1 Patients data
3.10.1(a) Socio-demographic characteristics
3.10.1(b) Clinical characteristics
3.10.1 (c) Analyatical laboratory methods
3.10.1(d) Record review
3.11 Data entry and statistical analysis

Title	Page
3.12 Data analysis	92
3.12.1 Objective one	92
3.12.2 Objective two	92
3.12.3 Objective three	93
3.12.3(a) Univariate analysis	94
3.12.3(b) Multivariate analysis for each model	94
3.12.3(c) Final model of multivariate analysis	95
3.12.4 Objective four	95
3.12.4(a) Univariate analysis	95
3.12.4(b) Multivariate analysis for each model	96
3.12.4(c) Final model of multivariate analysis	96
3.12.5 Objective five	97
3.12.6 Objective six	97
3.12.7 Objective seven	97
CHAPTER FOUR – RESULTS	99
4.1 Characteristics of type 2 diabetic patients	100
4.2 Medications	104
4.2.1 Type of antidiabetic medications used in type 2 diabetes mellitus patients	104
4.2.1(a) Pattern of antidiabetic medications used in type 2 diabetes mellitus patients	105
4.2.2 Lipid lowering therapy used in type 2 diabetes mellitus patients	106
4.2.2(a) Type of statins usage among type 2 diabetes mellitus patients	106
4.2.3 Hypertension treatment used among diabetic patients with hypertension	107
4.3 Type of vascular complications among type 2 diabetes mellitus patients	108

Title	Page
4.3.1 Macrovascular complications	108
4.3.2 Microvascular complications	109
4.4 Comparison among antidiabetic medications for their effectiveness	110
4.4.1 Comparison of HbA1c target achieved by the different antidiabetic regimens	110
4.4.2 Comparison of the FPG target achieved by the different antidiabetic regimens	113
4.4.3 Comparison of the PPG target achieved by the different antidiabetic regimens	116
4.5 Evaluating the factors influencing HbA1c measurement	119
4.5.1 Univariate analysis of factors influencing HbA1c control	119
4.5.1(a) Univariate analysis of personal characteristics on HbA1c control.	119
4.5.1(b) Univariate analysis of health characteristics on HbA1c control	121
4.5.2 Multiple logistic regression analysis on HbA1c control	122
4.5.2(a) Multiple logistic regression analysis of personal characteristics on HbA1c control	122
4.5.2(b) Multiple logistic regression analysis of health characteristics on HbA1c control.	123
4.5.3 Final model of multivariate analysis on HbA1c control	124
4.6 Evaluating the factors influencing fasting plasma glucose (FPG) control	125
4.6.1 Univariate analysis of factors affecting FPG control	125
4.6.1(a) Univariate analysis of personal characteristics on FPG control	125
4.6.1(b) Univariate analysis of health characteristics on FPG control	127
4.6.2 Final model of multivariate logistic regression analysis on FPG control	128
4.7 Evaluating the factors influencing post prandial plasma glucose (PPG)	129
4.7.1 Univariate analysis of factors affecting PPG control	129

Title	Page
4.7.1(a) Univariate analysis of personal characteristics on PPG control	129
4.7.1(b) Univariate analysis of health characteristics on PPG control	130
4.7.2 Final model of multivariate analysis on PPG control	132
4.8 Evaluating the factors that enhance the development of macrovascular complications (MCV).	133
4.8.1 Univariate analysis of factors affecting the development of MCV	133
4.8.1(a) Univariate analysis of personal characteristics affecting the development of macrovascular complications (MCV)	133
4.8.1(b) Univariate analysis of health characteristics affecting the development of macrovascular complications (MCV)	135
4.8.1(c) Univariate analysis of clinical variables affecting the development of macrovascular complications (MCV)	136
4.8.2 Multiple logistic regression analysis on the development of MCV	138
4.8.2.(a) Multiple logistic regression analysis of personal characteristics Factors affecting the development of MCV (model one)	138
4.8.2 (b) Multiple logistic regression analysis of health characteristics affecting the development of MCV (model two).	139
4.8.2(c) Multiple logistic regression analysis of clinical variables affecting the development of MCV (model three)	140
4.8.3 Final model of multivariate analysis on macrovascular complications	141
4.9 Evaluating the factors that enhance the development of microvascular complications	142
4.9.1 Univariate analysis of factors affecting the development of microvascular complications	142
4.9.1(a) Univariate analysis of personal characteristics affecting the development of microvascular complications	142
4.9.1(b) Univariate analysis of health characteristics affecting the development of microvascular complications	144
4.9.1(c) Univariate analysis of clinical variables affecting the development of microvascular complications	145

Title

4.9.2 Multiple logistic regression analysis of factors affecting the development of microvascular complications	147
4.9.2(a) Multiple regression analysis of personal characteristics affecting the development of microvascular complications	148
4.9.2(b) Multiple regression analysis of health characterist affecting the development of microvascular complications	149
4.9.2(c) Multiple logistic regression analysis of clinical variables affecting the development microvascular complications	150
4.9.3 Final model of factors affecting the development of microvascular complications	151
4.10 Factors affecting the development of diabetic retinopathy (DR)	152
4.10.1 Univariate analysis of factors affecting the development of DR	152
4.10.1(a) Univariate analysis of personal characteristics affecting the development of DR	152
4.10.1(b) Univeriate analysis of health characteristics affecting the development of DR	154
4.10.1(c) Univariate analysis of clinical variables factors affecting the developments of DR	155
4.10.2 Multiple logistic regression analysis of factor affecting the development of DR	157
4.10.2(a) Multiple logistic regression analysis of personal characteristics on the development of DR (model one)	157
4.10.2(b) Multiple logistic regression analysis of health characteristics on the development of DR (model two)	158
4.10.2(c) Multiple logistic regression analysis of clinical variables affecting the development of DR (model three)	159
4.10.3 Final model of multivariate analysis of factors affecting the development of DR	160
4.11 Factors affecting the development of diabetic neuropathy complications	161
4.11.1 Univariate analysis of factors affecting the development of diabetic neuropathy complications	161

Title

Page

	4.11.1(a) Univariate analysis of personnel characteristics affecting the development of diabetic neuropathy	161
	4.11.1(b) Univariate analysis of health characteristics affecting the development of diabetic neuropathy	163
	4.11.1(c) Univariate analysis of clinical variables affecting the development of diabetic neuropathy	164
4.11.2	Multivariate analysis of factors affecting the development of neuropathy complications	166
	4.11.2(a) Multivariate analysis of personal characteristics affecting the development of diabetic neuropathy(model one)	166
	4.11.2(b) Multivariate analysis of health characteristics affecting the development of diabetic neuropathy (model two)	167
	4.11.2(c) Multivariate analysis of clinical variables affecting the development of diabetic neuropathy (model three)	168
4.11.3	Final model of multivariate analysis of factors affecting the development of diabetic neuropathy complications	169
4.12 Factor (DN).	s affecting the development of diabetic nephropathy complications	170
4.12.1	Univariate analysis of factors affecting the development of DN	170
	4.12.1(a) Univariate analysis of personnal characteristics affecting the development of DN	170
	4.12.1(b) Univariate analysis of health characteristics affecting the development of DN	172
	4.12.1(c) Univariate analysis of clinical variables affecting the development of DN	173
4.12.2	Multiple logistic regression analysis of related variables on DN	175
4	1.12.2(a) Multiple logistic regression analysis of personal characteristics affecting the development of DN (model one)	175
2	4.12.2(b) Multiple regression analysis of health characteristics affecting the development of DN (model two)	176
	4.12.2(c) Multiple logistic regression analysis of clinical variables affecting the development of DN (model three)	177

