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The day when we shall know exactly what “electricity” is, will chronicle an 
event probably greater, more important than any other recorded in the history of 

the human race. The time will come when the comfort, the very existence, 
perhaps, of man will depend upon that wonderful agent. 

 
Nikola Tesla1 (1856 – 1943) 

 
 
 
 

There is no doubt that the affluence [of wealth] recently acquired by the 
technological societies [...] has not brought about any comparable growth of 

human mental capacity to comprehend their over-all complexities. 
 

Jagjit Singh2 (1912 – 2002) 
 
 
 
 

We live in these electric scabs. 
These lesions once were lakes. 

No one knows how to shoulder the blame. 
Or learn from past mistakes. 

 
Joni Mitchell (Bad Dreams) 

 

 

                                                      
1 In Marc Seifer’s Wizard. The Life and Times of Nikola Tesla, Citadel Press, New York, 1998. 
2 Great Ideas in Information Theory, Language and Cybernetics, Dover Publications Inc., New York, 1966. 
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Abstract 
 

This PhD Thesis explores the structure, dynamics and evolution of the electricity 
transmission network from a complex systems perspective, its main objective being 
the definition of new criteria and tools to help designing a more efficient and 
sustainable transmission power grid. In doing so, two data sets have been explored 
and analyzed. On one hand, the Union for the Coordination of Transport of 
Electricity (UCTE) network, which associates most of the continental Europe national 
power grid operators in order to coordinate the production and demand of some 
annual 2 300 TWh of energy and 450 million customers from 24 countries. On the 
other hand, the Gestionaire du Réseau du Transport d’Electricité (RTE) transport 
network historical evolution, responsible for operating, maintaining and developing 
the biggest national network in Europe, the French electricity transmission network. 

The results obtained so far show statistically significant dissimilarities in the 
structure of the power grids, clearly defining and enclosing particular dynamic 
behaviours that enable us to segregate European networks in two sets, namely fragile 
and robust. Fragile networks are characterized by meshed topologies and non 
random structures while robust ones share more randomly generated topologies. The 
consequences of these findings for the sustainability of infrastructure networks are 
significant in terms of cost and risk assessment. A topological model for the 
evolution of a power grid network is also presented. We suggest that global 
topological fragility increases when local connectivity schemes are adapted in order 
to increase local reliability. These outcomes appeal for new power grid design 
methods and tools capable to include these new topological aspects into efficiency 
and reliability assessments.   
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1 
Introduction. Power grids, complex 

systems and sustainability 
 

We almost certainly agree that the harnessing of electricity can be considered the most 
important technological advance of the twentieth century. The electric power system has 
shaped the modern world from its very beginning. Electric generators and motors connected 
by an intricate network of power lines order the rhythm and pulse of the society we live in. 
Electricity allows innovation, to envision better futures and to enhance standards of living. In 
fact, following the opinion of Thomas P. Hughes1, power systems can be considered cultural 
artifacts since all “Technological affairs contain a rich texture of technical matters, scientific 
laws, economic principles, political forces, and social concerns” (Hughes 1983). From this 
point of view, its presence is nowadays so intertwined with ours, and so much taken for 
granted, that we are only capable of sensing its absence.  

The absence of electric supply is nowadays considered an extreme inconvenience. Chaos 
and despair are usually its inevitable consequences since in the almost endless list of power 
outages throughout history2, there is not a single event that has not been characterized by 
some amount of looting, rioting and human and economic losses. It is therefore a priority for 
every developed nation to secure the electric chain, from production to consumption, in the 
most economic manner but, at the same time, with the most reliable technology available 
(Amin 2001). The task is one of enormous importance considering the expected expansion of 
highly liberalized markets, the many environmental constraints and the increasing social 
reluctance to new lines sitting and forecasting. Having this context in mind, some questions 
inevitably arise: 

 
• Why do power networks still fail after years of continuing improvements? How is 

it possible that such a perfected engineering system collapses with not a warning 
sign? 

• Which are, and had been during time, the influences between those different 
forces that shape the making of the grid? 

• In a world of increasing population and energy consumption, can we define a 
pattern for the evolution of a future power grid without the actual environmental 
impact but with improved reliability indexes? Is it economically feasible or even 
possible to keep such a complex and vital system in a faultless state?  

 

                                                      
1 Thomas Parke Hughes (1929) is an American historian of technology, well known to introduce 
systems theory into the history of technology. 
2 http://en.wikipedia.org/wiki/List_of_power_outages. (Last visited, January 2009). 
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There is no single or easy answer to these questions. Power grids are now systems 

much more complex than those envisioned by pioneers such Thomas A. Edison and Nikola 
Tesla, or entrepreneurs such as Samuel Insull and George Westinghouse (Klein 2008). Motors, 
generators, substations and transformers are now connected by cable lines that span 
thousands of kilometers, crossing many countries, to serve energy and power in a globalized, 
networked world and economy. Extreme phenomena such as blackouts and cascading 
failures seem to appear more frequently in the last years and it seems the old reliability 
network criteria are not anymore an assurance for the safety of the system as a whole. New 
disturbances and energy injections due to renewable energies are transmitted through old 
frontiers and integrating this new energy system or the one that has to appear in the present 
one is not an easy task. Maybe it is time for new tools and conceptual frames to allow a 
different approach. The main objective in this PhD Thesis work is precisely to study the 
power grid from a different point of view, which is as a complex system, particularly as a 
complex network. 

 

1.1 Power grid 
According to the US National Academy of Engineers, the interconnected network for 
delivering electricity from suppliers to consumers that we call power grid can be considered 
the twentieth century‘s most beneficial innovation to our civilization (Constable and 
Somerville 2003). From a broader historical perspective, networks of energy, transportation 
and communication have constituted the very foundation of all kinds of societies. The study 
of these technological systems deserves attention in order to assure, essentially, structural 
integrity, efficiency and reliability of supply.  

The term grid is used for an electricity network which may support all or some of three 
distinct operations: electricity generation, electric power transmission and electricity 
distribution3. It may be used to refer to an entire continentʹs electrical network, a regional 
transmission network or may be used to describe a local utilityʹs transmission or distribution 
grid. Electricity might be provided by a simple distribution grid linking a central generator 
to homes, though the traditional paradigm for moving electricity around in developed 
countries is much more complex (Fig. 1.1.1). Generating plants are usually located near a 
source of power and away from heavily populated areas. Power generation can range from 
200 MW in hydroelectric plants up until 1.500 MW for some nuclear power facilities. The 
generated electricity is stepped up to a higher voltage suited to connect the plant to the 
transmission network. The transmission network operates usually with voltages higher than 
110 kV and with an upper limit that depends on national and continental constraints, but 
usually below 800 kV (Fig. 1.1.2, left). Most European grids operate at a maximum voltage of 
400 kV. This bulk power transport network can cross national boundaries until it reaches its 
wholesale customer (usually the company that owns the local distribution network.) Upon 
arrival at the substation, the power will be stepped down from the transmission level voltage 

                                                      
3 http://en.wikipedia.org/wiki/Grid_(electricity). (Last visited, January 2009). 
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to the distribution level voltage, which is lower that 110 kV. As it exits the substation it 
enters the distribution wiring. Finally, upon arrival at the service location, the power is 
stepped down again from the distribution voltage to the required service voltages.  
 
 

 
Fig. 1.1.1  Electricity network general layout. The transmission grid is usually defined for 110 kV and 
higher. Voltages and depictions of electrical lines are typical for European systems. (Image source: 
http://en.wikipedia.org/wiki/File:Electricity_grid_schema-_lang-en.jpg; last visited December 2008). 
 
 
The topology of a distribution grid can vary widely, depending on the constraints of budget, 
requirements for system reliability, and the load and generation characteristics. Due to cost 
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constraints, though, it usually uses a more radial and meshed structure (Fig. 1.1.2, right). 
This is usually a tree-shaped grid where power from a large supply substation radiates out 
into progressively lower voltage lines until the destination homes and businesses are reached. 
Though any power grid requires some level of redundancy in order to be reliable and secure, 
the expensive cost of more meshed topologies restricts their application to transmission grids. 
As a consequence, distribution grids tend to be meshed. This secures electric supply in case 
of a line failure: the power can be simply rerouted while the damaged line is repaired. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.1.2 The particular objectives followed in transmission and distribution grids force different 
structural patterns and layouts. Left: Italian (220 – 400 kV) transmission power grid, where each node 
is a substation or transformer. Right: Andorran local distribution grid topology (< 60 kV) where each 
node is a distribution feeder (also transformer) that sets the final voltage at domestic or industrial 
level. 
 
 

The new trends in deregulation, markets, generation and demand equilibrium, and 
reliability pose the structure of the transportation grid at a stack. More power is needed and 
it has to be transported far away distances in lesser time. The traditional centralized model 
along with its distinctions is breaking down with the introduction of new technologies and 
renewable energy. In fact, the characteristics of power generation can in some new grids be 
entirely opposite of those named above. Generation can occur at low levels in dispersed 
locations, in highly populated areas, and not outside the distribution grids. Therefore, the 
structure of the actual grid seems to be not well suited to this new panorama. The electricity 
fluxes of the system are sensible to these processes and much more failures and instabilities 
are expected to appear. Although early work on distribution and communication networks 
already addressed some of these problems (Baran 1964), only recently an appropriate 
framework has been developed to face them from an alternative perspective. 
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1.1.1 Dynamics  
In a stable functioning regime, power grid behaves dynamically as a great pool of sources 
and sinks where consumption continuously meet demand (Wood and Wollenberg 2005). The 
grid is usually forced to operate at a minimum cost. This means a delicate equilibrium 
between optimal power flow and problematic concerns such as economic dispatch, control of 
interconnected systems and phase synchronicity. Being an engineering formidable problem 
as it is, we must add, in recent years, several other problems. The grid is actually managed 
by different kinds of actors (often with different objectives) and increasingly adding huge 
quantities of heterogeneous components (spatially distributed and connected). It is, therefore, 
more difficult to ensure the security of the system as the interaction of its multiple 
components became more and more complex. Preventing its collapse due to unforeseen 
conditions is almost impossible. 

The fact that the temporal behavior of the power grid is now much more intricate than it 
was fifty years ago can be easily perceived. Increasing frequency and size of malfunctions 
have raised general and media awareness about our real level of comprehension of the 
dynamics of these networks (Venkatasubramanian 2003; UCTE 2004; UCTE 2007). In recent 
years, both the North American and the (once almost faultless) European grids have 
experienced numerous examples of such malfunctions in the form of cascading failures and 
blackouts (Fig. 1.1.3). The explanations given by local, national and international electricity 
coordinating councils for most of these situations go from aspects related to low investment 
and maintenance, to those related to generation and demand inadequateness and, obviously, 
bad luck. But more than any, the most repeated explanation is that of a bad comprehension 
of the interdependencies present in the network. (Watts 2003; UCTE 2004) 
 
 
 
 

 
 
 
 
 
 
 
 

 
Fig. 1.1.3 Blackouts are result of unexpected power grid behaviours. Satellite images taken before (left) 
and after (right) of the 2003 historic blackout of the United States northeast, which left millions of 
people into darkness. (Image source: http://www.noaanews.noaa.gov/stories/s2015.htm ; last visited 
December 2008). 
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In our increasing electrified world transmission-operation entities required to provide 

grid access to many parties (both utility and non utility organizations) have a tremendous 
challenge: the task of developing operating schedules in some (as yet to be defined) 
“optimal” fashion within the physical constraints of the system, including those more often 
unexpected behaviors, while maintaining its reliability and security.  But the global power 
grid is now a whole one, connected, complex and, in some sense, unknown. 

The clear and perfectly engineered one-line diagrams presented in academic books and 
engineering faculties are now much more similar to a neural network, where relations 
between connections and functions, structure and dynamics, are less clearly defined. It is 
therefore necessary to adopt a different approach to study and deal with the intricacies of 
these systems. Advances in statistical physics, modeling and computational methods have 
stimulated the interest of the scientific community to study electric power grids as complex 
networks, one particularly successful way of studying complex systems. (Dorogovtsev and 
Mendes 2001) 

  

1.2 Complex systems 
There is no general accepted formal definition of complex system or even for system.4 Very 
broadly, a complex system5 can be defined as a large group of relatively simple components 
with no central control and where organization and emergent non trivial behaviour are 
exhibited (Kauffman 1995; Érdi 2008). With very few exceptions there is still a lack of effort 
for an epistemological reflection on its foundations, principles and limits. The epistemology 
of concepts such as “simple component” or “emergent non trivial behaviors” is at the core of 
the complexity’s more formal debate and it is not the aim of this work to add more elements 
to its discussion. The former definition will essentially depend on the context (Morin 2006). 
For example, in brain and cognition sciences, the neuron can be seen as the simple 
component, while speech and thought are emergent behaviors (i.e., global characteristics not 
explained by the individual behavior of the components). On the other hand, social sciences 
consider the self as the simple component, while globally organized phenomena such as 
economy or wars can be seen as emergent behaviors. (Ball 2004; Buchanan 2007) 

Over the last several years, and in spite of the usual controversy arising in the usage of 
new words and definitions, complex science, or complexity for short, has changed the way 
scientists approach all fields of life, from biology to medicine, from economics to engineering 
(Waldrop 1992; Lewin 1995; Solé and Manrubia 1996; Solé and Goodwin 2001; Érdi 2008). 
Words and concepts such as self-organization, genetic algorithm, cellular automata, criticality, 
artificial life or chaos theory are now widely accepted and used as new means of 
understanding the always changing reality. The history of these concepts in particular and 
complex systems research in general begins in the 1950’s, with (a) the advent of von 
Bertalanffy’s (and some others) systems theory, (b) the appearance of nonlinear phenomena in 
                                                      
4 Ludwig von Bertalanffy needed a whole book to define it: Bertalanffy, L.v. (1968), General Systems 
Theory, New York, Braziller. 
5 Words in italics are defined in the glossary (Appendix B).  
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scientific fields away from physics, like chemistry and biology, and (c) the study of feedback 
and derived concepts such as communication and control in living organisms, machines and 
organizations, also known as cybernetics (Fig. 1.2.1). From these early stages comes the idea of 
threshold, that is the fact that complication as well as organization below a certain minimum 
level is degenerative but beyond that level can become self-supporting and even increasing 
(Singh 1966; Kauffman 1995), a concept that turned up to be the cornerstone of much of the 
complexity science developments of the 1980’s, especially in the cellular automata and artificial 
life fields, where complex behavior (associated to some specially complex patterns, neither 
random nor regular) seemed to appear suddenly, when a certain threshold in some control 
parameter was reached (Wolfram 2002). Though words like self-organization, connectionism, 
adaptive system or complexity itself, had already been used in the 1940s, it is not until the 
1980’s that the definitive impulse is achieved. From then on many books, journals, 
conferences, and even whole institutes devoted to the field have flourished everywhere, and 
even computer modeling of complex systems has become widely accepted as a valid 
scientific activity. 

 
 

 
 

Fig. 1.2.1 Complexity is a difficult word to define. The conceptual map shown in this figure is a first 
attempt to highlight the various aspects involved in its characterization. 

 
 
In this conceptual framework complexity pervades both the (a) structure (i.e., formal 

arrangement of the constituent parts), (b) dynamics (i.e., functional behavior) and (c) 
evolution (i.e., the way it has reached its actual formal and functional state) of any system.  
With the presence of feedback loops, nonlinear interactions and some level of heterogeneity in 
its composing elements, complexity is usually translated into some kind of self-organization, a 
concept emerged and used since the 1950’s by mathematicians, physics, engineers, 
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cyberneticians and neurologists, with a broad meaning of global organization, spatial and/or 
temporal, without any central control and related to concepts such as criticality, phase 
transitions and invariant universalities. 

Though a consensus on the formal meaning of complexity has not been reached, there are, 
nonetheless, some widely accepted means, coming from well established scientific fields, to 
tackle some of the problems posed by complex systems, at least up to some level. 6 
Historically, maybe the first one was the field of dynamics, particularly nonlinear dynamics. 
The flexibility offered by differential equations (or maps, in its discrete form) to explain the 
many behaviors that dynamic systems can exhibit, led eventually to the development of the 
theory of deterministic chaos (Strogatz 1994), a particularly well understood piece of the 
complexity puzzle. With the advent of computational capacity, simulations and models of real 
life phenomena arose. Particularly fruitful were cellular automata, which illustrate very well 
how complex behavior can suddenly arise once a particular threshold in the control 
parameters values is crossed. Their evolved cousins, agent-based models, have actually taken 
the lead (Miller and Page 2007). The rationale behind these two new both theoretical and 
computational tools is the coverage of a basic need a differential equation can not give, that 
is to account for the heterogeneity in the system’s composing elements. 

One way to analyze complex systems’ behaviors is by determining the relations and 
dynamics between its inner components. Though differential equations, cellular automata and 
agents are particularly successful in addressing the physical properties of systems that are 
composed of many identical or non identical elements interacting through mainly local 
interactions, they face many difficulties when systems are composed of many non-identical 
elements that have diverse and multi-level interactions, local and non-local. Over the last ten 
years, and mainly due to advances in computational capacity and databases accessibility, 
modeling and computational methods have stimulated the interest of the scientific 
community to analyze complex systems as networks. 

 

1.2.1 Complex networks 
The mathematical study of networks arose from graph theory, which began as early as the 
eighteenth century with Euler’s solution to the famous “Bridges of Königsberg” problem. 
Some influential work on the theory of random graphs was done in the 1950s but it is in the 
last ten years when the concept of complex network has been widely used and accepted. 
(Barabási 2002; Watts 2003; Solé 2009) 

In its broadest sense, a network is a formal and functional representation of a complex 
system, where vertices are the elements of the system and edges represent the interactions 
between them. For example, living cells are supported by large molecular genetic networks, 
whose vertices are proteins, and edges represent the chemical interactions between them. 
Similarly, complex networks occur in social sciences, where vertices are individuals, 
organizations or countries and the edges characterize the social, economical or cultural 

                                                      
6 Up to the level that philosopher Edgar Morin has called restricted complexity. (Morin, op.cit.) 
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interactions between them (Wasserman and Faust 1994). Examples from nowadays 
informational society would be the internet, a network evolved from the 1970’s whose 
vertices are computers and servers physically connected by cables (Fig. 1.2.2) or the world 
wide web, whose vertices are HTML documents connected by links pointing from one page 
to another. (Barabási et al. 2000; Pastor Satorras and Vespignani 2004) 

Graph theory helps to unravel some of the networks’ intricacies once the structure of a 
network is set and minimally understood. But networks are inherently difficult to 
understand mainly, and precisely, due to their structural complexity (Strogatz 2001). 
Connectivity (i.e. the elements’ interaction map) can be sometimes very hard to find, due to 
both edge and node diversity. Besides, it usually varies in time: new nodes and links are 
born, old ones eventually die, and so do networks as a whole. These characteristics add 
dynamical complexity and favor the emergence of meta-complications where these various 
phenomena influence each other in unexpected ways. Due to these complications, the study 
of complex networks is still in its very beginnings and there are a lot of questions that 
network scientists are still trying to address, like for example: 

 
• What structural and topological measures can be used to characterize the many 

properties of a network? 
• What characteristics do different sets of real-world networks share, and why? 

How did these characteristics emerge? How have they evolved in time and why? 
• How do these properties affect the dynamics of information (or disease, or other 

communications) spreading on such networks? 
• Which level of resilience do networks have when some of their composing 

elements fail, be it by random choice or premeditated attack? 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.2.2 A complex system viewed as a network. Left: ARPANET geographical maps in 1971 
(above) and 1980 (below), the backbone of the actual internet. Right: part of the actual internet, 
retrieved from the Internet Mapping Project. (Source: http://www.visualcomplexity.com; last visited 
December 2008). 
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In answering these questions, scientists have developed models of dynamics, structure 

and evolution of real networks. Although these models can explain some of the most 
important phenomena observed in networks, there is still a long way to go in understanding 
the many networked systems around us. Three general models of networks have been 
intensely studied and fairly well developed so far: (a) random, (b) small-world and (c) scale-free, 
each characterized by the way in which networks are generated and by several statistical 
metrics. 

 
(a) Random networks 
Probably the oldest and most investigated model of a network is the binomial random 

graph or shortly random graph (Bollobás 2001). The model starts with a set of N  nodes (or 
vertices) and no bonds. With connection probability p  each pair of vertices is connected with 

a line (bond, edge or link), generating a random network (Fig. 1.2.3). The greatest discovery 
of this model was that many properties of these graphs like the appearance of trees7, cycles8 
or a giant component9, arise quite suddenly at a threshold value. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2.3  Random graph model. Three different probabilities of connection p  give rise to three 
different graphs. 

 
 
Among the resulting statistics one of the most important is the degree distribution. In the 

study of graphs and networks, the degree k  of a node in a network is the number of 
connections it has to other nodes. Therefore, the degree distribution ( )kp  is the probability 

distribution of these degrees over the whole network. In a random graph with connection 
probability p  the degree distribution can be approximated to a binomial degree distribution 

 

                                                      
7 A connected graph without a cycle is a tree. A tree has the same number of links than nodes plus 
one. If a link is removed, the graph ceases to be connected. If a new link between two nodes is 
provided, a cycle is created. 
8 A chain where the initial and terminal node is the same and that does not use the same link more 
than once. 
9 A giant component is a connected subgraph that contains the majority of graphʹs nodes. 

p = 0,0 
p = 0,4 p = 0,8 
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which for large N  can be replaced by a Poisson distribution like 
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where k  is the mean degree of the network. For an undirected graph with a number L  of 

links, it can be written as 
  

N
Lk 2

=  (1.2.3) 

 
Thus, despite the fact that the position of the edges is random, a typical random graph is 

rather homogeneous, the majority of the nodes having the same number of edges k . 

 
(b) Small-world networks 
One question arises immediately when the former model is used to explain real world 

networks and this is whether real world networks are really random or, on the contrary, they 
show not so random distributions and properties. In 1998, a one parameter model which 
interpolates between an ordered finite dimensional lattice and a random graph was 
introduced in order to explain the features of three real world networks taken from three 
different fields: biology (the neural network of the worm C. elegans,), technology (the power 
grid of the western United States) and society (the collaboration graph of film actors) (Watts 
and Strogatz 1998). These networks present peculiar features that make them stay away from 
the random model. These are related to two statistical properties known as the average path 
length and the clustering coefficient. The average path length l  is defined as the number of edges 
in the shortest path between two vertices, averaged over all pairs of vertices. The clustering 
coefficient C  is defined as follows. Suppose that a vertex v  has vk  neighbors; then at most 

( ) 21−vv kk  edges can exist between them (this occurs when every neighbor of v  is connected 

to every other neighbor of v ). Let vC  denote the fraction of these allowable edges that 

actually exist. C  is then defined as the average of vC  over all v .10 For the three real world 

networks under study, strong deviations from random ones were observed, especially as far 
as the clustering coefficient was concerned (Table 1.2.1): while l  is about the same order of 
magnitude for both networks (i.e., real and randomly generated one with the same N  and 

k ), C  differs in several orders of magnitude. 

 

                                                      
10 For friendship networks, these statistics have intuitive meanings: l  is the average number of 
friendships in the shortest chain connecting two people; Cv reflects the extent to which friends of v are 
also friends of each other; and thus C measures the cliquishness of a typical friendship circle. 
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Network actuall  randoml  actualC  randomC  

Film actors 
Power grid 
C. elegans 

3,65 
18,7 
2,65 

2,99 
12,4 
2,25 

0,79 
0,080 
0,28 

0,00027 
0,005 
0,05 

 
Table 1.2.1  Average path length l  and clustering coefficient C for three real networks, compared to 
random graphs with the same number of vertices N and mean degree k . (Watts and Strogatz 1998) 

 
 

Considering that a high clustering is much more characteristic of an ordered lattice rather 
than a random graph, the aim of the model was to find if there is a middle ground between 
these two extreme ordered and random states that could explain such behavior. The 
algorithm behind the model starts with a ring lattice with N  nodes in which every node is 
connected to its first k  neighbors, thus showing a large clustering and average path length 
(Fig. 1.2.4). It goes on with a randomly rewiring of each edge of the lattice with probability p  

such that self-connections and duplicate edges are excluded. For some values of p  the 

rewiring process generates a number of shortcuts in the graph such that while l  has been 
strongly diminished, C  has still values close to those of the lattice graph. As this model has 
its roots in social systems where most people are friends with their immediate neighbors and 
have one or two friends who are a long distance away, when this middle ground between 
order and randomness is reached, the graph is called a small-world. (Watts 1999) 

 
   

 
 
 
 
 
 
 
 
 
 

 
 
Fig. 1.2.4  Random rewiring procedure for interpolating between a regular ring lattice and a random 
network without altering the number of vertices or edges in the graph: with probability p  an edge is 
reconnected to a vertex chosen uniformly at random over the entire ring. (Watts and Strogatz 1998) 

 
 

Increasing randomness

Regular (lattice) Small-world Random 

p = 0 p = 1 
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Rather unexpectedly, at least from a first sight, though small-worlds stand between 

ordered lattices and random graphs, their degree distribution is mathematically explained by 
the same binomial distribution used for the random graph model and Eq. (1.2.2). The only 
difference lays on the variance: it does not exist for an ideal lattice while it has a typical value 
for a random graph. It happens that the authors of the classical small-world paper never 
thought to look for the degree distribution of the real networks in Table 1.2.1. If they had 
checked it, they would have noticed that their networks’ distributions were far from being 
binomial, Poisson or even Gaussian. 

