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ANALISIS PENYAMPULAN DATA KABUR DAN 
PENGGUNAANNYA UNTUK MENGAGREGAT PENARAFAN 

KEUTAMAAN 
 

Abstrak 

 
Dalam tempoh dua dekad yang lepas, Analisis Penyampulan Data (DEA) 

telah muncul sebagai satu kaedah penting dalam bidang pengukuran kecekapan. 

DEA telah digunakan untuk membanding pelbagai Unit Pembuatan Keputusan 

(DMU) seperti cawangan bank, hospital dan pusat jualan, yang menggunakan satu 

atau lebih input bukan homogen untuk mengeluarkan satu atau lebih output bukan 

homogen. DMU biasanya menggunakan input yang sama dan mengeluarkan output 

yang sama tetapi pada tahap yang berbeda. Salah satu daripada ciri utama DEA 

adalah kepekaan terhadap data. Yakni, data yang kurang tepat mungkin memesong 

keputusan analisis kecekapan daripada keadaan sebenar. Namun demikian, 

pengukuran data yang tepat, di dalam banyak masalah nyata, adalah mustahil 

disebabkan oleh ketiadaan alat pengukur yang tepat ataupun disebabkan oleh sifat 

kualitatif semulajadi fenomenon yang berlaku. Maklumat yang sebegini, sebenarnya 

boleh diwakilkan sebagai nombor kabur ataupun istilah linguistik. 

Salah satu daripada objektif tesis ini adalah untuk meneroka penggunaan 

pengukur kabur dan pengaturcaraan matematik kabur dalam model DEA. Dua 

prosedur pengaturcaraan linear kabur yang dapat menyelesaikan model DEA kabur 

diperkenalkan. Versi kabur suatu model bentuk nisbah, dikenal sebagai model CCR 

(Charnes et al. 1978)  dibentuk dan beberapa kaedah penyelesaian model berkenaan 

diberikan. Berasaskan kepada corak sebegini, satu model penarafan dicadangkan. 

Kemudian, konsep kabur dan DEA digunakan untuk memperkenalkan kaedah 



 XI

matematik baru untuk memilih alternatif terbaik dalam pembuatan keputusan 

berkumpulan. Model yang diperkenalkan adalah fungsi objektik-berganda yang 

diubah menjadi model pengaturcaraan linear objektif-berganda, yang kemudiannya 

diselesaikan. 

Skop kajian ini, dari sudut pandangan teori, adalah untuk menyediakan satu platform 

bagi menerokai pelbagai model DEA klasik dalam keadaan kabur. Dari sudut 

pandangan praktikal  pula, banyak masalah yang melibatkan faktor kualitatif kini 

dapat dikendalikan. Model yang diperkenalkan ini dapat digunakan dalam analisis 

kecekapan personel, kumpulan, kualiti barangan dan sebagainya yang banyak faktor 

di dalamnya adalah sememangnya kabur. 
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FUZZY DATA ENVELOPMENT ANALYSIS AND ITS 
APPLICATIONS FOR AGGREGATING PREFERENCE 

RANKING  
 

Abstract 

 
Over the past two decades, Data Envelopment Analysis (DEA) has appeared 

as an important tool in the field of efficiency measurement. DEA is used to compare 

Decision Making Units (DMUs) such as bank branches, hospitals, sales outlets, 

which consume one or more non-homogenous inputs to produce one or more non-

homogenous outputs. The DMUs consume the same inputs and produce the same 

outputs but generally at varying levels. One of the main characteristics of DEA is its 

sensitivity to data. That is, inaccurate data may divert effectively the results of 

efficiency analysis from its actual value. But accurate measurement in many real 

world problems, due to either non-availability of sophisticated measurement tools or 

qualitative nature of the phenomena may not be possible. This kind of information 

can be represented as fuzzy numbers or linguistic terms.  

One of the objectives in this thesis is to explore the use of fuzzy measures 

and fuzzy mathematical programs in the DEA models. Two procedures for fuzzy 

linear programming are presented which are able to solve fuzzy DEA models. The 

fuzzy version of a ratio form known as the CCR model (Charnes et al. 1978) is 

developed and some methodologies for the solution of this model are provided. 

