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PENYEDIAAN, PENCIRIAN DAN SIFAT-SIFAT PENJERAPAN MANIK 

KITOSAN DAN TERBITAN KITOSAN UNTUK PENYINGKIRAN ION 

KUPRUM(II) DAN PLUMBUM(II) 

 

ABSTRAK 

 

Dalam kajian ini, sistem penjerapan kelompok telah digunakan untuk mengkaji 

penjerapan ion kuprum(II) dan plumbum(II) ke atas manik kitosan, manik kitosan-

glutaraldehid (GLA) (1:1 dan 1:2), manik kitosan-alginat dan manik kitosan-

tripolifosfat (TPP) telah dikaji. Sifat-sifat fizikokimia bagi kelima-lima penjerap 

tersebut telah dianalisis dengan menggunakan kaedah spektroskopi inframerah, 

analisis kandungan ion-ion logam ringan, analisis luas permukaan dan saiz liang, 

analisis kandungan CHN dan analisis pembelauan sinar-X. Beberapa parameter yang 

memberi kesan terhadap nilai muatan penjerapan seperti pH, tempoh pengacauan, 

kelajuan pengacauan, saiz zarah, dos bahan penjerap, kepekatan awal ion logam dan 

suhu telah dikaji. Data isoterma penjerapan bagi ion kuprum(II) dan plumbum(II) ke 

atas kelima-lima penjerap tersebut telah ditentukan dan dipadankan dengan model-

model isoterma seperti Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Sips 

dan Redlich-Peterson (R-P). Muatan penjerapan maksimum untuk manik kitosan, 

manik kitosan-GLA 1:1, manik kitosan-GLA 1:2, manik kitosan-alginat dan manik 

kitosan-TPP berdasarkan isoterma Langmuir ialah masing-masing 64.62, 29.95, 

22.16, 67.66 dan 24.19 mg/g untuk ion kuprum(II) dan masing-masing 34.98, 15.08, 

13.71, 60.27 dan 43.25 mg/g untuk ion plumbum(II). Berdasarkan kajian 

termodinamik, perubahan entalpi (ΔH°) yang diperolehi untuk kelima-lima penjerap 

bagi penjerapan ion kuprum(II) dan plumbum(II) adalah bersifat endotermik. 

Apabila suhu sistem ditingkatkan, nilai tenaga bebas Gibbs (ΔG°) yang diperoleh 
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adalah negatif. Ini menunjukkan proses penjerapan berlaku secara spontan pada suhu 

tinggi. Model kinetik tertib pseudo-pertama dan pseudo-kedua telah digunakan untuk 

menganalisis data kinetik. Kelima-lima penjerap menunjukkan nilai korelasi yang 

baik untuk model kinetik tertib pseudo-kedua yang mengesahkan bahawa penjerapan 

kimia merupakan langkah pengawalan kadar. Berdasarkan kajian pembauran antara 

partikel, didapati proses penjerapan ion kuprum(II) dan plumbum(II) adalah 

kompleks dimana pembauran antara partikel juga menyumbang kepada langkah 

penentuan kadar. Di dalam sistem binari, kehadiran ion kuprum(II) telah 

merencatkan proses penjerapan ion plumbum(II). Ini menunjukkan ion kuprum(II) 

adalah pesaing yang kuat untuk ion plumbum(II). Berdasarkan kajian proses 

penukaran ion, didapati bahawa proses ini merupakan salah satu daripada mekanisme 

yang penting dalam proses penjerapan ion kuprum(II) dan plumbum(II) pada 

kepekatan awal ion logam yang rendah. Apabila kepekatan awal ion logam 

meningkat, proses pembentukan kompleks serta mekanisme penjerapan yang lain 

akan memainkan peranan yang lebih penting semasa proses penjerapan ion 

kuprum(II) dan plumbum(II). Kelima-lima penjerap menunjukkan proses 

kebolehulangan yang baik terhadap ion kuprum(II) dan plumbum(II) kerana nilai 

RSD adalah kurang daripada 5 %. Ion-ion logam berat yang terjerap ke atas kelima-

lima penjerap boleh dikembalikan semula dengan menggunakan larutan Na2EDTA 

dan digunakan semula sebanyak tiga kali berturut-turut.  
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PREPARATION, CHARACTERISATION AND ADSORPTION 

PROPERTIES OF CHITOSAN AND CHITOSAN DERIVATIVES BEADS 

FOR THE REMOVAL OF COPPER(II) AND LEAD(II) IONS 

 

ABSTRACT 

 

In this study, a batch adsorption system was applied to study the adsorption of 

copper(II) and lead(II) ions onto chitosan, chitosan-glutaraldehyde (GLA) (1:1 and 

1:2), chitosan-alginate and chitosan-tripolyphosphate (TPP) beads. The 

physicochemical properties of all five adsorbents were analysed based on infrared 

spectroscopy, light metal cations analysis, surface area and pore size analysis, CHN 

analysis and X-ray diffraction analysis. Different parameters affecting the adsorption 

capacity such as initial pH, agitation period, agitation rate, particle sizes, adsorbent 

dosage, initial concentration of metal ions and temperature were studied. Adsorption 

isotherm data for copper(II) and lead(II) ions onto all five adsorbents were 

determined and correlated with Langmuir, Freundlich, Dubinin-Radushkevich (D-R), 

Sips and Redlich-Peterson (R-P) isotherm models. The maximum adsorption 

capacity for chitosan, chitosan-GLA (1:1 and 1:2), chitosan-alginate and chitosan-