 
(c) Scale-free networks 
In fact, not just the former three networks but many networks in the real world have 

degree distributions that do not look anything like a Poisson distribution. Instead, they are 
very heterogeneous, in many cases following a power law, which was first discovered for the 
world wide network of web pages (Barabási and Albert 1999). A power law does not have a 
peak at its average value. Rather, it starts at its maximum value and then decreases 
relentlessly, with a characteristic exponent γ , all the way to infinity following11   

 
γ−≈ kkp )(  (1.2.4) 

 
This is why they are also called scale-free networks, as there is no characteristic scale to 

define their degree distribution properly (i.e., although k  exists, the variance is infinite). 

On the other hand the rate at which the power law decays is much lower than the decay rate 
for a normal distribution, implying a much greater likelihood of extreme and rare events 
characterized by nodes with extremely high k  (Fig. 1.2.5). These nodes, called hubs, play the 
most important role in the network’s connectivity. With their presence the network can 
usually maintain its functions, even though most of the not-so connected nodes fail. But on 
the contrary, when hubs disappear, most of the network’s capacities in transmitting 
information and functions fail as well, and its structure can be easily broken down. (Albert et 
al. 2000) 

The scale-free model tries to explain the origin of the power law degree distribution by means 
of two generic mechanisms common in many real networks: growth and preferential 
attachment.  The model starts with a small number of nodes and at every time step a new 
node is added and connected with some probability. The probability that this new node is 
connected to an existing one depends on the degree of the latter: the higher the degree, the 
higher the probability of connection. This is also known as the rich-get-richer mechanism of 
network growth.  

Scale-free networks seem to pervade the real world. Studies of real-world networks’ 
degree distributions, including the World Wide Web, the Internet, infrastructural networks, 
networks of airline city connections, scientific collaboration networks, cellular networks and 

                                                      
11 Strictly speaking, the most general form is given by ( ) ( )ckkkkp −≈ − expγ  where ck  is some 
characteristic cut-off. 
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several others, can be fit by equation (1.2.4), with γ  values somewhere between 2 and 3, 

depending on the particular network. (Boccaletti et al. 2006) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.2.5 Random and scale-free networks. The degree distribution of a random network (left) 
follows a bell curve: most nodes have the same number of links. In contrast, the power law degree 
distribution of a scale-free network (right) predicts that most nodes have only a few links, held 
together by a few highly connected hubs. Adapted from (Barabási 2002). 
 
 

Power grids arise as natural objects of study under the conceptual frame of complex 
systems, particularly as complex networks. These are systems composed of multiple and 
diverse elements, such as transformers, generators, switching stations, etc., connected 
physically by electric cable lines. Each one of these composing elements is dynamically 
characterized by specific and well known physical laws that govern the grid’s local and 
overall behavior. In spite of this, this behavior seems to be highly unpredictable sometimes, 
especially when unexpected emergent phenomena like blackouts and cascading failures arise. 
We believe complex networks conceptual frame is capable to find indeed a connection 
between dynamics and structure in power grids and it is our hope that this will help in 
understanding more thoroughly such unexpected phenomena. 

 

1.3 Sustainability 
Complex networks science appears as a new way to understand local and global phenomena 
for highly heterogeneous systems with non trivial connectivity distributions. Most of the 
technological networks around us can be considered complex and difficult to understand 
from a traditional point of view. However, engineering science tends to follow the same 
analytical path than that of the first pioneers with the telegraph and the idea of progress (Fig. 
1.3.1): it considers and tends to analyze the growth and evolution of a networked system as 
something linear, a mere process of adding more and more elements, able to maintain their 

k

p(k) p(k)

k<k> 

Many nodes 
with low k 

Most nodes 
with k = <k> 

No highly 
connected  

nodes 

Few hubs 
with high k 
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independent dynamics in spite of the context or substrate where they have landed, and 
ignoring some of the multiple feedbacks that take place in it. These feedbacks are not necessary 
and solely technical or economical: they are social and cultural. In fact, and due to social and 
cultural changes in the last twenty years, when somebody talks about infrastructures, talks 
about social and territorial conflicts as well. (Nel·lo 2003)  
 

 

 
 
Fig. 1.3.1  “American progress” (John Gast, oil on canvas, 1872). In this allegorical painting ʺDivine 
Providenceʺ watches over settlers on their journey west: she pushes bisons and Native Americans 
into darkness while pulling the telegraph cable, railroads and the light of the “western” society’s 
new dawn. (Source: Museum of the American West, Autry National Centre, Los Angeles; 
http://www.autrynationalcenter.org/). 
 
 

Several attempts offer new perspectives to point the power system to a new direction 
(although it is, as always, only a technological one). In Europe for example, the existing 
distribution systems, built about fifty years ago, are becoming obsolete and over the coming 
years will have to be progressively replaced. In response to climate change, recent years have 
witnessed a growth in renewable energies usage and with it the problem of incorporating 
them in the design of existing distribution networks. The EU-financed SmartGrids12 and EU-
DEEP13 platforms aim to solve it by means of two ideas (Lethé 2008): (a) to favor a better 
interconnection of existing networks to create a vast European grid14 and (b) to permit a two-
way flow in which the consumer would, to a degree, be an active producer. Researchers 

                                                      
12 http://www.smartgrids.eu/. (Last visited, January 2009). 
13 http://www.eudeep.com/. (Last visited, January 2009). 
14 “The bigger the network the greater the likelihood of being able to balance production and 
demand.” (Hugues, op.cit.) 
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claim a number of advantages for their system: renewable energies could easily be included 
in the mini-networks as well as the main grid, without posing any problems in terms of low 
voltage or intermittence; this would result in decreased CO2 emissions; and costs for the 
consumers would also fall as they would produce a part of their own electricity and could 
even sell any surplus. Similar projects with similar names can be encountered overseas.15 

But electricity reaches consumers through local lines, local landscapes and different land 
mosaics. How can a global scale be accommodated to the local evaluation of the landscape 
fragmentation due to a line sitting? Which are, if any, the correct criteria to reflect the local 
particular impacts and effects of a global network layout? There exist automated 
methodologies of sitting new transmission lines that allow external groups to participate in 
the process and make decisions by utility professionals more transparent and credible 
(Houston and Johnson 2006). They use GIS software to map all geographic features in a 
study area, assign numerical suitability values to all features, assign engineering constraints, 
generate corridor alternatives using statistically sound algorithms, automatically generate 
alternative corridor reports and automatically create reports summarizing criteria used and 
values assigned.  

All through these pages we have suggested the hypothesis of a bidirectional influence 
between structure and dynamics. If it exists, the aforementioned approaches will always be 
partial an inaccurate since they are unable to include global behaviors. Complex networks 
approach forces us to deal with a much broader parameter space. One that can consider 
ignored aspects of infrastructures networks such as local and global environmental impact, 
multiscale demand and generation management, planning criteria and even energy equity. 
In a nutshell: sustainability. 
 

1.4 References 
Albert, R., H. Jeong, et al. (2000). ʺError and attack tolerance of complex networks.ʺ Nature 

406: 378-382. 
Amin, M. (2001). ʺToward Self-Healing Energy Infrastructure Systems.ʺ IEEE Computer 

Applications in Power 14(1): 20 - 28. 
Ball, P. (2004). Critical mass. London, Arrow Books. 
Barabási, A.-L. (2002). Linked. The New Science of Networks. Cambridge, MA, Perseus 

Publishing. 
Barabási, A.-L. and R. Albert (1999). ʺEmergence of Scaling in Random Networks.ʺ Science 

286: 509-512. 
Barabási, A.-L., R. Albert, et al. (2000). ʺScale-free characteristics of random networks: the 

topology of the world-wide web.ʺ Physica A(281): 69-77. 
Baran, P. (1964). ʺOn distributed communications networks.ʺ IEEE Transactions on 

Communications Systems 12(1): 1-9. 
Boccaletti, S., V. Latora, et al. (2006). ʺComplex networks: Structure and dynamics.ʺ Physics 

Reports 424: 175-308. 
Bollobás, B. (2001). Random Graphs. New York, Cambridge University Press. 
Buchanan, M. (2007). The Social Atom. London, Marshall Cavendish Ltd. 
                                                      
15 http://en.wikipedia.org/wiki/Smart_grid. (Last visited, January 2009). 



Introduction. Power grids, complex systems and sustainability 17 

 
Constable, G. and B. Somerville (2003). A Century of Innovation: Twenty Engineering 

Achievements that Transformed our Lives. Washingtong, DC, Joseph Henry Press. 
Dorogovtsev, S. N. and J. F. F. Mendes (2001). Evolution of networks. New York, Oxford 

University Press. 
Érdi, P. (2008). Complexity Explained. Heidelberg, Springer-Verlag. 
Houston, G. and C. Johnson (2006). EPRI-GTC Overhead Electric Transmission Line Siting 

Methodology. Palo Alto, CA, Electric Power Research Institute. 
Hughes, T. P. (1983). Networks of Power. London, Johns Hopkins University Press. 
Kauffman, S. (1995). At home in the universe. New York, Oxford University Press. 
Klein, M. (2008). The Power Makers. New York, Bloomsbury Press. 
Lethé, M. (2008). Rethinking the European grid. research*eu. April Special Issue: Energy. 

Extracting ourselves from oil. 
Lewin, R. (1995). Complejidad. El caos como generador del orden. Barcelona, Tusquets 

Editores. 
Miller, J. H. and S. E. Page (2007). Complex Adaptive Systems. Princeton, Princeton 

University Press. 
Morin, E. (2006). ʺRestricted Complexity, General Complexity.ʺ arXiv:cs/0610049v1 [cs.CC]. 
Nel·lo, O. e. (2003). Aquí, no! Els conflictes territorials a Catalunya. Barcelona, Empúries. 
Pastor Satorras, R. and A. Vespignani (2004). Evolution and Structure of Internet: A 

Statistical Physics Approach. Cambridge, Cambridge University Press. 
Singh, J. (1966). Great Ideas in Information Theory, Language and Cybernetics. New York, 

Dover Publications Inc. 
Solé, R. (2009). Redes Complejas. Del genoma a Internet. Barcelona, Tusquets Editores. 
Solé, R. and B. C. Goodwin (2001). Signs of life: how complexity pervades biology. New York, 

Basic Books. 
Solé, R. V. and S. C. Manrubia (1996). Orden y caos en sistemas complejos. Barcelona, 

Edicions UPC. 
Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos, Westview Press. 
Strogatz, S. H. (2001). ʺExploring complex networks.ʺ Nature 410: 268-276. 
UCTE (2004). Final Report of the Investigation Committee on the 28 September 2003 Blackout 

in Italy, UCTE. 
UCTE (2007). Final Report System Disturbance on 4 November 2006, UCTE. 
Venkatasubramanian, M. V. (2003). Analyzing Blackout Events: Experience from Major 

Western Blackouts in 1996. Washington, Power Systems Engineering Research Center, 
Washington State University. 

Waldrop (1992). Complexity. The emerging science at the edge of order and chaos. New 
York, Simon and Schuster Inc. 

Wasserman, S. and K. Faust (1994). Social Network Analysis. Cambridge, Cambridge 
University Press. 

Watts, D. J. (1999). Small Worlds. The Dynamics of Networks between Order and 
Randomness. Princeton, NJ, Princeton University Press. 

Watts, D. J. (2003). Six Degrees. The Science of a Connected Age. New York, W.W.Norton & 
Company, Inc. 

Watts, D. J. and S. H. Strogatz (1998). ʺCollective dynamics of ‘small-world’ networks.ʺ 
Nature 393: 440-442. 

Wolfram, S. (2002). A New Kind of Science, Wolfram Media. 
Wood, A. J. and B. F. Wollenberg (2005). Power Generation, Operation and Control. New 

York, John Wiley & Sons. Inc. 



18 Chapter 1 

 
 
 
 



 

2 
Structure. Topology and fragility 

 
The recent massive and comparative analysis of networks from different fields has 

produced, among many unexpected and surprising results, one singular thought: the need to 
move beyond reductionist approaches and try to understand the behavior of a system as a 
whole (Dorogovtsev and Mendes 2001; Albert and Barabási 2002; Boccaletti et al. 2006). 
Along this path, understanding the structure of the interactions between the components is 
the first unavoidable step. Much effort has been done in defining new metrics to characterize 
the topology of real networks. Some of them, such as the degree, degree distribution, clustering 
coefficient and average path length have been already presented. The main result has been the 
identification of a series of unifying principles and statistical properties common to most real 
networks that have allowed at the same time the development of models such as the small-
world or the scale-free network one. Most real networks’ structure, though, can not be 
explained solely with the aid of the former measures and models. They share characteristics 
of several models and need some other defining parameters. 

 A complete characterization of a network’s topology is motivated by the expectancy that 
understanding and modeling the structure of a complex network would lead to a better 
knowledge of its evolutionary mechanisms and to a better comprehension of its dynamical 
and functional behavior (Solé et al. 2003). In fact a network is the result of the continuous 
evolution of the forces that form it and its topological growth is deeply rooted in their 
dynamics and the evolution of its dynamics over time. In other words: structure affects the 
function of a networked system and, conversely, its dynamics constrain the evolution of its 
topology. There exist indeed evidences pointing to the crucial role played by the network 
topology in determining the emergence of collective dynamical behavior such as 
synchronization (Strogatz 2000) or in governing the main features of relevant processes that 
take place in complex networks, such as the spreading of epidemics (Watts et al. 2005), 
information (Dodds et al. 2003) and rumors (Watts 2002). Moreover, a careful inspection of 
graph structure together with an appropriate model can help understanding how the 
network was originated. (Solé et al. 2003)  

Some of the questions we are trying to address with the analysis of the structure of the 
topology of the power grid are the following: 

 
• Which are the measures that best characterize the topology of a power grid? Are 

they useful in order to understand and classify these networked systems? Are they 
similar to those used in other investigations found in the literature? 

• In a continental grid, formed by national grids constrained by differing historical, 
social, cultural and technological pathways, do different topologies exist? And if 
this is the case, are their dynamics affected by these differences? 
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• If topology and dynamics are deeply interwoven, can we find evidences of “weak” 

or conversely “robust” topologies? How different topologies stand the impact of 
different kinds of damages? 

 
The answers to some of these questions are rather unexpected if not surprising. Although 

topologies are in general terms strikingly similar, the outcome of and relation with their 
dynamic processes are found to be completely different.  

 

2.1 Topology of the UCTE power grid 
Power grids have been in the line of fire of complex networks science from its very beginning. 
They have been, though, comparatively less investigated than cellular, ecological or social 
networks, perhaps due to the difficulties involved in finding suitable data or lack of very 
specific electric engineering knowledge. The first reference comes from Watts and Strogatz, 
who analyzed the Western States Power Graph (WSPG), the graph of the United States 
western power grid, by means of the following four strong simplifications (Watts and 
Strogatz 1998): 
 

1. All transmission lines are assumed to be bidirectional; hence the resulting graph is 
undirected. 

2. The nodes of the network (i.e., generators, transformers, substations, and so on) are 
treated as identical, featureless vertices. 

3. All transmission lines are assumed to be identical (that is, unweighted, with no 
attributes associated to edges) ignoring the important fact that the voltages varies 
considerably, as we have presented in Chapter 1, and that different lines have 
significantly different carrying capacities, impedances and physical construction. 

4. Only the transmission network is considered. This ignores an entire (and much 
larger) associated network, responsible for distributing power from the grid to 
individual house, offices, factories, etc. 

 
Although the authors were clearly aware of the limits that these simplifications impose on 

the graph’s utility for studying its dynamic properties or for any engineering purpose, they 
have been considered all the way until now in the literature. Limiting as it might sound, the 
search for the smallest set of assumptions in order to explain reality turns out to be what 
complex systems modeling is constantly looking for (Miller and Page 2007). Nonetheless, the 
aim of the research was not to characterize dynamics but to compare structures among 
different networks’ topologies. The WSPG, formed by 4 941 nodes with mean degree 

672,=k , appears to be a small-world network, with characteristic path length actuall  similar 

to that of its random counterpart randoml , but clustering coefficient actualC  one order of 

magnitude above its random counterpart randomC  (Table 2.1.1). 
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 N  L  k  actuall  randoml  actualC  randomC  

WS Power Graph 4 941 6 597 2,67 18,7 12,4 0,080 0,005 
 
Table 2.1.1  Statistical parameters of the WSPG compared to those of a random graph of the same size. 
The measures are: number of vertices N, number of links L, mean degree k , characteristic path 
length l  and clustering coefficient C. The random subscript stands for the value obtained in randomly 
generated graph of the same size. 
 
 

Watts and Strogatz groundbreaking work had to be complemented a year after by the 
analysis of the so called degree distribution measure, introduced in the literature by Barabási 
and Albert (Barabási and Albert 1999). Recall the degree of a vertex in a network is the 
number of edges incident on (i.e., connected to) that vertex. We defined p(k) to be the fraction 
of vertices in the network that have degree k (see Chapter 1). A plot of p(k) for any given 
network can be obtained by making a histogram of the degrees of vertices. This histogram is 
the degree distribution for the network which in a random graph is of the form shown in 
equation 1.2.1. An alternative, and usually more convenient, way of presenting degree data 
is to make a plot of the cumulative distribution function  ( )kP  defined as 
 

( ) ( )∑
∞

=

=
kk

kpkP
ʹ

ʹ  (2.1.1) 

 
which is the probability that the degree of a node is greater than or equal to k. Such a plot has 
the advantages that all the original data are represented and reduces the noise in the tail of 
the function.  

Real-world networks are mostly found to be very unlike the random graph in their degree 
distributions. Far from having a Poisson distribution, the degrees of the vertices in most 
complex networks are highly skewed to the right meaning that their distribution has a long 
tail of values that are far above the mean. These functions, which can be power law, power 
law with cut-off, stretched exponential, log-normal, etc., have received the general scale-free 
nickname, a fact that bears important consequences as most of the network’s dynamics 
strongly depends on this particular topological feature. (Amaral et al. 2000; Marquet et al. 
2005; Clauset et al. 2009) 

The first published degree distribution of a power grid was supposed to be scale-free, 
following a power law function of the form ( )kP ~ γ−k  with 4=γ  (Barabási and Albert 1999). 

But none of the subsequent later references would support this finding. The topological 
analysis of the Californian power grid by Amaral (Amaral et al. 2000) and the whole United 
States grid by Albert (Albert et al. 2004) detected both exponential cumulative degree 
functions of the form 

 
( ) ( )kkP α−≅ exp  (2.1.2) 
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where α  is the characteristic exponent of the function, that for the American power grid 
reaches 5,0=α . This functional form classifies both power grids as single-scale networks. 
The cumulative degree distribution shows that the probability of having high-degree nodes 
is less than in a scale-free network. 
 
 

Country UCTE countries 
short form N L k  γ  

Belgium BE 53 58 2,18 1,005 
Holland NL 36 38 2,11 1,086 
Germany DE 445 560 2,51 1,237 
Italy IT 272 368 2,70 1,238 
Austria AT 70 77 2,20 1,409 
Romania RO 106 132 2,49 1,418 
Greece GR 27 33 2,44 1,457 
Croatia HR 34 38 2,23 1,594 
Portugal PT 56 72 2,57 1,606 
UCTE  2 783 3 762 2,70 1,630 
Poland PL 163 212 2,60 1,641 
Slovak Republic SK 43 52 2,41 1,660 
Bulgaria BG 56 67 2,39 1,763 
Switzerland CH 147 186 2,53 1,850 
Czech Republic CZ 70 88 2,51 1,883 
France FR 667 899 2,69 1,895 
Hungary HU 40 47 2,35 1,946 
Bosnia BA 36 42 2,33 1,952 
Spain ES 474 669 2,82 2,008 
Serbia RS 65 81 2,49 2,199 

 
Table 2.1.2  Summary of the basic features exhibited by some of the European power grids analyzed, 
ordered by increasing γ , the exponential degree distribution exponent (see text): number of nodes N, 
number of links L and mean degree k . 

 
 

The topological analysis of the European (or UCTE, Union for the Co-ordination of 
Transport of Electricity) power grid includes the mean degree and the cumulative degree 
distribution as main topological measures (Rosas-Casals et al. 2007). Table 2.1.2 shows a 
summary of the basic features of the UCTE power grid and different national grids. Though 
every single network contains hundreds of stations, substation, transformers and thousands 
of kilometers of energy transport lines, the results show a striking similarity in the mean 
degree values, very alike to those encountered in the aforementioned works of Watts and 
Albert. The relation between nodes and links is remarkably constant and goes around 

72,≅k . This would suggest that although every technical infrastructure has evolved and 

developed under different economical, political, historical and, luckily enough, 
environmental conditions and decisions, there should be some universal characteristics 
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related to the spatial and technological constraints that rule the construction and evolution of 
such networks. This hypothesis is also supported by the observed cumulative distribution 
functions, which turn to be exponential of the form       

 
( ) ( )γβ kkP −= exp  (2.1.3) 

 
where β  is a normalization constant and the value of the exponent γ  goes from a minimum 

of 0051,=BEγ  for Belgium to a maximum of 1992,=RSγ  for Serbia. This variability in the 

value of γ  will be shown, in the following sections, to be strongly tied to grid robustness. 

The graphical appearance of some of the cumulative degree distribution functions is shown in 
Fig. 2.1.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.1.1 Degree distribution for the UCTE power grid and two examples of national grids: UK and 
Ireland and Italy. These webs are homogeneous, having an exponential degree distribution that 
follows ( ) ( )γβ kkP −= exp  though displaying different γ  values. 

 
 
Recall the small-world behaviour of a network can be characterized by the evaluation of 

two basic statistical properties: the clustering coefficient C, a measure of the average 
cliquishness of a node, and the average path length l , a measure of the typical separation 
between two generic nodes in the network. In networked systems, short path lengths and 
high local clustering are signatures of the small-world phenomenon, indicating a neither 
completely regular nor random connectivity but small-world, which is highly clustered, like 
regular lattices, yet having small average path lengths, like random graphs. For the UCTE 
graph, the small-behaviour was found by means of deviation from two main predictions 
based on random graphs (Ferrer i Cancho et al. 2001): 
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1. The clustering coefficient over the average connectivity for a random graph 
follows an inverse scaling law with graph size: 

 
NkCrand 1=  (2.1.4) 

 
2. The average path length scales logarithmically as: 

 
( )Nkrand loglog ≈l  (2.1.5) 

 
The values of kC  and klogl  compared to those of N1  and ( )Nlog  respectively are 

shown in Fig. 2.1.2. It can be seen that 1>randCC  for most of the grids. Values of randCC  

higher than one order of magnitude are achieved by the largest power grids while randll  

remains in the same order of magnitude for whatever size of the network. A similar pattern 
was observed in electronic circuits (Ferrer i Cancho et al. 2001) although the latter are more 
heterogeneous. 

  
 

 
Fig. 2.1.2 Small world patterns as function of N, the network’s size: (a) average shortest path and (b) 
clustering coefficient. Average path length is corrected by factor klog  and clustering by k . Dashed 
lines signal the expected values for random graphs. It can be seen that larger networks involve larger 
deviations from the random cases. 

 
 
From a structural point of view every country’s grid has evolved in order to connect 

production sites with consumption sites within its own borders. In small countries, 
everything is at hand and long distance connections are not needed to expand the grid. On 
the contrary, in big countries (and consequently, with an increasing number of nodes) long 
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distance and more meshed connections become more necessary: clustering and average path 
length increase but in dissimilar ways, being the former orders of magnitude higher than 
that of a randomly generated counterpart. 

Topological complex networks characterization, such as small-world or scale-free, 
without a deeper structural analysis is nothing more than a label for network classification. 
This has been traditionally performed by means of static and dynamic robustness analysis. 
 