Based on this pattern, a ranking model is suggested. Then, the fuzzy concepts and 

Data Envelopment Analysis are used to introduce new mathematical methods for 
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selecting the best alternative in a group decision making environment. The 

introduced models are multi-objective functions which are converted into multi-

objective linear programming models from which the optimal solutions are obtained.  

The scope of this study, from theoretical point of view, is to provide a 

platform for exploring different classical DEA models in fuzzy environment. From 

practical point of view, many problems pertaining to qualitative factors may now be 

handled. (These models may be applied in the efficiency analysis of personnel, 

groups, quality of goods, etc. where many of the factors may be inherently fuzzy). 



 1

Chapter 1 

Introduction 

 

Data Envelopment Analysis (DEA) is increasingly the centre of many 

research and applications for measuring efficiency and productivity of decision 

making unit aimed at improving organizational efficiency. However, despite the 

importance of efficiency measurement in public and private services, it is only 

recently that the more advanced fuzzy logic and fuzzy mathematical programming 

concepts are applied to DEA. 

On the other hand, in recent years, researchers have used Data Envelopment 

Analysis technique in various applications.  

 

1.1 Data Envelopment Analysis  

 

Data Envelopment Analysis is a recognized modern approach to the 

assessment of performance of organizations and their functional units. DEA extends 

the boundaries of several academic areas including management science, operational 

research, economics and mathematics. DEA is a non-parametric technique in order 

to measure the relative efficiencies of a set of decision making units (DMUs) which 

use multiple inputs to product multiple outputs. This technique which was initially 

proposed by Charnes et al. (1978) (CCR model) and was improved by other scholars, 

especially Banker et al. (1984) (BCC model), evaluates the relative efficiency of a 

set of homogenous decision making units (DMUs) by using a ratio of the weighted 
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sum of outputs to the weighted sum of inputs. It generalizes the usual efficiency 

measurement from a single-input, single-output ratio to a multiple-input, multiple-

output ratio.  

Let inputs ( 1,2,..., )ijx i = m  and outputs ( = 1,2,..., )rjy r s  be given for jDMU  

( = 1,2,..., )j n . 

The fractional programming statement for the CCR model is formulated as follows: 
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where iv  and ru  are the weight variables for i th and r th input and output, 

respectively.    

Model (1.1) is transformed to the following linear programming problem by some 

substitutions: 
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(1.2)  
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At the turn of the present century, reducing complex real-world systems into precise 

mathematical models was the main trend in science and engineering. Unfortunately, 

real-world situations are frequently not deterministic. Thus precise mathematical 

models are not enough to tackle all practical problems. In practice there are many 

problems in which, all (or some) input–output levels are fuzzy numbers. It is difficult 

to evaluate DMUs in an accurate manner to measure the efficiency. Fuzzy Data 

Envelopment Analysis (FDEA) is a powerful tool for evaluating the performance of 

a set of organizations or activities under uncertaint environment.  

 

1.1.1 Fuzzy data envelopment analysis 
 

Due to lack of complete knowledge and information, precise mathematics is 

not sufficient to model a complex system. Although, in real world situations, 

decisions are based on qualitative as well as quantitative data, a fuzzy approach is 

able to deal with such problems. The CCR model with fuzzy coefficients is given in 

Equation (1.3). 
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 (1.3)  
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where ijx%  and rjy%  are the i th fuzzy input and r th fuzzy output of jDMU , 

respectively. 