TPP beads based on Langmuir isotherm were 64.62, 29.95, 22.16, 67.66 and 24.19 

mg/g, respectively for copper(II) ions and 34.98, 15.08, 13.71, 60.27 and 43.25 mg/g, 

respectively for lead(II) ions, in single metal system. Based on thermodynamic 

studies, the enthalpy change (ΔH°) for all five adsorbents during the adsorption of 

copper(II) and lead(II) ions were endothermic in nature. As the temperature 

increased, the Gibbs free energy change (ΔG°) obtained were negative indicating a 

spontaneous adsorption process at high temperature. Pseudo first- and second-order 

kinetic models were applied to analyze the kinetic data. All five adsorbents showed 
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good correlation coefficients for pseudo second-order kinetic model whereby 

chemical adsorption being the rate controlling step. Based on the intraparticle 

diffusion, the adsorption process was complex whereby the intraparticle diffusion 

also contributed to the rate determining step. In the binary metal system, the presence 

of copper(II) ions caused a reduction in the adsorption of lead(II) ions showing that 

copper(II) ions were strong competitors for lead(II) ions. Based on the ion-exchange 

study, it was found that ion-exchange played an important role in the adsorption of 

copper(II) and lead(II) ions but only at lower initial concentration of the metal ions. 

As the initial concentration of the metal ions was increased, complexation and other 

adsorption mechanism played a more crucial role in the adsorption process. All 

adsorbents showed good reproducibility as the relative standard deviations (RSD) 

were less than 5 %. All five adsorbents can be effectively regenerated using 

Na2EDTA and successfully applied for three successive adsorption-desorption 

cycles. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Pollution 

 

A tremendous growth in the manufacture and use of synthetic chemicals began with 

the industrial revolution in the middle of 18th century and by the 19th century; 

pollution became a more noticeable phenomenon. The demands of an increasing 

population coupled with the desire of most people for a higher standard of living 

resulted in a worldwide pollution on a massive scale.  

 

Pollution, a word derived from the Latin word “pollutionem”, can be defined as the 

introduction of substances or energy by human, directly or indirectly into the 

environment causing hazards to human health, harm to living resources and 

ecological systems, damage to structure or amenity, or interference with legitimate 

uses of the environment (Lim and Polprasert, 1996). Virtually all human activities 

involve the creation of substances and energy. These processes can lead to accidents 

and the generation of wastes, which can be released accidentally or deliberately into 

the environment. The possibility of such releases to be categorized as pollution, 

depend on the critical load present in the ecosystem, or on the acceptable standards 

for such pollution (Rana, 2006). Environmental pollution can be divided into water, 

air and soil pollution.  

 

Water, with a deceptively simple chemical formula of H2O, is an essential part of all 

living systems and is the medium from which life evolved. However, the 
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introduction of motorized vehicles and the explosion of human population have 

caused contamination of water supplies. United States Department of Health 

Education and Welfare defines water pollution as “the adding of any substance to 

water, or the changing of water’s physical and chemical characteristics in anyway 

that interferes with its legitimate purposes” (Rana, 2006). Currently, waterborne 

toxic chemicals pose the greatest threat to the safety of water supplies in developing 

nations such as Malaysia. There are many possible sources of chemical 

contamination. These include wastes from chemical producing industries, metal 

plating operations and pesticide run off from agricultural lands. The effects of water 

pollution are not only devastating to humans but also to animals, fish and birds. 

Polluted water is unsuitable for drinking, recreation, agriculture and industrial use. It 

also diminishes the aesthetic quality of lakes and rivers. Water pollutants can be 

divided among some general categories such as inorganic pollutants, trace organic 

pollutants, trace metals, heavy metals and pesticides (Manahan, 2000). 

 

1.2 Heavy Metals 

 

Environmental contamination and human exposure to heavy metals have 

dramatically increased in the past 50 years because of their increasing usage in 

industrial processes and products. Heavy metals are the most harmful of the 

elemental pollutants and are of particular concern because of their toxicities to 

humans. There are more than 20 heavy metals and the most harmful metals to human 

health are mercury, cadmium, lead, arsenic, chromium, copper and zinc (Çavuş and 

Gürdağ, 2008). The human body cannot metabolize heavy metals and it display bio-

accumulative properties causing various diseases and disorders. Metal ions in the 
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environment can accumulate and are biomagnified along the food chain. Therefore, 

their toxic effects are more pronounced in animals at higher trophic levels 

(Ahluwalia and Goyal, 2007). 

 

The most devastating incident involving heavy metals was the organic mercury 

poisoning which broke out in Minamata Bay area of Japan during the period of 1953-

1960. A total of 111 cases of mercury poisoning and 43 deaths were reported among 

people who had consumed seafood from the bay, which had been contaminated with 

mercury waste from a chemical plant. Congenital defects were observed in 19 babies 

whose mothers had consumed seafood contaminated with mercury (Manahan, 2000). 

This was not the last incident that involved human exposures to heavy metals as 

there had been other reports regarding such incidents occurring around the globe 

such as the ‘Itai-itai’ incident involving contamination of cadmium in Jintsu River in 

Japan (Sud et al., 2008). Various regulatory bodies have set the maximum prescribed 

limits for the discharge of toxic heavy metals in the aquatic systems. In Malaysia, the 

Environmental Quality Act 1974 (Environmental Quality Act 1974 (Act 127)) was 

established to provide legal provision for project proponents to vary their standards 

of effluents. 