2.2 Static robustness of the UCTE power grid 
The ability of a network to avoid malfunctioning when a fraction of its constituents is 
damaged is usually known as robustness. It is a topic of obvious practical reasons for it affects 
directly the efficiency of any process running on top of the network. This was one of the first 
issues to be explored in the literature on complex networks  (Albert et al. 2000; Cohen et al. 
2000) and it can be encountered in two different variants: 
 

1. Static robustness, meant as the act of deleting nodes without the need of 
redistributing any quantity that is being transported by the network. 

2. Dynamic robustness, case in which the dynamics of redistribution of flows is taken 
into account. 

 
At the same time, both variants can be implemented in different ways, depending on 

which property, or none at all, we choose in order to delete nodes or edges. Two main 
implementations have been considered so far: 

 
1. Tolerance to errors (or random failures), understood as the ability of the system to 

maintain its connectivity properties after the random deletion of a fraction f  of 

its nodes or edges. 
2. Tolerance to attacks (or selective failures), understood as the ability of the system to 

maintain its connectivity properties when such a deletion process is targeted to a 
particular class of nodes like, for instance, the highly connected ones.  

 
A network’s capacity to maintain its connectivity will obviously depend on its original 

topology and the way we modify its structure by means of successive deleterious actions. For 
example, scale-free networks are extremely sensible to attacks (targeted deletion of nodes) 
but very resilient to error failures (random deletion) while random networks will react 
similarly, unaware of which kind of deletion are receiving. (Albert et al. 2000) 

The first power grid whose robustness was sized was the North American one (Albert et 
al. 2004). The authors removed nodes randomly and in decreasing order of their degrees, for 
both generation nodes and transmission nodes, and monitored the connectivity loss, 
measured as the decrease of the ability of distribution substations to receive power from the 
generators. While the loss of generators increased the connectivity loss gradually, the loss of 
transmission substations increased the connectivity loss logarithmically, with a maximum 
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connectivity loss of almost 60% with the loss of only 2% of the highly loads transmission 
substations. They concluded that the transmission highly connected hubs, while ensuring the 
connectivity of the power grid, are also its largest liability in case of power breakdowns. On 
the other hand, the first reference to European power grids was made by Crucitti et al. The 
authors studied and compared the topological properties of the Spanish, Italian and French 
power grids, finding those components that when removed affected the most the structure of 
the graph  (Crucitti et al. 2005). It is, nonetheless, a poor analysis, since the 400 kV grid is the 
only considered and the proposed improvements are unrealistic nor physically feasible.   

The numerical study of the robustness of the whole European power grids includes the 
static robustness under failures and attacks of every national power grid (Rosas-Casals et al. 
2007). Two clearly differentiated responses are shown in Fig. 2.2.1, (a). Static tolerance to 
random (white circles) and selective (black circles) removal of a fraction f  of nodes is 

measured by the relative size infS  of the largest connected component (whiskers stand for the 

standard deviation of the realizations). 
 
 

Fig. 2.2.1  Effects of attacks and failures on the topology of the EU power grids. (a) Static 
tolerance to random (white circles) and selective (black circles) removal of a fraction f of 
nodes. (b) Evolution of the static tolerance to random and selective node removal for Italy 
(dashed lines) and France (continuous lines). 
 
 

As we can see, while random failures affect the structure of the grids in a rather 
decreasing but monotonous way, selective removal reduces drastically the size of the 
connected component. Although this fact agrees with results found in the literature, in Fig. 
2.2.1, (b) a more surprising result is observed. It shows the evolution of the static tolerance to 
random and selective node removal for Italy (dashed lines) and France (continuous lines). 
Though in the case of random removal (failures) both networks exhibit a similar response, 
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for the selective one (attacks) Italy is slightly more robust: for a fixed fraction of eliminated 
nodes, the relative size of the largest connected component in Italy always remains higher 
than that of France. This fact will be crucial in the following theoretical treatment of the 
deletion process. 
 

2.2.1 Theoretical results 
The theoretical treatment of the robustness of sparse1 and uncorrelated2 networks such as the 
European power grid can be approached using percolation and mean field theories (Solé and 
Montoya 2001; Solé et al. 2008). On one hand, the formulation of the critical fraction of nodes 

cf  to be eliminated in order to make a graph unable to percolate (that is to eliminate the 

possibility to go from one node to another following an edge) comes originally from graph 
theory (Molloy and Reed 1995) although its first practical application in complex networks 
was related to Internet (Cohen et al. 2000; Cohen et al. 2001). The critical fraction for random 
failures of nodes F

cf  is written as 

 

1

11 2

−

−=

k
k

f F
c  

(2.2.1) 

 
where k  is the mean degree and 2k  is the mean square degree, a value often found in 

graph theory analytical developments (Newman 2003) and simply defined as 
 

N

k
k

N

i
i∑

== 1

2

2  (2.2.2) 

 
where N is the size of the network. 

The study of random failures in complex networks can be exactly mapped into a standard 
percolation problem since equation (2.2.1) comes from the analytical treatment of a 
percolation model over a random graph. It fixes the fraction of nodes to be randomly erased 
in order to impede jumping from one node to another following a randomly token edge. Yet 
the same formalism can be extended with few modifications in order to find the critical 
fraction but for intentional attacks A

cf  defined implicitly as 

 

( )
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−

=−+

k
k

ff A
c

A
cln  

(2.2.3) 

                                                      
1 A dense graph is a graph in which the actual number of edges is close to the maximal number of 
edges. The opposite, a graph with only a few edges, is a sparse graph. 
2 A graph is uncorrelated when the degrees at the end points of any edge are completely independent. 
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On the other hand, recall UCTE power grids are characterized by a cumulative 

exponential degree distribution of the type 
 

( )γkkP −≈ exp)(  (2.2.4) 

 
With equation (2.2.4) we assume a perfect cumulative exponential degree distribution 

from 1=k  to infinity (i.e., the thermodynamic limit). The degree probability distribution (i.e., 
non-cumulative) can be written therefore as  

 

( )γ
γ

kkp −







−≈ exp)( 1  (2.2.5) 

 
For an exponential function like (2.2.5) and generically written as ( ) ( )xxf λλ −= exp , we 

have a mean that is λ1 . Since in our case γλ 1=  and our mean is the mean degree k , we 

can thus write γ=k . Similarly to the mean degree, that can be calculated (by definition) as 

 

( ) γγ
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we can obtain the mean field approximation for the mean square degree by doing 
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and thus 22 2γ=k . If we introduce these values in (2.2.1), we finally obtain 
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(2.2.8) 

 
which is the mean field approximation to the theoretical critical fraction of nodes. Table 2.2.1 
gives the summary of both treatments, considering the approximation made by γ22 =kk  

as a theoretical prediction and calculations exactly made with k  and 2k  as empirical 

results. 
Fig. 2.2.2 (a) shows the evolution of the theoretical prediction. It increases smoothly as a 

function of γ  from the limiting lower value  1=γ  for both random removal of nodes and 

intentional attacks. Here γ  is the grid’s characteristic exponent in (2.2.4) and Table 2.1.2, and 

cf  indicates the fraction of removed nodes required in order to break the network. The 

upper curve is the critical boundary for network percolation under random removal of nodes. 
Below it, a network experiencing such random failures would remain connected (i.e., with a 
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giant component). The lower curve corresponds logically to the critical boundary for attacks, 
where a lower critical fraction is needed in order to break the network in many pieces.  
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Table 2.2.1  Theoretical predictions and empirical results for the static robustness analysis of the 
European power grid and for random failures and selective attacks. 

 
 
In Fig. 2.2.2 (b) we display the empirical results of cf  for attacks from the thirty three EU 

power grids (circles) to be compared with the mean field prediction continuous line. The 
empirical results show a clear deviation for values of 51,≤γ . This finding has been a 

hallmark in our research, for it has permitted to broadly classify European power grids into 
two separate groups, namely: fragile and robust. The answer to the question of whether this 
deviation can be related to particular dynamics is left open until the following chapter.  
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Fig. 2.2.2  Phase space for exponential uncorrelated networks under random removal of nodes and 
directed attack towards highly connected vertices. (a) Theoretical prediction. (b) Theoretical prediction 
vs. experimental results for the selective attacks scenario. 
 

 

2.3 Dynamic robustness of the UCTE power grid 
Recall dynamic robustness refers to the case in which the dynamics of redistribution of flows 
is taken into account. This is another important dimension to add to the problem, since it 
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refers to modelling the dynamics of flows of the physical quantities of interest over the 
network. When it comes to modelling the dynamics, the situation is far more complicated 
since the components of a network may have different dynamical behaviours and flows are 
often a highly variable quantity, both in space and time. The usual shortcut to overcome 
these difficulties has been: (a) the assumption of a characteristic load of an element as a 
measure of its robustness; and (b) the association of this load to a topological measure defined 
on it. The most used topological measure has been the so called betweenness centrality of that 
element. Together with degree and closeness of a node (defined as the inverse of the average 
distance from all other nodes) betweenness is one of the standard measures of node centrality 
(Boccaletti et al. 2006). More precisely, the betweenness ib  of a node i is defined as 

 
( )

∑
≠

=
kj jk

jk
i n

in
b  (2.3.1) 

 
where jkn  is the number of shortest paths connecting nodes j and k, and ( )in jk  is the number 

of  shortest paths connecting nodes j and k and passing through node i. The dynamic 
robustness of the network is then evaluated in the following way: each element is 
characterized by a finite capacity (defined as the maximum load that the element can handle). 
Once a deletion has taken place, it changes the shortest paths between nodes and, 
consequently, the distribution of ib , creating overloads on some other nodes. All the 

overloaded nodes are removed simultaneously from the network. This leads to a new 
redistribution of loads and subsequent overloads may occur. The new overloaded nodes are 
removed and the redistribution process continues until when, at a certain time, all the 
remaining nodes have a ib  value under or equal to its capacity.  

Power grids seem to be an optimal candidate for this kind of analysis since cascading 
failures have been usually the prologue to huge blackouts (UCTE 2004). But at the same time, 
power system operation, flow and generation turns out to be one of the most mathematically 
complicated problems encountered in engineering nowadays. All the variables and processes 
involved in such calculations demonstrate that power grids do not concentrate flows 
depending on betweenness centrality nor the pool of sinks and sources are necessarily 
constrained by shortest paths (Wood and Wollenberg 2005). Therefore, most of the initial 
complex networks dynamic models encountered in the literature have only a qualitative role 
as explanatory theory. Although they provide some indications on the actions that can be 
performed in order to decrease undesired effects such as congestions, avalanches of node 
breakdown and cascading failures, these are not realistic neither sufficiently accurate to 
explain the power grid dynamics. 

We acknowledge that a full characterization of a network cannot be fully accounted for 
without considering the interplay between structural and electrical aspects. Among the 
ongoing research paths opened by this PhD Thesis, other metrics are being considered and 
some more useful and different approaches are being used (see Chapter 5). 
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2.4 Main points in review 
The main points in review in this chapter are the following: 
 

• Transmission power grids’ topologies are similar in terms of mean degree and degree 
distribution. This would suggest similar topological constraints, mostly associated 
with technological considerations and spatial limitations.  

• Exponential cumulative degree distributions of the form ( ) ( )γβ kkP −= exp  

characterize European power grids, although with different characteristic 
exponent γ . This γ  value characterizes as well their response to static robustness 

analysis: while for 51,>γ  theoretical prediction and experimental results agree, 

experimental values are systematically higher than theoretical predictions for 
values of 51,≤γ . The implications of this finding will be outlined in the following 

chapter. 
• Simple topological measures such as betweenness centrality can not be considered 

good candidates to unify topology and dynamics of power grids, since optimal 
power flow does not depend (at all) on shortest paths. Different approaches have 
to be considered. 

• No topological metrics correlations have been found so far with other plausible 
welfare measures such as GDP, electric per capita consumption, population 
distribution, area, etc. At least at this transmission level, this fact would suggest 
that power grid’s topology evolves in a rather autonomous way. This finding will 
be explored more thoroughly in Chapter 4. 
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3 
Dynamics. Blackouts, design and 

reliability 
 

At 03.01 hours, on November 28th, 2003, a Swiss 380 kV electric transmission line tripped 
due to tree flashover. The many attempts to automatically re-close the so called “Lukmanier” 
line that connects Mettlen and Lavorgo substations were unsuccessful. At 03:25, the “San 
Bernardino” line, another Swiss 380 kV line connecting Sils and Soazza substations that took 
over the load of the tripped line, as is always the case in similar situations, tripped as well 
when the overheating of the conductors made it sag and touched a tree. By an almost 
simultaneous and automatic trip of the remaining interconnectors towards Italy and a series 
of cascading failures in generation units and relays, 60 million Italians were isolated from the 
European network in less than three minutes after the loss of the second line (UCTE 2004). 
Similarly, on the evening of November 4th, 2006, something went wrong again in the 
European power grid when a scheduled but erroneous switching off two power lines in 
Northern Germany left 15 million households in central Europe without electricity for an 
hour, half of them in France alone. (UCTE 2007)  

These occurrences were traditionally considered to be a consequence of accidental faults 
and, accordingly, they were not common. But things have changed in recent years and 
power systems, as well as other critical infrastructures, seem to fail more frequently than 
desired. Besides random failures, the threat of malicious attacks has increased as well, 
transforming infrastructural vulnerability into a hot economical, social and political issue. 
(Perrow 2003) 

As we have presented in the previous chapter, the applications of complex network 
concepts to power systems have been initially aimed at understanding its structure. But is 
there a way to relate the former results to the overall dynamical behavior of the power grid? 
The specific questions we are trying to answer are the following: 

 
• We have seen that there exits a deviation between theoretical and empirical 

robustness behavior in UCTE power grids (Section 2.2), but do have major 
disturbances like blackouts any relation with the topological features that 
characterize their structure? Is there a way to characterize the former observed 
deviation? 

• Is a pure connectivity approach like the one presented in the previous chapter 
suitable in order to grasp the many dynamical features of a power network? If not, 
does more suitable metrics exist in order to evaluate the performance of a power 
grid? 
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It is important here to stress the meaning of “dynamical behavior” (or simply dynamics) 

when dealing with complex networks, in contrast with its significance for the power 
generation, operation and control field. While complex networks dynamics is related to the 
flow of information, energy or matter through the networked system and the different 
temporal values that characterize the resulting feature vector, power systems dynamics is 
related to frequency, synchronization, swings and transient stability performance. In this 
chapter, and in all this work, whenever the word dynamics is used, it refers to the former 
complex networks acceptation.       
 

3.1 Correlation between reliability and topology 
In Section 2.2 a deviation from the theoretical predicted topological critical fraction for values 
of 51,≤γ  was presented. In this sense we would expect a correlation between the critical 

percolation fraction cf , the exponent that characterizes the grids’ cumulative degree 

distribution γ , and values that were directly related to the actual performance of the grid. 

Since daily dynamical flows of the European power grid are difficult, if not impossible, to 
obtain, we must rely on reliability parameters that indirectly relate dynamics and fragility. 
For the UCTE power grid, these parameters have been published in monthly statistical 
format since 2002.1 These are the result of every major malfunction in the European power 
grid and, for each major event, they account for the following measures: 

 
• Energy Not Supplied (ENS). Measured in MWh, as loss of energy from the 

consumption side. 
• Total Loss of Power (TLP). Measured in MW, as loss of production from the 

generation side. 
• Restoration Time (RT). Measured in minutes. Note that since ENS and TLP are 

measured from different sides, RT can not be assumed as the ratio of ENS over 
TLP. It can be considered, therefore, an independent reliability measure. 

• Equivalent Time of Interruption (ETI). Defined as the duration of an interruption in 
minutes multiplied by the energy not supplied divided by the consumption for the 
last 12 months. Defined in this way, the ETI allows a direct comparison between 
Transport System Operators (TSOs) in terms of interruptions that occurred during 
a year. 

 
The attempts to correlate these aforementioned network reliability measures and the 

structural topology for the European power grid were carried out in (Solé et al. 2008) and 
(Rosas-Casals and Corominas-Murtra 2009), and are shown in Fig. 3.1.1. Recall Table 2.1.2 
offers a summary of the basic topological features exhibited by the European power grids 
and that we segregated them in two groups: robust ( 5,1<γ ) and fragile ( 5,1>γ ) power grids. 

Figure 3.1.1 (a) shows cumulated European power grid indexes for each group: percentage 

                                                      
1 http://www.ucte.org/resources/publications/monthlystats/. (Last visited, January 2009). 
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size (i.e., number of nodes over the whole UCTE size, which is 2 783 nodes), energy share 
(i.e., cumulated electricity consumption over the UCTE energy consumption), and power 
share (i.e., national cumulated highest load over the UCTE power generation). The energy 
and power normalization has been done using national electricity consumption and highest 
load on the 3rd Wednesday of December respectively. For year 2008 (last year available), 
these cumulated values reached 2 392 TWh and 389 GW for the countries considered in Table 
2.1.2, respectively. As we can see, grids in the fragile group, though represent two thirds of 
the UCTE size, share almost as much power and energy as grids in the robust group. Figure 
3.1.1 (b) shows cumulated European power grid reliability indexes for each group: energy 
not supplied (ENS), total power loss (TPL), restoration time (RT) and equivalent interruption 
time (EIT). For each group, these values have been obtained as cumulated percentage of 
MWh (ENS), MW (TPL) and minutes (RT), over the whole UCTE cumulative value for the 
same time period. Equivalent time of interruption is normalized by definition. 

 

(a) Power grid indexes share
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Fig. 3.1.1  Power grid indexes vs. reliability indexes (updated August 2008). Networks in the fragile 
group, though share almost as much power and energy as networks in the robust one, accumulate 
between 60% and 70% of the energy not supplied (ENS), restoration time (RT) and total equivalent 
interruption time (EIT). The total loss of power (TLP) is almost equivalent in both groups. 
 
 

As we can see, except for the total power loss value, there is an obvious unbalanced 
situation, being the share of the grids in the fragile group much more significant than that of 
the robust one. Sadly, network reliability data have been published only from 2002 onwards. 
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Short time spans are sensible to extreme and rare events. In November 2006, 10 million 
people suffered the consequences of a major event triggered in the German power grid (16 
724 MW loss). Without this single event, the share in total power loss (TPS) would be 60% for 
the fragile group and 40% for the robust one (where Germany is included). 

Some other topological features have been found to increase as well with the fragility of 
the network (Rosas-Casals and Corominas-Murtra 2009):  

 
(a) Deviation from a random graph null model degree distribution. Calculation of the 

normalized deviation between the actual mean degree of every grid and that of the 
Poisson distribution that best fits the real degree distribution increases with 
increasing values of γ . Rather unexpectedly this fact would suggest a more fragile 

behavior as the network is less well fitted by the Poisson distribution that is as the 
network is less randomly designed. 

 
(b) Increased preponderance of star and triangle motifs in spite of linear ones. 

Though global similarities may arise, networks might display very different local 
structure. This local structure can be characterized by patterns termed network 
motifs (or subgraphs) that appear at a much higher frequency than expected in 
randomized networks (Milo et al. 2002). A notable increase of interconnected local 
topologies in spite of linear ones is observed, as the fragility of the networks 
increases with γ . Fragility seems to increase as the elements of the grid become 

more interconnected and motifs such as stars and triangles began to appear. 
 
(c) Inhomogeneous patch size distribution. Patch size distributions have been mainly 

used in landscape ecology as a fragmentation measure and a tool for environmental 
monitoring (Jaeger et al. 2007). Cable lines have been considered here as virtual 
spatial fragmentation limits and the distribution of the size of the resulting areas 
have been calculated considering political frontiers, seas and oceans as the very 
outmost limits of the patches for every country. Results for Spain (i.e., fragile set) 
and Germany (i.e., robust set), both with similar number of nodes, show absolute 
frequency distributions of patches notoriously different: while the German grid 
keeps this frequency almost constant for all orders of magnitude of patch size, the 
Spanish grid begins to strongly increase its frequency for patch size values lower 
than five hundred square kilometers. Although this is tentative measure and it has 
to be further explored, this fact would suggest a much messier and intricate grid for 
the Spanish case, heavily inhomogeneous at the spatial level and, consequently, 
much more difficult to control and prone to failures of different kind. 

 
All these evidences show an increased fragility when the topology of the network 

deviates from a random one, maybe in search of a higher interconnectedness. Although 
aging infrastructures, excessive power delivered through increasing long distances and other 
possible causes may influence the increasing fragility of the power grids, it seems reasonable 
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to think that maybe, on a topological basis, the application of the (N-X) contingency criteria, 
which favors connectivity and interconnectedness, though originally intended to avoid 
interruptions in power service, would difficult, at the same time, the islanding of 
disturbances.  

The consequences of this finding are remarkable in planning long term overhead or 
underground transmission lines since it can not be therefore a question of identifying 
optimal route alternatives solely from local environmental, technical, etc., points of view but 
also considering global better topologies. A tendency to use less meshed network topologies 
without risking reliability should decrease overall transmission lines building and sitting 
costs on one hand, and operating costs on the other, for resistance losses would diminish as 
well. 
 

3.2 Power grid major disturbances analysis 
The research presented in the previous section has been focused in aggregated values: power 
grids have been segregated into fragile and robust sets and major events have been related 
accordingly. But major events are presented as temporal series of values whose frequency 
and appearance pattern can be also statistically analyzed. The statistical analysis of major 
disturbances in power networks from a complex systems perspective begins in the mid 
1990’s, when two distinct models emerged based on two general theories of systems failure 
(Fairley 2004). One, an optimization model, presumes that power engineers make conscious 
and rational choices to focus resources on preventing smaller and more common 
disturbances on the lines and large blackouts occur because the grid is not forcefully 
engineered to prevent them. The competing explanation views disturbances as a surprisingly 
constructive force in an unconscious feedback loop that operates over years or decades. The 
rationale of both theories lies deep in two more general visions of the world known as highly 
optimized tolerance (HOT) and self-organized criticality (SOC) respectively.  

Keeping aside methodological considerations and deep, and even bitter, personal 
discussions between their defendants, it seems SOC (Jensen 1998; Bak 1999), rather than 
HOT (Carlson and Doyle 2002), theory has been much more widely accepted in the power 
systems community in order to try to unravel the laws governing complex systems like this. 
In physics SOC is a property of (classes of) dynamical systems which have a critical point as 
an attractor (Bak et al. 1987; Jensen 1998; Bak 1999; Solé and Goodwin 2001). Their 
macroscopic behavior thus displays the spatial and/or temporal scale-invariance 
characteristic of the critical point of a phase transition, but without the need to tune control 
parameters to precise values. This scale-invariance shows itself as a power law 

 
αkxxf =)(  (3.2.1) 

 
where k is a constant and α  is known as the scaling parameter, the constant that 
characterizes the heaviness of the power law tail. As we can check, scaling by a constant c  
the independent value x  in the former equation simply multiplies the original relation by 
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the constant αc . Thus, it follows that all power laws with a particular scaling exponent are 
equivalent up to constant factors, since each is simply a scaled version of the others. This 
behavior produces a straight-line on a log-log plot, a fact that is often called the necessary 
(but not sufficient) signature of a power law.  

Since many natural and man made systems can be found to display power law behavior 
in one (or more) of their characteristic features (i.e., scale free networks and their power law 
degree distribution, fractal objects and their power law dimensional measurements, etc.) 
SOC concepts have enthusiastically, and sometimes inaccurately, been applied across fields 
as diverse as geophysics, physical cosmology, evolutionary biology and ecology, economics, 
quantum gravity, sociology, solar physics, plasma physics, neurobiology and, of course, 
power systems, where the chosen feature has been usually the frequency distribution of 
blackout sizes (Carreras et al. 2000). Time series of usual measures of blackout size like 
energy unserved, power loss or number of customers affected, have been shown to be 
algebraically (i.e., with power tail) distributed in North America (Chen et al. 2001), Sweden 
(Holmgren and Molin 2006), Norway (Bakke et al. 2006), New Zealand (Jordan et al. 2006) 
and China (Weng et al. 2006). Thus large blackouts are much more likely than expected 
purely by random eventuality and, when costs are considered, their risk is comparable to the 
cumulate risk of small blackouts. The idea that rules this methodology is the conjecture that  
(a) power systems tend to self-organize near a critical point and (b) that there may be some 
universality driving the inner depths of these systems.  

This methodology avoids delving in the details of particular blackouts and, instead, it 
studies the statistics, dynamics and risk of series of blackouts by means of approximate 
global models. These models simulate an increase in power system load from zero 
(independent failures and negligible chance of large blackout) to emergency loading of all 
components (certain cascading failure). There is a critical loading (phase transition) in between 
these extremes at which there is a sharply increased chance of cascading failure and the 
appearance of power tails at this critical point. In order to self-organize the system to the 
critical point, two opposing forces have been suggested to act dynamically: (a) load growth, 
which reduces power system margins of operation, and (b) the engineering responses to 
blackouts, which tend to increase these margins. If these theory holds true, mitigation of 
blackout risk should take into account these counter-intuitive effects in complex self-
organized critical systems, since, for example, suppressing small blackouts could lead the 
system to be operated closer to the edge and ultimately increase the risk of large blackouts.    
 