DEA researchers have begun using fuzzy concept for measuring efficiency 

and productivity of decision making units since 1992. One of the first literatures on 

fuzzy DEA is by Sengupta (1992a). He exerted principles of fuzzy set theory 

developed by Bellman and Zadeh (1970) and Zimmermann (1976) to evaluate 

DMUs with fuzzy inputs and fuzzy outputs in data envelopment analysis. He 

considered the objective function and the right-hand side vector of the conventional 

DEA model developed by Charnes et al. (1978), as fuzzy numbers. However, 

Sengupta did not provide an application roadmap of his proposed framework to 

measure efficiency using fuzzy DEA. After that, other researchers suggested various 

approaches to solve fuzzy DEA problem, but these methods have some shortcomings 

that will be mentioned in the next sections.  
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1.2 Assumptions 

 

Among the various types of fuzzy numbers, triangular and trapezoidal fuzzy 

numbers are most commonly used, because they have intuitive appeal and can be 

easily specified by the decision maker. In this thesis, the inputs and outputs of DMUs 

are considered as triangular fuzzy numbers. This assumption on inputs and outputs 

can be easily extended to trapezoidal fuzzy numbers. 

 

1.3 Problem Statements and Objectives 

 

The assumption underlying DEA is that all the data are in the form of 

specific numerical values. However, the data are sometimes observed with a noise 

and/or with inaccuracy. For example, in evaluating operation efficiencies of airlines, 

seat-kilometers available, cargo-kilometers available, fuel and labor are regarded as 

the inputs and passenger-kilometers as the output. It is common that these inputs and 

outputs can easily change because of weather, season, operating state and so on. To 

deal with imprecise data like these, the notion of fuzziness has been introduced. 

However in evaluating DMUs using fuzzy DEA, some problems arise. Among them 

are: 

a) the lost of many information on uncertainty in most of the existing 

approaches,  and  

b) the computational inefficiency of the other approaches that try to retain as 

much as possible the information on uncertainty. 
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The objectives of this thesis are: 

a) to improve the existing approaches of solving fuzzy DEA by proposing 

methods that are able to retain as much as possible information on 

uncertainty and at the same time are computationally efficient, and  

b)  to use the concept of DEA and fuzzy DEA in selecting the best alternative in 

a group decision making environment. 

 

1.4 Outline of the Thesis 

 
This thesis consists of four contributions utilizing fuzzy concepts; two 

methods for evaluating DMUs with fuzzy inputs and outputs, and then two 

procedures using the aforementioned methods for aggregating preference ranking. 

The remaining chapters are organized as follows. Chapter 2 is dedicated to 

introduce DEA, fuzzy DEA and voting system. Some approaches for solving fuzzy 

DEA models are also introduced in this chapter.  

Based on a non-radial measure which allows non-proportional reductions in positive 

inputs or augmentations in positive outputs, a method for solving fuzzy non-radial 

model is presented in Chapter 3. Chapter 4 presents a new approach which is 

referred to as discrete approach. First, using local α-level concept and applying 

discrete data, a nonlinear multi-objective programming model is formulated, and 

then, the problem is converted to a linear multi-objective programming model. A 

model for aggregating preference ranking with fuzzy concept, which is an 

application of fuzzy DEA, is presented in Chapter 5. In Chapter 6 the concept of 

Data Envelopment Analysis is used to introduce a new mathematical method for 
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selecting the best alternative in a group decision making environment. The 

introduced model is a multi-objective function which is converted into a multi-

objective linear programming model from which the optimal solution is obtained. 

Some examples are given to demonstrate the implementation of each model in 

Chapters 3 to 6. Conclusion and discussion on some future research directions are 

presented in Chapter 7.    
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Chapter 2 

Literature Review 

 

This chapter provides a synoptic survey of DEA, fuzzy DEA and the 

aggregating preference ranking methods. First, a literature review on traditional 

DEA, including a theoretical analysis on the construction of the CCR model is 

presented. Then, literature review on fuzzy DEA which includes discussion on 

applications, advantages and shortcomings of the existing approaches are presented.  

The discussion then focuses on the preferential voting system. Special attention was 

given to the Cook and Kress (1990) method because it is the closest to the suggested 

methods in this thesis. In their approach, DEA model of Charnes et al. (1978) which 

utilizes the weighted composite of place standings of each candidate was used.       