 

1.2.1 Copper 

 

Copper is widely distributed in nature. It is described as a noble metal because it is 

rather stable in the elemental state and is reluctant to lose electron and pass into the 

ionic state. It is also a transition element and shows typical features of variable 

valency, coloured ions and has tendency to form complex. Copper(II) ions form 
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stable complexes such as chelates with organic substances and this can cause its 

effective removal from solution. Two ionic forms, Cu2+ (cupric) and Cu+ (cuprous) 

are recognised, and the divalent form being much more common (Walker, 1971).  

 

Copper is a low-toxicity, corrosion-resistant metal widely used because of its 

workability (ductility and malleability), electrical conductivity and ability to conduct 

heat. In addition to its use as electrical wire, copper is used in tubing, shims, gaskets 

and other applications (Manahan, 2000). Metallic copper has antibacterial properties 

and has a biological role in sustaining life. An adult human body consists around 100 

mg of copper, mostly attached to protein, and requires an intake of some 3-5 mg per 

day. Moreover, copper deficiency can result in anaemia (Greenwood and Earnshaw, 

1997). 

 

However, accumulation of copper in human body may lead to Wilson’s disease, a 

systemic disease with neurological symptoms and liver damage (Çavuş and Gürdağ, 

2008). A higher incidence of stomach cancer in humans has been found in regions 

where the Zn:Cu ratio in the soil exceeded certain limits. Epidemiological evidence 

also showed high incidence of cancer among coppersmiths suggesting a primary 

carcinogenic role of copper (Ho et al., 2002). Intoxication by copper salts resulted in 

vomiting, hypertension, coma and death. Its toxicity is highly pH dependent and it 

has been reported to be more toxic to fish at lower pH values. Copper ions are toxic 

to most forms of life whereby 0.5 mg/L in water is lethal to many algae while most 

fish succumb to a few parts per million. In Malaysia, according to the Environmental 

Quality Act 1974, the amount of copper ions present in the industrial effluents and 
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wastes from development projects that are located within catchments areas, should 

not exceed 0.20 mg/L (Environmental Quality Act 1974 (Act 127)). 

 

1.2.2 Lead 

 

Lead has been mined in Britain since the time of the Romans. It is a soft metal of 

high density with an atomic weight of 207 and is commonly encountered as the 

divalent plumbous ion (Pb2+). Lead is one of the most useful metals due to its wide 

distribution and its easiness to be extracted and to work with. Lead has many 

functions, ranging from sheets for roofing to blocks for screening from radioactive 

emissions. It has also been used as an alloy in electric battery manufacturing and its 

compounds such as alkyl are used in motor fuels for its anti-knock properties, lead 

oxides in paints and lead arsenates in insecticides (Lenihan and Fletcher, 1977). 

  

However, lead has the most damaging effects on human health, whereby it can enter 

the human body through uptake of food (65%), water (20%) and air (15%) (Ho et al., 

2002; Nurchi and Villaescusa, 2008). The nervous system, blood cells and kidneys 

are the parts of the body most affected by lead poisoning, but other organs can also 

be affected. Symptoms of lead poisoning include abdominal pain, anaemia and 

lesions of the central and peripheral nervous system which cause behavioural 

problems. The most damaging long-term effects of lead poisoning occur in children. 

Children exposed to lead poisoning are affected by convulsions, paralysis and coma 

at the time of attack, and intellectual impairment later in life (Lenihan and Fletcher, 

1977; Rana, 2006). Meanwhile, in adults, the most severe neurological effect of lead 
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is lead encephalopathy, which is a general term to describe various diseases that 

affect brain function (Bhattacharyya and Gupta, 2006). 

 

Contaminated water supplies can be a significant source of lead exposure particularly 

in soft-water areas whereby plumbing systems are made of lead. Lead poisoning 

arising from domestic water, although seldom severe, has claimed one fatality in 

1941, whereby the lead content in the domestic water supply was eight times higher 

than the present World Health Organization (WHO) limit. In the most recent cases, 

lead poisoning in rural districts of Scotland was due to the high lead content in tap 

water (Lenihan and Fletcher, 1977). The presence of lead in industrial effluents and 

waste from development projects that are located within catchments areas in 

Malaysia should not exceed 0.10 mg/L, as has been stated in the Environmental 

Quality Act 1974 (Environmental Quality Act 1974 (Act 127)). 

 

1.3 Treatment Technologies for Heavy Metal Ions Containing Wastewaters 

 

It is a fair hypothesis that a substance which is harmful when present in large 

amounts over a short period may also be harmful in smaller amounts over a long 

period. The possible health effects of smaller continual exposures to heavy metals 

from the environment are now recognized as being very important. In the last decade, 

various effluent treatment systems for heavy metals containing wastewaters have 

been proposed including chemical precipitation, ion exchange, reverse osmosis, 

electrocoagulation, electrodialysis and adsorption.  
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1.3.1 Chemical precipitation 

 

Chemical precipitation is the most common method for removing toxic heavy metal 

ions up to parts per million (ppm) levels in water. In Thailand and Turkey, chemical 

precipitation is used for treating electroplating wastewaters (Tünay and Kabdasli, 

1994; Charerntanyarak, 1999). Lime or calcium hydroxide (Ca(OH)2) is the most 

commonly employed precipitant agent. Lime precipitation can be employed to treat 

inorganic effluent with concentration of heavy metal ions higher than 1000 mg/L 

(Kurniawan et al., 2006). Feng et al. (2000) used lime to treat acid mine water 

obtained from a south African gold mine which contained various heavy metal ions. 

In the study by Feng et al. (2000), the concentration of calcium, sulphate, barium, 

phosphate, chloride and fluoride decreased as the precipitation process proceeded. 