3.2.1 Major events analysis for the UCTE power grid 
The aforementioned methodology has been used on the UCTE power grid with two main 
objectives (Rosas-Casals and Solé 2009): 

 
(a) To detect power law probability distributions in order to discuss if Europe’s power 

grid has any of the SOC features previously defined, and 
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(b) To check probability distribution patterns for fragile and robust networks, that 

could have been hidden due to the coarse grained assumptions made in section 3.1. 
 

In this case, three malfunction measures of the European power grid have been analyzed: 
energy not supplied (ENS), total loss of power (TLP) and restoration time (RT). The first goal 
here is to construct the cumulative distribution function of the data by a simple rank 
ordering of it, as it is shown in Fig. 3.2.1. The resulting function is then fitted to a power law, 
following well established statistical methods like those described in Ref. (Clauset et al. 2009).  

 
 

 
 
Fig. 3.2.1  Cumulative distribution functions ( )xP  and their maximum likelihood power law fits for 
the UCTE reliability measures energy not supplied, total loss of power and restoration time.  

 
 
We assume a quantity x  follows a power law if it is drawn from a probability distribution 

( ) α−∝ xxp , where α  is the scaling parameter of the distribution. Since the probability density 

of a power law distribution diverges as 0→x , there must exist a lower bound to the power 
law behavior (Newman 2005). We denote this lower bound as minx  and the number of events 

contained in the upper range as tailn . Therefore, to fit a power law to any empirical data we 

must estimate these three parameters. And not only this: given an observed data set and a 
hypothesized power-law distribution from which the data are drawn, we would like to 
know whether our hypothesis is a plausible one, given the data. This can be finally done 
using a goodness-of-fit test, which generates a p-value that quantifies the plausibility of the 
hypothesis. In this case, if the resulting p-value is greater than 0,1 the power law is a 
plausible hypothesis for the data, otherwise it is rejected. 

Table 3.2.1 summarizes these results. As we can see, the power law model is a plausible 
one for every data set considered (i.e., the p-value for the best fit is sufficiently large) and the 
scaling parameter values are similar to those encountered in the literature (Chen et al. 2001; 
Dobson et al. 2007). These are generic statistics on one side and results of the aforementioned 
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statistical analysis on the other. Yet the power law model explains only a small amount of 
events: 15% for ENS ( =tailn 104), less than 10% for TLP ( =tailn 57) and 17% for RT ( =tailn 157).  

 
 

     Maximum likelihood  

Data set n  x  σ  maxx  minx̂  α̂  tailn  p  Support for PL 

ENS 690 552 7004 180000 185 ± 72 1,7 ± 0,1 104 ± 120 0,24 Moderate 
TLP 576 400 1790 26746 615 ± 244 2,1 ± 0,2 57 ± 96 0,36 Moderate 
RT 897 510 3328 44640 150 ± 68 1,69 ± 0,07 157 ± 115 0,73 Ok 

 
Table 3.2.1  UCTE major failures generic statistics and power law fits. For each measure we give the 
number of occurrences n, mean x , standard deviation σ , maximum observed occurrence maxx , 

lower bound to the power law behaviour minx̂ , scaling parameter value α̂ , occurrences in the power 
law tail tailn  and p-value, p . The last column indicates the support for whether the observed data is 

well approximated by a power-law distribution. Estimated uncertainties for minx̂ , α̂  and tailn  are also 
given. 

 
 
Although we believe that measures such as tailn  and minx  are fundamental to estimate the 

span of the power law behavior and to develop further quantitative models, these have not 
been considered in any of the aforementioned references. Only in the reanalysis of Ref. 
(Carreras et al. 2004) done in Ref. (Clauset et al. 2009) we have found an estimate for tailn  that 

gives an explanation for 28% of the events. It is likely that the limited span of available data 
in each set might have a sensible influence in the final power law fitting outcome. It is 
nonetheless evident from these results that: 

 
(a) pure power law behavior can not be assumed for the whole data observed,  
(b) there is no clear evidence for the existence of any critical point at this stage of the data 

span and 
(c) there must be considerably more dynamics not explained by the power law model. 
 
Our second objective was to analyze probability distribution patterns in order to 

differentiate fragile and robust networks. We have analyzed the probability distributions of 
the same malfunction measures of the European power grid (i.e., energy not supplied, total 
loss of power and restoration time) but segregated this time into the aforementioned two 
groups, fragile and robust. The results, obtained following again the methodology presented 
in Ref. (Clauset et al. 2009), are summarized in Table 3.2.2 and shown in Fig. 3.2.2. 

One first remarkable result in Table 3.2.2 is the difference between mean values for each 
group. As we can see, although robust grids (subscript r) accumulate much less events than 
fragile ones (subscript f), x  values for the robust group are significantly higher than those 

of the fragile. It seems malfunctions that strike the robust set imply higher risks and more 
important consequences than those that strike the fragile set, although events in the latter are 
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more frequent. We have not found a plausible nor general agreed explanation to this 
phenomenon among consulted references and scholars’ opinions.  

As far as the segregated probability distributions of major events is concerned, the power 
law model turns now to be a plausible one only for some of the data sets: energy not 
supplied in the fragile group (ENSf), total loss of power in the robust group (TLPr) and 
restoration time for both groups. In the ENSf case, it moderately (p = 0,30) explains, though, a 
41% of the events, while in the TLPr case it reaches the 23%. Fig. 3.2.2 shows a remarkable 
trait: cumulative distribution functions for the robust set (circles) present a higher probability 
of occurrence than that of the fragile set (stars) for the same measure (the only exception 
would be the upper tail of the TLPr case).  

 
 

 
Fig. 3.2.2  Cumulative distribution functions ( )xP  and their maximum likelihood power law fits for 
the same UCTE reliability measures as in Fig. 3.2.1 but segregated into fragile (circles) and robust 
(stars) sets. 

 
 
Although not all distributions in Fig. 3.2.2 are power law, this qualitative behavior where 

robust set distribution stands with higher probability than fragile set has been observed in 
(Bakke et al. 2006) where a numerically and analytically validated model that simulates 
failures and avalanches in regular and random networks is presented. For a regular group of 
networks (square and triangular lattices) the scaling exponent of events distribution is found 
to be 02,−=α  while for the randomly generated group of networks 51,−=α . This finding 
agrees with the scaling parameters qualitatively observed in Fig. 3.2.2, where robust set 
distribution that topologically belongs to more randomly generated grids has a lower slope 
(i.e., scaling parameter α) than that of the fragile set, less randomly generated and with both 
more connected topologies and a higher slope. 

Since no clear reasons are presented in (Bakke et al. 2006) to explain these different 
behaviors from a dynamical point of view, a more specific dynamical model able to connect 
topological and electrical facets is deeply needed in order to decipher these comportments. 
This is actually part of this PhD Thesis’ ongoing research (see Chapter 5). 
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     Maximum likelihood  

Data set n  x  σ  maxx  minx̂  α̂  tailn  p  Support for PL 

ENSr 147 944 15037 180000 - - - 0,03 None 
ENSf 534 117 751 13377 16 ± 23 1,68 ± 0,08 219 ± 56 0,30 Moderate 
TLPr 153 436 1401 16724 550 ± 227 3,0 ± 0,9 35 ± 36 0,60 Ok 
TLPf 416 390 1931 26746 - - - 0,00 None 
RTr 162 559 3344 37486 156 ± 62 1,7 ± 0,1 36 ± 27 0,83 Ok 
RTf 607 377 2842 43200 29 ± 22 1,72 ± 0,07 141 ± 58 0,62 Ok 

 
Table 3.2.2  UCTE major events generic statistics and power law fits. For each measure we give the 
same values as in Table 3.2.1 segregated into fragile (subscript f) and robust (subscript r) sets. No 
values are given when the support for the power law model (p-value) is null or extremely low. 

 
 
The case of the restoration time is remarkable since the power law model explains 

approximately 22% of events in both groups, with a high p-value and similar scaling 
parameters, alike to those observed for the whole UCTE power grid. Since restoration time 
values depend mostly on human factors, this behavior might be in accordance to some 
results found in the literature that relate human behavior with power law response time 
distributions. (Johansen 2004; Barabási 2005) 

 

3.3 Main points in review 
The main points in review in this chapter are the following: 
 

• It seems there exists a positive correlation between topological features and 
dynamical major failures. Rather counterintuitively, evidences suggest an increase 
in fragility when the topology of the network deviates from a random one, maybe 
in search of a higher interconnectedness.  

• With the actual data span UCTE grid can not be considered to be in a state of self-
organized criticality. Power law fits are moderately supported and the number of 
events contained in the power law tail is very low. Strategies for optimal 
management and operation of these networks will have to consider the dynamical 
behavior not accounted for this particular heavy tailed function.  

• Qualitative and quantitative differences exist in major failures distributions 
between robust and fragile sets. Particularly remarkable is the difference in mean 
values, where fragile networks mean stands always with lower figures than that of 
robust networks, although the former accumulate between 2,7 and 3,7 times much 
more events. 

• Restoration time is the only measure that is particularly well supported by a 
power law model. This behavior is in accordance with findings where human 
temporal response distributions have been found to be fat tail distributed.  

 



Dynamics. Blackouts, design and reliability 43 

 
3.4 References 
Bak, P. (1999). How Nature Works: The Science of Self-Organized Criticality. New York, 

Springer Verlag. 
Bak, P., C. Tang, et al. (1987). ʺSelf-organized criticality: an explanation of 1/f noise.ʺ Phys. 

Rev. Lett. 59: 381-384. 
Bakke, J. O. H., A. Hansen, et al. (2006). ʺFailures and avalanches in complex networks.ʺ 

Europhysics Letters 76(4): 717-723. 
Barabási, A.-L. (2005). ʺThe origin of bursts and heavy tails in human dynamics.ʺ Nature 435: 

207-211. 
Carlson, J. M. and J. Doyle (2002). ʺComplexity and robustness.ʺ Proc. Natl. Acad. Sci 99: 

2538-2545. 
Carreras, B. A., D. E. Newman, et al. (2000). Initial evidence for self-organized criticality in 

electric power system blackouts. International Conference on System Sciences, Maui, 
Hawai. 

Carreras, B. A., D. E. Newman, et al. (2004). ʺEvidence for self-organized criticality in electric 
power system blackouts.ʺ IEEE Transactions on Circuits and Systems 51(9): 1733-1740. 

Clauset, A., C. R. Shalizi, et al. (2009). ʺPower-law distributions in empirical data.ʺ Society for 
Industrial and Applied Mathematics (SIAM) Review (to appear). 

Chen, J., J. S. Thorp, et al. (2001). Analysis of electric power system disturbance data. 
International Conference on System Sciences, Maui (Hawaii). 

Dobson, I., B. A. Carreras, et al. (2007). ʺComplex systems analysis of series of blackouts: 
cascading failure, critical points and self-organization.ʺ Chaos 17(2). 

Fairley, P. (2004). ʺThe unruly power grid.ʺ Spectrum, IEEE 41(8): 22-27. 
Holmgren, A. J. and S. Molin (2006). ʺUsing disturbance data to asses vulnerability of electric 

power delivery systems ʺ Journal of Infrastructure Systems 12(4): 243-251. 
Jaeger, J. A. G., H. G. Schwarz von Raumer, et al. (2007). ʺTime Series of Landscape 

Fragmentation Caused by Transportation Infrastructures and Urban Development: a 
Case Study from Baden-Württenberg, Germany.ʺ Ecology and Society 12(1). 

Jensen, H. J. (1998). Self-organized criticality. New York, Cambridge University Press. 
Johansen, A. (2004). ʺProbing human response times.ʺ Physica A 338(1-2): 286-291. 
Jordan, C., H. Rasmussen, et al. (2006). Expectations of loss of supply in the Newzealand 

power system. Study Group Report. Aukland (New Zealand), Mathematics in Industry. 
Milo, R., S. Shen-Orr, et al. (2002). ʺNetwork Motifs: Simple Building Blocks of Complex 

Networks.ʺ Science 298(5594): 824-827. 
Newman, M. E. J. (2005). ʺPareto laws, Pareto distributions and Zipfʹs law.ʺ Contemporary 

Physics 46(5): 323-351. 
Perrow, C. (2003). The next catastrophe. Princeton, Princeton University Press. 
Rosas-Casals, M. and B. Corominas-Murtra (2009). ʺAssessing European power grid 

reliability by means of topological measures.ʺ Transactions on Ecology and the 
Environment 121: 515-525. 

Rosas-Casals, M. and R. Solé (2009). ʺAnalysis of major failures in Europeʹs power grid.ʺ 
(IJEPES submitted). 

Solé, R. and B. C. Goodwin (2001). Signs of life: how complexity pervades biology. New York, 
Basic Books. 

Solé, R. V., M. Rosas-Casals, et al. (2008). ʺRobustness of the European power grids under 
intentional attack.ʺ Physical Review E 77(2): 026102. 

UCTE (2004). Final Report of the Investigation Committee on the 28 September 2003 Blackout 
in Italy, UCTE. 



44 Chapter 3 

 
UCTE (2007). Final Report System Disturbance on 4 November 2006, UCTE. 
Weng, X., Y. Hong, et al. (2006). ʺFailure analysis on China power grid based on power law.ʺ 

Journal of Control Theory and Applications 4(3): 235-238. 
 
 



 

4 
Evolution. Time, space and constraints 

 
In analyzing topology and dynamics of any networked system, we usually can only see 

the present outcome of a huge evolving process taking place in multiple spatial and temporal 
scales. Such process is driven by multiple and, usually, unknown forces. As these unknown 
forces shape and, at the same time, are being shaped by the evolving structure and dynamics 
of the network, its growth can be an intricate process. Here dynamics impels new topological 
forms that, at the same time, modify the flows of information between its constituents. 
Therefore, in order to fully comprehend a network we must deal with its evolution, as well 
as with its structure and topology. (Dorogovtsev and Mendes 2001) 

Most network evolutionary models try to explain the observed structure by means of two 
processes: (a) an ad hoc growth process that introduces a new element at every time step; and 
(b) an attachment process that models the relations established among elements. One widely 
used and analyzed attachment process has been preferential attachment, already presented in 
Chapter 1, in which some quantity or wealth is distributed among a number of individuals 
or objects according to how much they already have, so that those who are already wealthy 
receive more than those who are not. Since under suitable circumstances this process ends 
up generating power law distributions, it was first suggested for the growth of the world wide 
web, a network particularly well known for having this kind of degree distribution (Barabási 
and Albert 1999). Following suit, similar growing models were developed, numerically and 
analytically, in order to explain the several power laws encountered in networks’ degree 
distributions. (Boccaletti et al. 2006) 

But many other networks in the real world do not present power law degree distribution 
neither they grow by means of any preferential attachment at all. Most spatial networks1 for 
example, cannot go through a preferential attachment process since every new link implies 
the filling of a proportional real space in the node vicinity and such space is not unlimited. 
This fact thus makes the appearance of power law difficult.  

On the other hand, what is really a drawback about network evolution is that no data of 
past evolution stages is usually available to corroborate the assumptions imposed by any 
model or to suggest the appearance of other intermediate evolutionary processes. The study 
of the evolution of networks is therefore an essential component of the complex networks 
research agenda, in order to shed light on some fundamental questions such as the 
following: 

 

                                                      
1 Networks embedded in real Euclidean space (also known as geographical networks). See next 
section. 
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• As networked systems grow by adding elements and, at the same time, by 

coupling their dynamics to those already present, which is the level of interaction 
between elements and how this process modifies the internal information and 
energy flows?  

• Would it be possible to find different growing processes at different growing 
stages? Would they be a function of the structure, substrate or dynamic processes 
already present in the system?  

• Biologist have questioned the “continuous and inevitable” view of the evolution 
(Gould 1989). Even some structures found in biological networks are thought to 
have had no function at all in the beginning, but they were used and integrated as 
functional elements a posteriori (Solé and Valverde 2006). Where do, then, necessity, 
chance and contingency stand in these evolutionary processes? Which patterns are 
really necessary or even useful and at which evolutionary stage?  

 
Some of these questions are more related to some types of networks than others. 

Biological networks are a particularly fruitful set, where the assumption of the former 
hypothesis has important consequences in evolutionary theory (Montoya et al. 2006; Solé and 
Valverde 2006). On the contrary, infrastructure networks in general (and power grids in 
particular) belong to the engineering field, where objectives and constraints are clear a priori. 
But is this last a priori assumption really true? Most technological networks evolve in time 
and space following well known driving forces such as economic and physical laws. Yet they 
have been continuously going through changes, spanning and crossing urban and natural 
systems from their early stages, adapting and being adapted by human societies, landscapes, 
territories and other constraints. Has this adaptive process the power to modify the initial 
objective functions?  We begin in this chapter to delve into these questions introducing a 
particularly constrained subset of networks: the spatial network. 

 

4.1 Spatial networks 
The aforementioned preferential attachment model is only one of the several models evolved 
since the end of the 1990’s to try to explain the pervasiveness of the power law distribution 
observed in many natural and man-made systems. 2  But the truth is that many other 
networks are not scale-free but something completely different. A particular class of 
networks that do not use to hold the power law distinctive includes those embedded in the 
real space, that is networks whose nodes occupy a precise position in two or three-
dimensional Euclidean space, and whose edges are real physical connections. The typical 
examples are neural networks (Sporns 2003), information and communication networks 

                                                      
2 The first rigorous consideration of preferential attachment though seems to be that of Yule in 1925, 
who used it to explain the power-law distribution of the number of species per genus of flowering 
plants (Yule, G. U. (1925). ʺA Mathematical Theory of Evolution, based on the Conclusions of Dr. J. C. 
Willis, F.R.S.ʺ Philosophical Transactions of the Royal Society of London. Series B 213: 21–87.) The 
process is sometimes called a ʺYule processʺ in his honour.  
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(Pastor Satorras and Vespignani 2004), transportation systems ranging from rivers (Forman 
1995), airports (Guimerà and Amaral 2004), streets (Porta et al. 2005), railway and subway 
(Latora and Marchiori 2001) networks, vascular plants (Noblin et al. 2007), ant networks of 
galleries (Buhl et al. 2004), electronic circuits  (Ferrer i Cancho et al. 2001) and of course, 
power grids.  

Most of the works in the literature have focused on the characterization of the topological 
properties of spatial networks while the spatial aspect has received less attention, if not 
neglected at all. Although there exist numerical and analytical two and three dimensional 
scale-free evolution network models, spatial power-law networks are extremely difficult to 
find in the real world since their topology is strongly constrained by their geographical 
embedding as we have said. The following is a list of the major characteristics and spatial 
constraints traditionally considered at work on such networks. 
 

• Fractal spatial distribution of nodes. Networks with strong geographical constraints 
have been generally considered good example of networks with fractal scaling. But 
here scale plays an important role. The nodes of the Internet, for example, develop on 
a fractal support driven by the fractal nature of population patterns around the world 
(Yook et al. 2001). But the transport power grid, being equally geographically 
constrained, does not follow a fractal pattern until distribution and low voltage grids 
are considered. Hence, network distribution of nodes, be it fractal or non fractal, 
depends upon the scale at which they are delivering their final services and it can not 
be considered as a taxonomic characteristic.    

• Limited node degree. As we have already mentioned, node degrees are constrained in 
spatial networks, since the number of edges that can be connected to a single node is 
limited by the physical space available to connect them. This is particularly evident in 
planar networks,3 such as street patterns (Porta et al. 2005) or ant networks of galleries 
(Buhl et al. 2004). 

• Distance-dependence cost of edges. In spatial networks distant nodes are less likely to be 
connected due to the distance-dependent cost of the edges. This fact has important 
consequences since long distance links are really difficult to appear and some 
behaviors, like the small-world one, can not be observed. Yet section 2.1 presented 
the appearance of the small-world behavior in the power grid as the grid size 
increases. This fact was mostly due to the increase in the clustering coefficient values 
compared to a random graph of the same size. 

• Trivial clustering-degree correlations. It has been shown that some geographical 
networks (the Western United States power grid among them) have ( )kC  

independent of k (Ravasz and Barabási 2003). This result is different from what has 
been obtained for many other real networks which show a hierarchical behavior with 
( )kC  well approximated by ( ) 1−≈ kkC . In networks with strong geographical 

                                                      
3 Planar graphs are those graphs forming vertices whenever two edges cross, whereas non-planar 
graphs can have edge cross and not form vertices. 



48 Chapter 4 

 
constraints, hierarchy 4  is absent because of the limitations imposed by the link 
lengths on the topology. So it happens for the UCTE power grid. (Rosas-Casals et al. 
2007) 

 
These constraints imply severe difficulties to the modeling and study of the evolution of 

spatial networks. But since most of these networks are involved in the vital transport of 
goods, wealth and information, the effort made in developing useful spatial networks 
models has been remarkable.  

 

4.1.1 Spatial networks models 
The simplest way to generate geographical networks is based on two ideas: (a) to distribute 
N  vertices at random in a two-dimensional space Ω  and (b) link two any vertices i and j  
with a given probability which decays with their distance ijd  as 

 
( ) ( )Dddp ijij αβ −= exp  (4.1.1) 

 
where D is the maximum distance between any two nodes, α  is a parameter used to tune the 
ratio of short to long distance edges (i.e., fixes the length scale of the edges) and β  controls 

the average degree of the network (Waxman 1988). Alternatively, the network development 
might start with a few nodes while new nodes and connections are added at each subsequent 
time step. This is known as spatial growth process and is able to generate a wide range of 
network topologies, including small-world and scale-free networks limited to a certain 
degree. (Kaiser and Hilgetag 2004) 

Most spatial networks appear to show a preference for short edges over long ones, which 
is a natural effect of geography. However, highway networks, for example, have much 
shorter edges, lower degrees and larger diameter5 than Internet or flights networks (Gastner 
and Newman 2006). These are all consequences of the planarity of the highway network. In 
fact, although each of these three networks is two-dimensional in a geographic sense (since it 
lives on the two-dimensional surface of the earth) it is possible to show that the road 
network is almost planar, while the other two networks are not. A simple one-parameter 
model explaining this feature can be constructed in terms of competing preferences for either 
short Euclidean (i.e., physical real) distances between nodes or short graph distances (i.e., 
hops between nodes) by assigning to each edge an effective length 

 

( ) ( )λλ −+= 1ijdNjiD ,  (4.1.2) 

 

                                                      
4 A network shows hierarchical topology when dependency of some kind between topological 
measures is observed.  
5 The diameter of a network is the longest shortest path existing between any two nodes. 
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where 10 ≤≤ λ  determines the user’s preference for measuring distance in terms of 
kilometers or hops: in a road network most travelers look for routes that are short in terms of 
kilometers while for airline travelers the number of changes among planes is often 
considered more important. Given the position of N nodes and the budget for building the 
network (consisting in the maximum total length of the wirings to be used) the model 
generates the network structure that connects all nodes and minimizes the mean distance 
between all node pairs by means of the distance defined by (4.1.2). The cases 0=λ  and 1=λ  
produce networks strongly reminiscent of airlines and roads respectively. For intermediate 
values of λ  the model finds a compromise between hub formation and local links. 

As we will see in the next section, not only purely spatial constraints have to be 
considered in spatial network modeling. The aforementioned budget or the availability of 
resources in general turns out to be the most important issue when modeling the spatial 
growth of a network. 

 
 

4.2 Spatial and temporal evolution of a power grid 
In order to analyze the evolution of a technological network, it is necessary to find the 
suitable data set. For the power grid particularly, one such data set can be found for the 
French electricity transmission network and is partially shown in Fig. 4.2.1.6  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2.1 Snapshots of the evolution of the French transmission power grid at several years. (a) 1962, 
(b) 1972, (c) 1976, (d) 1982, (e) 1992 and (f) 2005. 

 
                                                      
6 http://www.rte-france.com/htm/fr/CEM_HTML/transport/historique-reseau-400kv.jsp. (Last visited, 
June 2009). 
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Evolved from 1962 until nowadays, this system might be though as the intricate result of 
many different societal, economical, political and lastly, environmental shaping processes. 
And yet it can be modeled as a planar graph whose spatial and temporal evolution follows a 
slightly modified version of equation (4.1.1). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2.2 Size (white circles) and mean degree (upper inset, black circles) evolution for the French 
transmission power grid. (Dashed vertical lines limit the studied time span, from 1964 to 2000). 