 

2.1 Research Background on DEA 

 

Measurement and evaluation of efficiency has been progressing in 

management science. A production function defines the relationship between the 

outputs and inputs of a production technology. Mathematically, a production 

function relates the amount of output (Y ) as a function of the amount of input ( X ) 

used to generate that output. Technical efficiency is assumed for a production 

function i.e., every feasible combination of inputs generates the maximum possible 

output (from an output oriented-view) or all outputs are produced using the 

minimum feasible combination of inputs (output an oriented-view). Efficiency can 
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then be measured relative to the frontier defined by the production function. DEA is 

a nonparametric approach, and unlike parametric approach such as the methods 

based on regression analysis, there is no need to assume the form of the production 

function relating inputs and outputs. It evaluates the efficiency of each DMU relative 

to similar DMUs. Thus, it provides an efficient frontier or envelop for all considered 

DMUs rather than fitting a regression plane through the center of the data.  

 

2.1.1 Data envelopment analysis models 
 

This section specifies all the symbols used for describing DEA and also 

presents a theoretical discussion for constructing DEA models. 

 The definitions of the notations are as follows: 

 

Notations: 

thei =  subscript of inputs ( 1 2 )i = , ,...,m ,   

thej =  subscript of DMUs ( 1 2 )j = , ,...,n ,  

the=r  subscript of outputs ( 1 2 )r = , ,...,s , 

a=p  specific DMU to be measured 1 p n,≤ ≤  

inputjX = vector of the j th DMU, 

outputjY = vector of the j th DMU, 

theijx =  i th input of the j th DMU, 

therjy =  r th output of the j th DMU, 

the-
is = slack variable for the i th input,  
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the+
is = slack variable for the r th output,  

ajλ =  nonnegative value related to the j th DMU . The vector 1 2
t

nλ= (λ ,λ ,...,λ ) is            

used to construct a hull that covers all the data points. 

theiv = weighting variable for the i th input,  

theru = weighting variable for the r th output, 

DEApw =  efficiency score of Saati’s (2001), 

DEAθ =  efficiency score of CCR model, 

thecT = production possibility set corresponding to constant returns to scale,  

thevT =  production possibility set corresponding to variable returns to scale,  

aε =  positive non-Archimedean infinitesimal. 

 

In order to review the DEA models, the following two general assumptions are 

specified: 

a) There are n  DMUs denoted by j J∈ , each of which produces a nonzero output 

vector 1 2( ) 0t
j j j sjY = y , y ,..., y ≥  using a nonzero input vector 

1 2( ) 0t
j j j mjX = x ,x ,...,x ≥ , where the superscript 't'  indicates the transpose of a 

vector. Here, the symbol ʹ ʹ≥  indicates that at least one component of jX  or jY  

is positive while the remaining 'sjX  or 'sjY  are nonnegative.  

b) There is no DMU in J  whose data domain can be proportionally expressed by 

that of another DMU. 
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Definition 2.1. Given the (empirical) points ( ) 1 2j jX ,Y , j = , ,...,n,  the Production 

Possibility Set (PPS ) is defined as follows: 

 

{ }= ( ) | output can be produced by inputt t t tT X ,Y Y X   

 

Definition 2.2. 

a) The production possibility ( )t tX ,Y  is a frontier point (input-oriented) if 

( )t tαX ,Y T∈  implies 1α ≥ . 

b) Production possibility ( )t tX ,Y  is a frontier point (output-oriented) if ( )t tX ,βY T∈  

implies 1β ≤ . 

 

To construct the production possibility set, the following postulates are assumed: 

1) (Ray Unboundedness) If  ( )t tX ,Y T∈  then ( )t tγX ,γY T∈  for 0γ> . 

2) (Convexity) If ( )t tX ,Y T∈  and ( )u uX ,Y T∈  then  

 

( (1 ) (1 ) )t u t uλX + - λ X ,λY + - λ Y T∈  for all [0,1]λ∈ . 

 

3) (Monotonicity) If ( )t tX ,Y T∈  , u tX X≥  and u tY Y≤   then ( )u uX ,Y T∈ . 

4) (Inclusion of Observation) All the observations belong to production possibility 

set.  

