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NOTATIONS

P (G, λ) or P (G) : the chromatic polynomial of G.

χ-unique : chromatic unique.

χ-equivalent : chromatic equivalent.

χ(G) : the chromatic number of G.

g(G) = the length of the shortest cycle of G; i.e., the girth of G.

G ∼ H : G and H are χ−equivalent; i.e., P (G, λ) = P (H, λ) or P (G) = P (H).

G ∼= H : G and H are isomorphic.

|S| = the number of elements in the finite set S.
(

n

r

)

= the number of r-element subsets of an n-element set = n!
r!(n−r)!

.

V (G) : the vertex set of G.

E(G) : the edge set of G.

V (H) : the vertex set of H.

E(H) : the edge set of H.

dG(v) : the degree of v in G, where v ∈ V (G).

uv : an edge of a graph whose endpoints are vertices u and v.

v(G) or |V (G)| : the number of vertices of G or the order of G.

e(G) or |E(G)| : the number of edges of G or the size of G.

v(H) or |V (H)| : the number of vertices of H or the order of H.

e(G) or |E(G)| : the number of edges of H or the size of H.

Kn : the complete graph with n vertices; i.e., the complete graph of order n.

On : the empty graph of order n.

Pn : the path of order n.

K4(a, b, c, d, e, f) : the graph derived from K4, the edges of which are replaced
by six paths of length a, b, c, d, e, f .

G − v : the subgraph of G obtained by removing v and all edges incident with
v from G, where v ∈ V (G).

G − e : the subgraph of G obtained by removing e from G, where e ∈ E(G).

G · xy : the graph obtained from G by contracting x and y and removing any
loop and all but one of the multiple edges, if they arise, where
x, y ∈ V (G).

G + xy : the graph obtained by adding a new edge xy to G, where x, y ∈ V (G)
and xy /∈ E(G).

[G] = {H : H ∼ G}.
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KEKROMATIKAN GRAF K4-HOMEOMORPH TERTENTU

ABSTRAK

Kekromatikan graf adalah suatu terma merujuk kepada persoalan kekromatikan

setara dan kekromatikan unik bagi suatu graf. Sejak perhatian ditimbulkan

terhadap kekromatikan setara graf dan kekromatikan unik graf, pelbagai konsep

dan keputusan dalam bidang kajian tersebut ditemui dan banyak famili graf

berkenaan diperoleh. Tujuan tesis ini ialah untuk menyumbang keputusan baru

tentang kekromatikan setara dan kekromatikan unik graf, khususnya, graf K4-

homeomorfik.

Graf K4-homeomorfik ialah suatu graf diterbitkan daripada graf lengkap K4.

Graf homeomorfik ini ditandakan sebagai K4(a, b, c, d, e, f) dimana enam sisi

digantikan dengan enam lintasan yang masing-masing panjangnya a, b, c, d, e

dan f .

Keputusan dalam tesis ini merangkumi dua topik. Topik pertama melibatkan

kekromatikan unik bagi empat famili graf K4-homeomorfik. Tiga daripada famili

ini adalah famili graf dengan tepatnya dua lintasan yang masing-masing pan-

jangnya dua. Kajian ini dimotivasikan daripada masalah diberikan oleh Dong

et al. in [10]. Maka, dalam Bab tiga hingga enam kami menentukan syarat cukup

dan perlu untuk graf-graf berikut supaya bersifat kromatik unik: K4(a, b, 2, d, 2, f),

dimana a ≥ 3, b ≥ 3, d ≥ 3, f ≥ 3; K4(1, b, 2, d, 2, f), dimana b ≥ 3, d ≥ 3,

f ≥ 3; K4(a, 2, 2, d, 1, f), di mana a ≥ 3, d ≥ 3, f ≥ 3; dan K4(3, 3, 4, d, e, f),

di mana d + e ≥ 6, f + d ≥ 6, f + e ≥ 6. Pengukuhan kekromatikan unik

bagi graf pertama dan kedua melengkapkan kajian kekromatikan unik bagi su-

atu famili graf K4−homeomorfik dengan tepatnya dua lintasan tak bersebela-

xi



han yang panjangnya dua. Dari keputusan diperoleh dalam kajian kekromatikan

unik K4(3, 3, 4, d, e, f) dengan kitar yang mempunyai panjang terpendek sepuluh,

suatu teorem umum tentang kekromatikan unik K4(a, a, a + 1, d, e, f), dimana

a ≥ 3, d ≥ 3, e ≥ 3, f ≥ 3 diformulasikan dan dibuktikan.

Topik kedua mengandungi kekromatikan setara sepuluh pasangan graf

K4−homeomorfik. Daripada kesudahan kajian tiga pasangan pertama graf berke-

naan dalam Bab tujuh, suatu keputusan umum tentang pasangan kekromatikan

setara dalam bentuk K4(1, 2, c, d, e, f) ∼ K4(1, 2, c
′, d′, e′, f ′) diperoleh. Bab la-

pan membincangkan kekromatikan setara bagi tujuh pasangan berikutnya.