Title	Page
4.12.3 Final model of multivariate analysis of factors affecting of the development of DN	178
4.13 Antihypertensive medications used among type 2 diabetes mellitus patients	179
4.13.1 Evaluate the pattern of antihypertensive medications used among type 2 DM Patients	179
4.13.2 Antihypertension medication pattern and systolic blood pressure target in type 2 DM patients	180
4.13.3 Antihypertension medications pattern and diastolic blood pressure target in type 2 DM patients	181
4.13.4 Antihypertension medications pattern and blood pressure target in type 2 DM patients	182
CHAPTER FIVE - DISCUSSION	183
5.0 Introduction	184
5.1 Evaluation of the glycaemic control, body mass index level and waist circumference, lipid profile and blood pressure among the type 2 DM patients	187
5.1.1 Glycaemic control	187
5.1.2 Body mass index level (BMI) and waist circumference (WC)	189
5.1.3 Control of blood pressure in type 2 diabetic patients	190
5.1.4 Lipid profile in diabetic patients	191
5.2 Effectiveness of antidiabetic medications	193
5.3 The factors that affect glycaemic control	198
5.4 The factors affecting the development of macrovascular diabetic complications	202
5.5 Factors affecting the development of microvascular diabetic complications	207
5.6 Factors affecting the development of retinopathy	209
5.7 Factors affecting the development of neuropathy	212
5.8 Factors affecting the development of nephropathy	214

Title	Page
5.9 Diabetics with hypertension	216
5.9.1 The prevalence and control of hypertension among diabetic patients	216
5.9.2 Patterns of antihypertensive medications used among type 2 diabetic patients with hypertension	218
CHAPTER - SIX	
DIRECT MEDICAL COSTS OF TYPE 2 DIABETES TREATMENT	222
6.1 LITERATURE REVIEW	223
6.1.1 Cost of type 2 diabetes mellitus	223
6.1.2 Healthcare costs of type 2 diabetes mellitus	224
6.1.3 Cost of diabetes in Malaysia	226
6.1.4 Identifying the costs of type 2 diabetes mellitus management	227
6.1.4(a) Direct medical costs of management of type 2 diabetes mellitus	227
6.1.4(b) Indirect costs of type 2 diabetes mellitus	227
6.1.5 Direct cost estimates of type 2 diabetes mellitus	228
6.1.6 Problem statement	230
6.2 METHODOLOGY	231
6.2.1 Study design	231
6.2.2 Data source	231
6.2.3 Sample size calculation.	231
6.2.4 Research instrument	231
6.2.5 Operational definitions	232
6.2.6 Cost collecting data	233
6.2.6(a) Types of costs in current study	233

Page

6.2.6(b) Record review	234
6.2.7 Cost calculation for type 2 diabetes mellitus	234
6.2.8 Data entry and statistical analysis	236
6.2.8(a) Antidiabetic medications cost	236
6.2.8(b) Annual direct medical costs	236
6.2.8(c) Comparison of patients' characteristics with direct medical cost	236
6.3 RESULTS	237
6.3.1 Description of the study population	237
6.3.2 The use of antidiabetic medications among type 2 DM patients	237
6.3.3 Cost analysis of antidiabetic medications for type 2 diabetes mellitus	238
6.3.4 Medical personnel services costs of type 2 diabetes mellitus	239
6.3.5 Laboratory tests costs of type 2 diabetes mellitus	239
6.3.6 Clinical visit costs for type 2 diabetes mellitus	240
6.3.7 Direct medical cost of type 2 diabetes mellitus	241
6.3.8 Comparison of patients' characteristics with direct medical costs	242
6.4 DISCUSSION	244
6.4.1 Demographic characteristics of type 2 diabetes mellitus patients	244
6.4.2 The use and cost of antidiabetic medications patterns at HUSM	245
6.4.3 The cost of antidiabetic medications	246
6.4.4 The total direct medical costs of type 2 diabetes mellitus treatment	246
6.4.5 Comparison of patients' characteristics with direct medical costs of type 2 diabetes mellitus patients	248
7.1 Conclusions	250 251

Title

Title	Page	
7.2 Limitation of the study		
7.3 Future recommendations	255	
REFERENCES	256	
APPENDICES	299	
Appendix A: Ethical approval	300	
Appendix B: Data collection form of clinical treatment outcome	303	
Appendix C: Evaluation of cost of type2 DM form 2	307	
Appendix D: Operational definitions	308	
Appendix E: Sample size calculation	314	
Appendix F: English version of patient information and consent form	320	
Appendix G: Malay version of patient information and consent form	326	
Appendix H: Comparison of glycaemic control target achieved among different antidiabetics' regimens treatment over one year	332	
Appendix J: Comparison of glycaemic control within each treatment group based on time	338	
Appendix K: List of antidiabetic medications according to estimated prices registered at HUSM	342	
Appendix L: list of salary of medical personal monthly at HUSM	343	
Appendix M: List of cost per unit of medical personnel services at HUSM	344	
Appendix N: Cost of medical personnel services in four visits (one year) at HUSM	345	
Appendix O: Publication in journals	346	

LIST OF TABLE

Title	Page
Table 2.1 Risk factors for type 2 DM.	18
Table 2.2 Targets for type 2 DM levels	36
Table 2.3 Management of hyperglycemia in type 2 DM	47
Table 2.4 Types of insulin therapy available in market	56
Table 4.1 Socio-demographic characteristics of type 2 diabetic patients	101
Table 4.2 Health characteristics of type 2 diabetic patients	102
Table 4.3 Characteristics of clinical variables of type 2 of diabetic patients	103
Table 4.4 Type of antidiabetic medications used of type 2 DM patients	104
Table 4.5 Pattern of antidiabetic medications used in type 2 DM patients	105
Table 4.6 Type of lipid lowering therapy distribution of type 2 DM	106
Table 4.7 Frequency and distribution according to statins usage of type 2 DM	106
Table 4.8Frequency and distribution according to the number of medications used to treat HPT in type 2 DM patients	107
Table 4.9 Types of vascular complications among type 2 DM patients	108
Table 4.10 Frequency and distribution of macrovascular complications amongtype 2 DM patients	108
Table 4.11 Frequency and distribution of microvascular complications among type 2 DM patients	109
Table 4.12 Comparison of HbA1 target achieved among different antidiabetics regimens over one year.	111
Table 4.13 Comparison of FPG target achieved among different antidiabetics regimens over one year.	114
Table 4.14 Comparison of PPG target achieved among different antidiabetics regimens over one year	117
Table 4.15 Univariate analysis of personal characteristics affecting HbA1c control	120

Title	Page
Table 4.16 Univariate analysis of health characteristic factors affecting HbA1c control.	121
Table 4.17 Multiple logistic regression of personal characteristics that affecting HbA1c control	122
Table 4.18 Multiple logistic regression of health characteristics affecting HbA1c	123
Table 4.19 Factors significantly associated with HbA1c control	124
Table 4.20 Univariate analysis of personal characteristics affecting FPG control	126
Table 4.21 Univariate analysis of health characteristics affecting FPG control	127
Table 4.22 Factors significantly associated with FPG control.	128
Table 4.23 Univariate analysis of personal characteristics affecting PPG control	130
Table 4.24 Univariate analysis of health characteristics factors affecting PPG control.	131
Table 4.25 Factors significantly associated with PPG control	132
Table 4.26 Univariate analysis of personal characteristics affecting the	135
development macrovascular complications	
Table 4.27 Univariate analysis of health characteristics affecting the development of macrovascular complications	134
Table 4.28 Univariate analysis of clinical variables affecting the development of macrovascular complications	137
Table 4.29 Multiple logistic regression analysis of personal characteristics affecting the development macrovascular complications (model one)	138
Table 4.30 Multiple logistic regression analysis of health characteristics affecting the development macrovascular complications (model two)	139
Table 4.31 Multiple logistic regression analysis of clinical variables affecting the development macrovascular complications (model three)	140
Table 4.32 Factors significantly associated with development of macrovascular complications.	141
Table 4.33 Univariate analysis of personal characteristic affecting the development of microvascular complications.	143
Table 4.34 Univariate analysis of health characteristic affecting the development of microvascular complications	144