5) (Minimum Extrapolation) If T ′  be a set different from T  which satisfies the 

mentioned above postulates, thenT T ′⊆ . 
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The production possibility set corresponding to constant return to scale constructed 

with the aforementioned postulates will be as follows:  

   

1 1
( ) 0 1 2

n n

c t t t j j t j j j
j= j=

T = X ,Y | X = λ X ,Y = λ Y ,λ , j = , ,...,n
⎧ ⎫

≥⎨ ⎬
⎩ ⎭

∑ ∑  
(2.1) 

 

Constant return to scale (CRS) means that an increase in the amount of inputs 

consumed leads to a proportional increase in the amount of outputs produced and if 

this increase is culminated in larger or smaller than proportional increase in the 

amount of outputs, return to scale will be increasing (IRS) or decreasing (DRS), 

respectively. 

 

CCR model (input-oriented) 

 

To evaluate efficiency corresponding to set cT , consider the following model. 

  

min
s.t.

( )

*
p p

p p p

θ = θ

θ X ,Y T∈

 

(2.2) 

 

CCR model (input-oriented) for evaluating the efficiency of pDMU , is written as 

follows: 
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1
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j
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(2.3) 

 

  Dual (Multiplier) form of CCR model (input-oriented) for pDMU  is then written as: 

 

 

(2.4) 
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By adding the following revised constraints of returns to scale:  

 

(2.5)  

1

1
1
1

n

j
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=
λ
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to (2.3), the revised models with variables that are increasing and decreasing returns 

to scale are obtained. 

Based on (2.1), three of the DEA models, which form the framework of this 

thesis, are introduced and developed.  These models are CCR, Andersen and 

Petersen’s (1993) and Saati et al. (2001).   

The revision of DEA models by omitting the corresponding column of DMU 

under consideration in the technological matrix has been proposed by Andersen and 

Petersen (1993) (AP model). Their envelopment model is as follows: 

 

 

(2.6) 

 

 

  

1

1

min
s.t.

0

free
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j ij ip
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Reformulating the linear programs for ranking DMUs in DEA by omitting 

the corresponding column in the technological matrix causes some theoretical and 

applied difficulties. One of them is that the corresponding problem might becomes 

infeasible. 

We can call the envelopment DEA models as radial efficiency measures, 

because these models optimize all inputs or outputs of a DMU at a certain 

proportion. Färe and Lovell (1978) introduced a non-radial measure which allows 
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non-proportional reductions in positive inputs or augmentations in positive outputs. 

Saati et al. (2001) suggested a non radial model to remove the difficulties about 

infeasibility of AP model. The primal linear programming statement for the model 

is:   

 

 (2.7) 
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such that pw  is a free variable and measures the efficiency of pDMU . 

This model projects the DMU under evaluation on the frontier by decreasing the 

inputs and increasing the outputs. 

 

2.2 Literature Review on Fuzzy DEA 
 

In this section, first some fuzzy notations and definitions are introduced and 

then, after introducing the fuzzy CCR model, some approaches in fuzzy DEA 

together with their shortcomings and advantages are discussed.   
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Notations and Definitions 

fuzzyjX =% input vector of the j th DMU, 

fuzzyjY =% output vector of the j th DMU, 

theijx =% i th fuzzy input of the j th DMU, 

therjy =% r th fuzzy output of the j th DMU. 

Since terms like fuzzy sets, membership functions, fuzzy numbers and α - cut  from 

fuzzy set theory will be used several times in the coming discussion, we shall 

consider a few necessary definitions. 

 

Definition 2.3. (Zimmermann, 1976) If X is a collection of objects denoted 

generically by x , then a fuzzy set A  in X  is a set of ordered pairs: 

 

{ }( ( ))AA= x,μ x | x X∈%
%  

 

( )Aμ x% is called the membership function which associates with each x X∈  a number 

in  [0,1]  indicating to what degree x is a member of A . 