 
 
Though data for this power grid can be obtained from year 1946 until year 2007, from 

1946 to 1960 the French transport grid relayed on 220 kV technology and it was mainly 
formed by disconnected lines and substations. It is not until 1962 that a main 400 kV 
connected core of 10 substations and some 1.850 kilometers of electric lines is detected. From 
1976 to 1980, the 400 kV power grid begins to noticeably and effectively grow, due to the 
increase in both, electricity consumption and nuclear power generation equipment. 

 
 

 French Grid Model 

Year Completion Accum. Nodes k  C  l  k  C  l  

1962 6% 10 2,20 0,00 2,38 2,2 ± 0,3 0,16 ± 0,08 2,2 ± 0,3 
1972 13% 23 2,52 0,03 3,94 2,4 ± 0,2 0,09 ± 0,07 3,3 ± 0,2 
1976 20% 34 2,41 0,02 4,67 2,3 ± 0,2 0,10 ± 0,06 4,1 ± 0,3 
1982 40% 66 2,54 0,06 5,41 2,4 ± 0,1 0,11 ± 0,05 4,9 ± 0,4 
1992 80% 134 2,67 0,10 7,01 2,3 ± 0,1 0,10 ± 0,03 6,2 ± 0,3 
2000 100% 149 2,64 0,06 7,76 2,4 ± 0,1 0,09 ± 0,02 6,8 ± 0,5 

 
Table 4.2.1  Network parameters evolution. For every year considered, the table shows the percentage 
of completion (number of nodes introduced with respect to final size), accumulated number of nodes 
for the RTE network, mean degree k , clustering coefficient C  and topological average path length l . The 
results of the model have been averaged over 1000 realizations. 
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Figure 4.2.2 shows the size (cumulative number of nodes ( )tV ) and mean degree k  of 

the very high voltage level French transport power grid through the years. The slightly S-
shaped network size function follows the usual sigmoid growing process found in most 
technological networks. (Dupuy 1996)  

Table 4.2.1 shows among other results and measures, the numerical evolution of k . As 

we can see k  is kept almost constant with a slight decrease at the point where the grid 

begins to increase (from 1975 to 1980) due to the fast addition of new lines from nodes with 
1=k  with clearly one objective: to reach as much territory with as less time and cost as 

possible. From 1980 onwards k  increases slightly due to the meshing process of the grid in 

order to attain a reliable (N −X) criteria (Willis 2004). Table 4.2.1 shows as well the evolution 
of two other characteristic topological measures already presented throughout these pages: 
the clustering coefficient C  and the average path length l . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2.3 Histograms for the lengths of edges L (in kilometers) of the evolution of the French 
transmission power grid at different years. The bias towards shorter edges appears once long 
transmission lines have been built, by mid 1970‘s, and the initially longest line (right extreme value in 
1962) have been split into two in 1966. 

 
 
Another simple way to describe the evolution of this network is the plot of the 

distribution of the lengths of the existing transmission lines at every time period considered. 
In Fig. 4.2.3 we show the evolution of the histogram of the lengths of edges of the French 
transport power grid at six characteristic years. From 1962 until 1976, the amount of edges 
increases notably but no characteristic mean is observed. In fact, almost every length is being 
used, even with the appearance of the longest line (354 km) before year 1972. This fact would 
suggest that nor economic neither technical factors would matter too much at the beginning 
of this growing process, other than a maximum spatial covering objective. From 1976 
onwards, a clear tendency towards shorter lines appears, as it seems to happen in other types 
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of spatial networks (Gastner and Newman 2004). After the covering process has been 
finished, there begins the meshing process in order to reassure the connectivity and 
(hopefully enough) the reliability of the grid. 

The growing process of the model starts with a node randomly placed in a squared two 
dimensional space. At every time step t , a new node position is randomly chosen with 
coordinates in the interval [0, 1]. The subtle difference here with respect to (4.1.1) is that the 
probability of connecting a new node tn  with each existing node at a distance d  at a time 

step t  follows 
 

( ) ( )tijtij ndndp −= exp,  (4.2.1) 

 
The temporal increase in tn  allows the modeling of the evolution of the length of individual 

edges as shown in Fig. 4.2.4. The way equation (4.2.1) mimics the tendency observed in Fig. 
4.2.3 is the following: at the beginning of the process, that is for lower values of tn , the 

probability is almost unity for any distance d . As the network increases its number of nodes 
with time, that is higher values of tn , the probability of establishing links between nodes at 

higher distances decreases exponentially. Table 4.2.1 shows the numerical evolution of k , 

C  and l  for the model compared with the French real measures. As we can see, the 
distribution of link lengths over time greatly resembles the real observed one, except in the 
last two final stages, where the exponential function used in the model arises more clearly. 
This slight deviation is due to a phenomenon that this model can not reflect and that is the 
split of long lines into many shorter ones. The capacity of this simple model to reflect the 
reality is nonetheless remarkable. 
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Fig. 4.2.4 Histograms of the lengths of edges (left) and snapshots (right) of the evolution of the spatial 
model at different stages of completion (shown as percentage of nodes introduced with respect to final 
size). White circles stand for mean values averaged over 1000 model realizations. Background 
histograms represent one sample. 
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The characterization of the topological change displayed by this network can not be 
completed without a tentative explanation of the characteristic S-shape observed in Fig. 4.2.2 
for the network size evolution. In fact, many natural processes and complex system display a 
history-dependent progression from small beginnings that accelerates and approaches a 
climax over time. The simplest description of this process is the sigmoid curve which is 
produced by a mathematical function having an ʺSʺ shape. Often sigmoid function refers to 
the special case of the logistic function defined for each time step t  like 

 

( ) ( )ttf
ε−+

=
exp1

1
 (4.2.2) 

 
where ε  is a characteristic parameter.  

Long term engineering projects are usually characterized by uneven distribution of 
resources, with budgets normally distributed over time (Clark and Lorenzoni 1985; 
Humphreys and English 1993). For the French power grid Fig. 4.2.5 shows such distribution 
of costs when one considers a constant cost for nodes and a linear length dependent cost for 
links as it has been historically, and nowadays, the case for electric transmission networks 
construction (Landers et al. 1998; Willis 2004; Bosch 2008). Links (squares) and nodes (circles) 
share 80% and 20% of the total cost (stars) per two-year period respectively, regardless of 
any particular stage of the project completion. As the evolution of the expenditure over time 
is not constant, the accumulated cost follows a characteristic sigmoid function, similar 
(almost qualitatively exact) to that observed in Fig. 4.2.2 for the evolution of the size of the 
network.  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2.5 Normalized costs distribution for the French power grid construction. Total normalized cost 
(stars) accounts for a constant cost for substations (circles) and linearly dependent one with distance 
for cables (squares). Inset: accumulated normalized cost and network size scale linearly over time. 
Normalization has been done over the total cost expenditure of the studied time span (i.e., 1964-2000). 
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This can also be observed in the inset where accumulated normalized costs scale linearly 

with network size. In order to consider this cost constraint, the spatial model has been 
coupled with a sigmoid like accumulated cost function that defines the maximum budget 
available for constructing new nodes and establishing new links during each two-year 
period. It takes the form 

 

( )
( )( )σµ−−+

=
b

bCA exp1
1

 (4.2.3) 

 
where b is the accumulated biennial period, and µ and σ are the function parameters 
adjusted in order to give the corrected time span. Equation (4.2.3) have been adjusted with 

5710,=µ  and 472,=σ , for a time span of eighteen biennial periods from 1964 to 2000, in 

order to avoid the initial offset (ten nodes and some 1.850 km of lines, already in place) 
observed in year 1962. This offset comes from the last stages of the previous grid upgrade 
(that of 220 kV).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2.6 Modelled cost and network size. Inset: linear relation between costs of nodes and links that 
give rise to optimal solutions for the model, which is eighteen biennial periods. 

 
 
The cost function is coupled with the spatial model in the following way. At every time 

step t  the model accumulates the total cost TC  of nodes and links introduced in the network 

and compares it with AC . If AT CC ≥  , we consider that two years have passed. Each biennial 

period includes nodes and links introduced in several time steps. If nC  is the cost of a node 

and LC  is the cost of a line per unit length, TC  can be written as 

 

∑∑ +=
tnLtnT LCnCC  (4.2.4) 
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where 
tnL  is the total length of electric cable (i.e., length of all links) associated with the 

introduction of the node tn  at time step t . 

Equations (4.2.3) and (4.2.4) are coupled in time. No a priori analytic process exists to 
obtain for each [ ]1810 ,...,,=b  (eighteen biennial periods, from 1964 to 2000) an optimal pair 

nC  and LC  other than to sweep the costs parameter space. Figure 4.2.6, inset, shows the 

relation between node and link costs that give rise to precisely eighteen biennial periods. 
This optimal relation follows a linear fitting ( 997702 ,=R ) of the form 

 
00130050 ,, += Ln CC  (4.2.5) 

 
Fig. 4.2.6, principal, shows the mean and standard errors of 1000 realizations of one cost 

combination: 0010,=nC  and 0050,=LC . Similarly to Fig. 4.2.5, inset, both modeled 

accumulated normalized cost and network size scale almost linearly over time. Although a 
slight deviation can be observed, the approximation given by this simple model is 
conspicuous. 

The historical development of the power grid as a network begins at the end of the 
nineteenth century in the United States of America, with the incandescent bulb lamp 
invention, the so called War of the Electric Currents between DC defenders and AC early 
adapters and finally, with the massive adoption and commercial use of electricity (Klein 
2008). From the 1940’s on, the power grid has been worldwide operated and controlled by 
participants of increasing different types and (usually) opposite interests like governments, 
utilities, end users, etc. And yet it is possible to devise relatively simple models to 
understand its evolution and growth. As far as we know, this is the first time where these 
aforementioned complexities have been relatively explained, in this particular case, in terms 
of tradeoffs between space filling and economic resources. 

 

4.3 Main points in review 
The main points in review in this chapter are the following: 

 
• Power grids are examples of spatial networks, where nodes can be precisely 

located on Euclidean space and edges do have characteristic and measurable 
lengths. These facts highly coerce their topology and constrain their evolution.   

• French power grid’s topology particularly follows two clearly differentiated and 
consecutive evolving processes. A first global space filling process and a 
secondary local meshing process that increases connectivity at a local level. We 
assume that these processes are followed by power grids in general. Since meshing 
processes increase fragility, as we have stated all through these pages, it seems 
plausible to affirm that global fragility arises when local efficiency and reliability 
increases. 
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• Although historical and technological events of many kinds can participate in the 

molding and forming of a network such as the power grid, its growth can be 
modeled as a tradeoff between resources and a spatial filling process. This is an 
example of how complex outcomes are usually deeply rooted in simple 
assumptions. 

• Complex networks can only be understood when man simultaneously consider 
the three dimensions that characterize its meaning. Namely: (1) structure, (2) 
dynamics and (3) evolution. It is our hope that this three-fold path will help us in 
finding new ways to tackle the optimal, organic (rather than hierarchical) design 
and modeling of this type of networks. 
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5 
Conclusions. Towards sustainability 

 
 
At the beginning of this PhD Thesis, several questions were formulated. These were 

mainly concerned with failures, collapse and the definition of a reliable structure for a future 
power grid. Our goal during these pages has been to try to answer them by means of a new 
conceptual framework: complex networks theory. This framework has allowed us to detect 
evidences that relate topological structure with fragility and probability distributions of 
major events that suggest particular failure dynamics not observed until now in power grids. 
Although some answers have been partially answered, much more questions have appeared 
along the way. This is what usually happens when new concepts are applied to old objects. 

Nikola Tesla’s living goal was influenced by an evolutionary perspective and pragmatic 
considerations: he wanted to devise mechanical means to avoid needless tasks of physical 
labor so that humans could spend more time in creative endeavors. In this way, cultural 
evolution would proceed at ever faster rates (Seifer 1998). Technological evolution has 
proceeded indeed at an incredible rate since Tesla’s times. If we consider technology as a 
form of and embodied in society’s culture, then these were prophetical words. But the truth 
is that those mechanical means which Tesla spoke of have not evolved graciously in a neutral 
influence zone but rather the contrary. Although technology has given many advantages and 
well being to mankind, it has also predated and polluted the environment, and it has been 
developed mainly thanks to very inefficient processes, wasting resources all along its 
historical path.  

Now that this work is finishing, we are still asking ourselves if a sustainable grid design 
process could ever be devised. As we have seen all this way through, topology, dynamics 
and long term design play a decisive role in the definition of an efficient, robust and 
sustainable power system. Defining the way these concepts have to mingle and interweave 
within the sustainable paradigm is the next and essential step in this research. 

 

5.1 Power grids and the sustainability paradigm 
The proper definition of a power grid from a sustainable point of view has to be built on 
economical, technological, environmental and, last but not least, social facets (WCED 1987; 
Cendra and Stahel 2006). Although much effort has been put on the optimization of the 
technological and economical sides of infrastructure projects (EU 2003; Butler 2007; EU 2008), 
environmental and especially social impacts require much more attention due to their 
potential capacity in destabilizing society’s structure (Nel·lo 2003). As far as the power grid is 
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concerned, the social opposition to sitting of new facilities1 (even from renewable resources) 
or transmission lines2 can be considered only the tip of the iceberg of a deeper and much 
more complex problem of energy equity and responsibility, where regions become attractive 
as consumers while others deserve no respect as merely producers of energy vectors and 
other commodities (Illich 1995; Augé 2001). From this point of view, sustainability 
assessments must deal with usually contradictory perspectives. On one side the economical 
and technological criteria that rule the effectiveness and reliability of infrastructures from a 
more local perspective; and on the other the social and environmental impacts which belong 
to a much more global and long term development panorama (Stahel et al. 2009). One way to 
tackle these contradictions has been paved by post-normal science in an attempt to 
characterize a methodology of inquiry that is appropriate for cases where “facts are 
uncertain, values in dispute, stakes high and decisions urgent” (Funtowicz and Ravetz 1993). 
The sustainability science rests in deciphering which priority do we give to which of these 
criteria to avoid long term inner contradictions among them. In this sense, the contribution of 
this PhD Thesis may offer new criteria to help elucidating uncertainties and favoring 
decisions in conflictive situations. 

Although an infrastructure’s topology (i.e., number of elements and their connectivity) 
depends highly on its substrate (i.e., the physical ground where it develops and grows), most 
technical considerations relay on prevailing economic and energy developing models. In this 
sense, the interaction between human and infrastructure systems exhibits complexities 
similar to those of coupled human and natural systems (Liu et al. 2007), such as nonlinear 
dynamics with thresholds (i.e., blackout or social response condition appearance) and 
heterogeneity (i.e., transport, distribution and low voltage network elements and lines), that 
make an adequate assessment of future problematiques 3 a rather difficult task. An “old” 
network like the power grid presents legacy effects as well, considered as those impacts of 
prior infrastructure-human coupling on later conditions, the most important among these 
being its own topological structure, based on economies of scale and centralized power 
production. 

The simile, though, can not be wholly performed since coupled human and natural 
systems exhibit complexities actually completely absent in coupled infrastructure and 
human systems. One of these is resilience, defined originally as a system’s capability to 
renew and sustain specified conditions or processes in spite of exogenous disturbances or 
changes in driving forces (Folke 2006). Resilience appears to be a perspective rather than a 
concept. It emerged historically from a stream of ecology that addressed ecosystems 
dynamics to become more recently a motto to explore social processes like knowledge-system 
integration and adaptive capacity and governance. It emphasizes the necessity to accept 
uncertainty and surprise as part of the game and learn to manage by change, rather than 

                                                      
1 A Google search for Catalan words such as plataforma, no, tèrmica, eòlica, etc., is an easy way to realize 
the actual social opposition against energy infrastructure projects.  
2 http://www.nomat.org/. (Last visited, June 2009). 
3 The term problematique here is used in the sense proposed by the Club of Rome; that is problems of 
global and long term impact. 
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simply to react to it. Resilience can be quantified by means of studying temporal scales and 
their interrelations with spatial scales and spatial heterogeneity (i.e., slow and fast temporal 
variables). It stands in sharp contrast with engineering resilience, focused on maintaining 
efficiency of function, constancy of the system and a predictable world near a single steady 
state.4 While the latter studies behavior near a stable equilibrium (i.e., a global steady state) 
the former deals with the boundary of a domain of attraction which is an unstable 
equilibrium, reflecting behavior of complex adaptive systems (Kauffman 1993; Holland 1995; 
Levin 1999). A complex adaptive system consists of heterogeneous collections of individual 
agents (i.e., functional groups) that interact locally, and evolve in their genetics, behaviors or 
spatial distributions based on the outcome of those interactions. The distribution of 
functional groups and their response diversity within and across scales enables regeneration 
and renewal following disturbance over a wide range of scales. The resilience of a complex 
adaptive system it is not therefore simply about resistance to change and conservation of 
existing structures but also about the opportunities that disturbances open in terms of 
recombination of evolved structures and process, renewal of the system and emergence of 
new trajectories. 

In this sense resilience is an approach, a way of thinking that I personally consider as a 
valuable context for the integrative analysis of interacting social, natural and engineered 
systems like energy infrastructures. Many sustainable prospective scenarios developed 
during the last decade foresee highly heterogeneous and decentralized energy systems for 
the future to come, completely penetrated by renewable resources (Lovins 2002; Pacala and 
Socolow 2004; Lovins 2008). Due to the localized and unpredictable nature of renewable 
energy on one hand and energy markets liberalization processes undertaken by many 
countries on the other, power grids thus will have to manage increasing amounts of energy 
under severe economic, technical and environmental constraints, and considering different 
time scales. Interactions between these fast variables and slow response times, such as these 
involved in sitting new lines and facilities, can not be properly assessed without a 
comprehensive approach such as this. The resilience approach would have to pave the way 
for answering critical questions like, for example:  

 
• How should distributed generation be localized and connected in order to 

properly inject the right amount of power at the right time and at the right 
voltage? 

• Will it be possible to devise safe structural recombination processes, in terms of 
connections and disconnections, in order to isolate or reconnect parts of the grid 
when needed?  

• How can we include risk assessment and evaluation when disturbance processes 
of any kind are taken place? And once risk is assessed, how can we effectively 
protect critical components and the global electric network from natural or 
malicious attacks?   

                                                      
4 Resilience is the name given also to network fragility analysis of the type performed in Chapter 2.   
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Efforts have been made towards this direction, defining for example the necessary 

conditions for a grid to be self-healing (Amin 2001) or establishing the need for new 
communication means to speed up detection and technical response to local failures in order 
to avoid global disturbances.5 These are indeed remarkable steps taken to surmount our 
increasing energetic system complexities. Yet these projects are still at fundamental 
development stages, being the aforementioned legacy effects derived from ancient 
economies of scale and centralized power production and distribution really hard barriers to 
overcome. Although these effects condition dialectics between innovative and traditional 
systems, heuristic models of nested adaptive renewal cycles put forth recently emphasize 
that disturbance is part of development, and that periods of gradual change and periods of 
rapid transition coexist and complement one another. (Gunderson and Holling 2001) 

One citation at the beginning of this PhD Thesis states that “ [...] the affluence [of wealth] 
recently acquired by the technological societies [...] has not brought about any comparable 
growth of human mental capacity to comprehend their over-all complexities” (Singh 1966). 
This was written by the Indian science popularizer Jagjit Singh (1912 – 2002) in 1966, a time 
when cybernetics, neural networks and pioneering concepts about cognition and knowledge 
emerged, posing the scientific world at the verge of a new and seemingly promising 
conceptual framework. Although this new framework has helped mankind to overcome 
problems of many kinds, particularly related to control and systems theory, it has not been 
the miraculous science that Singh, and many others, expected it to turn into. More than forty 
years since, we still face the same questions yet many more have appeared. And we keep on 
devising new frameworks to help us to understand the world we are living in. 

The following paragraphs summarize implications for the sustainability paradigm that 
can be drawn from this PhD thesis’s results. Although many complexities have still to be 
unveiled, it is my hope that these particular achievements can be useful to understand our 
current power grid and to devise means to define a more sustainable one in the near future. 

 
• Efficiency, cost and grid design. All through these pages we have shown evidences 

that relate power grid’s structural properties and its dynamic behavior. Networks 
with more meshed and connected topologies tend to accumulate more failures 
than that of their counterparts of the same size but with a more randomly 
generated connectivity. Planning overhead or underground transmission lines can 
not be therefore a question of identifying optimal route alternatives solely from a 
local environmental point of view but also considering global better topologies. 
The definition of a “better” or “optimal” topology is not an easy task. Although 
nowadays electric transmission line routing processes are based on several 
perspectives such as built environment (protecting people, places and cultural 
resources), engineering requirements (minimizing costs and schedule delays) and 
natural environment (protecting water resources, plants and animals), they tend 
nonetheless to identify the best route for an electric transmission line on a local 

                                                      
5 http://www.smartgrids.eu/. (Last visited, January 2009). 
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level and to forget a more global topological perspective. Solely from the cost 
engineering point of view, a tendency to use less meshed network topologies 
should decrease overall transmission lines building and sitting costs on one hand, 
and operating costs on the other, for resistance losses would diminish as well. 

 
Network Average path length 

Lattice 
Random 
Scale Free 

kN 2≈l  

kN loglog≈l  
NN logloglog≈l  

 
Table 5.1.1  Average path length l  evolution with size for three types of networks: lattice, 
random and scale free. N  is the size of the network and k  the mean degree. (Costa et al. 
2007) 

 
As Table 5.1.1 shows, average path length scales linearly with number of nodes in a 
lattice network while it scales only logarithmically in a random network. The scale 
free topology would be even better since it has a systematically shorter average 
path length than a random graph. But this is a difficult topology to attain in power 
grids due to the existing spatial limitation. Thus, and although it is a bit early to 
assure that this new definition of the power grid’s topological facet would 
improve its overall efficiency, we believe the minimization of the average path 
length by means of more randomly designed topologies would add robustness to 
its structure and reduce the overall cost of the grid. As it has been stressed before, 
this topological optimization process should always be balanced with social and 
environmental long term impacts assessment, for “sustainable topologies” could 
stand in clear contradiction with, or even against, sustainable development. Recall 
that, in fact, no such thing as “sustainable” (or unsustainable) technology can be 
defined: sustainability is a property of the whole system, not solely of one of its 
parts.  (Cendra et al. 2009) 

 
• Blackout risk assessment and distributed generation. In Chapter 3 the analysis of the 

intrinsic dynamics of series of major failures for the UCTE has been presented. In 
contrast with some literature that considers power grids as self-organized systems 
our results make it difficult to accept the existence of such an equilibrium point 
near criticality for the European power grid. In fact we can clearly observe two 
regimes: a power law tail for minx̂x ≥  and a logarithmic distribution of events for 

minx̂x < . How this complex system dynamics impacts the assessment and 

mitigation of blackout risk is an extremely important although non trivial question 
(Dobson et al. 2002). Although extremely difficult to assess, risk can be simply 
defined, from an engineering point of view at least, as the product of the 
probability of an occurring event and its impact, losses or simply stated, cost 
(OECD 2003). In power grids, cost derived from major failures is the summation of 
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direct (amount of power interrupted and duration) and indirect (social disorder, 
induced economic and environmental losses, etc.) costs. While there is no clear 
methodology to estimate the latter,6 the former can be crudely expressed as a 
multiple of unserved energy. If we consider ( )Ep  as the probability of a major 

event with unserved energy E, and ( )Ec  as its associated cost, the risk R of a major 

failure can be written as     
 
( ) ( )EcEpR ≈  (5.1.1) 

 
For minx̂x ≥  the UCTE data indicates a moderate power law scaling of major 

events frequency with unserved energy and total loss of power. This can be 
expressed as 

 
( ) α−≈ EEp  (5.1.2) 

 
where α  is the scaling exponent. Considering a value of 61,≅α  for the UCTE and  
( )Ec  roughly a linear function of E, (5.1.1) can be rewritten to express R as  

 
60 ,

ˆmin

−
≥ ≈ ER xx  (5.1.3) 

 
that indicates a moderate decrease in risk as blackout size increases. On the other 
hand for minx̂x <  the UCTE data shows a logarithmic power law scaling of major 

events frequency with unserved energy and total loss of power. This can be 
expressed as 

 
( ) EaEp log−≈  (5.1.4) 

 
where a  is a higher limit for the maximum probability value. With the same 
considerations as before, R can be written as  

 
EEEaR xx log

minˆ −≈<  (5.1.5) 

 
For values 1≤a  and in the limit range minx̂x <<0 , (5.1.5) indicates that risk peaks 

for blackouts of some intermediate size and decreases logarithmically for larger 
blackouts making the probability for blackouts with size higher than the risk peak 
vanishingly small. Thus minx̂  separates two behaviors: one with blackout risk 

probability comparable to network size (i.e., power law regime) and another with 
blackout risk probability with a characteristic peak and logarithmic decay.  
Although risk assessment is difficult to assess, particularly for the electric power 
system (Gheorghe et al. 2006) and the assumption of a cost linearly dependent on E 

                                                      
6 And they can be much higher than the direct costs. 
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is particularly bold if not inaccurate, our findings would suggest an appropriate 
scale for network size and distributed generation. This electrical paradigm has 
been highly discussed in the last years and no clear methodology exists to exactly 
define the limiting size or power generation of a distributed power grid (Willis 
and Scott 2000). Indentifying a boundary condition such as minx̂  that separates 

different risk evaluation zones would help to define a network’s size where 
blackouts do not have algebraic probability distributions. A word of much caution 
is in order here for two reasons. On one side we have seen that major events 
probability distributions in power grids strongly depend on the structure and the 
overall connectivity scheme of the composing elements. We can not therefore 
straightly conclude that a reduction in the number of buses7 and lines in order to 
attain a size where major events’ risk scale logarithmically will generate a similar 
failure probability distribution than the original one. The development of a good 
dynamic model to understand these deep correlations is capital (see Extended 
topological analysis, in section 5.2). On the other side, recall indirect costs can be 
much higher than direct ones. With a clear methodology to estimate them, the 
aforementioned results would surely vary.  