Title		Page
Table 4.35	Univariate analysis of clinical variables affecting the development of microvascular complications	146
Table 4.36	Multiple logistic regression analysis of personal characteristics affecting the development of microvascular complications	148
Table 4.37	Multiple logistic regression analysis of health characteristics affecting the development of microvascular complications	149
Table 4.38	Multiple logestic regression analysis of clinical variables affecting the the development of microvascular complications	150
Table 4.39	Factors significantly associated with development of microvascular complications	151
Table 4.40	Universate analysis of personnel characteristics affecting development of DR	153
Table 4.41	Univariate analysis of health characteristics affecting the development of DR	154
Table 4.42	Univariate analysis of clinical variables affecting the development of DR	156
Table 5.43	Multiple logistic regression of personal characteristics affecting the development of DR	157
Table 4.44	Multiple logistic regressions of health characteristics affecting the development of diabetic retinopathy (model 2)	158
Table 4.45	Multiple logistic regressions of clinical variables affecting the development of DR	159
Table 4.46	Factors significantly associated with development of DR	160
Table 4.47	Univariate analysis of personnel characteristics affecting the development of diabetic neuropathy complications	162
Table 4.48	Univariate analysis of health characteristics affecting neuropathy complications	163
Table 4.49	Univariate analysis of clinical variables affecting the development of diabetic neuropathy complications	165
Table 4.50	Multiple logistic regression of personnal characteristics affecting the development of diabetic neuropathy complications	166
Table 4.51	Multiple logistic regression of health characteristics affecting the development of diabetic neuropathy complications	167

Title	Page
Table 4.52 Multiple logistic regression of clinical variables affecting the	168
Table 4.53 Factors significantly associated with development of diabetic neuropathy complications	169
Table 4.54 Univariate analysis of personnel characteristics affecting development of DN	171
Table 4.55 Univariate analysis of health characteristics affecting the development of diabetic nephropathy complication	172
Table 4.56 Univariate analysis of clinical variables affecting development of DN	174
Table 4.57 Multiple logistic regression analysis of personal characteristics affecting the development of DN.	175
Table 4.58 Multiple logistic regression analysis of health characteristics affecting the development of diabetic nephropathy complications	176
Table 4.59 Multiple logistic regression analysis of clinical variables affecting the development of DN	177
Table 4.60 Factors significantly associated with development of DN	178
Table 4.61 Frequency and distribution of antihypertensive medications used in type 2 DM hypertension patients	179
Table 4.62 Antihypertension medications pattern and systolic blood pressure target in type 2 DM patients	180
Table 4.63 Antihypertension medication pattern and diastolic blood pressure target among type 2 DM patients	181
Table 4.64 Antiypertension medication pattern and blood pressure target in Type2 DM patients	182
Table 6.1 The use and cost patterns of antidiabetic medications at HUSM	238
Table 6.2 Total annual cost of antidiabetic medications in 2008	238
Table 6.3 Medical personnel services unit costs (RM) analysis	239
Table 6.4 Laboratory tests frequencies and costs (RM) for 2008	240
Table 6.5 Clinical visit frequencies and costs (RM) for 2008	240
Table 6.6 Total of direct medical cost (RM) of study population per year	241
Table 67 Direct medical cost (RM) per patient per year	241
Table 6.7 Comparison of patients' characteristics with direct medical cost	242

LIST OF FIGURES

Title	Page
Figure 3.1 Study flowchart	98
Figure 4.1 Estimated marginal means of HbA1c of antidiabetics medications	112
Figure 4.2 Estimated marginal means of FPG of antidiabetics medications	115
Figure 4.3 Estimated marginal means of PPG of antidiabetics medications	118

LIST OF ABBREVIATIONS

AACE	American Association of Clinical Endocrinologists
ACEI	Angiotensin Converting Enzyme Inhibitor
ADA	American Diabetes Association.
AGI	Alpha-Glucosidase Inhibitors
ALLHAT	The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial
ALT	Alanine Aminotransferase Test
ANCOVA	Analysis of Covariance
AP	Asian- Pacific
ARBs	Angiotensin II Receptor Blockers
AST	Asparate Aminotransferase
ATP III	Adult Treatment Panel III
α-Β	Alfa Blockers
β-Β	Beta Blockers
BP	Blood Pressure
BMI	Body Mass Index
CAD	Coronary Artery Disease
ССВ	Calcium Channel Blockers
CDA	Canadian Diabetic Association
CHD	Coronary Heart Disease
CI	Confidence Interval
CPG	Clinical Practice Guideline
CrCl	Creatinine Clearance
CV	Cardiovascular

CVD	Cardiovascular Disease
DBP	Diastolic Blood Pressure
DCCT	Diabetic Control and Complication trial
DECODE study	Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in Europe study
DM	Diabetes Mellitus
DR	Diabetic Retinopathy
DN	Diabetic Nephropathy
ECG	Electrocardiography
ESRD	End Stage Renal Failure
ETDA	Ethylene Diamine Tetrachloroacetic
FDA	Food and Drug Administration
FFA	Free Fatty Acids
FLP	Fasting Lipid Profile
FPG	Fasting Plasma Glucose
GDM	Gestational Diabetes Mellitus
GFR	Glomerular Filtration Rate
HbA1c	Glycosylated Hemoglobin
HDL-C	High Density Lipoprotein- Cholesterol
HMG-CoA	3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase
НМО	Health Maintenance Organization
HOPE study	Heart Outcomes Prevention Evaluation Study
HOT study	Hypertension Optimal Treatment Study
HPT	Hypertension
HUSM	Hospital Universiti Sains Malaysia

ID	Identification Number
IDF	International Diabetes Federation
IFG	Impaired Fasting Glucose
IGT	Impaired Glucose Tolerance
IHD	Ischemic Heart Disease
IQR	Inter - Quartile Range
JNC VII	Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure VII
KPP	Klinik Pakar Perubatan
LC-Co A	Long-Chain Coenzyme A
LDL-C	Low-Density Lipoprotein Cholesterol
LFT	Liver Function Test
MCPG	Malaysian Clinical Practice Guidelines
MCV	Macrovascular
MICRO-HOPE	Microalbuminuria, Cardiovascular and Renal Outcomes-HOPE.
МОН	Ministry of Health
MP	Malaysian Plan
NCEP	National Cholesterol Education Program
NCEP ATP-III	National Cholesterol Education Program Adult Treatment Panel III
NDIC	National Diabetes Information Clearinghouse
NEFA	Non- Esterified Free Fatty Acids
NGSP	The National Glycohemoglobin Standardization Program
NHANES	National Health and Nutrition Examination Survey
NHMS	The National Health Morbidity Survey
NIDDK	National Institute of Diabetes, Digestive and Kidney Diseases

NPH	Neutral Protamine Hagedorn
OADs	Oral Antidiabetics Drugs
OHA	Oral Hypoglycaemic Agent
OGTT	Oral Glucose Tolerance Test
OR	Odds Ratio
PPAR	Peroxisome Proliferator-Activated Receptor
PPG	Post Prandial Plasma Glucose
PR	Pulse Rate
Pre-HT	Prehypertension
PS software	Power and Sample Size Software
RFT	Renal Function Test
RM	Ringgit Malaysia
RM ANCOVA	Repeated Measure Analysis of Covariance
ROC	Receiver Operating Characteristic
ROS	Reactive Oxygen Species
SBGM	Self Blood Glucose Monitoring
SBP	Systolic Blood Pressure Level
SCR	Serum Creatinine
SD	Standard Deviation
SPSS	Statistical Package of Social Science
4S-STUDY	Scandinavian Simvastatin Survival Study (4S)
SU	Sulfonylurea
T2DM	Type 2 Diabetes Mellitus
ТСН	Total Cholesterol
TG	Triglycerides.

TZDs	Thiazolidinediones
USM	Universiti Sains Malaysia
UKPDS	United Kingdom Prospective Diabetes Study
WC	Waist Circumference
WHO	World Health Organization

PENILAIAN KEBERKESANAN RAWATAN KLINIKAL DAN KOS PERBUATAN LANGSUNG DIKALANGAN PESAKIT-PESAKIT LUAR YANG MENGHIDAP PENYAKIT DIABETES MELLITUS JENIS 2 DI HOSPITAL UNIVERSITI SAINS MALAYSIA

ABSTRAK

Diabetes mellitus kian menjadi masalah yang besar dalam kesihatan awam, terutamanya pada masa ini apabila sebahagian besar daripada perbelanjaan penjagaan kesihatan dilbelanjakan ka atas rawatan penyakit ini dan komplikasinya. kajian ini merupakan satu kajian cerapan bersifat prospektif terhadap pesakit diabetes jenis 2 yang betujuan untuk menilai modaliti rawatan ,kawalan glisemik, dan faktor-faktor yang berkaitan dengan perkembangan komplikasi makrovaskcular dan mikrovaskular penyakit tersbut, dan menilai kos perubatan langsung bagi merawat pesakit diabetes jenis 2 di Hospital Universiti Sains Malaysia (HUSM). Semua pesakit diabetes jenis 2 yang dating ke klinik diabetes HUSM dan mereka yang seterusnya diberi rawatan susulan di klinik tersebut dimasukkan dalam kajian ini.