 

Definition 2.4. A trapezoidal fuzzy number ( )A= p,q,l,u% (for simplification, 

( )p q l uA= a ,a ,a ,a%  is presented as ( )A= p,q,l,u% ) is a fuzzy subset of R , such that its 

membership function Aμ %  is:  

1. a continuous mapping from R  to the closed interval [0 ] 0 1,w , w ,≤ ≤  
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2. constant on ( ), ( ) 0AR - l,u μ x =%  for ( )x R - l,u ,∈  

3. strictly increasing linear function on ( )l, p , 

4. constant on [ ] ( ) 1Ap,q ; μ x =% for p x q≤ ≤ , 

5. strictly decreasing linear function on ( )q,u , 

where p is the left main value and q is the right main value with the complete 

membership, l is the lowest value and u  is the upper value. p - l  and u - q  are called 

left and right spreads, respectively (see Figure 2.1). 

 

 

 

  

 

 

 

 

 

 

   

If p = q = m , then the number ( )A= m,l,u%  is called triangular fuzzy number (see 

Figure 2.2). 

  

 

 

 

Figure 2.1 Membership function of trapezoidal fuzzy number A%  

( )Aμ x%  

la  pa  qa  ua  

1

x
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Definition 2.5. (α-level set) Let AA= {(x,μ (x))| x X}∈%
%  be a fuzzy set representing a 

fuzzy event. α -level sets or α–cuts shall be denoted by Aα and defined as: 

 

{ ( ) }AA = x X | μ x αα ∈ ≥%  

 

Definition 2.6.  (Normal fuzzy set) A fuzzy set A%  is normal if 

 

 sup( ( )) 1A
x X

μ x =
∈

%  

 

Definition 2.7.  (Convex fuzzy set)A fuzzy set A%  is convex if  

 

1 2 1 2( ( ) ) min( ( ) ( ))A A Aμ λx + 1- λ x μ x ,μ x≥% % %  for all 1 2x ,x X∈ [0,1]λ∈ . 

Figure 2.2 Membership function of triangular fuzzy number A%  

1 

( )Aμ x%  

la  ma  ua  
x 
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Definition 2.8. (Lai and Hwang, 1992) A fuzzy linear program can be stated as: 

 

(2.8) 

 

 

  

1

1

max

s.t

1

0 1

n

j j
j=

n

i j j i
j=

j

c x

.

a x b i = ,…,m

x j = ,…,n

≤

≥

∑

∑

%

%%
 

 

where, ( 1 2 )jc j = , ,...,n% ; ( 1 2 )ib i = , ,...,m% and ( 1 2 1 2 )ija i = , ,...,m, j = , ,...,n%  may 

be imprecise with membership function. 

 

2.2.1 Fuzzy CCR model 

 

Due to lack of complete knowledge and information, precise mathematics is 

not sufficient to model a complex system. Although, in real world, decisions are 

based on qualitative as well as quantitative data, a fuzzy approach seems fit to deal 

with such problems.  

 CCR model has its production frontier spanned by the linear combination of the 

existing DMUs. But, production frontier in CCR and fuzzy CCR model are different. 

The frontiers of the CCR model have no flexibility and have linear characteristics, 

while those of the fuzzy are flexible.  
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Figure 2.3 illustrates the efficiency frontier of fuzzy CCR model in the simplest case 

of single input and single output, respectively. In Figure 2.3, DMU consumes fuzzy 

input ( )m l ux = x ,x ,x%  to produces output oy . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The CCR dual (multiplier) and primal (envelopment) models with fuzzy coefficients 

are given in Equations (2.9) and (2.10). 

 

1

Figure 2.3 Production frontier of fuzzy CCR model  

Output 
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mxlx ux
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(2.10)  
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2.2.2. A chronicle development of fuzzy in measurement of efficiency 
 

DEA researchers have begun using fuzzy concept for measuring efficiency 

and productivity of decision making units since 1992. This section gives a chronicle 

development of fuzzy concept in measurement of efficiency with Data Envelopment 

Analysis. 

 

 

 



 22

1992 

Seaver and Triantis (1992) developed a method of fuzzy clustering approach 

in evaluating technical efficiency measures in manufacturing. 