Dalam Bab sembilan, keputusan diperoleh oleh penulis yang mengkaji kekro-

matikan graf K4−homeomorfik dengan kitar yang mempunyai panjang terpen-

dek g, dimana 3 ≤ g ≤ 9 diringkaskan. 24 jenis graf K4−homeomorfik dengan

kitar yang mempunyai panjang terpendek sepuluh juga diberikan dalam tajuk

yang sama. Keputusan dari Bab dua hingga Bab enam bersama dengan keputu-

san oleh penulis lain diaplikasikan untuk mengukuhkan syarat cukup dan perlu

untuk 14 daripada 24 jenis graf K4−homeomorfik supaya bersifat kromatik unik.

Kekromatikan untuk 10 jenis selebihnya ditinggalkan sebagai kajian lanjutan.

xii



CHROMATICITY OF CERTAIN K4-HOMEOMORPH GRAPHS

ABSTRACT

The chromaticity of graphs is the term used referring to the question of chro-

matic equivalence and chromatic uniqueness of graphs. Since the arousal of the

interest on the chromatically equivalent and chromatically unique graphs, various

concepts and results under the said areas of research have been discovered and

many families of such graphs have been obtained. The purpose of this thesis is to

contribute new results on the chromatic equivalence and chromatic uniqueness

of graphs, specifically, K4-homeomorphs.

A K4-homeomorph is a graph derived from a complete graph K4. Such a homeo-

morph is denoted by K4(a, b, c, d, e, f) where the six edges are replaced by the

six paths of length a, b, c, d, e and f .

The results in this thesis cover two main topics. The first topic involves the

chromatic uniqueness of four families of K4-homeomorphs. Three of such fam-

ilies are with exactly two paths of length two. Such study is motivated by the

problems posted by Dong et al. in [10]. Thus, in Chapters 3, 4, 5 and 6 we

establish sufficient and necessary condition for the following respective graphs to

be chromatically unique: K4(a, b, 2, d, 2, f), where a ≥ 3, b ≥ 3, d ≥ 3, f ≥ 3;

K4(1, b, 2, d, 2, f), where b ≥ 3, d ≥ 3, f ≥ 3; K4(a, 2, 2, d, 1, f), where a ≥ 3,

d ≥ 3, f ≥ 3; and K4(3, 3, 4, d, e, f), where d + e ≥ 6, f + d ≥ 6, f + e ≥ 6. Es-

tablishing the chromatic uniqueness of the first and second graphs completes the

study on the chromatic uniqueness of a family of K4-homeomorphs with exactly

two non-adjacent paths of length two. From the result obtained in the study of

xiii



the chromatic uniqueness of K4(3, 3, 4, d, e, f) with girth ten, a more general the-

orem involving the chromatic uniqueness of K4(a, a, a + 1, d, e, f), where a ≥ 3,

d ≥ 3, e ≥ 3, f ≥ 3 is formulated and proved.

The second topic includes the chromatic equivalence of ten pairs of K4-homeo-

morphs. From the outcome on the study of the first three pairs of such graphs

in Chapter 7, a more general result on the chromatic equivalence pair of the

form K4(1, 2, c, d, e, f) ∼ K4(1, 2, c
′, d′, e′, f ′) is obtained. Chapter 8 discusses

the chromatic equivalence of the remaining seven pairs.

In Chapter 9, the results obtained by authors who studied the chromaticity of

K4-homeomorphs with girth g, where 3 ≤ g ≤ 9 are summarised. The 24 types of

K4-homeomorphs with girth ten are also given in the same chapter. The results

from Chapters Two to Six together with results by other authors are applied to

establish the sufficient and necessary condition for the 14 of the said 24 types of

K4-homeomorphs to be chromatically unique. The chromaticity of the remaining

10 types are left for further studies.

xiv



CHAPTER 1

INTRODUCTION

1.1 Literature Review

Euler (1707-1782) has been regarded as the father of graph theory for solving

the famous Königsberg Bridge Problem. However, it was the Four-Colour Map

Problem or the well known Four-Colour Conjecture which has spawned the devel-

opment of graph theory. The problem asks whether four colours are sufficient to

colour any geographical or planar graph so that no neighbouring countries have

the same colour. It was first conjectured by Francis Guthrie, a graduate student

of University College, London. But its first recognition in mathematical world

took place in De Morgan’s classes, and it was formally presented to the London

Mathematical Society by Cayley in 1878. Since then, the most determined well-

known mathematicians who attempted to prove this deceptive problem were not

able to produce a solution. In 1912, Birkhoff proposed a way of dealing with this

problem by introducing a function P (M, λ), defined for all positive integer λ, to

be the number of proper λ-colourings of a map M . It was proven that P (M, λ)

is a polynomial in λ and termed as the chromatic polynomial of M. To prove that

P (M, 4) > 0 for all maps M would solve the four-colour problem.