Sejumalah 1077 orang pesakit yang menghidap diabete jenis 2 telah dimasukkan ke dalam kajian ini, dengan julat umur mereka antara 18 hingga 88 tahun, dan umur median 58 tahun. Majoriti pesakit terdiri daripada wanita, dan kurang daripada separuh pesakit-pesakit itu mempunyai sijil tinggi persekolahan. Tempoh min diabetes ialah 11.2 tahun, min HbA1c ialah 8.7%, manakala min tahap glukosa darah berpuasa ialah 7.8 mmol/L, dan glukosa plasma pascaprandial ialah10.0 mmol/L.

Kajian in telah mendapati bahawa 26.3% daripada pesakit – pesakit mempunyai kawalan optimum (HbA1c \leq 7.0%) dan 73.7% mempunyai kawalan yang tidak mencukupi (HbA1c > 7%). Pada keseluruhannya, 747 pesakit (69.4%) diberikan rawatan ubat antidiabetik bersama makanan, manakala 30.6% diberikan suntikan insulin semata-mata, atau suntikan bersama agen hipoglisemia. Kajian juga mendapati faktor-faktor yang mempengaruhi tahap HbA1c terdiri daripada umur, bangsa dan rawatan antidiabetes. Bagaimanapun, faktor-faktor yang mempengaruhi glukosa plasma berpuasa adalah umur dan merokok, manakala faktor-faktor yang mempengaruhi glukosa plasma pascaprandial adalah gender dan tempoh menghidap diabetes. Tambahan lagi, kajian ini telah mendapati bahawa faktor-faktor berubah yang mempengaruhi perkembangan komplikasi makrovaskular terdiri daripada umur, tahap pendidikan, indeks jisim badan (BMI), lilitan pinggang, rawatan antidiabetes, tekanan darah diastolik, dan kolesterol. Bagaimanapun, komplikasi mikrovaskular dipengaruhi oleh umur, trigliserid dan klearans kreatinin.

Retinopati berlaku pada kadar 39% dalam kalangan pesakit-pesakit yang dikaji, dan mereka yang dipengaruhi oleh tempoh penyakit tersebut, neutropati, trigliserid, dan klearans kreatinin. Kejadian neuropati adalah 54.7%, dan faktor risiko utama mereka ialah tempoh menghidap diabetes, dan wujudnya retinopati, bertambahnya HbA1c dan klearans kreatinin. Nefropati telah dikesan delam 90.7% daripada pesakit- pesakit, dipengaruhi terutamanya oleh gender, trigliserid dan klearans kreatinin.

Hasil kajian ini juga menunjukkan bahawa hipertensi berlaku dalam 92.7% daripada pesakit yang dikaji, dan hanya 47.2 % daripada mereka mencapai sasaran tekanan darah yang optimum. Daripada sejumlah itu, 104 (22.1 %) mendapat rawatan ACEI, 76 (16.1 %) mendapat rawatan ARB dan CCB, 72 (15.3 %) mendapat rawatan gabungan ACEI dan CCB.

Daripada keputusan awal, dapatlah disimpulkan bahawa banyak protokol pengurusan telah gagal untuk mencapai dan mengekalkan tahap glisemik yang optimum. Terapi antidiabetis boleh memperbaiki glisemia, tetapi perbezaan dalam kalangan rawatan antidiabetes yang berlainan didapati tidak signifikan. Intervensi secara betul diperlukan untuk mengubah rawatan dan mencapai kawalan glisemik yang lebih baik. Untuk mengurangkan atau menangguhkan perkembangan komplikasi vaskular, strategi yang betul diperlukan bagi pengesanan awal, dan rawatan yang agresif terhadap faktor-faktor risiko boleh diubah suai termasuk menggunakan rawatan-rawatan antidiabetes, antihipertensi, antidislipedemia, dan antiplatelet. Bagi retinopati,neuropati, dan nefropati strategi kesihatan awam diperlukan untuk mengurangkan kesan faktor risiko, dan mengurangkan komplikasi komplikasi tersebut. Kadar prevalens hipertensi adalah sangat tinggi, dan tekanan darah lebih daripada separuh pesakit-pesakit itu adalah di luar kawalan. Hasil kajian ini menunjukkan bahawa kos tahunan purata rawatan pesakit luar adalah RM 1730.7 bagi seorang pesakit, dengan kos minimum sebanyak RM 546 bagi seorang pesakit, dan maksimumnya RM 5432.8. Daripada jumlah keseluruhan kos rawatan, 59.2 % (RM 1023.9) meliputi kos ubat-ubatan, 31.1% (RM 537.41) dibelanjakan ke atas kos penyelidikan makmal, 7.1 % (RM 124.28) meliputi kos tahunan lawatan ke klinik, dan 2.6% (RM 45.15) meliputi kos personel perubatan. Tahap glukosa darah yang terkawal baik akan dapat mengurangkan kos rawatan jagaan diabetes, justeru, dapat mengurangkan kos rawatan pesakit luar. Banyak perhatian dan usaha seharusnya ditujukan kepada mendapatkan pengetahuan tentang beban ekonomi diabetes di HUSM dan di hospital-hospital lain.

Kata kunci: Diabetes mellitus jenis2, Kos perubatan langsung, Hipertensi, Retinopati, Nefropati, komplikasi makrovaskular.

ASSESSMENT OF THE CLINICAL TREATMENT OUTCOMES AND DIRECT MEDICAL COSTS AMONG TYPE 2 DIABETES MELLITUS OUTPATIENTS AT THE HOSPITAL UNIVERSITI SAINS MALAYSIA

ABSTRACT

Diabetes mellitus (DM) is becoming a major public health problem, especially now that a large proportion of health care expenditure is being spent on the treatment of this disease and its complications. This was a prospective observational study of diabetes type 2 patients with the objectives of assessing the treatment modalities, glycaemic control and the factors associated with the development of macro and microvascular complications, and evaluating the direct medical costs of treating diabetic type 2 patients at the Hospital Universiti Sains Malaysia (HUSM). All of the type 2 diabetes patients who attended and were followed-up at the HUSM diabetes clinic were included in this study.

A total of 1077 patients with type 2 diabetes were recruited for this study, with ages ranging from 18 to 88, and a median age of 58 years. The majority of the patients were female, and less than half of the patients had more than high school certificates. The mean duration of diabetes was 11.2 (\pm 6.81) years, the mean glycosylated haemoglobin (HbA1c) was 8.7% (\pm 2.34), the mean fasting blood glucose level was 7.8 mmol/l (\pm 3.72), and the mean postprandial plasma glucose level was 10.0 mmol/l (\pm 4.38).

It was found that 26.3% of the patients had optimal control (HbA1c \leq 7%) and that 73.7% had inadequate control (HbA1c >7%). Overall, 747 patients (69.4%) were on oral antidiabetes medications, whereas 30.6% were on insulin injections, alone or with oral hypoglycaemic agents. The factors that influenced HbA1c levels were found to be age, race and antidiabetic medication. However, the factors that influenced fasting plasma glucose were age and smoking while the factors that influence postprandial plasma glucose were gender and duration of diabetes. Furthermore, it was found that the variable factors influencing the development of macrovascular complications were age, education level, body mass index (BMI), waist circumference, antidiabetic medication, diastolic blood pressure (BP), and

cholesterol level. However, microvascular complications were influenced by age, triglycerides, and creatinine clearance rate.

Retinopathies appeared at the rate of 39% among the study patients, and these were influenced by duration of the disease, neuropathies, triglycerides and creatinine clearance rate. The prevalence of neuropathies was 54.7%, and their main risk factors were duration of diabetes, the presence of retinopathies, and increased levels of HbA1c and creatinine clearance rate. Nephropathies were detected in 90.7% of the patients and were mainly affected by gender and creatinine clearance rate.

The present findings also show that hypertension was prevalent in 92.7% of the study patients, and only 471 (47.2%) of them achieved the optimal blood pressure targets. Of those, 104 (22.1%) were on angiotensin converting enzyme inhibitors (ACEI), 76 (16.1%) were on angiotensin receptor blockers (ARB) and calcium channel blockers CCB, and 72 (15.3%) were on combinations of ACEI and CCB.