These ions formed low solubility precipitates which was separated using a magnetic 

separation. However, it was found that iron and manganese could not be precipitated 

completely owing to its highly soluble precipitates. Powerful oxidants were required 

to oxidize ferrous iron and divalent manganese as the strongly complexed ions were 

not readily oxidized with oxygen. Moreover, it was found that it is impossible to 

achieve a maximum removal for all the heavy metal ions at a specific pH, as 

different pH was required for the removal of different heavy metal ions. Other 

interesting findings were reported by Chen et al. (2009), who used lime together with 

fly ash and obtained percentage of removal up to 97.14 - 98.54 % for copper(II), 

lead(II), chromium(III) and zinc(II) ions. Chen et al. (2009) used about 900 mg/L of 

lime to obtain the high percentage of removal. The efficiency of the metal 

precipitation was high in the broad pH range of 6-12 with the optimum pH value 

being between pH 8 and 10. Although chemical precipitation is cost effective, its 
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efficiency is affected by low pH and the presence of other salts (ions). The pH must 

be strictly controlled as precipitates of amphoteric metals such as zinc and lead tend 

to re-dissolve as the pH changes beyond the optimum pH range (Chen et al., 2009). 

This process also requires the addition of other chemicals, which finally leads to the 

generation of sludge that requires further treatment which is cost intensive 

(Kurniawan et al., 2006). High dosage of the precipitant agent is required and heavy 

metal ions may not be reduced to an acceptable level for discharge due to poor 

settling and dissolution of precipitates (Tadesse et al., 2006). Furthermore, chemical 

precipitation with lime or bisulphide lacks the specificity and is ineffective to remove 

metal ions at low concentration (Ahluwalia and Goyal, 2007). 

 

1.3.2 Ion exchange 

 

Ion exchange is another method used successfully in the industry for the removal of 

heavy metal ions from effluents. Though it is relatively expensive as compared to the 

other methods, it has the ability to achieve parts per billion (ppb) levels of clean up 

while handling a relatively large volume of wastewaters (Ahluwalia and Goyal, 

2007). Ion exchange is a method to remove cations or anions from solution onto a 

solid resin, which can be regenerated by treatment with acids, bases or salts 

(Manahan, 2000). Some of the most commonly used resins are clinoptilolite, 

Amberlite IR-120, Dowex 2-X4 and zeolite. In Italy and Spain, ion exchange has 

been used as one of the methods to treat wastewaters laden with heavy metal ions 

(Pansini et al., 1991; Álvarez-Ayuso et al., 2003). The uptake of nickel(II) ions using 

clinoptilolite was studied by Papadopoulos et al. (2004). The percentage of removal 

was up to 74.8 % and was further improved to 98.3 % by using the combination of 
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ion exchange and precipitation processes. Meanwhile, Lee et al. (2006) compared the 

efficiency of Amberlite IRC-718 (weak acid cationic chelating exchange resin) and 

IR-120 (strong acid cationic exchange resin) in removing copper(II), zinc(II), 

cadmium(II) and chromium(III) ions. The authors found that Amberlite IR-120 had 

higher adsorption capacity in comparison to Amberlite IRC-718. This showed that a 

strong cationic ion exchange resin provided more exchangeable sites for heavy metal 

ions, thus giving better removal efficiency (Lee et al., 2006). Ion exchange can be 

effectively used to treat inorganic effluent with metal concentration of less than 10 

mg/L, or even higher than 100 mg/L. Unlike chemical precipitation, ion exchange 

does not present any sludge disposal problem therefore lowering the operational 

costs for the disposal of the residual metal ions sludge (Kurniawan et al., 2006). The 

disadvantage of this method is that, it cannot handle concentrated metal solution as 

the matrix gets easily fouled by organics and other solids in the wastewater. 

Moreover, suitable ion exchanger resins are not available for all heavy metal ions 

and are highly sensitive to pH of the solution (Kurniawan et al., 2006; Ahluwalia and 

Goyal, 2007). 

 

1.3.3 Electrocoagulation 

 

Electrocoagulation is an electrochemical approach, which uses an electrical current 

to remove heavy metal ions from solution. The contaminations present in wastewater 

are maintained in solution by electrical charges. When these ions and other charged 

particles are neutralized by ions of opposite electrical charges provided by 

electrocoagulation system, they become destabilized and precipitate in a stable form. 

Aluminium, iron and cast iron electrodes are commonly used in the 
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electrocoagulation system to remove heavy metal ions (Kabdaşli et al., 2009). 

Merzouk et al. (2009) used aluminium electrodes to treat textile wastewater and for 

the separation of some heavy metal ions in aqueous solution. Their results showed 

that high removal efficiency for suspended solid, turbidity, biological oxygen 

demand and chemical oxygen demand can be achieved at a current density of 11.55 

mA/cm2 at a retention time of 10 min. Meanwhile, the removal efficiency for 

iron(II), nickel(II), copper(II), zinc(II), lead(II) and cadmium(II) ions using 

electrocoagulation were almost 98.5 % although the heavy metal ions concentration 

was increased from 50 to 400 mg/L. In another study, Kabdaşli et al. (2009) used 

stainless steel electrodes to treat metal plating wastewater containing nickel(II) and 

zinc(II) ions. The results obtained by the authors showed that as the current density 

was increased from 2.25 to 9.0 mA/cm2, the total organic content was reduced up to 

66 % and a total removal of heavy metal ions was achieved. However, the 

disadvantage of this system is due to the formation of flocs of metallic hydroxide 

which requires further purification, making the recovery of valuable heavy metal 

ions impossible (Kurniawan et al., 2006). This system is also not an economical 

method for treating wastewaters because of the high electrical energy consumption.  