 
• Long term infrastructure design process. The historical development of technological 

networks, from water pipes to Internet, through telegraph, telephone or electricity 
itself, follows always the same three-period trend (Dupuy 1996): (1) an initial 
period of slow motion and limited growing rate, when only a small amount of 
users are reached by or can afford the new development; (2) an intermediate 
period of exponential growth, when the innovation has been accepted and 
adapted by the general public; and (3) a last mature period when growing limits 
have been reached and no more development is needed, apart from that which 
improves the efficiency and secures structural integrity by means of connecting 
the network with other networks. This characteristic process is translated into a 
sigmoid-shaped curve that relates time and network’s growth not only for an 
innovation implementation but also for technical enhancements, as it is the case 
shown in Chapter 4 for the French power grid voltage upgrade evolution. Sigmoid 
developing process characterizes the growth of many complex adaptive systems 
as well (Levin 1999). But while the latter base their evolution mainly on the 
outcomes of local interactions and aggregation processes, similar for example to 
those followed by cities (Batty and Longley 1994), the former usually relies on 
centrally managed decision schemes. These decision processes are guided by two 
consecutive objectives. The first is global: to reach as much territory with as less 
time and cost as possible by means of long transmission lines. The second is local: 
once this first objective has been achieved a meshing and connecting process 
begins in order to guarantee the grid’s reliability by means of attaining the 

                                                      
7 The electrical name given to a node in an electrical network. 
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minimum (N − 1) criteria (Willis 2004). We have stated that fragility seems to arise 
when meshing process are at play. And for the French grid this is basically what 
happens when the first global objective has been accomplished. From an 
evolutionary perspective thus global fragility would arise when local robustness is 
increased by means of more highly connected topologies. Recall the resilience of a 
complex adaptive system is not simply about conservation of existing structures 
but also about the opportunities that disturbances open in terms of renewal of the 
system and emergence of new trajectories. One such new trajectory would be the 
redefinition of the topology and size of a grid once a specified local connectivity 
level has been reached. If this embrittlement process could be devised sufficiently 
in advance, difficult decision processes such as islanding and distributed network 
design could be improved as well. This would have to influence the processes 
involved in the long term design of infrastructures in general, and electricity in 
particular. 

 

5.2 Ongoing and future research 
During the work on this PhD Thesis many collateral research paths have been devised.  
Some of them have been clearly discerned and I believe they will be fruitful in the near 
future. Some others, though promising, will require a considerable amount of effort for only 
clearing the weeds that stand at the beginning of our way. Yet all of them are too wide in 
scope to be properly treated within the space and time of doctorate studies.  

The following items form the ongoing research paths that are actually completing the 
several results presented within these pages. 

 
• Reasons and impact of failures. As we have stated in Chapter 3, every major failure in 

UCTE has a recorded cause. These can be broadly segregated into overloads, 
failures, external and other or unknown reasons. The percentage of major events 
due to the aforementioned reasons and for Europe as a whole, fragile and robust 
sets are shown in Fig. 5.2.1 (a). A first distinctive trait is that cumulated major 
events for the UCTE power grid motives other than overloads are notably more 
meaningful for the whole grid and for the groups considered. Failures, external 
impacts and even unknown reasons stand for more than 95% of the reasons 
triggering the European power grid main events, while overloads hold a mere 
3,5%. This numbers would clearly support the view that considers major events in 
power grids the consequence of inadequate management, actions of inexperienced 
operators and outdated surveillance methods, rather than the lack of upgrading 
processes to meet an increasing demand. On the other hand, UCTE data 
segregates those parts of the system that have failed: production system or 
transmission system; and for this last, the particular element that has failed, being 
it a transformer, a substation or a line. Fig. 5.2.1 (b) shows data as a percentage of 
major events that have been caused by each part or element of the system. For the 
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UCTE as a whole, and in general terms, most of the major events are generated as 
malfunctions in the transmission network while the production system seems 
relatively secured. When we segregate the European grids into robust and fragile 
sets, remarkable dissimilarities arise. In fragile networks it is substations that 
suffer the most, while it is an extremely vulnerable production system that rules 
major failures in the robust group. Percentage of major events resulting from 
malfunctions in transformers and lines are similar in both groups. 

 
 

 
Fig. 5.2.1 Percentage of major events by (a) reason and (b) system. Reasons can be due to 
overloads, failures, external impacts and unknown reasons. Systems are two: production 
and transmission network. Within this last system, three elements are considered: 
transformers (T), substations (S) and lines (L). Percentages are given for robust and fragile 
sets and UCTE as a whole. 

 
 

A possible explanation can be attributed to size (considered as the number of 
stations, substations and alike), since grids in the fragile group, sharing as much 
power and energy as grids in the robust group, need twice as much nodes. This 
fact would support the former hypothesis that relates robustness with random 
topologies, less meshed and less clustered and, therefore, with less substations and 
minor size. But this would be half of the story, since we can not give a plausible 
explanation for the production system vulnerability in the robust set. The 
explanation of these behaviors is now a main point in our research. It is also 
arresting the percentage of unknown reasons shown in Fig. 5.2.1 (a), which reaches 
a noticeable 30%. It is difficult to conceive an accurate failure assessment of a 
system when such a percentage of reasons are obscure. 

 
• Nested subgraphs and fragility. Be it by the presence of hubs, some degree of 

assortativity8 or another correlation among a network’s observables, the internal 
organization of most complex systems displays some degree of hierarchical 
organization. This organization can be explored simplifying the graph topology by 

                                                      
8 Assortativity refers to a preference for a networkʹs nodes to attach to others that are similar or 
different in some way. 

(a) (b)
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means of particularly destructive methods. One of these, known as K-scaffold, is the 
subgraph obtained by choosing all the nodes with degree Kk ≥  and the nodes that, 
despite having degree Kk < , are connected to a node ʹe  whose Kk ≥ʹ  (Corominas-
Murtra et al. 2007). In some cases, this methodology has defined a functionally 
meaningful subgraph, with evolutionarily and functionally related subsets of 
nodes (Rodriguez-Caso et al. 2005). Is the aim of this research to apply the K-
scaffold methodology to the power grid with the objective of finding, if any, 
meaningful subsets of nodes characterized by significant empirical observables, 
like for example those nodes that have been stroke by a major failure more than 
two, three..., n times. The validation of this methodology in the case of an 
infrastructure network would signify a remarkable advance in detecting 
functionally related subsets of nodes or subgraphs. 

 
• Extended topological analysis. As it has been stated in the previous chapters, the 

complex network approach, although most useful, can not wholly and properly 
capture the many physical properties and operational constraints of power 
systems. When a network bus or line disappears, topological fragility analysis 
does not take into account the instantaneous redirection of flows, power 
generation reallocation or variations in transmission losses. New metrics have 
been lately defined in order to subsume extended topological metrics that include 
power flow paths and operational limits dependencies. Among these, net-ability 
(Arianos et al. 2009; Bompard et al. 2009) and entropic degree (Bompard et al. 2009) 
seem most promising. The net-ability of a transmission grid is a measure of its 
ability to function properly under normal operating conditions. In calculating this 
ability, the maximum (real or apparent) power that can be allowed to flow over 
lines, the distribution of flow among them and their impedance are taken into 
account. By performing static fragility analysis similar to that presented in Chapter 
2, critical transmission lines are labeled as those that cause a higher relative drop 
in net-ability. The entropic degree, on the other hand, expands the concept of 
degree presented in Chapter 2 to take into account (a) the strength of connection in 
terms of the weights (i.e., lengths) of the edges, (b) the number of edges connected 
with the vertex and (c) the distribution of weights among the edges. It can provide 
direct quantitative measurements of the importance of the buses. The aim of this 
research, done in collaboration with the electrical engineering faculty of the 
Politecnico di Torino in Italy, is to apply this new metrics to corroborate the 
fragility results obtained for the UCTE. In case of positive correlation, results 
would help us to validate the complex network topological approach here 
presented. On the contrary, it would spur the research on devising new efficient 
metrics to characterize power grid’s robustness that include both topological and 
electrical concepts at the same time. 
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As we have said, some collateral research paths found on our main way seem promising 

though they will require some more effort to be properly characterized. The following 
entries define these long term research items that we hope will be useful and fruitful in the 
near future. 

 
• Spatial point patterns. All data, and especially for geographical networks, have a 

more or less precise spatial and temporal label attached to them. Data that are 
close together in space (and time) are often more alike than those that are far apart. 
To analyze possible interdependencies there exist statistical tools that allow the 
identification of dynamical correlations between data. Although this research 
paradigm applies to some narrowly defined problems in the environmental 
sciences, it can also be applied to any process that typically exhibits strong spatial, 
temporal, and exogenous variability for which control may not be possible 
(Cressie 1993). This leads to a statistical methodology that is based fundamentally 
on hierarchical modeling: at each level of the hierarchy, simple conditional models 
are built (local modeling) and the result is a joint model that can be very complex 
but for which analysis is possible (global analysis). The development of a spatial 
statistical model that incorporates, for example, the population spatial variation 
into a stochastic generating mechanism would be an interesting tool for dynamic 
spatial load forecasting and long term power grid design. (Willis 2004) 

  
• Layered and multiscale networks. Electricity transmission network is only a part of a 

major network that includes distribution and even a bigger one that includes low 
voltage and final consumption sites. The dynamical and topological relations 
established among these networks depend strongly on spatial and temporal scales 
that need to be properly defined. The main obstacle here is accessibility to reliable 
data since distribution and low voltage network’s data are usually owned by local 
utilities and this is normally considered reserved and confidential. On the other 
hand, many complex systems may be described not by one, but by a number of 
complex networks mapped one on the other in a multilayer structure (Kurant and 
Thiran 2006). Metrics defined over graphs such as degree or betweenness, that 
characterizes a node by the number of shortest paths that pass through it, can be 
used together with flow patterns measures in order to define a layered complex 
system. The interactions and dependencies between these layers cause that what is 
true for a distinct single layer does not necessarily reflect well the state of the 
entire system. Recall that with this methodology the mapping between physical 
(i.e., real) and logical (i.e., flows) layers is still made by topological means. Thus, 
for electricity networks this would be an intermediate approach, more closely 
related to pure topological analysis than the extended topological analysis 
presented before.    
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• Allometry. Allometry is the study of the relationship between size and shape and 

has been particularly fruitful in differential growth rates statistical analysis of 
parts of a living organismʹs body (West et al. 1997). Allometric scaling relations9 
are characteristic of all living organisms. They can be derived from general models 
that describe how essential materials are transported through space-filling 
branching fractal networks. Although mainly observed in the structure of 
organisms evolved via natural selection, this optimal hierarchical branching 
networks have been found to characterize as well some engineered systems like 
microprocessors (Moses et al. 2008). On the other hand, it has been shown that 
many diverse properties of cities, from patent production and personal income to 
electrical cable length and consumption, are shown to be power law functions of 
population size with scaling exponents that fall into distinct universality classes 
(Bettencourt et al. 2007). As far as the electricity network is concerned, it is 
observed that (a) whereas household consumption scales approximately linearly 
with size and (b) economies of scale (i.e., sublinear scaling) are realized in 
electrical cable lengths, total electrical consumption scales superlinearly. This 
difference can only be reconciled if the distribution network is suboptimal (as it is 
observed with the superlinear scaling of resistive losses). The pace of social life in 
the cities does increase with population size. But different scaling relations arise 
depending on whether this growth is fueled by innovation and wealth creation 
(characteristic of social interactions) or material economies of scale (characteristic 
of infrastructure networks for example). This difference suggests that, as 
population grows, major innovation cycles must be generated at a continually 
accelerating rate to sustain growth and avoid collapse. We are asking whether 
there is a way to design power grids with optimal scaling relations and if biology 
can help us to establish the equilibrium between these two dynamics in 
engineered systems like transport, energy and information infrastructures. If it 
exists, the tradeoff between wealth creation and efficiency should be found in 
order to properly design sustainable networks since they are the primary 
determinant of urban growth. 

 

5.3 One last thought 
We are doomed to live with these, as Joni Mitchell poetically states, electric scabs. These lesions 
help mankind to evolve and survive. Our comfort and our very existence depend upon this 
wonderful agent electricity, as more than a century ago was foreseen by Tesla. At his very late 
years he stated:  

 
“Day after day I asked myself what is electricity and found no answer. Eighty years have gone 

since and I still ask the same question, unable to answer it.” (Seifer 1998) 

                                                      
9 Including the famous “three quarters” power law for metabolic rates. 
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It seems now quite a long ago when I decided to ask myself as well what electricity is. 

And as Tesla realized, I do not know anything about it either. The path that I have taken has 
not always been easy. And considering my last statement, one might think that it has been 
even fruitless. But in all these five years, happy and profitable days have exceedingly 
surmounted those less favored. I have been incredibly lucky to be in an also incredible 
pluridisciplinary research group, where ideas and opinions born from a particular discipline 
can move around from one area of knowledge to another, making the process an astounding 
productive one. This is quite uncommon and rare in a scientific world that clearly goes in the 
opposite direction, leading to speciation of disciplines and narrow-minded opinions. I have 
been also lucky to know, talk and live with scientist from other disciplines that clearly 
challenge the actual exacerbation of rational thought. And in doing so I have discovered that 
between black and white there lay many different shades of grey.  

With this last thought I would like to stress a personal believe that has been taking form 
during these years. And this is the imperious need to work in transdiciplinary groups (Max-
Neef 2005). As Max-Neef points out, none of the complex problems that surround us can be 
adequately tackled from the sphere of specific individual disciplines. And I think this PhD 
Thesis is quite a good example: new ideas coming from seemingly unrelated areas applied to 
old objects give rise to new and unexpected results. On the other hand, complex networks 
are still in its infancy. Many other measures can be (and will be) devised in order to 
characterize complex systems. For me this has been and I am sure will keep on being the 
most exciting journey. But it would not have been possible without being dragged into the 
particular research dynamics of the group were I have been. 

Although transdisciplinarity implies an epistemological challenge rather difficult to 
delineate, for it is a more systemic and holistic manner of seeing the parts and the whole, its 
practical side is clearly defined. It seeks the coordination between hierarchical levels such as 
empirical, pragmatic or normative ones. It does not deny the necessity of disciplines but 
rather their contingency in order to appropriately tackle the problems of our post-normal era 
(Funtowicz and Ravetz 1993). Contraria sunt complementa10 motto in Niels Bohr’s (1885 – 1962) 
coat-of-arms can not have here a more precise meaning: although apparently in contradiction 
when faced alone, disciplinarity and transdisciplinarity complement each other as well. And 
both these approaches have to be considered, depending on the questions we plan to answer.  

No doubt about it, this is another sustainable step to take if we want to conceive a better 
world and, quoting again Joni Mitchell’s words, learn from past mistakes. 
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Appendix A 
Power grid data sets 

 
The analysis of a network is mainly based in graph theory. In mathematics a graph is an 

abstract representation of a set of objects where some pairs of the objects are connected by 
links. The interconnected objects are represented by mathematical abstractions called vertices, 
and the links that connect some pairs of vertices are called edges. There exist many different 
types of graphs: directed (i.e., when edges point to vertices), undirected, weighted (i.e., when 
edges have weights in order to signal differences in fluxes or interaction intensities), etc. 
Besides, some of these graphs exist only in an abstract “network space”, where the precise 
positions of the network nodes have no particular meaning. But many others, such as the 
Internet or the power grid, live in the real Euclidean space of everyday experience, with 
nodes and edges having well-defined positions and lengths. In this last sense, the definition 
of a power grid as a geographical (or geometrical) graph crosses different stages of completion. 
The three main steps, from raw to mathematically manageable data, include: 

 
1. Obtaining physical and topological data of vertices and edges. 
2. Introducing and referencing data in some Geographic Information System (GIS). 
3. Programming and sequencing mathematical algorithms to analyze the graph. 

 
Two real power grid datasets have been used so far: UCTE and RTE (see following 

sections). The process of converting them into graph entities has allowed to finally using 
them as the backbone of this PhD Thesis. 

 
 

A.1 UCTE data set  
The Union for the Co-ordination of Transmission of Electricity (UCTE) coordinates the 
operation and development of the electricity transmission grid from Portugal to Poland and 
from the Netherlands to Romania and Greece. Over more than fifty years, UCTE has been 
issuing all technical standards for a co-ordination of the international operation of high 
voltage grids, providing electricity supply for 430 million people in one of the biggest 
electrical synchronous interconnections worldwide. UCTE provides as well comprehensive 
statistics on electricity generation and transmission in the European mainland. 

Although the UCTE Interconnected Network Map1 shows plants, stations, existing high-
voltage overhead lines and those under construction, for voltages of 110 kV to 400 kV and 
higher (if these lines cross national frontiers), it can not be acquired in digitalized form (at 
least, as far as we know). In order to be able to work with it, the whole map was digitalized 
                                                      
1 http://www.ucte.org/resources/uctemap/. (Last visited, June 2009). 
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and introduced in geographical information software, where nodes and edges were 
referenced and correctly positioned in UTM coordinates. 
 

 
Fig. A.1 General GIS layout of the UCTE electricity network with snapshots for the United Kingdom 
and Ireland (bottom left) and Italy (bottom right). Colour indicates the degree of every node: 1 to 2 
links, yellow; 3 to 4 links, purple; 5 to 6 links, green; and 7 to 8 links, red. 
 
 

GIS packages allow the user to manipulate data in several ways. On one hand, plants, 
stations and transmission lines can be distinguished by means of their features, spatial 
relationships between features, and other thematic relationships (Fig. A.1). On the other 
hand, as GIS are built using formal objects and models that describe how they are located in 
space, a development platform can be used to create and manipulate all kind of data. This is 
a basic requirement in order to develop the algorithms needed to analyze the obtained 
graphs. The UCTE data contains more than 3 000 nodes act as stations, substations, 
transformers and generators, connected by some 200 000 km of high voltage lines (up to 
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4 300 edges approximately). Excel and Pajek2 files containing geographical and topological 
data of the UCTE network can be found online at: 

 
http://www.ct.upc.edu/termodinamica/UCTEdata 

 
 

A.2 RTE data set3 
Though included in the UCTE, the Gestionnaire du Réseau de Transport d’Electricité, the entity 
that manages the French power grid, offers the possibility to study its evolution in time, from 
year 1946 up to year 2006.4 Similarly as with the UCTE graph, the different maps have been 
digitalized and introduced in the geographical information software, where nodes and edges 
were referenced and correctly positioned in UTM coordinates. Excel and Pajek files 
containing geographical and topological data of the RTE network can be found online at 

 
http://www.ct.upc.edu/termodinamica/RTEdata 

 
  
 

                                                      
2 http://vlado.fmf.uni-lj.si/pub/networks/pajek/  
3 http://www.rte-france.com/  
4 http://www.rte-france.com/htm/fr/CEM_HTML/transport/historique-reseau-400kv.jsp  
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Appendix B 
Glossary1 

 
 

Adaptive System. Set of interacting or interdependent entities, real or abstract, forming an 
integrated whole that together are able to respond to environmental changes or changes in 
the interacting parts. 
 
Agent Based Model. Computational model for simulating the actions and interactions of 
autonomous individuals with a view to assessing their effects on the system as a whole. 
 
Artificial Life. Field of study and an associated art form which examine systems related to 
life, its processes, and its evolution through simulations using computer models, robotics, 
and biochemistry. 
 
Average Path Length. Network topology metric defined as the average number of steps 
along the shortest path for all possible pairs of network nodes. 
 
Betweenness. Centrality measure of a vertex within a graph (also within an edge) that 
quantifies its appearance on shortest paths between other vertices. 
 
Cellular Automaton. (Plural: cellular automata). Discrete model consisting of a regular grid 
of cells, each in one of a finite number of states, such as ʺOnʺ and ʺOffʺ. 
 
Chaos Theory. Physics theory that deterministically describes the behavior of certain 
dynamical systems, that is, systems whose states evolve with time, that may exhibit 
dynamics that are highly sensitive to initial conditions (popularly referred to as the butterfly 
effect). 
 
Closeness. Centrality measure of a vertex within a graph defined as the inverse of the 
average distance that separates it from all other nodes. 
 
Clustering Coefficient. Network topology metric defined as the number of closed triplets (or 
3 x triangles) over the total number of triplets (both open and closed) of a graph.  It 
quantifies how close a node’s neighbors are to being a clique (complete graph). 
 

                                                      
1 Mainly retrieved and adapted from Wikipedia, The Free Encyclopedia (http://en.wikipedia.org/).  
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Complex System. Large group of relatively simple components, with no central control, that 
exhibit self-organization and emergent non trivial properties. 
 
Complexity (quality). The quality of possessing Emergent Properties. 
 
Complexity (quantity). The amount of information a particular system represents to the 
observer. 
 
Connectionism. Set of approaches in the fields of artificial intelligence, cognitive psychology, 
cognitive science, neuroscience and philosophy of mind, that models mental or behavioral 
phenomena as the Emergent processes of interconnected networks of simple units. There are 
many forms of connectionism, but the most common forms use neural network models. 
 
Criticality. Usually referred to Self-organized Criticality. A property of (classes of) dynamical 
systems which have a critical point as an attractor. Their macroscopic behavior thus displays 
the spatial and/or temporal scale-invariance characteristic of the critical point of a phase 
transition, but without the need to tune control parameters to precise values. 
 
Cybernetics. Interdisciplinary study of the structure of regulatory systems, closely related to 
control theory and Systems Theory. 
 
Degree. In graph theory, the number of edges incident to that vertex. 
 
Degree Distribution. In graph theory, the probability distribution of degree over the whole 
network. 
 
Deterministic Chaos. See Chaos Theory. 
 
Emergence. In philosophy, systems theory and science, emergence is the way complex 
systems and patterns arise out of a multiplicity of relatively simple interactions. The 
phenomenon of Emergent Properties. 
 
Emergent Properties. Properties of a system at the Semantic Level that are not Entailed at the 
Syntactic Level. 
 
Entail. To logically imply something. 
 
Feedback. The situation when output from (or information about the result of) an event or 
phenomenon in the past will influence the same event/phenomenon in the present or future. 
 
Fractal scaling. Scale invariance characteristic of self-similar (i.e., fractal) objects.  
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Fragility. See Robustness. 
 
Genetic Algorithm. A search technique used in computing to find exact or approximate 
solutions to optimization and search problems. 
 
Graph. See Graph Theory. 
 
Graph Theory. Mathematical study of graphs, that is mathematical structures consisting of 
atomic nodes linked by connections called edges used to model certain collections of objects.  
 
Highly Optimized Tolerance. A method of generating power law behavior in systems by 
including a global optimization principle. It has been used to generate and describe internet-
like graphs, forest fire models and may also apply to biological systems. 
 
Hub. Highly connected node, usually in the context of Scale-free Networks.   
 
Mean Degree. In graph theory, the average number of edges incident to vertexes. 
 
Mean Field Theory. Physics theory based on replacing all interactions to any one body with 
an average or effective interaction. This reduces any multi-body problem into an effective 
one-body problem, allowing some insight into the behavior of the system at a relatively low 
cost. 
 
Motif. Pattern (i.e., topological form) that recur within a network much more often than 
expected at random. 
 
Percolation Theory. It describes the behavior of connected clusters when the probability of 
establishing a link is modified. A percolation threshold exists when we can find a path 
linking one node to any other.  
 