From the initial results it was concluded that numerous management protocols have failed to achieve and maintain proper glycaemic levels. Antidiabetic therapy can improve glycaemia, but the differences between the different antidiabetic medications were not significant. Intended medication interventions are required to alter treatments and achieve better glycaemic control. In order to reduce or delay the development of vascular complications, proper strategies are required for early detection and aggressive treatment of the modifiable risk factors, including the appropriate use of antidiabetes, antihypertension, antidyslipidaemia, and antiplatelet treatments. For retinopathies, neuropathies, and nephropathies, public health strategies are required in order to reduce the risk factor effects, and reduce their prevalence. Early detection and appropriate management can reduce the burden of these complications. The prevalence rate of hypertension was very high, and the BP of more than half (527) of the patients was out of control.

The current findings revealed that the average annual direct medical cost of outpatient treatment was RM 1730.7 per patient, with a minimum cost of RM 546 per patient, and a maximum of RM 5432.8. Of the total treatment cost, 59.2% (RM 1023.9) covered the cost of the medications, 31.1% (RM 537.41) the cost of laboratory investigations, 7.1% (RM 124.28) covered the cost of annual visits to the

clinic, and 2.6% (RM 45.15) covered the cost of medical personnel. Good control of blood glucose levels leads to decreased treatment costs in diabetes care, and hence a decrease in outpatient treatment costs. More attention and efforts should be directed towards gaining knowledge of the economic burden of diabetes in HUSM and elsewhere.

Key words: Type 2 Diabetes mellitus, Direct Medical Cost, Hypertension, Retinopathy, Nephropathy, Macrovascular Complications.

CHAPTER ONE

INTRODUCTION

1.0 Introduction

1.1 Background

Diabetes mellitus is a disease affecting nearly 10% of the global population above 20 years of age. Type 2 diabetes mellitus (type 2 DM) is the most prevalent form of diabetes. It accounts for about 90% to 95% of all Diabetes Mellitus (DM) cases and particularly affects overweight individuals usually over 40 years of age (Canadian Diabetic Association, 2005). Although a disease of adults, type 2 DM is now being diagnosed more frequently in children and adolescents (Canadian Diabetic Association, 2005). Type 2 DM is often part of a metabolic syndrome that includes obesity, elevated blood pressure and high levels of blood lipids.

Type 2 DM is a chronic, progressive disease characterized by insulin resistance and pancreatic β -islet cell failure. Three specific abnormalities contribute to hyperglycemia in type 2 DM: impaired insulin secretion, increased hepatic glucose production, and decreased insulin-stimulated uptake of glucose in peripheral tissues. In type 2 DM, the early phase of insulin secretion is lost, mainly resulting in the characteristically increased postprandial glucose. Increased insulin resistance also frequently occurs in people who are obese, and is associated with the metabolic syndrome (Evans and krenz, 2001).

The progressive aging of the world's population, resulting from better control of communicable diseases and improved nutrition and hygiene, has also played an important role in the marked increase in non-communicable diseases such as type 2 DM. The increase of prevalence and incidence of diabetes are attributable to several factors including the aging population, urbanization, sedentary lifestyles increased survival rates, and continued and increasing rates of obesity (Motala et al., 2003).

Type 2 DM is a major and growing health problem in most countries (Harris et al., 1998) that causes considerable loss due to disability, premature mortality and loss of productivities. Diabetes is in fact a serious vascular disease with poor prognosis, and that it is not only a disease characterized by elevated blood glucose (Marja-Ritta et al., 2002). Type 2 DM is already the leading cause of blindness among working-age adults, of end-stage renal disease and of non-traumatic loss of limb (Ulbrecht et al., 2004; Williamson et al., 2004). The American Diabetes Association (2008) reports that this disease is the fifth leading cause of death by disease in the United States. The consequences of persistant hyperglycemia can cause serious damage in nerves and blood vessels, the latter leading to macro- and microcomplications. Ragucci et al. (2003) reported that patients with diabetes mellitus carry an increased risk of two to four times greater for heart attack, stroke and other complications related to poor circulation. These complications can be reduced by normalisation of glucose levels (The diabetes control & complication trial research group, 1993; United Kingdom Prospective Study Group, 1998) this normalisation being the ultimate focus of all diabetes treatments. The overall treatment of type 2 DM is to prevent acute and chronic complications while maintaining a high quality of life.

As the disease progresses, many patients with type 2 DM will eventually be unable to adequately achieve or maintain glycaemic control, even through monotherapy or combination of oral therapies are employed. The reason for diminishing antihyperglycaemic effects with oral agents over time is multifactorial and includes progressive loss of β -cell function (Turner et al., 1999; Wright et al., 2002), comorbidities, lifestyle factors, and possibly glucotoxicity (Kuritzky, 2006). In most cases, patients on oral antidiabetic therapy will require not only an increase in dosage but also the addition of a second or third oral agent (Banerjee and Singh, 2002). As the number and dosage of oral antidiabetic medications increases, the side effect profile, regimen complexity, and expenses rise commensurately.

1.2 Prevalence of diabetes in the world

Type 2 DM is rapidly rising as a global health care problem that threatens to reach pandemic levels by 2030. In 2003, an estimated 194 million (5.1%) adults had diabetes worldwide and 314 million (8.2%) people had impaired glucose tolerance (Sicree et al., 2003). This prevalence increased to 6.0 % and 7.5 % in 2007 and is predicted to increase to 7.3 % and 8.0 % by 2025 (Sicree et al., 2006). 380 million people are expected to have diabetes in 2025 (Sicree et al., 2006).

The prevalence of diabetes is higher in developed countries than in developing countries, but the developing world may be hit hard by the escalating diabetes epidemic in the future. Increased urbanisation and economic development in developing countries have already contributed to a substantial rise in diabetes (WHO, 2003). This is likely to continue and will be a significant factor in the forthcoming global epidemic of diabetes. While diabetes is most common among the elderly in many populations, prevalence rates are rising at an alarming rate among comparatively young and productive populations in the developing world (International Diabetes Federation, 2005).

1.3 Prevalence of diabetes in Asia

Asia is the major site of a rapidly emerging diabetes epidemic (Wild et al., 2004; Sicree et al., 2006). Roughly 80% of people with diabetes are in developing countries, of which India and China share the largest contribution (Ramachandran et

al., 2009). Traditional estimates based on population growth and ageing and rate of urbanisation in Asia show that India and China will remain the two countries with the highest numbers of people with diabetes 79.4 million and 42.3 million, respectively by 2030 (Wild et al., 2004). The further rapidly developing Asian nations like Singapore, Malaysia, Thailand and those making up Indochina will experience the surge (Zaini, 2000).

1.4 Diabetes in Malaysia

In Malaysia, the Third National Health and Morbidity Survey (NHMS III, 2006) showed that prevalence of type 2 DM for adults aged 30 years old and above was found to be 14.9 % in 2006, upped by almost 79.5% in the space of 10 years from 1996 to 2006.

In Malaysia, there is a growing public concern due to the escalation with number of people with diabetes while complication rates and associated diseases amongst diabetics are high. In addition, high prevalence of complications such as blindness, end stage renal disease, lower extremity amputations as well as premature cardiovascular disease, stroke and premature mortality related to poor control of blood glucose (Mafauzy, 2005).

Malaysia has a multiethnic population is expected to reach around 33.7 million by the 2020. The three main racial components of this region are Malays, Chinese and Indians are well represented in this country. If China and India are balanced to exceed the world's prevalence rate of type 2 DM, their respective counterparts in Malaysia may be much worse. The evidences so far indicate that the migrant status as well as socioeconomic and lifestyle changes are strong indicators to diabetes (National Health and Morbidity Survey, 1996).

1.5 Effectiveness of treatment in diabetes

Improved glucose control can improve long-term outcomes. Within the last decade, new treatments and glycaemic goals have created an opportunity to better manage this prevalent chronic disease.