 

1.3.4 Reverse osmosis 

 

Reverse osmosis is a pressure driven membrane process whereby the heavy metal 

ions are retained while water pass through the membrane (Kurniawan et al., 2006). 

The reverse osmosis process requires a driving force to push the fluid through the 

membrane and the most common force is pressure from a pump. This technique is 

gaining favourability in Malaysia and Spain (Ujang and Anderson, 1996; Benito and 
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Ruiz, 2002). Ozaki et al. (2002) studied the performance of an aromatic polyamide 

(ES 20) ultra-low-pressure reverse osmosis membrane for the removal of copper(II), 

nickel(II) and chromium(VI) ions in aqueous solution. The authors found that the 

rejection of heavy metal ions was greater than 99 % at higher feed concentration and 

pH. The possible reason was that at high pH, heavy metal ions were capable of 

forming insoluble hydroxide complexes which cannot easily pass through the tighter 

ES20 membrane. Once the membrane was used to treat electroplating wastewater, 

the rejection of heavy metal ions was around 98 % which was slightly lower than the 

rejection of heavy metal ions in the aqueous solution. This was due to the presence of 

other ions in the wastewater. In the work by Mohsen-Nia et al. (2007), a thin film 

composite (polyamide) of spiral wound type membrane was successfully used to 

remove copper(II) and nickel(II) ions in a reverse osmosis system. The authors found 

that the addition of disodium ethylenediaminetetraacetic acid salt increased the 

percentage of removal for copper(II) and nickel(II) ions up to 99.5 %. This was 

because the chelating agent increased the ionic size of copper(II) and nickel(II) ions 

and thus increasing the efficiency of the removal process using the membrane. The 

major parameter that affects the extent of heavy metal ions removal using reverse 

osmosis is pressure. The higher the pressure, the higher is the removal efficiency of 

heavy metal ions and thus the higher is the consumption of energy. Other than that, 

the existence of suspended solids or oxidized compounds such as chlorine oxides, 

will promote membrane fouling which might be irreversible. The membrane would 

then have to be replaced, thus increasing the operational costs (Kurniawan et al., 

2006).  
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1.3.5 Electrodialysis 

 

In electrodialysis, selective membranes (alternation of cation and anion membranes) 

are fitted between the electrodes in electrolytic cells and once under continuous 

electrical current, the associated ion migrates, allowing the recovery of metal ions 

(Ahluwalia and Goyal, 2007). When a solution containing ionic species passes 

through the cell compartments, the anions migrate toward the positively charged 

anode and the cations toward the negatively charged cathode. Tzanetakis et al. 

(2003) used ion exchange membranes for the electrodialysis of nickel(II) and 

copper(II) ions from aqueous solution. Two cation exchange membranes, 

perfluorosulfonic Nafion 117 and sulfonated polyvinyldifluoride (SPVDF) 

membrane were compared under similar operating conditions. The SPVDF 

membrane performed as good as the commercial Nafion 117. According to the 

authors, the new SPVDF membrane combined low electrical resistance with 

satisfactory chemical, thermal and mechanical stability and can be used as an 

alternative low cost membrane to the Nafion 117. Meanwhile, Mohamed (2002) used 

an electrodialysis method to treat silty clay soil polluted by lead. The author studied 

the effect of two different chemical reagents on the removal of lead(II) ions from the 

tested soil. The total removal of lead(II) ions was 80 and 92 % using tap water at pH 

4 and sodium acetate at pH 5, respectively. Electrodialysis has the ability to treat 

wastewater laden with heavy metals ions and for the rejection of undesirable 

impurities from water. However, as electrodialysis is a membrane process, it requires 

clean feed and careful operation to prevent any damages to the stack (Kurniawan et 

al., 2006). 
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1.3.6 Adsorption 

 

All of the above methods had been found to have disadvantages. Some of the above 

methods involved high operational costs, especially for the treatment of large volume 

or highly concentrated effluents and might be insufficient to meet strict regulatory 

requirements. Adsorption onto solid substrate materials is considered as the most 

suitable process for the removal of heavy metal ions from solution at low and high 

concentrations. Activated carbon is one of the most widely employed adsorbents to 

treat wastewater. It can be used for purification, decolourization and the removal of 

toxic organics and heavy metal ions (Kim et al., 2001). Commercial activated 

carbons are prepared from a variety of carbonaceous raw materials. The qualities and 

characteristics of activated carbons depend on the physical and chemical properties 

of the starting materials and the activation methods used (Yang and Lua, 2006).  The 

commercial activated carbon can be divided into H- and L-type. The H-type 

activated carbon are activated at high temperature and adsorb hydrogen ions (H+), 

while the L-type activated carbon are activated at low temperature and can adsorb 

hydroxide ions (OH-) (Chen and Lin, 2001). The limitation to the usage of activated 

carbon lies greatly in the high cost of the material and the difficulty of its 

regeneration after use (Prasad and Saxene, 2004).  