1



2

Whitney [38], in 1932, established many fundamental results by generalising the

notion of a chromatic polynomial to that of an arbitrary graph. In 1946, Birkhoff

and Lewis investigated the distribution of real roots of chromatic polynomials

of planar graphs. They conjectured that these polynomials have no real roots

greater than or equal to four. The conjecture remains open. They also proved

that P (G, λ) is a polynomial for any graph G. The minimum integer λ such that

P (G, λ) is nonzero is called the chromatic number of G, denoted by χ(G). More

information on the development of chromatic polynomials can be found in [6],

[7], [27], [28], [29] and [33].

In 1978, Chao and Whitehead Jr. [2] defined a graph with no other graphs

sharing its chromatic polynomial as chromatically unique. They found several

families of such graphs. Since then, various results on chromatic equivalence

have been obtained successively (see [8], [9], [15] and [16]). The problem of

chromatic equivalence and uniqueness is termed as the chromaticity of graphs.

Birkhoff’s hope to solve the Four-Colour Conjecture using the chromatic poly-

nomial has not come to reality. But it gave birth to the interest of many who

wanted to explore more on the topic he introduced, especially with respect to

the roots of chromatic polynomial. In 1993, Hutchinson [14] used the notion

of solving the roots of chromatic polynomial to prove her conjecture that an

earth/moon non-planar graph is 8, 9 or 12 colourable. A graph is χ−colourable

if its vertices can be coloured with χ colours such that no two adjacent vertices

have the same colour. Hutchinson applied her results to the testing of printed

circuit boards for quality control on the production of such electronic chips. In

an expository paper of Catada-Ghimire [1], the author of this thesis, Hutchin-

son’s work was examined and explicitly discussed. According to Dong et.al [10],
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”More recently, Thomassen discovered a relationship between the roots of the

chromatic polynomial and hamiltonian paths. There has also been an influx of

new ideas from statistical mechanics due to the recent discovery of a connection

to the Potts Model in Physics”.

One of the most popular families of graphs being studied with regard to chro-

maticity of graphs is the family of K4−homeomorphs (see [5] and [19] for other

examples of families of graphs). A K4−homemorph is a graph derived from a

complete graph with four vertices by subdividing its edges. Such homeomorph is

denoted by K4(a, b, c, d, e, f) if the six edges of K4 are replaced by the six paths

of length a, b, c, d, e, f , respectively, as shown in Figure 1.1. In 2005, Dong et al.

[10] gave two tasks to tackle after summarising the works done in this particular

area of research. The first task is to study the chromaticity of K4−homeomorphs

with exactly two equal paths of length greater than or equal to two. The second

task is to study the chromaticity of K4−homeomorphs with exactly one path of

length one. Motivated by these problems, this thesis aims to tackle a specific

area of such tasks, i.e., the chromaticity of certain types of K4−homeomorphs

with exactly two paths of length two.

a

b
c

d

e
f

Figure 1.1: K4(a, b, c, d, e, f)

The study of the chromaticity of K4−homeomorphs with exactly two paths of
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length two involves two cases: Case 1, when the two paths of length two are

adjacent and Case 2, when the two paths of length two are non-adjacent. For

each case the following conditions on the four paths not of length two need to be

considered.

(i) all four paths are of length one;

(ii) three paths are of length one and one path is of length greater than two;

(iii) two paths are of length one and two paths are of length greater than two;

(iv) one path is of length one and three paths are of length greater than two;

and

(v) all four paths are of length greater than two.

The problem of the chromaticity of K4−homeomorphs with at least two paths

of length one has been completely solved (see [32], [17], [12], [36], [41], [25]).

Thus, only conditions (iv) and (v) must be considered to study the chromaticity

of K4−homeomorphs with exactly two paths of length two in both cases.

As we discuss the chromaticity of K4−homeomorphs, we shall discover that the

chromaticity of such graphs with girth g, where 3 ≤ g ≤ 9 has been studied by

many authors. In this thesis, we shall continue to discover the chromaticity of

certain families of K4−homeomorphs with girth ten. We shall also investigate

certain chromatically equivalent pairs of K4−homeomorphs.
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1.2 Objective of the Study

The first part of this thesis shall focus on the chromaticity of the following four

types of K4−homeomorphs:

(1) with exactly two non-adjacent paths of length two with no path of length

one (Case 2, condition (v)),

(2) with exactly two non-adjacent paths of length two and with exactly one

path of length one (Case 2, condition (iv)),

(3) with two adjacent paths of length two and with exactly one path of length

one (one specific type of such K4−homeomorph only) (Case 1, condition

(iv)), and

(4) K4−homeomorph K4(3, 3, 4, d, e, f) with girth ten.

These results shall then be applied to establish the sufficient and necessary con-

dition for four types of K4−homeomorphs with girth ten to be chromatically

unique.

The chromaticity of a more general K4−homeomorph of the form K4(a, a, a +

1, d, e, f) with girth 3a + 1, where a ≥ 3 shall be investigated based on the

outcome on the study of the chromaticity of K4−homeomorph K4(3, 3, 4, d, e, f)

with girth ten.