For the purpose of evaluating the treatment outcomes and complications, several studies have evaluated percentage of diabetic control with each regimen drugs. The United Kingdom prospective diabetes study 33 (1998) demonstrated that each percentage point reduction in HbA1c was associated with a 35% reduction in microvascular complications, a 25% reduction in diabetes-related deaths and a 7% reduction in all cause mortality. The evaluation should review the previous treatments, and the past and present degrees of glycaemic control. Laboratory tests suitable to the evaluation of each patient's medical condition should be performed (American Diabetes Association, 2006 and 2007). Vivian and Ali (2000) suggested that combination treatment with once daily metformin, rosiglitazone improves glycaemic control, insulin sensitivity, and β -cell function more effectively than treatment with metformin alone. Acarbose was shown to be an effective addition therapy in combination with insulin. After 24 weeks of treatment, HbA1c was reduced by 0.40%, and insulin requirements were considerably lowered in patients in whom acarbose was added to their insulin regimen versus those remaining on insulin monotherapy (Coniff et al., 1995).

1.6 Economic burden of type 2 diabetes mellitus

1.6.1Economic cost of type 2 diabetic mellitus

The exact costs of diabetes are not easy to pin down but estimations can be obtained according to 3 levels which include:

- 1. Cost directly linked to the diagnosis and management of diabetes without complications.
- 2. Costs generated by complications of diabetes. These are difficult to quantify because diabetes is linked to micro and macro vascular diseases such as heart disease, kidney failure, eye disease and amputation. Moreover, diabetes may add a cost of care by complicating other unrelated medical situations like infections, accidents and surgery.
- 3. Indirect costs correlated with the quality of life and the economic productivity which can be somehow estimated by the degree of disability.

The direct healthcare costs of diabetes are high and are continuing to rise. They are rising because the prevalence of diabetes is increasing, and treatment is becoming more sophisticated and polypharmacy is becoming more common. It is suspected that direct healthcare costs for the diabetic disease already dominate healthcare budgets, particularly in developed countries and increasingly in developing countries (Williams, 2005). It is now well recognized that preventing or delaying the onset of type 2 DM results in considerable cost reduction.

There are many reasons for studying the economic burden of diabetes. Firstly, diabetes is costly especially in direct medical costs. Secondly, resources that can be devoted to prevention and control of diabetes are limited because of the "opportunity cost" of doing so. Thirdly, the need for resources will continue to increase because of the increasing prevalence of diabetes and thus, demand for comprehensive care and new treatments. These estimates do not include the cost of undiagnosed diabetes. Neither do they include the size of immeasurable costs, such as human pain and suffering (American Diabetes Association, 2003).

Research from Costa Rica by Morice et al. (1999) showed that people with diabetes made 1.55 times more medical visits than people without diabetes. Wong et al. (2002) showed that the treatment costs can be brought to a minimum without affecting effective diabetes care with good control of blood glucose level which leads to a sharp decrease in consultation and treatment procedures, hence, reducing the outpatient treatment.

Type 2 DM is a serious and expensive disease and one key issue in reducing costs is most certainly to address the associated late complications at an early stage. Comprehensive diabetes disease management program should improve patient outcomes, decrease costs, and ensure member and provider satisfactions. Although medication treatment costs are increased by combination therapy, this cost is expected to be partially balanced by a reduction in the costs of treating long-term diabetes complications (Ward et al., 2004).

1.6.2 Cost management of type 2 diabetes mellitus

Diabetes mellitus is a chronic disease that has been recognized by the Malaysian government as a major public health problem with far reaching consequences not just for its adverse impact on the health of Malaysians, but also for the economic burden it places on the health care system. Diabetes mellitus presents a high burden for individuals and society. This burden is not only related to health care costs, but also to indirect costs caused by loss of productivity from disability and premature mortality. Medical expenditures for people with diabetes are 2–3 times higher than that for those not affected by diabetes (Rubin et al., 1994).

Effective disease management programmes that aim to prevent complications could potentially lead to cost savings in managed care settings (Selby et al., 1997).

Hayward et al. (1997) found that patients taking insulin had 2.4 more diabetic outpatient visits, used 300 more glucose test strips, and had slightly higher laboratory costs per year than patients receiving sulphonylureas.

Johnson et al. (2006) found that metformin, alone or in combination, was the most frequently dispensed oral antidiabetic medication. A longer duration of diabetes was associated with increased use of oral medications and insulin therapy. Insulin was used in approximately 12% of patients with type 2 DM and was associated with approximately three times higher expenditure on diabetes testing supplies compared with patients on oral antidiabetic medications (Johnson et al., 2006).

1.7 Research questions:

The questions to be examined in this study are as follows:

- What is the most regimen of antidiabetic medication that achieved target glycaemic control?
- What are the factors affecting the glycaemic control?
- What are the factors that play a role in macrovascular complications development?
- What are the factors that enhance the microvascular complications?
- What are the factors that enhance the retinopathy, neuropathy and nephropathy complications?
- What are the prevalence and control levels of hypertension in diabetic patients?
- What are the antihypertensive drug regimens which lead to achievement of the targets of treatment among diabetic patients?
- What are the annual direct medical costs of type 2 diabetic treatment?

1.8 Rationale of the study

As highlighted earlier, the management of type 2 DM is always challenging for both patients and clinicians. Therefore, it is imperative to document the effectiveness of the treatment modalities available for controlling diabetes mellitus in Malaysia. This study was rationalized by some emerging facts about type 2 DM in Malaysia. The high prevalence of diabetes is associated with poor glycaemic control and a high rate of complications. This study will provide good baseline data about the current status of diabetic patients at the Hospital Universiti Sains Malaysia (HUSM) concerning the degree to which they control their glucose level. Knowledge of patients glucose status included {glycated hemoglobin (HbA1c), fasting plasma glucose (FPG) & postprandial plasma glucose (PPG)}, body mass index (BMI), lipid profile [triglycerides (TG), low density lipoproteins (LDL), total cholesterol, high density lipoproteins (HDL)}, and blood pressure will help decision makers in evaluating the current epidemic level of diabetes at the HUSM.

Understanding the effectiveness of antidiabetes medications along with the factors of glycaemic control on the development of complications may allow planners to draw up proper plans for the overall improvement of this disease.

1.9 Significance of the study

This study followed and evaluated the outcomes of diabetic patients on antidiabetic medications over a period of one year. The effectiveness of antidiabetic medications and the annual direct medical costs in one year were also evaluated. Therefore, this study may also help in the assessment of the economic burden of type 2 DM in the HUSM in general. Previous studies have reported on the factors influencing glycaemic control and microvascular and macrovascular complications, but these studies were limited, only mentioned a few factors, and did not follow-up the patients. Hence, a large scale multifactorial study was needed. To the best of our knowledge, there are no reports on the Asian population which extensively studied the factors influencing glycaemic control and micro and macrovascular complications. Furthermore, the current study also took into account clinical outcomes from an economic perspective, which gives this study an important edge as it could be used to draw a road map for the clinical treatment and costs of treatment for type 2 DM. It estimated the annual budgetary impact on treating type 2 DM. The main aims of this study were to obtain a profile of type 2 DM patients in the HUSM in order to assist in type 2 DM management programmes and to provide data for an economic evaluation. Accordingly, this study will provide a rough estimate of the direct medical costs incurred in the treatment of type 2 DM from the perspective of the HUSM management. This study also provides data about the prevalence and prescribing patterns of drugs used in treating this disease and it was also designed to help predict future consumption patterns.

1.10 Study objectives

1.10.1 General Objectives

To evaluate clinical treatment outcomes of type 2 diabetic patients and estimate the annual direct medical costs of type 2 diabetic outpatients at Hospital Universiti Sains Malaysia (HUSM) in year 2008.

1.10.2 Specific objectives

- To evaluate the following parameters: glycaemic control (HbA1c), fasting plasma glucose (FPG), postprandial plasma glucose (PPG), body mass index (BMI), waist circumference (WC), low density lipoprotein (LDL-C), highdensity lipoprotein, (HDL-C), total cholesterol, triglyceride and blood pressure in diabetic patients attending outpatient clinics in HUSM.
- 2. To compare the effectiveness of various antidiabetic regimens with regards to achievement of treatment targets (through glycaemic control).
- 3. To evaluate the factors influencing glycaemic control which include personal characteristics and health characteristics. Personal characteristics include age, gender, race, smoking history, alcohol consumption history, physical activity, education level and family history and health characteristics include BMI, WC, duration of diabetes, patterns of diabetic medications which affect glycaemic control (HbA1c, FPG & PPG).
- 4. To evaluate the factors that lead to the enhanced development of macrovascular complications, such as personal characteristics, health characteristics and clinical

variables (HbA1c, FPG, PPG, BMI, WC, LDL-C, HDL-C, total cholesterol, triglycerides, blood pressure, and creatinine clearance rate.