 

Therefore, numerous approaches have been studied for the development of cheaper 

adsorbents (Varma et al., 2004; Zhao et al., 2007). An adsorbent can be considered 

low-cost if it requires little processing, is abundant in nature or is a by-product or 

waste material from another industry (Crini, 2006). Raw agricultural solid wastes and 

waste materials from forest industries such as sawdust and bark have been widely 



 14

used as adsorbents. Sawdust which contains various organic compounds such as 

lignin, cellulose, and hemicellulose with polyphenolic groups might be useful to bind 

heavy metal ions through different mechanism (Crini, 2006). Chemically pre-treated 

sawdust had shown to improve the adsorption capacity (Argun et al., 2007; Meena et 

al., 2008). Many studies had proven that sawdust is a promising adsorbent for the 

removal of heavy metal ions (Taty-Costodes et al., 2003; Acar and Eren, 2006; 

Šćiban et al., 2007; Yasemin and Zeki, 2007; Naiya et al., 2009; Rahman and Islam, 

2009). Another waste product from the timber industry to be considered is bark. Bark 

has been found to be effective in removing heavy metal ions due to its tannin 

content. The polyhydroxy polyphenol groups of tannins are thought to be active 

species in the adsorption process (Crini, 2006). Several studies had used bark from 

different trees for the adsorption of heavy metal ions and showed promising results 

(Al-Asheh and Duvnjak, 1997; Vázquez et al., 2002; Gundogdu et al., 2009; Naiya et 

al., 2009). Some of the other raw agricultural solid wastes used for the removal of 

heavy metal ions from aqueous solution are sugar-beet pulp (Dronnet et al., 1997), 

tree fern (Ho et al., 2002), Azadirachta indica (neem) leaf powder (Sharma and 

Bhattacharyya, 2004), palm kernel fibre (Ho and Ofomaja, 2005), unmodified and 

thiolated coconut fibre (Igwe et al., 2008) and rubber (Hevea brasiliensis) leaves 

(Ngah and Hanafiah, 2009).  

 

Other than agricultural and forest industries’ solid wastes, industrial solid wastes 

such as fly ash and red mud are also classified as low-cost materials and can be used 

for the removal of heavy metal ions. Fly ash, a waste product generated during the 

burning of coal consists of alumina, silica, ferric oxide and calcium oxide (Ayala et 

al., 1998; Alinnor, 2007). Its properties are extremely variable and depend strongly 
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on its origin. Its alkaline property makes it useful in wastewater treatment for the 

precipitation of metallic ions. Several studies showed the efficiency of fly ash in the 

removal of heavy metal ions (Ayala et al., 1998; Héquet et al., 2001; Alinnor, 2007; 

Chen et al., 2009; Wang et al., 2009). Another abundant industrial by-product is red 

mud. Red mud is an insoluble fine-grained residue of alumina production industry. 

Some of the major constituents of red mud are Fe2O3, TiO2, Al2O3, SiO2 and Na2O. 

Due to its high content of aluminium, iron and calcium content, it has been used as 

an inexpensive adsorbent for the removal of heavy metal ions in many studies 

(Gupta, 2001; Vaclavikova et al., 2005). 

 

Biological materials such as chitin, chitosan, peat, yeasts or bacterial biomass are 

also used to accumulate and concentrate pollutants from aqueous solution. These 

biosorbents and their derivatives contain a variety of functional groups which can 

form complex with heavy metal ions (Shahidi et al., 1999). Most of the biosorbents 

are more selective than traditional ion-exchange resins and commercial activated 

carbons (Crini, 2006). The adsorption of heavy metal ions using chitin and its 

deacetylated form, chitosan is one of the emerging methods for removing heavy 

metal ions even at low concentrations (Vold et al., 2003; Kurita, 2006). These 

biopolymers have been receiving particular attention because of its structure, 

physico-chemical characteristics, chemical stability, high reactivity and excellent 

selectivity towards heavy metal ions, resulting from the presence of hydroxyl, 

acetamido or amine groups in the polymer chain (Crini, 2005). 
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1.4 Sources and Properties of Chitin 

 

Polysaccharides are material produced by living beings and are widely distributed in 

nature. Among the many kinds of polysaccharide found in nature, cellulose and 

chitin are the most important of all. Cellulose, produced by photosynthesis in plants, 

composes the largest portion (about 50 %) of the total biomass. Meanwhile, the 

second most common portion of biomass comes from another polysaccharide, chitin 

(Mathur and Narang, 1990; Rinaudo, 2008).  

 

The name ‘chitin’ is derived from the Greek word ‘chiton’, meaning a coat of mail 

since it functions as protective coat for invertebrates. Chitin was first described by 

Braconnot in 1811 who was a professor of Natural History and a member of the 

Academy of Sciences of Nancy, France (Muzzarelli, 1977). Chitin, (C8H13NO5)n, is a 

linear polymer with high-molecular weight composed of 2-acetamido-2-deoxy-β-D-

glucose (N-acetylglucosamine) units. Structurally, chitin (Figure 1.1b) is related to 

cellulose (Figure 1.1a) with difference only at the C2 carbon, whereby in cellulose it 

is the hydroxyl group (-OH) while in chitin it is the acetamido group (-NHCOCH3).  

 

Chitin is the most abundant organic constituent in the skeletal of invertebrates. It was 

found in arthropods, annelids and mollusks, where it provides skeletal support and 

body armour (Whistler, 1973). The exoskeletons of crabs and lobsters have been the 

source of raw material for the production of chitin as the dry arthropod exoskeletons 

contained about 20 % to 50 % of chitin (Muzzarelli, 1973). Normally, chitin is 

present in the skin or shell of arthropods as a composite of protein, lipids and 

calcium carbonates.  
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Figure 1.1 Structures of (a) cellulose, (b) chitin and (c) chitosan  
 
 

The annual worldwide crustacean shells production has been estimated to be 1.2 x 

106 tons, and the recovery of chitin and protein from this waste is an additional 

source of revenue (Crini, 2006). Other potential sources for chitin production include 

krill, prawn, insects, clams, oysters and jellyfish. Based on Table 1.1, one can remark 

that the cuticle of the edible crab contains the highest proportions of chitin. Fungi, 

spores of fungi and mycelia are also potential sources of commercial chitin. Mycelia 

from some species of Penicillium may contain up to 20 % of chitin (Whistler, 1973). 