The chromaticity of K4−homeomorphs with exactly two paths of length two has

a relatively wide range. This study is limited to the chromaticity of only three

specific types of such graphs.
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Obtaining the chromatic equivalence classes of ten pairs of K4−homeomorphs

is the topic of the second part of this research. Motivated by the outcome of

the study on the first three pairs of such graphs, a more general result shall

be established. These results are important tools in the study of the general

K4−homeomorphic graph K4(a, b, c, d, e, f).

The list of 24 types of K4−homeomorphs with girth ten shall be presented.

However, application of the results shall be limited only to 14 of these types and

the remaining types shall be for further study.

Graph theory is an indispensable source of the basic concepts used to formulate

and prove the theorems considered in this thesis. However, from this vast field,

only the fundamental notions related to the discussion shall be presented. The

main theorems shall be proven in detail. However, the proofs of related theorems

shall not be included. References, where detailed and substantive analysis of the

proof of such theorems, shall be given. Figures, tables and definition of important

terms shall be provided to make the concepts comprehensible.

The purpose of this study is to provide new results significant to the present

chain of research on the chromaticity of graphs, specifically, K4−homeomorphs.

Moreover, this thesis aims to contribute in the development of graph theory since

its facts and techniques are used in this study.

1.3 Organisation of Thesis

Chapter 1 contains the introduction of the study. It includes the literature review

on the chromaticity of graphs, objective of the study and the organisation of the

thesis.
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In Chapter 2, we provide definitions of terms, preliminary concepts and some

known results needed for the comprehension of the succeeding chapters.

In Chapter 3, we examine the chromatic uniqueness of K4(a, b, 2, d, 2, f), where

min{a, b, d, f} ≥ 3. We study the chromatic uniqueness of K4(1, b, 2, d, 2, f),

where min{b, d, f} ≥ 3 in Chapter 4. The chromatic uniqueness of K4(a, 2, 2, d, 1, f),

where min{a, d, f} ≥ 3 is discussed in Chapter 5.

In Chapter 6, we investigate the chromatic uniqueness of K4−homeomorphs

with girth 3a + 1, where a ≥ 3. This result is a consequence of the study

on the chromaticity of one type of such K4−homeomorphs with girth 10, i.e.,

K4(3, 3, 4, d, e, f).

Chapter 7 provides results that can be used to study the chromatic equivalence

(or simply χ−equivalence) and chromatic uniqueness (or simply χ−uniqueness)

of a general K4−homeomorph of the form K4(1, 2, c, d, e, f), where c ≥ 7.

In Chapter 8, we present the chromatic equivalence pairs of seven types of

K4−homeomorphs.

In the final chapter, we summarise the work done by authors who studied the

chromaticity of K4−homeomorphs with girth g, 3 ≤ g ≤ 9. We also give the

complete list of 24 types of K4−homeomorphs with girth ten and investigate

the chromatic uniqueness of 14 of these types applying the theorems formulated

by several authors together with the main results obtained in this thesis. The

conclusion and some open problems are also given for further study in this area

of research.



CHAPTER 2

CHROMATICITY OF GRAPHS

2.1 Introduction

In this chapter, we shall introduce basic terminology from graph theory which

will be assumed throughout the whole study. For further explanation of these

terms and detailed proofs of stated results, the reader may refer to [13] and [34].

Definitions and results not included here will be presented later on as they are

needed, or may be found in the references given above. In Section 2.2, we give

the formal definition and properties of the chromatic polynomial of a graph. We

shall also state the fundamental results on such field of study. In Section 2.3, we

shall define isomorphic, chromatic equivalent and chromatic unique graphs. The

conditions for two graphs to be chromatically equivalent and typical examples

of chromatically unique graphs are also presented in the same section. We shall

define homeomorphic graphs and a K4−homeomorph in Section 2.4. We shall

also cite some results on the study of the chromaticity of K4−homeomorphs in

the last section of this chapter.

Definition 2.1 A graph G = (V (G), E(G)) is a non-empty finite set consisting

of a vertex set V (G) together with an (possibly empty) edge set E(G) of unordered

8
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pairs of distinct elements of V (G). An edge {u, v} in E(G), where u, v ∈ V (G),

is often denoted by uv or vu. In this case, the vertices u and v are said to

be adjacent. Furthermore, u is also called a neighbour of v, and vice versa. If

e = uv is an edge of G, then e joins u and v, or the vertices u and v are the

two endpoints of e. Moreover, e is incident with u and v. The degree of v in

G, denoted by dG(v), is the number of edges of G incident with v. The symbols

v(G) or |V (G)| refer to the number of vertices in G. e(G) or |E(G)| are used

to represent the number of edges in G. A graph G is said to be of order n if

v(G) = n and of size m if e(G) = m. An (n, m)-graph is a graph of order n and

size m. A graph G is said to be trivial if v(G) = 1, and non-trivial otherwise.