- 5. To evaluate the factors that lead to the development of microvascular complications, such as personal characteristics, health characteristics and clinical variables (HbA1c, FPG, PPG, BMI, WC, LDL-C, HDL-C, total cholesterol, triglycerides, blood pressure, and creatinine clearance rate.
- 6. To evaluate the factors that lead to the enhanced development of retinopathy, neuropathy and nephropathy complications, such as personal characteristics, health characteristics and clinical variables (HbA1c, FPG, PPG, BMI, WC, LDL-C, HDL-C, total cholesterol, triglycerides, blood pressure, and creatinine clearance rate.
- 7. To determine prevalence and control of hypertension among diabetic patients attending the outpatients clinics at HUSM.
- To calculate the annual direct medical costs among type 2 diabetes mellitus patients at Hospital Universiti Sains Malaysia.

CHAPTER TWO

PART ONE: ASSESSMENT OF THE CLINICAL TREATMENT OUTCOMES OF TYPE 2 DIABETES MELLITUS OUTPATIENTS AT THE UNIVERSITI SAINS MALAYSIA

2.1 Background

The main focus of this literature review is on type 2 DM outpatients. The purpose of the review will be to focus on research been done in the following areas:

- 1) The background about type 2 diabetes disease.
- 2) Clinical variable characteristics of type 2 diabetes patients.
- 3) The factors that exert effects on glycaemic control.
- 4) Effectiveness of antidiabetic medications.
- 5) The factors related to macrovascular complications.
- 6) The factors related to microvascular complications.
- 7) The factors related to retinopathy, neuropathy& nephropathy.
- 8) Hypertension in patients with type 2 DM.

Diabetes is one of the most growing public health problems which cause major morbidity and mortility cases all over the world. Centre for Disease Control and Prevention (2006) described diabetes as an 'epidemic of our time that threatens to spiral out of control unless early, focused preventative actions are taken'. The challenge for health professionals and governments encompasses economic, social, and health planning in developed nations as well as in newly developed or developing countries, irrespective of culture or location.

2.2 Definition of type 2 diabetes mellitus

Type 2 diabetes mellitus is a group of metabolic diseases characterized by hyperglycaemia caused by defects in insulin production, action or both (National Diabetes Information Clearinghouse, 2008). Symptoms of diabetes mellitus include frequent urination (polyuria), excessive thirst (polydipsia), extreme hunger (polyphagia), unusual weight loss, increased fatigue, irritability and/or blurry vision (American Diabetic Association, 2003).

2.3 Diagnosis and classification of diabetes mellitus

Diagnoses of diabetes according to the American Diabetic Association (2007) criteria for the diagnosis of diabetes mellitus are as follows;

- 1. FPG \geq 126 mg/dl (7.0 mmol/l).
- Symptoms of hyperglycemia and casual plasma glucose ≥ 200 mg/dl (11.1mmol/l). Casual is defined as any time of day without regard to time since last meal. The classic symptoms of hyperglycemia include polyuria, polydipsia, and unexplained weight loss.
- 3. Two hours plasma glucose ≥ 200 mg/dl (11.1 mmol/l) during an OGTT. The test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.

2.4 Epidemiology of type 2 diabetes mellitus

Type 2 DM is usually preceded by a long period of asymptomatic hyperglycemia that may last for years. In this prediabetic state, postprandial levels are mildly elevated whereas fasting blood glucose can usually be maintained within the near-normal range. The elevation of postprandial levels is used for the definition of impaired glucose tolerance (IGT), a nonspecific reversible stage. About 30% of these subjects progress to overt diabetes within 10 years (Unwin et al., 2002). Elevation of fasting glucose is used for the definition of impaired fasting glucose (IFG). In some individuals β -cells compensate for insulin resistance by increased insulin secretion, and type 2 DM does not develop. However, in a large number of prediabetic individuals, multiple defects in insulin action and /or insulin secretion gradually lead to sustained hyperglycemia. As a consequence of insulin resistance, the β -cell produce increased amounts of insulin, and compensatory hyperinsulinemia maintains normoglycemia. When β -cell compensation to insulin resistance fails, decompensated hyperglycaemic state develops. Thus, type 2 diabetic subjects have relative insulin deficiency. Usually such individuals do not need insulin treatment to survive.

Epidemiological studies had already identified "diabetes epidemic" in 1970s. Bennett et al. (1971) was reported that the extremely high prevalence of type 2 DM in Pima Indians and also in the Micronesian Nauruans in the Pacific (Zimmet et al., 1977), and subsequently in other Pacific and Asian island populations (Zimmet, 1992). These studies showed that transition from traditional lifestyle to western way of life resulted in obesity, lack of exercise, changes in the diet, and finally to type 2 DM. Several studies have shown that type 2 DM has reached epidemic proportions in several developing countries as well as in Australian Aboriginals (O'Dea et al., 1991), African Americans, and Mexican Americans (Burke et al., 2001). Large variations in the prevalence of type 2 DM in different populations can be attributed to environmental as well as genetic determinants.

Lately, type 2 DM was regarded as a disease of the middle-aged and the elderly. However, evidence is accumulating that onset in subjects aged under 30 years is increasing. Even children and adolescents are diagnosed to have type 2 DM (Alberti et al., 2004) for example, among the children in Japan type 2 DM is already more common than type 1 and accounts for 80% of childhood diabetes (Kitagawa et al., 1998). In the United States between 8% and 45% of newly presenting children and adolescents have type 2 DM (Laakso, 2008).

An epidemic of type 2 DM is determined not only by an increase in the incidence but also by mortality rates. Although cardiovascular complications in nondiabetic subjects have significantly reduced in the United States during the last decades this is not the case in diabetic patients, particularly among women, (Gu et al., 1999).

2.5 Risk factors for type 2 diabetes mellitus

The identification of risk factors is essential for the successful implementation of primary prevention programs. Risk factors for type 2 DM can be classified as modifiable and nonmodifiable (Table 2.1). Subjects who subsequently develop diabetes have multiple adverse changes in risk factor levels.

Table 2.1.Risk factors for type 2 DM

Non modifiable
Ethnicity
Age
Sex
Genetic factors
Family history of type 2 DM
Prior gestational diabetes
Prior glucose intolerance
History of cardiovascular disease
History of hypertension
History of dyslipidaemia
Low birth weight

Source: Laakso (2008) page 7.

2.5.1 Modifiable risk factors

Visceral adiposity leads to the development of type 2 DM. The obesity is risk factor for developing type 2 DM. Boyko et al. (2000) in their study of Japanese Americans patients showed that intra-abdominal fat area remained a significant predictor of diabetes incidence even after adjustment for body mass index, total body fat area, and subcutaneous fat area and other risk factors for diabetes. Interestingly, high insulin resistance and low insulin secretion predicted diabetes independently of directly measured visceral adiposity suggesting that visceral adiposity could contribute to the development of diabetes through actions independent of its effect on insulin sensitivity. Van Dam et al. (2001) reported that in Dutch patients the association between abdominal obesity and hyperglycemia was stronger in the presence of a parental history of diabetes.

In study by Knowler et al. (2002) mentioned that a minimum of 7% weight loss or weight maintenance in combination with a minimum of 150 minutes weekly physical activity resulted in 58% reduction in the incidence of diabetes. Physical inactivity is considered the most important risk factor for the development of type 2 DM. Physical activity reduces insulin resistance and total and visceral fat mass (Kay and fiatarone, 2006).

A combination of several lifestyle factors, including low body mass index ($< 25 \text{ kg/m}^2$), a diet high in cereal fiber, polysaturated fat and low in saturated fat and trans fats and glycaemic load, regular exercise, abstinence from smoking and moderate alcohol intake, were associated with a reduction of type 2 DM incidence.