Phase Transition. Process that transforms the properties of some medium by means of a 
controlling parameter. Phase transitions occur frequently and are found everywhere in the 
natural world. 
 
Power Law.  Polynomial relationship that exhibits the property of scale invariance. 
 
Preferential Attachment. Any of a class of processes in which some quantity is distributed 
among a number of individuals or objects according to how much they already have. 
 
Random Network (or Graph). A graph that is generated by some random process, usually 
obtained by starting with a set of n vertices and adding edges between them at random. 
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Rich-get-richer Mechanism. See Preferential Attachment. 
 
Robustness. Quality of being able to withstand stresses, pressures, or changes in procedure, 
circumstance or, in graph theory, topology.  
 
Scale-free Network (or Graph). A graph whose degree distribution follows a power law (at 
least asymptotically). A power law distribution is a common scale free distribution. 
 
Self-organization. Process in which the internal organization of a system, normally an open 
system, increases in complexity without being guided or managed by an outside source. 
 
Self-organized Criticality. See Criticality. 
 
Semantic Level (or Space). Space of meanings for any description. 
 
Small-world Network (or Graph). Type of mathematical graph in which most nodes are not 
neighbors of one another, but most nodes can be reached from every other by a small 
number of hops or steps. 
 
Subgraph. See Motif. 
 
Syntactic Level (or Space). Language in which a description is specified: letters of the 
alphabet, genetic code, laws of theoretical physics, as appropriate. 
 
Systems Theory. Interdisciplinary field of science by which one can analyze and/or describe 
any group of objects that work in concert to produce some result. 
 
Threshold. The quantitative point at which an action is triggered. 
 
Universality. Property of Phase Transitions by which different systems often possess the same 
set of characteristic parameters, known as critical exponents. 
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We present an analysis of the topological structure and static tolerance to errors and attacks of
the September 2003 actualization of the Union for the Coordination of Transport of Electricity
(UCTE) power grid, involving thirty-three different networks. Though every power grid studied
has exponential degree distribution and most of them lack typical small-world topology, they
display patterns of reaction to node loss similar to those observed in scale-free networks. We
have found that the node removal behavior can be logarithmically related to the power grid
size. This logarithmic behavior would suggest that, though size favors fragility, growth can
reduce it. We conclude that, with the ever-growing demand for power and reliability, actual
planning strategies to increase transmission systems would have to take into account this relative
increase in vulnerability with size, in order to facilitate and improve the power grid design and
functioning.

Keywords : Complex networks; small world; power grid; fragility.

1. Introduction

Mostly evolved over the last hundred and fifty years,
technical infrastructures, from telegraph [Standage,
1998] to Internet [Pastor Satorras & Vespignani,
2004], are the canvas where almost every aspect
of our economy and society is portrayed. From a
broader historical perspective, networks of energy,
transportation and communication constitute the
very foundation of all prospering societies, as the
western culture actually knows them. Being usually
managed by different kinds of actors (often with
different objectives), formed by a huge quantity

of heterogeneous components (spatially distributed
and connected) characterized by complex interde-
pendencies and relations, the study of these techno-
logical systems deserves attention in order to assure,
essentially, structural integrity, efficiency and reli-
able supply.

In recent years, one particular kind of network
has received much attention: the power grid. Hailed
by the US National Academy of Engineers as the
20th century’s engineering innovation most benefi-
cial to our civilization, the role of the electric power
has grown steadily in both scope and importance
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during this time and electricity is recognized as
a key to societal progress throughout the world,
driving economy prosperity, security and improv-
ing the quality of life [Willis, 2004]. With similar
pace, though, increasing frequency and size of mal-
functions have raised general awareness about our
real level of comprehension of these networks. In
recent years, both the North American and the
(once almost faultless) European grid systems have
experienced numerous examples of such malfunc-
tions in the form of cascading failures and blackouts
[Venkatasubramanian, 2003; UCTE, September,
2003]. The explanations given by local, national and
international electricity coordinating councils for
most of these situations go from aspects related to
low investment and maintenance, to those related to
generation and demand inadequateness and, obvi-
ously, bad luck. But more than any, the most
repeated explanation is that of a bad comprehen-
sion of the interdependencies present in the network
[Watts, 2003; UCTE, 2004].

In this sense, advances in statistical physics,
modeling and computational methods have stim-
ulated the interest of the scientific community to
study electric power grids as complex networks.
In complex network theory, one type of analy-
sis of such interdependencies already mentioned
is usually done under the robustness (or, in the
contrary, vulnerability) epigraph [Boccaletti et al.,
2006]. It refers to the ability of a network to
avoid malfunctioning when a fraction of its con-
stitutive elements is damaged. In technical infras-
tructures, this turns to be a field of elementary
practical reasons since it affects directly the effi-
ciency of the processes taking place in the net-
work and it can give hints about the resilience
of the grid. The analysis of the robustness of a
complex system has been done, traditionally, from
two points of view: static and dynamic. In a static
robustness analysis, nodes are deleted without the
need of redistributing any quantity transported by
the network [Albert et al., 2000; Crucitti et al.,
2003]. In a dynamic robustness analysis, nodes
are deleted and the flow or load carried by them
must be distributed over the rest of the remain-
ing network [Moreno et al., 2002; Motter & Lai,
2002; Crucitti et al., 2003; Kinney et al., 2005].
At first glance, the theoretical approach to these
two types of robustness seems quite similar, but
while the static one can be analytically treated, the

dynamic one must be, almost always, numerically
solved.

In this letter, the static robustness of the Euro-
pean and most of the European countries and
regions electricity transport power grids are investi-
gated. Their tolerance to random loss (failures) and
selective removal (attacks) of the most connected
nodes is analyzed. In order to simplify its topologi-
cal representation, a simple model of the power grid
data is introduced. Final results and some features
worth to notice are discussed in the last part of the
letter.

2. European Power Grid Data

In this paper, the vulnerability of the Septem-
ber 2003 actualization of the Union for the
Co-ordination of Transmission of Electricity
(UCTE) map has been analyzed.1 UCTE associates
most of the continental Europe national power grid
operators in order to coordinate the production and
demand of some annual 2,300 TWh and 450 mil-
lion customers from 24 countries. The map gives
data from the transmission network (voltage levels
from 110 kV to 400 kV) and ignores the much more
extended distribution one. Nonetheless, it deals
with more than 3,000 nodes (generators and sub-
stations) and some 200,000 km of transmission lines.

For more than fifty years UCTE has coordi-
nated the international operation of high-voltage
European countries’ grids to ensure adequate bal-
ances between offer and demand through national
frontiers. It operates one of the largest electric syn-
chronous interconnections worldwide in order to
optimize the use of installed capacities and reduce
the economic cost of power outages. But more than
this, the UCTE transmission network has been
shaped by those national policies and decisions that,
for the last one hundred years, have been seeking
economic prosperity, security and quality of life of
its inhabitants. From that point of view, and dif-
ferently from previous examples considered in the
literature [Watts, 1999; Albert et al., 2004], those
different power grids should be a good example
of network evolution directed, at the same time,
by technical, economical, political and, lastly, envi-
ronmental decisions. Differentiated from country to
country, we then would expect to find somehow
different patterns and complex behavior for every
country or territory considered.

1http://www.ucte.org



Topological Vulnerability of the European Power Grid Under Errors and Attacks 2467

i

S iGi L i

400 kV

220 kV

T

Lower voltage levels

i

Gi S i L

Fig. 1. An extremely simplified model for the transmission
power grid: two voltage levels (400 kV and 220 kV for the
European network) with generators G and loads L connected
by switching stations S. Transformers T connect both tension
levels in order to provide reliability, efficiency and control
capacity.

In order to simplify the analysis of the struc-
ture of the European power grid, an idealized view
has been adopted (Fig. 1). On one hand, trans-
mission lines have been assumed bidirectional, as
it should be in the electricity transport network,
and identical, ignoring the voltage level variation
between lines and other physical characteristics.
Although we have different voltage levels, the trans-
port network works as a whole, using transform-
ers to increase or decrease voltage depending on
time and space requirements, and it would not be
suitable or realistic to split it into different volt-
age networks, as it has been done in some literature
[Crucitti et al., 2005]. On the other hand, although
it is possible to distinguish four different kinds of
elements, namely generators, transformers, switches
(considered as stations or substations of any kind)
and, finally, end line points, all these elements have
been treated identically in order to avoid, at this ini-
tial point of the study, those difficulties involved in
their differentiation and dynamical behavior char-
acterization.

Bearing these assumptions in mind, five differ-
ent data sets have been analyzed:

• UCTE as a whole.
• UCTE, United Kingdom and Ireland as a whole.
• UCTE, country by country, plus United Kingdom

and Ireland.

• Geographically related regions (Iberian Penin-
sula, Ireland as an island and England as an
island).

• Traditionally united or separated regions (form-
ers Yugoslavia, Czechoslovakia and Federal and
Democratic Republics of Germany).

Until this time, and as far as we know, no such
analysis has been done for the European power grid
and with such depth of detail. A thorough analysis
of these data sets will surely give hints of histor-
ical and geographical constraints that might have
shaped the structure of the power grid from coun-
try to country, and from time to time. For example,
from a geographical point of view, although neither
United Kingdom nor Ireland belong to the UCTE,
their isolated geography might have strongly con-
figured and constrained their national power grids.
Similarly, although Germany is actually united, the
former frontier between Federal and Democratic
Republics is still “visible” in the form of a very few
transmission lines connecting the east and the west
of Germany.

3. Small-World Feature of the
Power Grid

The different data sets have been obtained after
introducing their topological values, i.e. geographi-
cal positions of stations, substations and longitudes
of lines, in a geographical information system (GIS)
(Fig. 2). The national power grid for every coun-
try has been obtained from a typical GIS query:
the selection of the part of the UCTE’s network
constrained by every country’s frontier. So far,
data analyses of 33 different networks have been
performed.

Using the formalism of graph theory, any of
these networks can be described in terms of a
graph Ω, defined as a pair, Ω = (W,E), where
W = {wi}, (i = 1, . . . , N) is the set of N nodes
and E = {wi, wj} is the set of edges or connections
between nodes. Here, ξi,j = {wi, wj} indicates that
there is an edge (and thus a link) between nodes wi

and wj. Two connected nodes are called adjacent,
and the degree k of a given node is the number of
edges connecting it with other nodes. In this case,
the UCTE graph, ΩUCTE, is defined as

ΩUCTE =
n⋃

i=1

Ωi (1)

where Ωi (i = 1, . . . , n) are the set of national power
grids analyzed.
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Fig. 2. The European electricity transport network (September 2003 actualization of the Union for the Co-ordination of
Transmission of Electricity, UCTE, map) offers the upper topological image, where more than 3,000 nodes act as stations,
substations, transformers and generators, connected by some 200,000 km of high voltage lines (up to 4,300 edges approxi-
mately). A closer look gives a more accurate perspective of some national power grids: United Kingdom and Ireland (bottom
left), and Italy (bottom right). Color indicates the degree of every node: 1 to 2 links, yellow; 3 to 4 links, purple; 5 to 6 links,
green; and 7 to 8 links, red.
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As well as k, an additional property to be
considered is the degree distribution P (k). This
is defined as the (normalized) probability that a
node chosen uniformly at random has a degree k
or, similarly, as the fraction of nodes in the graph
having k edges. In this sense, it has been sug-
gested that degree distributions can be classified
in three types, namely exponential (gaussian or
random), potential (scale-free) or some mixture of
both, each one exhibiting different dynamic char-
acteristics and adaptive behaviors [Amaral et al.,
2000]. Most of the real networks degree distribu-
tions follow a power law of the form P (k) ≈ k−γ

with the exponent γ being, mostly, between 2 and 3.
For the five different data sets presented in

Sec. 2, the graph model used considers undirected
and unweighted edges. Though every single network
contains hundreds of stations, substations, trans-
formers and thousands of km of energy transport
lines, the results show a surprising unity in mean
degree, very similar to those encountered in the lit-
erature [Watts, 1999; Albert et al., 2004] for net-
works of the same size. The relation between nodes
and links is constant and goes around 〈k〉 ∼= 2, 8
for every network analyzed (Fig. 3). As it has
been shown in the literature [Gastner & New-
man, 2004], though a rigorous demonstration of pla-
narity is still elusive, this result agrees with that of
other so-called planar graphs like the US interstate
highway network [Gastner & Newman, 2004], ant
network of galleries [Buhl et al., 2004] and urban
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Fig. 3. Linear relation between nodes and links implies uni-
form mean degree value for every network analyzed, in spite
of their different economical, political, historical and environ-
mental evolution processes.

networks [Buhl et al., 2006]. This would suggest
that, although every technical infrastructure has
evolved and developed under different economi-
cal, political, historical and, luckily enough, envi-
ronmental conditions and decisions, there should
be some universal characteristics related, almost
surely, to the spatial and technological constraints
that rule the construction and evolution of such net-
works in order to give a common value for 〈k〉.

Every single network analyzed is uncorrelated
(see below) and all of them follow an exponential
cumulative probability degree distribution of the
generic form

Pk′>k(k) =
∫ ∞

k′
P (k)dk ≈ exp

(
−k

γ

)
(2)

The value adopted by the exponent γ of these single
scaled distributions goes from a minimum of γUK =
0.91 (United Kingdom, with r2 = 0.898) to a max-
imum of γPT = 2.71 (Portugal, with r2 = 0.989).
The γ exponent of the UCTE graph reaches a value
of γUCTE = 1.78, close to that of the North Ameri-
can power grid, as in [Albert et al., 2004]. The mean
value for the whole data sets analyzed is γ ∼= 1.8
[Fig. 4(a)].

The presence of degree correlations (namely, if
connected nodes share common properties such as
similar degrees) is conducted by measuring the aver-
age nearest neighbors connectivity of a node with
degree k, i.e.

〈knn〉 =
∑
k′

k′PC(k′|k) (3)

where PC(k′|k) is the conditional probability that a
link belonging to a node with connectivity k points
to a node with connectivity k′ [Pastor Satorras
et al., 2001]. Since we have independence on k, i.e.

PC(k′|k) = PC(k′) ≈ k′P (k′) (4)

we thus have 〈knn〉 ≈ constant [Fig. 4(b)]. Though
no degree correlations has been found for the Euro-
pean power grid, for systems such as the Inter-
net, such correlation exists and it is found that
〈knn〉 ≈ k−ν with ν ∼= 0, 5.

As well as the degree distribution, the small
world (SW) feature has been used to characterize
the topological structure of a network [Watts &
Strogatz, 1998]. The mathematical characterization
of the SW behavior is based on the evaluation of
two basic statistical properties: the clustering coef-
ficient C, a measure of the average cliquishness of
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Fig. 4. Topological characteristics of the European power grid. (a) Cumulative degree distributions for the UCTE, (black
dots, with exponential fitting), United Kingdom and Ireland (triangles) and Italy (squares) graphs. (b) Nearest neighbor degree
correlation for the UCTE graph.

a node, and the characteristic path length d, a mea-
sure of the typical separation between two generic
nodes in the network. On one hand, Γi = {j|ξij = 1}
being the set of nearest neighbors of a node wi ∈ W ,
the clustering coefficient for this node is defined as
the number of connections between the components
wj ∈ Γi. By defining

Zi =
N∑

j=1

ξij


 ∑

k∈Γi;j<k

ξjk


 , (5)

we have

Cv(i) =
Zi( |Γi|
2

) ,

so that the clustering coefficient is the average
over W ,

C =
1
N

N∑
i=1

Cv(i) (6)

and measures the average fraction of pairs of neigh-
bors of a node that are also neighbors of each other.
On the other hand, dmin(i, j) being the minimum
path length connecting two nodes wi, wj ∈ W in Ω,
we define the average path length of a given unit as

dv(i) =
1
N

N∑
j=1

dmin(i, j) (7)

and the path length for the graph as d = 〈dv(i)〉.
Characterized by small path lengths and high local
clustering coefficient, the emergence of the SW

phenomenon in some different real technological
networks [Barabási & Albert, 1999; Watts, 1999;
Ferrer i Cancho et al., 2001; Albert et al., 2004]
indicates that their connection topology is nei-
ther completely regular nor completely random:
small-worlds are indeed highly clustered, like reg-
ular lattices, yet having small characteristic path
lengths, like random graphs.

Here, we use two predictions from random
graph topologies in order to compare them against
the observed topological patterns [Ferrer i Cancho
et al., 2001]: (1) the clustering coefficient over the
average connectivity for a random graph follows an
inverse scaling law with graph size:

Crand

〈k〉 =
1
N

(8)

and (2), the average path length scales logarithmi-
cally as

drand log〈k〉 ≈ log(N) (9)

Figure 5 shows the values of d log〈k〉 and C/〈k〉
compared to those of 1/N and log(N), respectively,
for the 33 different power grids analyzed. It can be
seen that C/Crand > 1 for most of the grids. Val-
ues of C/Crand of more than one order of magni-
tude are achieved by the largest power grids while
d/drand remains in the same order of magnitude for
whatever size of the network. A similar pattern has
been observed in electronic circuits [Ferrer i Cancho
et al., 2001].

From a structural point of view, every coun-
try’s grid has evolved in order to connect production
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Fig. 5. Small world patterns: (a) distance and (b) clustering for the power grids investigated. Real distance is corrected by
a factor of log〈k〉 and clustering by 〈k〉. Dashed lines signal the expected values for random graphs. It can be seen that larger
networks involve larger deviations from the random cases.

sites with consumption sites within its own borders.
In small countries everything is at hand and long
distance connections are not needed to expand the
grid. On the contrary, in big countries (and conse-
quently, with an increasing number of nodes) long
distance connections become more and more nec-
essary when connecting production and consump-
tion. At the top UCTE level, the need to exchange
energy between countries forces long distance con-
nections to cross borders and to connect sites never
connected before.

4. Static Tolerance to Errors and
Attacks

The usual approach to the analysis of networks’
static tolerance to errors and attacks seeks the rela-
tion between node deletion (without the need of
redistributing any quantity transported by the net-
work) and global connectivity (existence and rela-
tive size of the connected component, after such a
deletion). An error simulation would be based on
the random deletion of nodes while an attack simu-
lation would be based on the deletion in decreas-
ing order of the most connected (higher degree)
ones. The experimental results for the 33 differ-
ent power grid networks are shown in Fig. 6(b).
Under random failure, simulations show a mono-
tonical decrease of the relative network size of the
connected component S with the increasing frac-
tion f of nodes eliminated (orange circles). On the

other hand, selective removal of the most connected
nodes (blue dots), shows a much more dramatic size
reduction of the connected component for the same
fraction of nodes eliminated. This fact, in agree-
ment with similar investigations done, for example,
with ant galleries of networks [Buhl et al., 2004] and
street networks of urban settlements [Buhl et al.,
2006], clearly suggests different network behavior
upon different forms of static deletion of nodes.

In addition to numerical results [Albert et al.,
2000; Motter & Lai, 2002; Crucitti et al., 2003], the
analytical approach to study tolerance to errors and
attacks has been traditionally based in percolation
theory. In this sense, the network percolates below
a critical probability fc related to the presence or
absence of a specific number of edges. Its study
can be then mapped into a standard percolation
problem for errors and, with few modifications, for
attacks as well [Boccaletti et al., 2006]. Specifically
for the static tolerance to errors, it has been shown
[Molloy & Reed, 1998] that the condition for having
a giant component S∞ in a graph Ω is

〈k2〉 − 2〈k〉 =
∑

k

k(k − 2)P (k) > 0 (10)

For randomly deleted nodes, it has been shown
[Cohen et al., 2000] that the critical fraction fc is

fc = 1 − 1( 〈k2〉
〈k〉 − 1

) (11)
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Fig. 6. Static tolerance to failures and attacks for the 33 networks analyzed (United Kingdom and Ireland power grid graph
taken as an example). (a) United Kingdom and Ireland power grid original spatial graph, with the most connected nodes
highlighted in red. (b) Static tolerance to random (orange) and selective (blue) removal of a fraction f of nodes, measured by
the relative size S of the largest connected component for every network analyzed (with an analytically found critical fraction
fc = 0.61 for the random case). Whiskers stand for the standard deviation. For the sample power grid (United Kingdom and
Ireland), snapshot figures illustrate three random (upper orange) and three selective (lower blue) experimental results. For the
United Kingdom and Ireland power grid, a progressive random removal of nodes gives a completely disconnected graph when

a fraction fc
∼=0.5 is reached, while selective removal of the most connected ones causes the grid to reach this limit sooner, for

fc
∼= 0.25 (in this last case, nodes highlighted in red note those prone to disappear at the next time step).
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Considering the exponential degree distribution of
the European power grid [Eq. (2)], we have 〈k〉 = γ
and 〈k2〉 = 2γ2, and thus

fc = 1 − 1
2γ − 1

(12)

For γ ∼= 1.8, we have a predicted value fc ≈
0.61. The experimental values of fc for the random
removal of nodes and for the different data sets ana-
lyzed are shown in Fig. 7.

As we can see, the value of the critical frac-
tion remains quite invariable and independent of the
network size, as it should be for exponential degree
distribution networks, and in complete agreement
with the predicted value of fc. An equivalent study
for the case of static tolerance to attacks will be
presented elsewhere.

As it has been stated previously, the degree
distributions of the different European power grids
analyzed are exponential. That means that they
are not like the highly skewed scale-free distribu-
tions typically found in other complex networks.
In scale-free networks, the degree distribution fol-
lows a power law, where a very few nodes have
many connections and most nodes have few con-
nections. Instead, planar networks in general, and
the European power grid in particular, display

less skewed exponential or uniform degree distri-
butions.

Networks with highly skewed link distribution
characterized by power laws appear very sensitive to
losing those highly connected nodes (or hubs), while
being relatively robust to randomly losing the more
highly abundant, less connected ones. In contrast,
random networks with Poisson degree distribution,
which are relatively unskewed, since nodes have
similar number of connections, like power grids,
should display similar responses to random and
selective removal of nodes [Albert et al., 2000]. The
results presented insofar suggest, as it has been done
for food webs [Solé & Montoya, 2001; Dunne et al.,
2002], that networks with exponential degree dis-
tributions would be, in fact, sensitive to different
types of static node removals, more similar to scale-
free networks than random or gaussian ones. In a
nutshell: exponential, but not that much. In spite
of this, these behaviors [Fig. 6(b)] seem to corre-
late well with an exponential function of the general
form

S = α exp(−βf) (13)

where S is the relative size of the connected com-
ponent and f is the fraction of nodes removed.2
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Fig. 7. Experimental values for the random removal critical fraction fc for every data set analyzed, as a function of the
network size N . All values move around the predicted critical fraction fc = 1 − [1/(2γ − 1)] (dashed line).

2The higher is the value of β, when the function is less skewed.
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Fig. 8. Static tolerance to random (open circles) and selec-
tive (filled circles) removal of nodes, plotted as a function
of the network size N and the β value of the exponential
functions that correlate those behaviors from Fig. 4. For the
selective case (filled circles), the subtle though obvious dis-
persion from the linear fitting could stand for its behav-
ior different from that of a random removal, observed in
Fig. 6(b).

The relation between β and the size of the net-
works has been plotted in log–linear axes, in Fig. 8.
As can be seen, as the size of the network increases,
the value of the β exponent that better fits Eq. (6),
increases at the same time. Quite intuitively, as
more and more elements are introduced in the net-
work, more prone is the system to failures, whether
they come from selective or random removal, and
its fragility increases as well. The more counterin-
tuitive result arises from the fact that the increase
in the value of β is logarithmic with the size of the
network. In the case of random failure, the results
are very well correlated (r2 = 0.99) by the logarith-
mic function βr = αr ln(N)+θr, with αr = 0.95 and
θr = 0.34, where β is the exponent of the exponen-
tial function that fits the results of Fig. 6(b) and N
is the size of the network. The results in the case
of selective attack, though offer a different observed
response to deletion of nodes than that of a random
removal, are also very well correlated (r2 = 0.95) by
the function βs = αs ln(N)+θs, with αs = 0.81 and
θs = 0.56.

5. Discussion

The robustness of real-world networks to the ran-
dom loss of nodes (“errors”) and its fragility to the
selective loss of the most connected ones (“attacks”)

has been attributed to extremely skewed power-
law distributions of links found in many small-
world networks [Albert et al., 2000]. Our study
shows that these responses are not unique to
small-world, scale-free networks. Every single power
grid studied, which have less skewed exponential
degree distributions and often lack typical small-
world topology, display similar patterns of response
to node loss. Moreover, the difference to network
response to errors and attacks appears related only
to network size and not to other topological mea-
sures of network complexity such as mean degree
or betweenness centrality, for example (data not
shown).