The repeated edges and edges with the same endpoints are called multiple edges

and loops, respectively. A graph is simple if it has no loops and no multiple edges.

A directed graph is a finite nonempty set V (G) with a set E(G) of ordered pairs

of distinct elements of V (G), where set E(G) is disjoint from V (G). All graphs

considered here are finite, undirected, simple and loopless.

Definition 2.2 A graph in which every two vertices are adjacent is called a

complete graph; the complete graph with n vertices and (1
2
)n(n − 1) edges is

denoted by Kn.

Definition 2.3 A graph H is said to be a subgraph of a graph G if V (H) ⊆ V (G)

and E(H) ⊆ E(G). A simple subgraph is a subgraph without loops and multiple

edges.
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v1 v2

v3

v4

v5

Figure 2.1: A complete graph with five vertices, K5.

Definition 2.4 A walk in G is a finite sequence v0v1v2 · · · vk of vertices such that

vivi+1 is an edge for each i = 0, 1, · · · , k − 1. It is a path if all the points (and

thus necessarily all the lines) are distinct. A path is said to be hamiltonian (or

spanning if it contains all the vertices in G. A cycle is a closed walk v1v2 · · · vkv1

in which the vi’s are distinct. Such a cycle C of order k in G is also called a

k-cycle C in G. A 3 − cycle is often called a triangle. A chord in cycle C is an

edge joining two non-consecutive vertices along C. The girth of G, denoted by

g(G), is the length of the shortest cycle in G.

Consider the graph K5 in Figure 2.1: v4v3v5v4v1v2 is a walk of length 5; v3v2v1v4

is a path of length 3; v5v1v3v4v3v1v5 is a closed walk of length 6; v1v4v3v2v1 is a

cycle of length 4 and v1v3 is an example of a chord in this cycle.

Definition 2.5 A graph G is connected if every two vertices u, v ∈ G are joined

by a path. It is disconnected otherwise. A component of G is a connected subgraph

of G which is not a proper subgraph of any connected subgraph of G. The graph
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K5 in Figure 2.1 is a connected graph. The graph in Figure 2.2 is a disconnected

graph.

v6 v5

v2

v1

v7

v8

v3

v4

Figure 2.2: A disconnected graph of eight vertices.

Definition 2.6 A forest is a graph containing no cycles; such a graph is also

said to be acyclic. A tree is a connected forest. Thus, every component of a forest

is a tree.

2.2 The Fundamental Results on Chromatic Polynomial

Definition 2.7 An assignment of at most λ colours to the vertices of a graph G

is a λ−colouring of G. Such a colouring of G is proper if two adjacent vertices

are assigned two distinct colours. More precisely, a proper λ−colouring of G is

a mapping

f : V (G) = { v1, v2, . . . , vn } → { 1, 2, . . . , λ }

such that f(vi) 6= f(vj) whenever vivj ∈ E(G). Two proper λ−colourings f and

g of G are considered different if f(vi) 6= g(vi) for some vertex vi in G. Let

P (G, λ) (or simply P (G) ) denote the number of different proper λ−colourings

of G.
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Definition 2.8 An empty graph is a graph with no edges while a complete graph

is a graph in which each pair of distinct vertices is joined by an edge. Thus, for

instance, if On is the empty graph of order n, then P (On, λ) = λn; and if Kn is

the complete graph of order n, then P (Kn, λ) = λ(λ− 1). . . (λ − n + 1). Observe

that P (On, λ) and P (Kn, λ) are polynomials in λ. It turns out (see Theorem 2.5)

that for any graph G, P (G, λ) is in fact a polynomial in λ, called the chromatic

polynomial of G.

The following result is very useful in determining P (G, λ) or in showing that

certain graphs are chromatically unique.

Theorem 2.1 (Fundamental Reduction Theorem)(Whitney [39]) Let G be a

graph, and e an edge in G. Then

P (G) = P (G − e) − P (G · e)

where G − e is the graph obtained from G by deleting e, and G · e is the graph

obtained from G by contracting the two vertices incident with e and removing all

but one of the multiple edges, if they arise.

By means of Theorem 2.1, the chromatic polynomial of a graph can be expressed

in terms of the chromatic polynomials of a graph with an edge less, and another

with one fewer vertices. When applying this theorem repeatedly, we can ex-

press the chromatic polynomials as a sum of the chromatic polynomials of empty

graphs.

The Fundamental Reduction Theorem can also be used in another way. Let

vi, vj ∈ V (G) such that vivj 6∈ E(G). Then

P (G, λ) = P (G + vivj, λ) + P (G · vivj, λ)
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where G+vivj is the graph obtained from G by adding the edge vivj and G·vivj is

the graph obtained from G by identifying the vertices vi and vj. In this way, one

can express P (G, λ) as a sum of the chromatic polynomials of complete graphs.