Sengupta (1992a) explored the use of fuzzy set-theoretic measures in the 

context of Data Envelopment Analysis, which utilizes a nonparametric approach to 

measure efficiency. He employed three types of fuzzy statics e.g., fuzzy 

mathematical programming, fuzzy regression and fuzzy entropy, to illustrate the 

types of decisions and solutions that are achievable, when the data are vague and 

prior information is inexact and imprecise.  

Sengupta (1992b) developed methods of measuring economic efficiency of 

input-output systems by employing a fuzzy statistical approach using DEA. He 

illustrated fuzzy measures in the context of a two-person game theory model.  

 

1994 

Morita and Nose (1994) introduced fuzzy categorical variables in Data 

Envelopment Analysis. They considered ambiguous data and propose a DEA model 

for a non-controllable fuzzy categorical input variable. As claimed by them, their 

model gives a reasonable efficiency score and has robustness against the change of 

the boundaries of categorization.  

 

1995  

Morita (1995) further developed his earlier work on fuzzy DEA to address 

the uncertainty issue of the input and output data such as an observational 

disturbance and subjective data in DEA using fuzzy approach.  
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1997  

Triantis (1997) and Triantis and Girod (1997) introduced a fuzzy non-radial 

DEA measures of technical efficiency. They replaced the notion of a radial distance 

measure with the concept of a non-radial distance measure. Also, the assumption of 

crisp production plans was substituted with the assumption of fuzzy production 

plans. Their paper merged these concepts and evaluated the efficiency performance 

of a newspaper preprint insertion production line.  

Uemura (1997) focused on satisfactional method by introducing the concept 

of a fuzzy goal in DEA. The main focus of the paper is to address the case where 

they obtain DEA efficiency for DMUs, from looking at only one output. This means 

that DEA analyzes one output by some inputs and ignores other outputs.  

 

1998 

Chai and Ho (1998) dealt with ordinal data in DEA using fuzzy criteria. 

Their main objective was to use multiple criteria decision model for resource 

allocation with a case study in an electric utility company. In their paper the decision 

situation is characterized by a large number of projects competing for limited 

funding, the presence of fuzzy criteria, and the available data being ordinal in nature. 

The large number of projects and the nature of the data preclude the use of utility-

theoretic approaches. The ordinal-DEA decision model is used as a screening tool in 

a partially automated decision process.  

Kahraman and Tolga (1998) used DEA in fuzzy environments, which allow 

flexibility in constraints and nonlinear programming. In their paper, assuming that 
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the values of inputs and outputs in DEA are not known with certainty, a fuzzy 

mathematical programming is proposed in which the objective function and the 

constraints are represented by using their degrees of membership in DEA. The main 

advantage of this solution is that the decision maker is not forced into a precise 

formulation for mathematical reasons.  

Karsak (1998) introduced a two-phase robot selection procedure which in 

phase 1, DEA is used as a means to determine the technically efficient robot 

alternatives, considering cost and technical performance parameters. In the second 

phase, a fuzzy robot selection algorithm is used so as to rank the technically efficient 

robots according to both predetermined objective criteria and additional vendor-

related subjective criteria. The algorithm presented in the paper is based on 

calculating fuzzy suitability indices for the technically efficient robot alternatives, 

and then, ranking the fuzzy indices to select the best robot alternative. The algorithm 

proposed in the paper is also applicable to a broader area of decision problems, e.g. 

facility site selection in order to determine the best CNC machine or flexible 

manufacturing system among a set of mutually exclusive alternatives.  

Meada et al. (1998) built their research on fuzzy DEA with interval 

efficiency. With interval efficiency there exist two phases of efficiency evaluation 

with respect to the upper limit and the lower limit. From these viewpoints, they 

defined two extreme points of efficiency. As a result, interval efficiency for each 

decision-making unit can be obtained. They also formulated the interval cross-

efficiency.  

Tanaka et al. (1998) explored the possibility data analysis with rough sets 

concept. Hence they dealt with the upper and lower approximation models for 