Chitin is also found throughout the exoskeletons of most insects, whereby it is 
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present in amounts ranging up to 60 %. Table 1.1 shows the proportions of chitin 

found in the wide range of arthropods. 

 

Table 1.1 Proportions of organic components in arthropod cuticles 
(Muzzarelli, 1973)  

 
Proportions (% of organic fraction; dry weight) Source 

Chitin Protein 

Arachnida 
Buthus (scorpion) 
Mygale (spider) 

 
31.9 
38.2 

 
68.1 
61.8 

Insecta 
Locusta, clytra and wings 
Periplaneta (cockroach) av. 

 
23.7 
35.0 

 
76.3 

- 

Crustacea (Decapodus) 
Cancer (edible crab) 

 
71.4 

 
13.3 

Eupagurus (hermit crab) 
Calcified 
Non-calcified 

 
69.0 
48.2 

 
31.0 
51.8 

 
 

In the production of chitin, shells were first treated with diluted hydrochloric acid at 

room temperature to remove metal salts especially calcium carbonate which was 

present in arthropod’s shells in high concentration. The decalcified shells were 

ground and heated at about 100 °C in 1-2 mol/L of sodium hydroxide to decompose 

proteins and pigments. To ensure the removal of these organic substances, the 

alkaline treatment was repeated for a few more times and the crude chitin was 

obtained (Kurita, 2001).  

 

Chitin is a white, hard, inelastic and nitrogenous polysaccharide. The percentage of 

nitrogen in chitin is theoretically 6.89 % while for artificially substituted cellulose it 
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is only about 1.25 % or less (Muzzarelli, 1973). The presence of amide groups in 

chitin is highly advantageous for providing distinctive biological functions and for 

conducting modification reactions. Chitin is thus expected to have a much higher 

potential than cellulose in many fields (Kurita, 2001). 

 

The earlier work on the structure of chitin was hampered because of its low 

solubility. Chitin is highly hydrophobic and is insoluble in water and most organic 

solvents. However, a partially deacetylated chitin with about 50 % deacetylation 

prepared under homogeneous conditions is soluble in water (Kurita, 2006). The 

molecular weight of 143,000 to 210,000 suggested that the molecule has a higher 

linear array of monomer units.  This regularity of structure and the presences of 

hydrogen bonding and dipole interactions are responsible for the insolubility of 

natural chitin (Whistler, 1973; Muzzarelli, 1983).  

 

Chitin has low toxicity and it is biodegradable, owing to the presence of chitinases 

which is widely distributed in nature and is found in bacteria, fungi, plants and in the 

digestive system of many animals (Rinaudo, 2008). Chitin will degrade before 

melting, which is typical for polysaccharides with extensive hydrogen bonding 

(Kumar, 2000). Chitin can be blended with natural or synthetic polymers, it can be 

cross-linked by cross-linking agents (epichlorohydrin, glutaraldehyde, etc.) or 

modified by using any other modifications. 

 

Whistler (1973) in his famous treatise predicted that “although chitin is not used 

commercially now, it is expected that further demands will bring it into industrial 

use.” True to his prediction, the last one and half decades have seen the commercial 
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production and utilization of chitin in a host of applications. In addition to that, 

United States, Japan and India are now manufacturing chitin as a by product from the 

growing seafood industries. The poor solubility of chitin is the major limiting factor 

in its utilization. Despite this limitation, various applications of chitin and modified 

chitin have been reported in medical, pharmaceutical applications and biosensors 

(Tokura et al., 1990; Eiji and Isao, 1995; Takako and Robert, 1995; Su et al., 1997). 

 

Chitin has also shown its ability to adsorb metal ions and dyes even in acidic solution 

due to its stability in acidic solution. In the study by Sağ and Aktay (2000), chitin 

was used to remove chromium(VI) ions in aqueous solution. Chitin particles have 

also been used effectively for the removal of phenolic dyes whereby the chitin 

particles adsorbed 2.45 times more dyes than the normally used soil minerals (Felse 

and Panda, 1999). However, chitin does not exhibit high collection ability as the 

nitrogen electrons of the amide groups are not available. Due to this, many 

researchers sought alternative adsorbents which have higher affinity for metal 

cations. Chitosan, the deacetylated product of chitin, became the best candidate for 

this purpose because of its high amine groups content (Muzzarelli, 1973).  

 

1.5 Chitosan 

 

Chitosan is the name used for low acetyl substituted forms of chitin and is composed 

of primarily of glucosamine, 2-amino-2-deoxy-β-D-glucose. Chitosan was first 

discovered by Rouget in 1859. He found that chitin which has been boiled in a very 

concentrated potassium hydroxide solution became soluble in organic acids. 

Modified chitin was studied again by Hoppe-Seyler in 1894 who named it chitosan. 
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Chitosan is a non-toxic and a biodegradable polymer. The composition and structure 

of chitosan is very similar to cellulose, except for the difference at the C2, whereby 

in chitosan, the hydroxyl group is replaced by a primary amine group (Figure 1.1c) 

(Sandford and Hutchings, 1987). Most of the polysaccharides, e.g., cellulose, 

dextran, pectin, alginic acid and heparin are neutral or acidic, but chitosan and chitin 

are the only abundant basic polysaccharides. 