Suppose G1 and G2 are the graphs each containing a complete subgraph Kr,

where r ≥ 1. Let G be the graph obtained from the union of G1 and G2 by

identifying the two subgraphs Kr in arbitrary way, then G is called a Kr−gluing

of G1 and G2. Note that K1−gluing and K2−gluing are called a vertex-gluing and

edge-gluing of G1 and G2, respectively. The following two lemmas will provide a

shortcut for computing P (G, λ).

Lemma 2.1 (Zykov [42]) Let G be a Kr−gluing of graphs G1 and G2. Then

P (G) =
P (G1)P (G2)

P (Kr)
=

P (G1)P (G2)

λ(λ − 1) · · · (λ − r + 1)
.

Lemma 2.2 (Read [27]) If a graph G has connected components G1, G2, . . . , Gk,

then

P (G) = P (G1)P (G2) . . . P (Gk).

The following are some properties of the chromatic polynomial P (G, λ) of a graph

G.

Theorem 2.2 (Read [27]) Let G be a graph of order n and size m. Then P (G, λ)

is a polynomial in λ such that

(i) deg(P (G, λ)) = n;

(ii) all the coefficients are integers;

(iii) the leading term is λn;
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(iv) the constant term is zero;

(v) the coefficients alternate in sign;

(vi) the absolute value of the coefficient of λn−1 is the number of edges of G;

(vii) either P (G, λ) = λn or the sum of the coefficients in P (G, λ) is zero.

The following two results for determining P (G, λ) are due to Whitney, which can

be proven using the Principle of Inclusion and Exclusion.

Theorem 2.3 (Whitney [39]) Let G be a graph of order n and size m. Then

P (G, λ) =
n

∑

k=1

( m
∑

r=0

(−1)rN(k, r)
)

λk

where N(k, r) denotes the number of spanning subgraphs of G having exactly k

components and r edges.

Suppose G is a graph with an arbitrary bijection β : E(G) → { 1, 2,. . . , m }. Let

C be any cycle in G and e be an edge in C such that β(e) ≥ β(x) for each edge

x in C . Then the path C − e is called a broken cycle in G induced by β. Then

we have the following theorem.

Theorem 2.4 (Broken-Cycle Theorem)(Whitney [39]) Let G be a graph of order

n and size m, and let β : E(G) → { 1, 2,. . . , m } be a bijection. Then

P (G, λ) =
n−1
∑

i=0

(−1)ihiλ
n−i

where hi is the number of spanning subgraphs of G that have exactly i edges and

that contain no broken cycles induced by β.
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Let G be a graph of order n. By using Theorems 2.3 and 2.4, we then can derive

the coefficient of λi, where n − 3 ≤ i ≤ n, expressed in terms of the numbers of

certain simple subgraphs of G.

Theorem 2.5 (Farrell [11]) Let G be a graph of order n and size m. Then in

the polynomial P (G, λ), the coefficient of

(i) λn is 1;

(ii) λn−1 is −m;

(iii) λn−2 is
(

m

2

)

− t1(G);

(iv) λn−3 is −
(

m

3

)

+ (m − 2)t1(G) + t2(G) − 2t3(G).

where

t1(G) = the number of triangles K3 (i.e., complete graphs with three vertices) in

G,

t2(G) = the number of cycles of order 4 without chords in G,

t3(G) = the number of K4 (i.e., complete graphs with four vertices) in G.

2.3 Chromatically Unique Graphs and

Chromatically Equivalent Graphs

Definition 2.9 Two graphs G and H are said to be isomorphic, in notation:

G ∼= H, if there exists a bijection ϕ: V (G) → V (H) which preserves adjacency;

i.e., uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H). Such a bijection ϕ is called an

isomorphism of G onto H.
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Definition 2.10 Let P (G, λ) be the chromatic polynomial of a graph G. Two

graphs G and H are chromatically equivalent or simply χ−equivalent, symboli-

cally G ∼ H, if P (G, λ) = P (H, λ).

It can be proved by using Lemma 2.1 that for any tree T of order n, P (T, λ) =

λ(λ − 1)n−1. Thus, there exists non-isomorphic graphs which have the same

chromatic polynomial. These observations lead to the following definitions.

Definition 2.11 A graph G is chromatically unique or simply χ−unique if G ∼=

H for any graph H such that H ∼ G. Trivially, the relation ∼ is an equivalence

relation on the class of graphs. We shall denote by [G] the chromatic equivalence

class determined by G under ∼, indeed [G] is the set of all graphs having the same

chromatic polynomial P (G, λ). Clearly, G is χ−unique if and only if [G] = {G},

that is each graph in [G] is isomorphic to G.

The following result is obvious.

Lemma 2.3 Let G be a graph of size m. Then m ≥ 1 if and only if λ(λ −

1)|P (G, λ).

The following are some typical examples of χ−unique graphs.

(a) The empty graph On of order n is χ−unique and P (On, λ) = λn.

(b) The complete graph Kn of order n is χ−unique and P (Kn, λ) = λ(λ −

1) . . . (λ − n + 1).