2.5.2 Non modifiable risk factors

The prevalence and incidence of type 2 DM are strongly related to age. The age is a risk factor for developing type 2 DM. In fact, about 50% of type 2 diabetic patients are over 60 years old (Laakso, 2008). Ethnicity is a strong determinant of diabetes occurrence. In Chinese, the prevalence of type 2 DM is 1% whereas in Pima Indians it is > 50% in the adult population, possibly due to genetic influences or due to interaction between genes and environment. No systematic effects of gender on the prevalence and incidence of type 2 DM observed. Previous abnormality of glucose tolerance, a history of gestational diabetes and a family history are all strong predictors of type 2 DM. Interestingly, the presence of other disease states or conditions, for example, hypertension and dyslipidemia increase the risk of type 2 DM (Laakso, 2008). Associations between low birth weight and increased risk of type 2 diabetes in adult life have been reported in various populations (Barker, 2004).

2.6 Pathogenesis of type 2 diabetes mellitus

2.6.1 Pathophysiology of hyperglycemia

Insulin is the hormone for regulating blood glucose. In general, normoglycaemia is sustained by the balanced interplay between insulin secretion and the efficacy of insulin actions. In the fasting state, the major part of glucose is created by the liver, and roughly half of it is used for brain glucose metabolism. The residue is taken up by various tissues, mainly muscle and for a minor part adipose tissue. In this situation insulin levels are low and have no substantial effect on muscle glucose uptake. The normal liver is capable of rising glucose production four fold or more, and the main effect of the relatively low insulin levels is to control liver glucose production (Stumvoll et al., 2008). After a meal, insulin is secreted in bigger

amounts, which reducing liver glucose production level further, and will lead to an enhancement of muscle glucose uptake (Stumvoll et al., 2008). The normal pancreatic cell is capable of adjusting to changes in insulin action, that is, a decrease in insulin action is accompanied by upregulation of insulin secretion. When the adaptation of the β -cell is not enough, the subjects will develop impaired glucose tolerance (IGT) or type 2 DM. Weyer et al. (1999) have shown that β -cell dysfunction is critical in the pathogenesis of type 2 DM. It is of note that even small increases in fasting and postprandial glucose occur in people with insulin resistance, which should stimulate insulin release. Thus, when insulin action decreases the system normally compensates by increasing β -cell function, in the face of higher glucose (Stumvoll et al., 2003).

2.6.2 Insulin resistance

Insulin resistance is present when the natural effects of insulin are subnormal for both glucose disposals in skeletal muscle and suppression of endogenous glucose production primarily in the liver (Dinneen et al., 1992). In the fasting state, however, muscle accounts for only a small amount of glucose disposal while endogenous glucose production is responsible for all of the glucose appearing in plasma. In type 2 diabetic patients and in patients with impaired fasting glucose (IFG) endogenous glucose production is accelerated (Weyer et al., 1999).

Insulin resistance is strongly associated with obesity. A number of hormones, cytokines and metabolic fuels, such as nonesterified free fatty acids (NEFA) originate in the adipocyte and reduce insulin action. In obese subjects, adipocytes are large, which provide them resistance to the ability of insulin to suppress lipolysis, especially in deep subcutaneous fat. In addition, elevated release and circulating

levels of NEFA and glycerol, both of which aggravate insulin resistance in skeletal muscle and liver (Boden, 1997).

2.6.3 Insulin secretion in type 2 diabetes mellitus

In type 2 diabetic patients, plasma glucose levels are raised; and accordingly, fasting plasma insulin was elevated. While the insulin levels sometimes increase slightly after a meal in type 2 diabetic patients this is considerably less than normal. In a study by Gerich (1998) reported that in which glucose levels have been raised by glucose infusions (hyperglycaemic clamps) to comparable levels in diabetic subjects and controls, it has become clear that second-phase insulin secretion is roughly 25% (IGT) to 50% decreased in type 2 DM. First-phase secretion is generally completely lost. In normoglycaemic first-degree relatives insulin secretion is also diminished but to a lower extent, presumably on a genetic basis (Pimenta et al., 1995). It is suspected that upon acquisition of insulin resistance (obesity, physical inactivity) the pancreas that has already lower secretory capabilities can adapt less than normal, which might lead to decreased glucose tolerance or diabetes. It has been commonly suggested that various mechanisms might further aggravate β -cell insulin secretory dysfunction, among which glucose toxicity and lipotoxicity (Stumvoll et al., 2008)

2.6.4 Glucose toxicity

Over time, insulin secretion appears to decrease in most diabetic patients, it has been proposed that glucose itself is toxic to β -cells. In pancreas β -cells oxidative glucose metabolism will also lead to the formation of reactive oxygen species (ROS), which would damage β -cells. Indeed, β -cells have low amounts of catalase and superoxide dismutase, enzymes which normally metabolise the ROS (Robertson et al., 2003).

2.6.5 Lipotoxicity

Free fatty acids (FFA) extremely increase insulin secretion and chronic FFA overload reduces β -cell function. Type 2 DM subjects have frequently increased FFA due to insulin resistance to lipolysis. It is currently obvious that high glucose inhibits β -cell fatty acid oxidation, which may lead to accumulation of long-chain coenzyme A (LC-CoA) (Robertson et al., 2004).

2.7 Heredity in type 2 diabetes mellitus

A positive family history confers a two to three fold increased risk for the disease with a 15% to 30% risk to develop type 2 DM or IGT in first degree relatives of type 2 DM subjects (Pierce et al., 1995). The risk is even higher (around 60% by the age of 60 years) if both parents have diabetes (Tattersal and Fajans, 1975).

2.8 Genetic factors in type 2 diabetes mellitus

The polygenic nature of diabetic disease has it difficult to dissect individual genes conferring increased risk for diabetes. Type 2 DM has a strong genetic component and most Asian diabetic patients have a first-degree relative with diabetes (Ng et al., 2001).

Ramachandran et al. (2009) noted that most of the loci originally associated with diabetes in European populations have been replicated in Asian populations. Most genetic variants related with type 2 DM seem to be related to insulin secretion rather than insulin resistance, and several of the risks are associated with reduced islet-cell function (Frayling, 2007; Florez, 2008; Yasuda et al., 2008; Ramachandran et al., 2009).

2.9 Diabetic outpatients

Diabetic outpatient is defined as the patient who receives services in the hospital for less than 24 hours, who is registered on the hospital records as an outpatient, and who receives outpatient hospital services, other than supplies or prescription drugs alone, from the hospital. Outpatient clinics are an important part of every hospital because of following check-up. Outpatient clinics are where the decision to admit a patient is taken. Reduction of inpatient length of stay creates more work for outpatient clinics. Through frequent visits, the work in these units becomes well-organised and coordinated with the work of doctors in the hospital.

Diabetes services are largely outpatient based. A complex local network of services is required to encompass the needs of all people with diabetes throughout their lifelong pathway of care. A center requirement for all patients is support for self-efficacy, which necessitates effective, continuing patient education programmes and compliance influences glycaemic control (Chen et al., 2004).

2.9.1 Compliance of type 2 diabetes mellitus

Therapeutic compliance is adherence of the patient to treatment indications prescribed by the physician. It is necessary to evaluate not only therapy compliance but also the non-medical indications. Kravitz et al. (1993) studied that the level of adherence to exercise, diet, and the administration of medication in patients with chronic diseases such as diabetes mellitus. They found frequencies of noncompliance of 19%, 69%, and 91%, respectively. In diabetic outpatients the compliance is very

difficult to define. People with diabetes are poorly compliant with dietary and exercise recommendations and that primary non-compliance with medication is common (Cradock, 2004).

The diabetic outpatients services are different from diabetic inpatients in:

2.9.1 (a) Diet

Diet plays an essential role in the therapeutic strategy to keep patients with diabetes in good glycaemic control and prevent microvascular and macrovascular complications. The management of diabetes has been prescribing dietary recommendations for the treatment of diabetes since many years. Although the importance and the scientific basis of these recommendations are very well recognized, their conversion into daily routine is very difficult.

- In diabetic inpatients dietitians used more information from medical records to make clinical judgment than diabetic outpatients dietitians.
- In diabetic inpatients dietitians are more likely to identify nutrients related problems via information from medical records while outpatients dietitians more frequently identify specific behaviorals goals whearesa inpatients dietitians recommend general goals.

2.9.1(b) Exercise

The compliance of exercise is very important in diabetic patients because exercise is beneficial in diabetic patients for the following reasons:

- 1. Regular aerobic exercise decreases the dosage or need for insulin or oral antihyperglycaemic agents.
- 2. It reduces cardiovascular risk factors.