 

Removal of N-acetyl groups from chitin to produce chitosan requires concentrated 

alkali. A typical deacetylation bath may consist of two parts of potassium hydroxide 

to one of 95 % ethanol and one of ethylene glycol. The mixture is usually heated to 

120 °C. During the deacetylation reaction, some alkaline cleavage of the 

polysaccharide occurs accompanied by a decrease in the viscosity. Consequently, the 

reaction is terminated as soon as the acetyl content has been diminished to low levels 

(Whistler, 1973). 

 

Pure chitosan is rarely found in nature, but it is present in Zygomycetes cell walls. It 

is formed by the action of a chitin deacetylase on the precursor chitin (Kurita, 2001). 

At the present moment, the most frequently used industrial source of chitosan is 

chitin. 

 

1.5.1 Properties of chitosan 

 

Chitosan is an amorphous solid, almost insoluble in water but soluble in aqueous 

organic (formic and acetic acid) and inorganic acids, to give a viscous solution. The 

solubilization occurs due to the protonation of the amine (–NH2) functional groups 
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on the C2 position of the D-glucosamine unit. Chitosan is one of the few naturally 

occurring cationic polyelectrolytes (Rinaudo, 2008). Key properties of chitosan can 

be divided into three main properties, which are its cationic, biological and chemical 

properties. Table 1.2 provides a general view of these three properties of chitosan.  

 

Table 1.2 Key properties of chitosan (Sandford and Hutchings, 1987; Crini 
and Badot, 2008)  

 
Properties Description 

Cationic • The positive charge of chitosan interacts strongly with negative 
surfaces (proteins and anionic polysaccharides) to give an 
electrical neutrality 

• Excellent flocculants due to its vast number of protonated amine 
groups (–NH3

+) which interact with negatively charged colloids, 
such as hair and skin (which are composed of negatively charged 
mucopolysaccharides and proteins) 

• Entrapment and adsorption properties; filtration and separation 

Biological • Biocompatible 
- Non-toxic 
- Biodegradable 
- Natural polymer 

• Bioactivity 
- Wound healing accelerator 
- Reduce blood cholesterol 
- Stimulate the immune system 
- When coated on seeds, it resulted in increased crop yields. 

This is due to chitosan which induces protective response by 
the germinating plant 

Chemical • Linear polyamine 
• Reactive amine (-NH2) and hydroxyl (-OH) groups 
• Weak base; the amine groups acts as a powerful nucleophile (pKa 

6.3) 
• Numerous reactive groups for chemical activation and cross-

linking 
• Chelating and complexing properties 
• Capable of forming hydrogen bonds intermolecularly 
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1.5.2 Applications of chitosan 

 

The three key properties mentioned in Section 1.5.1, are now being exploited in 

several major research areas, including textiles, medical, cosmetics, biotechnology, 

agriculture and environmental applications (Gerente et al., 2007). Chitosan has 

important applications in cosmetic as chitosan is the only natural cationic gum that 

becomes viscous on being neutralized with acid. Due to this, chitosan and several of 

its derivatives are used in creams, lotions, permanent waving lotions and as nail 

lacquers (Kumar, 2000). Apart from that, chitosan has important applications in 

photography due to its resistance to abrasion, its optical characteristics and film 

forming ability (Muzzarelli, 1983; Kumar, 2000). Application of chitosan film in the 

extension of the storage life and better control of decay of peaches, Japanese pears 

and kiwi fruits has been well documented. Chitosan film is tough, long-lasting, 

flexible and very difficult to tear. Cucumbers, bell peppers, strawberries and 

tomatoes could also be stored for longer periods after coating with chitosan (Shahidi 

et al., 1999). Chitosan, with its partial positive charge, can effectively function as a 

polycationic coagulant in wastewater treatment particularly in removing proteins 

from wastewaters (Shahidi et al., 1999). Chitosan has also been used as flocculants to 

treat kaolin suspension, sugarcane molasses and wastewater containing starch from 

rice processing plants (Muzzarelli, 1983).  

 

Recently, many research involving chitosan have been generated due to the ability of 

chitosan to remove heavy metal ions from wastewaters through adsorption process. 

Chitosan has demonstrated the potential to adsorb significant amounts of heavy metal 

ions and this has generated a large amount of interest in assessing its feasibility to 
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remove heavy metal ions over a wide range of effluent systems and types (Gerente et 

al., 2007). In Japan, the capacity of chitosan to form complexes with heavy metal 

ions has been exploited for water purification, while, the use of commercially 

available chitosan for potable water purification has been approved by the United 

States Environmental Protection Agency up to a maximum level of 10mg/L (Shahidi 

et al., 1999).  

 

The amine groups of chitosan serve as the major adsorption sites for the adsorption 

of metal ions although hydroxyl groups may also play some part. At near neutral 

condition, the lone pair of electrons on the nitrogen atoms of amine groups will form 

dative bond with metal cations. Meanwhile under acidic conditions, the protonated 

amine groups will bind with anions through electrostatic forces. One of the most 

interesting advantages of chitosan is its versatility. Chitosan can be physically and 

chemically modified. These modifications can improve the metal adsorption 

properties while preventing the dissolution of this polymer when heavy metal ions 

adsorption was performed in acidic solutions. Currently, many of the research works 

conducted on chitosan are focused on the modified chitosan.  

 

1.6 Modifications of Chitosan 

1.6.1 Physical modification of chitosan 

 

Physical modifications can increase the adsorption properties of chitosan flakes 

(Chang and Juang, 2004). Derived from a standard alginate beads formation 

procedure, the physical modification involves dissolution of chitosan flakes in acetic 
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