(c) Let Cn be the cycle of order n, n ≥ 3. Then P (Cn, λ) = (λ−1)n+(−1)n(λ−

1). Chao and Whitehead [2] proved that every cycle is χ−unique.
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(d) A θ−graph denoted by θ(p, q), consists of a cycle Cp and Cq with a an edge

in common. Then

P (θ(p, q), λ) =
P (Cp, λ)P (Cq, λ)

λ(λ − 1)
.

Chao and Whitehead [2] showed that θ(p, q) is χ−unique.

2.4 Chromaticity of K4−homeomorphs

Definition 2.12 Harary [13] defines two graphs to be homeomorphic if both can

be obtained from the same graph by a sequence of subdivisions of lines, i.e.,

divisions of edges into segments. A K4-homeomorph is a graph homeomorphic to

the complete graph with four vertices, K4. In simple terms, a K4-homeomorph is

a subdivision of the complete graph K4. Figures 2.3(b) and (c) show the two ways

of representing K4−homeomorphic graphs. For simplicity, we shall use Figure

2.3(c) (see also Figure 1.1 in Chapter 1) to refer to a general K4-homeomorph,

where the six edges of K4 are subdivided into segments (similarly saying, are

replaced by the six paths of length) a, b, c, d, e and f .

Definition 2.13 A path v0v1 · · · vk is called a chain if dG(vi) = 2 for each i =

1, 2, · · · , k−1; and is a maximal chain if, in addition, dG(v0) ≥ 3 and dG(vk) ≥ 3.

The six paths of the homeomorph are its maximal chains. The length of a chain

P is denoted by l(P ).

The chromaticity of K4−homeomorphs was first studied by S. Kahn while writing

his doctoral dissertation entitled Chromatic Equivalence and Chromatic Unique-

ness in George Washington University (1980)(see [3]). Chao and Zhao (see [3])
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Figure 2.3: (a)K4, (b)K4(a1, a2, a3, a4, a5, a6), (c)K4(a, b, c, d, e, f).

computed all the chromatic polynomials of all connected (n, n + 2)-graphs to

prove the following lemma.

Lemma 2.4 Any graph that is χ−equivalent to K4−homeomorph must itself be

a K4−homeomorph .

The chromatic polynomial of K4−homeomorph can be found easily by using the

Fundamental Reduction Theorem, i.e., Theorem 2.1, as shown by Dong et al.

in [10]. Ren (see [30]) combined the results of Li [17], Whitehead and Zhao [36]

to express the chromatic polynomial of a K4−homeomorph as follows.

Lemma 2.5 Let G = K4(a, b, c, d, e, f). Then

P (G, λ) = 1
λ2 (−1)mw[wm−1 + Q(G, w) − (w + 1)(w + 2)],

where w = 1 − λ, m =| E(G) | and

Q(G, w) = −(wa+f+c + wa+b+e + wb+c+d + wd+e+f + wa+d + wb+f + wc+e)
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+(1 + w)(wa + wb + wc + wd + we + wf ).

Q(G, w) or simply Q(G) is called the essential polynomial of G.

Li in [18] proved the following.

Lemma 2.6 Two K4−homeomorphs with the same order are chromatically equiv-

alent if and only if they have the same essential polynomials.

K4(4, 1, 3, 1, 3, 1) and K4(2, 3, 1, 1, 5, 1) are examples of χ−equivalent but non-

isomorphic graphs. This shows that not all K4−homeomorphs are χ−unique.

The question on the proportionality of χ−unique K4−homeomorphs on the fam-

ily of K4−homeomorphs was answered by W.M. Li in (1987)(see [17]). He first

established the following result.

Theorem 2.6 If {a, b, c, d, e, f} = {a′, b′, c′, d′, e′, f ′} as multisets and

K4(a, b, c, d, e, f) ∼ K4(a
′, b′, c′, d′, e′, f ′),

then the two graphs are isomorphic.

From this, W.M. Li derived the following result.

Corollary 2.1 The graph G = K4(a, b, c, d, e, f) is χ−unique if each of the fol-

lowing conditions is satisfied:

(1) min{a, b, c, d, e, f} > 1;
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(2) for any maximal chains P , Q, R in G such that P and Q are disjoint,

l(P ) + l(Q) 6= d1
2
(l(P ) + l(Q) + l(R))e;

(3) for any maximal chains P , Q, R, S in G such that P , Q and R have a

vertex in common,

l(P ) + l(Q) + l(R) 6= d1
2
(l(P ) + l(Q) + l(R) + l(S))e.

Dong et al in [10] summarise the result of W.M. Li in [17] as follows:

Let S0 be the family of all the K4−homeomorphs of order n with the four vertices

of degree three labeled. It is known that the number of ways of distributing k

identical objects into r distinct boxes is given by
(

k+r−1
r−1

)

. Since each member of

S0 can be constructed by inserting n − 4 vertices into the six labeled edges of a

given K4,

|S0| =
(

n−4+(6−1)
6−1

)

=
(

n+1
5

)

.

Let Sj, where j ∈ {1, 2, 3} be the family of those members of S0 which violate

condition (j) in the above corollary. Then it is not hard to see that |S1| ≤ 4
(

n

4

)

.

Li further showed that each of |S2| and |S3| is bounded above by a polynomial

in n of degree four. Thus,

limn→∞

|S1| + |S2| + |S3|

|S0|
= 0.

This means that almost every K4−homeomorph is χ−unique.



21

Definition 2.14 Let χ(G) denote the chromatic number of G. Then χ(G) is

the smallest integer λ such that P (G, λ) > 0.

The following lemma can be derived from Theorem 2.6.

Lemma 2.7 Let G and H be graphs such that G ∼ H. Then

(i) G and H have the same order;

(ii) G and H have the same size;

(iii) t1(G) = t1(H);

(iv) t2(G) − 2t3(G) = t2(H) − 2t3(H);

(v) χ(G) = χ(H);

(vi) G is connected if and only if H is connected,

where

t1(G) = the number of triangles K3 (i.e., complete graphs with three vertices) in

G,

t1(H) = the number of triangles K3 (i.e., complete graphs with three vertices) in

H,

t2(G) = the number of cycles of order 4 without chords in G,

t2(H) = the number of cycles of order 4 without chords in H,

t3(G) = the number of K4 (i.e., complete graphs with four vertices)in G,

t3(H) = the number of K4 (i.e., complete graphs with four vertices) in H,

χ(G) = the chromatic number of G, and

χ(H) = the chromatic number of H.
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There are no general methods for constructing families of χ−unique graphs, thus,

it is very important to know as many as possible necessary conditions for two

graphs to be χ−equivalent. The above lemma is just the necessary conditions

for two graphs G and H to be χ−equivalent.

Theorem 2.7 For any n ≥ 4, let f(n) (resp., g(n)) denote the number of

K4−homeomorphs (resp., χ−unique K4−homeomorphs) of order n. Then

limn→∞

g(n)

f(n)
= 1.

The following result is obtained by Whitehead Jr. and Zhao in [36].

Theorem 2.8 Suppose K4(a, b, c, d, e, f) ∼ K4(a
′, b′, c′, d′, e′, f ′). Then

min{a, b, c, d, e, f} = min{a′, b′, c′, d′, e′, f ′} and the number of times that this

minimum occurs in the list {a, b, c, d, e, f} is equal to the number of times that

this minimum occurs in the list {a′, b′, c′, d′, e′, f ′}.

W.M. Li proved the following useful result.

Lemma 2.8 Let G be a K4−homeomorph. If at most a pair of terms in the

essential polynomial Q(G) can be cancelled, then G is χ−unique.

The reader may refer to [10] for the summary of some known results on the

chromaticity of K4−homeomorphs. We shall restate such results as we use them

to prove our theorems in the succeeding chapters and in our discussion in Chapter

9.



CHAPTER 3

CHROMATIC UNIQUENESS OF K4(a, b, 2, d, 2, f)

3.1 Introduction

Recall that the study of the chromaticity of K4−homeomorphs with exactly two

paths of length two involves two cases: Case 1, when the two paths of length two

are adjacent and Case 2, when the two paths of length two are non-adjacent. In

this chapter, we shall investigate the chromaticity of one family of such graphs

under Case 2.

3.2 Chromaticity of K4(a, b, 2, d, 2, f)

As what we have mentioned in Chapter 1, to complete the study of the chro-

maticity of K4−homeomorphs with exactly two non-adjacent paths of length two

(as shown in Figure 3.1(a)) we need to consider two families of graphs, namely,

K4(a, b, 2, d, 2, f), where min{a, b, d, f} ≥ 3 and K4(a, b, 2, d, 2, f), where exactly

one of a, b, d, f is of length one and the remaining three paths are of length

greater than two. If we refer to Figure 3.1(a) then by symmetry, we can assume
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min{a, b, d, f} = a. Therefore, K4(a, b, 2, d, 2, f), where min{a, b, d, f} = a,

a ≥ 3 and K4(1, b, 2, d, 2, f), where min{b, d, f} ≥ 3 represent the two families of

such K4−homeomorphs, respectively.

i

j

a

b2
d

2f

2
k

2l

(a) (b)

Figure 3.1: (a) K4(a, b, 2, d, 2, f) and (b) K4(i, j, 2, k, 2, l)

In this chapter, we shall study the chromaticity of K4−homeomorph

K4(a, b, 2, d, 2, f), where min{a, b, d, f} ≥ 3. We shall investigate the other family

in Chapter 4.

In Section 3.3, we give some known results and notations used to obtain the main

result. We show the detailed proof of such result in Section 3.4.

3.3 Preliminary Results and Notations

Lemma 3.1 Assume that G and H are χ−equivalent. Then the following state-

ments are proven to be true.

(1) |V (G)| = |V (H)|, |E(G)| = |E(H)|, i.e., G and H have equal number of

vertices (order) and equal number of edges (size) (see [15]);