The evolution of both, the static tolerance to
random and selective removal of nodes, plotted as
a function of the network size and the exponent
value of the exponential functions that correlate
their node removal behavior (Fig. 4), shows two
immediate facts worthy of notice: fragility increases
with the size of the network and it is clearly log-
arithmic. We might think, rather intuitively, that
when more elements are present in a system, the
higher the probability that it fails. But as far as we
observe the relation between the relative size S of
the largest connected component and the fraction
f of nodes deleted, the results of these static simu-
lations should exhibit similar behaviors, quite inde-
pendent of the size of the networks. On the other
hand, if we consider that the increase in size of the
networks is a sign of spatial or temporal evolutions,
the logarithmic behavior of the fragility with size
would suggest that, though size favors fragility, evo-
lution can, relatively, reduce it.

Recent newsworthy wide-area electrical black-
outs and failures have raised many questions about
the specifics of such events and the vulnerability
of interconnected power systems. With the ever-
growing demand for power and reliability, actual
planning strategies to increase transmission systems
lack basic information about the grid’s complexity.
One possible way to prevent propagation of distur-
bances is to design the system to allow for inten-
tional separation into stable islands or interrupt
small amounts of load [Madani & Novosel, 2005].
If grid’s resilience to attacks and failures is some-
how related to its size and dimensions, an accu-
rate power grid reliability analysis would have to
take into account its relative increase in vulnera-
bility in order to finally give a minimal definition
of this stable island. From a spatial point of view,
the definition of a geographical stable island would
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facilitate and improve the treatment of several dif-
ferent aspects related to power grid design and func-
tioning, ranging from deregulation to spatial load
forecasting and maintenance.
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The power grid defines one of the most important technological networks of our times and sustains our
complex society. It has evolved for more than a century into an extremely huge and seemingly robust and well
understood system. But it becomes extremely fragile as well, when unexpected, usually minimal, failures turn
into unknown dynamical behaviours leading, for example, to sudden and massive blackouts. Here we explore
the fragility of the European power grid under the effect of selective node removal. A mean field analysis of
fragility against attacks is presented together with the observed patterns. Deviations from the theoretical
conditions for network percolation �and fragmentation� under attacks are analysed and correlated with non
topological reliability measures.

DOI: 10.1103/PhysRevE.77.026102 PACS number�s�: 89.75.Fb, 02.50.�r, 84.70.�p

I. INTRODUCTION

The power grid defines, together with transportation net-
works and the Internet, the most important class of human-
based web. It allows the success of advanced economies
based on electrical power but it also illustrates the limitations
imposed by environmental concerns, together with economic
and demographic growth: The power grid reaches its limits
with an ever growing demand �1�. A direct consequence of
this situation is the fragility of this energy infrastructure, as
manifested in terms of sudden blackouts and large scale cas-
cading failures, mostly caused by localized, small scale fail-
ures, ocurring at an increasing frequency �2,3�.

The fragility of the power grid is an example of a gener-
alized feature of most complex networks, from the Internet
to the genome �4–8�. Specifically, real networks are often
characterized by a considerable resilience against random re-
moval or failure of individual units but experience important
shortcomings when the highly connected elements are the
target of the removal. Such directed attacks have dramatic
structural effects, typically leading to network fragmentation
�9–12�. This behavior has been studied for skewed power-
law distributions of links, which are found in many small-
world networks �13,14�. But recent studies have shown that
similar responses are not unique to small-world, scale-free
networks: Power grids, having less skewed exponential de-
gree distributions and often without small-world topology,
display similar patterns of response to node loss �15�.

An additional feature of the power grid is its spatial struc-
ture. The geographic character of this network implies that a
number of constraints are expected to be at work. Other well
known spatially extended nets include the Internet �16�,
street networks �17�, railroad and subway networks �18�, ant
galleries �19�, electric circuits �20�, or cortical graphs �21�.

One fundamental aspect concerning the analysis of com-
plex networks is the increasing evidence of mutual influence
between dynamical behavior and topological structure. The
topology of human contact networks, for example, deter-
mines the emergence of epidemics �22�; similarly, the correct
dynamics in cellular networks are rooted in the topology of

the regulatory networks �23,24�. Here we present evidence of
a plausible relation between topological and nontopological
reliability measures for the power grid, suggesting that topol-
ogy might be capturing the robustness �or fragility� of the
real system, when dynamics are at work. This evidence has
been obtained analyzing the resilience of 33 different power
grids: �a� The 23 different EU countries, �b� four geographi-
cally related zones �Iberian Peninsula, Ireland as island, En-
gland as island, and United Kingdom and Ireland as a
whole�, �c� four traditionally united or separated regions
�former Yugoslavia, Czechoslovaquia and Federal and
Democratic Republics of Germany�, �d� continental Europe,
and �e� continental Europe plus United Kingdom and Ireland.

The paper is organized as follows. In Sec. II the data set
on European power grids is presented and their basic topo-
logical features summarized. In Sec. III we present both ana-
lytical and numerical estimations of the boundaries for net-
work collapse under attack, using a mean field theoretical
approach. Two classes of networks are shown to be present.
In Sec. IV, evidence for correlation between these two
classes and nontopological reliability indexes is shown to
exist. In Sec. V we summarize our findings and outline their
implications.

II. POWER GRID DATA SETS

Europe’s electricity transport network is nowadays the en-
semble of more than twenty different national power grids
coordinated, at its higher level, by the Union for the Co-
ordination of Transmission Electricity, UCTE �http://
www.ucte.org�. The distribution and location of transmission
lines, plants, stations, etc., can be found in the last version
�July 2007� of the UCTE Map. The different data sets ana-
lyzed here have been obtained after introducing the topologi-
cal values �i.e. geographical positions and longitudes� of
more than 3000 generators and substations �nodes� and
200 000 km of transmission lines �edges� in a geographical
information system �GIS�. The national power grid for every
country or region has been obtained from a typical GIS
query: the selection of the part of the UCTE’s network con-
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strained by every country’s frontier. The power grid can then
be formally described in terms of a graph �= �V ,E�. Here
V= �vi� indicates the set of N nodes �transformers, substa-
tions or generators in our context�. Figure 1 shows an ex-
ample of such graphs with its geographical �a� and topologi-
cal �b� structures, respectively. These nodes can be
connected, and E= �eij� indicates the set of actual links be-
tween pairs of nodes. Specifically, eij = �vi ,v j� indicates that
energy is being transported between the nodes in the pair
�vi ,v j�. Our system can be analyzed at two main levels: The
whole power grid �EU including all countries within the EU
and at the country level. If �k indicates the kth power grid of
one of the n=33 countries and regions involved, we have
�EU=�k=1

n �k.
The global organization of these webs has been previ-

ously analyzed �15�, revealing a very interesting set of com-
mon regularities: �a� Most of them are small worlds �i.e.,
very short path lengths are typically present� and the larger
webs display clustering coefficients much larger than ex-
pected from a random version of the network analysed; �b�
they are very sparse, with an average of �k�=2.8 over all the
webs available �see Table I�; �c� the link distribution is ex-
ponential: The probability of having a node linked to k other
nodes is P�k�=exp�−k /�� /� �Fig. 1�c��; and �d� these net-
works are weakly or not correlated. This exponential distri-
bution is thus characterized by the constant � which actually
corresponds to the average degree �i.e., �k�=��.

Correlations were measured using the average nearest
neighbor connectivity of a node with the degree k, i.e., the
average �knn�=	k�k�P�k� 
k� where P�k� 
k� is the conditional
probability that a link belonging to a node with connectivity
k points to a node with connectivity k� �25�. For these webs,
it was found that �knn��const, as expected if no correlations
were present. This is a very useful property in our analysis,
since makes mean field predictions valid in spite that we
ignore the planar character of these networks, thus replacing
the geographical pattern by a topological one. Nonetheless,
as these webs are geographically embedded, some care needs
to be taken �see �27� in connection with epidemic spreading�.

III. ATTACKS IN EXPONENTIAL NETWORKS:
MEAN FIELD THEORY

In our previous paper, we analyzed the effects of both
random and selective removal of nodes on the EU grids �15�.
Nonetheless, in that paper we were mostly interested in the
average behavior of the networks analyzed �see Fig. 2�. Here
we want to extend these results to the analysis of the differ-
ences observed in EU power grids with the goal of interpret-
ing the different patterns exhibited compared to the predic-
tions from mean field theory on intentional attacks.

In order to compute the effect of random removal of
nodes, we compute the percolation condition for the graph
assuming it is sparse and uncorrelated. Let f be the fraction
of removed nodes and P�k� the link degree distribution of
our graph. The damaged graph will be characterized by the
following degree distribution P�k� �28�:

P�k� = 	
i�k

� � i

k

 f i−k�1 − f�kP�k� . �1�

Note that such an equation corresponds to the case when a
fraction f of nodes are removed but it also holds when a
fraction f of links are removed �or lead to unoccupied sites�.

In order to study percolation properties, we use the stan-
dard generating function methodology. The two first gener-
ating functions of the damaged graph are

F0�x� = 	
k

�

P�k��1 − f�xk, �2�

F1�x� =
1

�k�	k

�

kP�k��1 − f�xk−1. �3�

The averages �i.e., the values at x=1� are F0�1�=F1�1�=1
− f , respectively. Here F0�1� is the fraction of nodes from the
original graph belonging to the damaged graph. Similarly,
F1�1� is the relation among �k� and the average number of
nodes from V that can be reached after deleting a fraction f
of nodes. The generating function for the size of the compo-
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FIG. 1. Power grids define a spatial, typically planar graph with nodes including generators, transformers, and substations. Here we show
�a� the geographical and �b� the topological organization of the Italian power grid. These webs are homogeneous, having an exponential
degree distribution, P�k�=exp�−k /�� /�, as shown in �c�.
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nents, other than the giant one, which can be reached from a
randomly choosen node is

H1�x� = f + xF1�H1�x�� �4�

and the generating function for the size of the component to
which a randomly choosen node belongs to is �26�

H0�x� = f + xF0�H1�x�� . �5�

Thus the average component size, other than the giant com-
ponent, will be

�s� = H0��1� = 1 − f + F0��1� � H1��1� . �6�

After some algebra, we see that this leads to a singularity
when F1��1�=1. To ensure the percolation of the damaged
graph, the following inequality has to hold:

	
k

k�k − 2�P�k� � 	
k

k�k − 1�fP�k� . �7�

The above expression can be expressed as

�k2� − 2�k� � f��k2� − �k�� �8�

which leads to a critical probability of node removal fc given
by

TABLE I. A summary of the basic features exhibited by some of the European power grids analyzed, ordered by increasing �, the
exponential degree distribution exponent. The critical probability of node removal fc is shown for both cases, theoretical and real, and
random �errors� and selective �attacks� removal of nodes. The absolute difference 
	fc
 between theoretical and observed critical probability
diminishes as � increases in general terms. Number of nodes N, number of links L, and mean degree �k� are also shown as reference.
Countries in italics have been used to evaluate reliability indexes. EU results �i.e., results for the �EU graph� are shown for comparative
purposes.

Country �

Errors Attacks

N L �k�fc
theor fc

real 
	fc
 fc
theor fc

real 
	fc


Belgium 1,005 0,011 0,395 0,384 0,010 0,131 0,121 53 58 2,18

Holland 1,086 0,147 0,387 0,240 0,034 0,126 0,092 36 38 2,11

Germany 1,237 0,322 0,565 0,243 0,097 0,229 0,132 445 560 2,51

Italy 1,238 0,322 0,583 0,261 0,097 0,241 0,144 272 368 2,70

Austria 1,409 0,450 0,506 0,056 0,159 0,191 0,032 70 77 2,20

Rumania 1,418 0,455 0,579 0,124 0,162 0,238 0,076 106 132 2,49

Greece 1,457 0,477 0,492 0,015 0,174 0,183 0,009 27 33 2,44

Croatia 1,594 0,543 0,525 0,018 0,214 0,202 0,012 34 38 2,23

Portugal 1,606 0,548 0,595 0,047 0,217 0,250 0,033 56 72 2,57

EU 1,630 0,557 0,629 0,072 0,223 0,275 0,052 2783 3762 2,70

Poland 1,641 0,562 0,594 0,033 0,226 0,249 0,023 163 212 2,60

Slovakia 1,660 0,569 0,563 0,006 0,231 0,227 0,004 43 52 2,41

Bulgaria 1,763 0,604 0,570 0,034 0,256 0,232 0,024 56 67 2,39

Switzerland 1,850 0,629 0,610 0,020 0,275 0,260 0,015 147 186 2,53

Czech Republic 1,883 0,638 0,634 0,004 0,281 0,279 0,003 70 88 2,51

France 1,895 0,641 0,647 0,006 0,285 0,289 0,004 667 899 2,69

Hungary 1,946 0,654 0,617 0,036 0,295 0,266 0,029 40 47 2,35

Bosnia 1,952 0,655 0,588 0,067 0,295 0,244 0,052 36 42 2,33

Spain 2,008 0,668 0,689 0,020 0,307 0,324 0,017 474 669 2,82

Serbia 2,199 0,705 0,655 0,051 0,339 0,296 0,054 65 81 2,49
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FIG. 2. Effects of attacks and failures on the topology of the EU
power grids. Static tolerance to random �white circles� and selective
�black circles� removal of a fraction f of nodes, measured by the
relative size Sinf of the largest connected component. Whiskers
stand for the standard deviation. Inset: Evolution of the static toler-
ance to random and selective node removal for Italy �dashed lines�
and France �continous lines�. Though in the case of random removal
�failures� both networks exhibit a similar response, for the selective
one �attacks�, Italy behaves in a slightly stronger manner �i.e., for a
fixed fraction of eliminated nodes, the relative size of the largest
connected component in Italy always remains higher than that of
France�.
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fc = 1 −
1


0 − 1
, �9�

where 
0= �k2� / �k�, and in agreement with �28�. In our case,
we have an analytic estimate 
0=2�. Using the average
value ���=1.9, we obtain a predicted critical probability fc

=0.61.
Although random removal is an interesting scenario, it

considers chance events that are not correlated to network
structure. Intentional attacks strongly deviate from random
failures: Even a small fraction of removed nodes having
large degrees has dramatic consequences. In order to predict
the effects of such directed attacks on network structure, the
critical probability associated to network breakdown can be
computed. Here we follow the formalism developed by Co-
hen et al. �29�. Roughly speaking, this formalism enables us
to translate an intentional attack into an equivalent random
failure and study the problem in terms of standard percola-
tion using Eq. �9�. When the selective removal of the most
connected nodes is considered, a fraction of order O�1 /N� is
removed by eliminating elements with a degree larger than a
given k=K. This upper cutoff is then easily computed from
the continuous approximation:

	
K

�

P�k� � �
K

� 1

�
e−k/�dk =

1

N
�10�

and the new cutoff K̃ can be obtained �again under a con-
tinuous approximation� from

�
K

K̃ 1

�
e−k/�dk = �

K

� 1

�
e−k/�dk −

1

N
= p , �11�

which gives �assuming K large enough� a new cutoff

K̃ = − � ln p . �12�

Following �29�, we translate the problem of intentional
attack to an equivalent random failure problem. The removal
of a fraction f of nodes with the highest degree is then
equivalent to the random removal of those links connecting
the remaining nodes to those already removed. Thus, the
probability that a specific link leads to a deleted node will be
given by

p̃ = �
K

K̃ kP�k�
�k�

dk , �13�

�k� being the average degree of the undamaged graph. It is
not difficult to show that this gives

p̃ = � K̃

�
+ 1
e−K̃/�. �14�

Using Eq. �12� it is straightforward to see that

p̃ = �ln pc − 1�pc, �15�

where we assume that K is large enough to ignore the term
exp�−K /��. Thus an equivalent network with maximal de-

gree K̃ has been built after a random removal of p̃ nodes due

to the fact that the absence of correlations implies a random
failure of links. In order to obtain the degree distribution of
the damaged graph, such a failure can be introduced into Eq.
�3�. But this will be formally equivalent to the removal of p̃
nodes. Thus, to study stability properties, we only need the
resulting probability p̃ to be introduced in the critical condi-
tion for percolation �9�. Replacing pc= p̃, we obtain

1 + �ln pc − 1�pc =
1

2� − 1
, �16�

whose solutions �for each fixed �� provide the conditions for
network percolation under attacks. In Fig. 3 and Table I, we
show the result of our calculations. As expected, a much
lower value of fc is required to break a power grid network
through intentional attack.

Now we can compare this mean field prediction, evalu-
ated as fc

theor, with available data. Using the whole dataset of
EU grids, we can estimate fc

real for all EU countries. The
result are shown, for both fc’s, in Fig. 3�b�. As we can see,
there is a very good agreement �given their small size� be-
tween observed �real� and predicted �theoretical� fc values,
but some nontrivial deviations are also obvious. We can see
that aproximately for ��1.5 the expected fc values are very
similar to those predicted by theory. However, the power
grids having lower exponents �when ��1.5� strongly devi-
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FIG. 3. �a� Phase space for exponential uncorrelated networks
under random removal of nodes and directed attack towards highly
connected vertices. Here � is the average degree of the exponential
network and fc indicates the fraction of removed nodes required in
order to break the network into many pieces. The upper curve is the
critical boundary for network percolation under random removal of
nodes. Below it, a network experiencing such random failures
would remain connected �i.e., with a giant component�. The lower
curve corresponds to the critical boundary for attacks. In �b� we
display the estimated values of fc��� for attacks from the thirty-
three EU power grids �circles� to be compared with the mean field
prediction �continuous line�.
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ate from the predicted values. These agreements and devia-
tions are not due to some simple statistical trait, such as
network size. As indicated in Table I, very large power grids
are in both sides �i.e., the German and Italian grids are in the
first group, whereas the Spanish and French ones belong to
the second� and mixed with smaller ones. Although the effect
of geography on the properties of some networks is impor-
tant �see �27,30� for example�, this last observation would
suggest that the geographical embedding of these networks
might have a small effect.

IV. CORRELATIONS WITH NONTOPOLOGICAL
RELIABILITY MEASURES

The reliability of a power grid evaluates its ability to con-
tinuously meet demand under major events like overloads,
general failures, external impacts and alike. At the engineer-
ing level, and due to the different dimensions of service qual-
ity involved in a power grid �i.e., consumers, companies, and
regulators�, reliability has been traditionally measured by
different indexes as �a� the amount of energy not supplied,
�b� the total loss of power, or �c� the equivalent time of
interruption, which measures the number and duration of in-
terruptions experienced by customers �31�. In this sense we
would expect a correlation between the critical percolation
fraction fc, the exponent that characterizes the grids’ cumu-
lative degree distribution �, and some of �if not all� these
reliability indexes presented.

In order to explore the problem, three reliability indexes
have been obtained from the UCTE monthly reliability mea-
sures �32�. They are related to four major events. Namely,
overloads, general failures, external impacts and exceptional
conditions, and finally other reasons �including unknown
reasons�. For every major event and transmission grid, the
following indexes have been considered and normalized: �1�
Energy not supplied, normalized by the gross UCTE electric-
ity consumption; �2� total loss of power, normalized by the
UCTE peak load on the third Wednesday of December; and
�3� equivalent time of interruption �also known as average
interruption time or AIT�, which is the ratio between the total
energy not supplied and the average power demand per year,
measured in minutes per year �normalized by definition�.

In order to avoid statistical deviations due to the limited
historical data available �UCTE monthly statistics have been
published only from January 2002 onwards�, we have dev-
ided UCTE networks in two groups. Group 1 includes those
countries whose critical breakdown probability fc

real agrees
with that predicted fc

theor �i.e., countries with ��1.5�. Group
2 includes those countries whose fc

real deviates positively
from fc

theor �i.e., countries with ��1.5�, with an expected
more robust topology than that predicted.

Figure 4 gives the acummulated percentage values for the
formerly presented reliability indexes and for each group of
networks. As we can see, networks in group 1 �i.e., networks
with fc

real� fc
theor� represent 63% of the whole UCTE nodes,

they manage 48 and 51% of the UCTE energy and power,
respectively, but acummulate 85, 68, and 79% of the UCTE
average interruption time, power loss and energy not deliv-
ered, respectively. On the contrary, though networks in group

2 �i.e., networks with fc
real� fc

theor� represent a mere 33% of
the whole UCTE nodes, they manage 46 and 44% of the
UCTE energy and power respectively �similar to those of
group 1� but, even so, they acummulate only 15, 32, and
21% of the UCTE average interruption time, power loss and
energy not delivered, respectively. This fact would suggest a
positive correlation between static topological robustness
and nontopological reliability measures and, as a conse-
quence, a clear diferentiation between two classes of net-
works in terms of their level of robustness.

V. DISCUSSION

In this paper, we have extended our previous work on the
robustness of the European power grid under random failures
with the intentional attacks scenario. A mean field theory
approach has been used in order to analytically predict the
fragility of the networks against selective removal of nodes
and a significant deviation from predicted values has been
found for power grids with an exponent ��1.5. For these
networks, the real critical fraction fc

real is higher than the
theoretical one fc

theor for the same �. This suggests an in-
creased robustness for these networks compared to those
with ��1.5.

In order to evaluate the real existence of this two classes
of networks, namely robust and fragile, real reliability mea-
sures from the Union for the Co-Ordination of Transport of
Electricity �UCTE� have been used. It has been found that
there seems to exist indeed a positive correlation between
static topological robustness measures and real nontopologi-
cal reliability measures. This correlation shows that networks
in the robust class �i.e., networks with fc

real� fc
theor�, though

representing only 33% of the UCTE nodes under study and
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FIG. 4. Power grid indexes vs reliability indexes. �a� Networks
in group 1 �i.e., ��1.5 and fc� fc,p�, though representing two-
thirds of the UCTE size, share almost as much power and energy as
networks in group 2 �i.e., ��1.5 and fc� fc,p�. �b� Nonetheless,
these same networks of group 1 acummulate more than five times
the average interruption time �AIT� of the latter, more than two
times their power losses, and almost four times their undelivered
energy.
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managing a similar amount of power and energy than that of
the networks in the fragile class, acummulate much less per-
centage of the whole UCTE average interruption time, power
loss, and energy not delivered. Due to the limited historical
reliability data available, it is actually not possible to detect
whether a network is more robust the higher fc

real is, or sim-
ply due to the fact that fc

real� fc
theor. How this can be related

with the internal topological structure of the networks and
the subgraphs abundances is actually a main point under
study and will be explored elsewhere.

This feature is of obvious importance. Up to this date and
as far as we know, no such correlation between topological
and dynamical features has been encountered in any study
related to complex networks structure and dynamics. From
the power industry point of view, constantly facing the chal-
lenge of meeting growing demands with security of supply at
the lowest possible spenditure in infrastructures, the implica-
tions of this feature would permit new rather than traditional
approaches to contingency-based planning criteria �33�. One
of these traditional, and widely used, planning criteria is the
so-called �N−X� criterion. It assumes that no interruption of
service can occur in a system with N units of equipment due
to isolation of X outaged components. Without any topologi-
cal feedback, the �N−X� methodology �a� requires fast
breaker operation to open any circuit pathway that has been
faulted as well as to close the alternate path to service and �b�
pushes the system to an increasing interconnection complex-
ity as its utilization ratio �i.e., ratio between peak load and
capacity of subtransmission lines and substation transform-
ers� increases in time �aging infrastructures�. Though aging

infrastructures, excessive power delivered through increasing
long distances and other possible causes may influence the
increasing fragility of the power grids, it seems reasonable
to think that, on a topological basis, the application of the
�N−X� contingency-based criteria, though originally in-
tended to avoid interruptions in power service, would diffi-
cult, at the same time, the islanding of disturbances �i.e., the
more connected an element is, the easier would be for a
disturbance to reach�. In other words, the same criteria that
successfully has served to increase reliability in power sys-
tems through the late 20th century might now be responsible
for the difficulties encountered in preventing perturbations,
blackouts or isolating the different power grid elements.

Over the past years, and mainly due to economic impera-
tives, contingency-based planning criteria has been gradually
pervaded by reliability-based planning criteria. In the latter,
the prevention of likely contingencies of severe impact is
considered much more effective than that of low probability
and low impact. Nonetheless, this fact leaves the main con-
ception of �N−X� criteria still valid and at work in most of
the ongoing grid’s planning processes. Following the former
discussion, we would suggest adding a third topology-based
planning methodology, in order to take this fact into account.
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Abstract 

Reliability assessment is crucial when dealing with complex systems, especially 
complex networks. Be they natural or man made, networks are able to sustain 
their functioning by means of a reliable set of components. The many functions a 
network can sustain are direct consequence of the topological structure that 
constraints and, at the same time, defines, the dynamical relation between its 
components. Therefore, some kind of relation between structure and dynamics 
should be expected to appear. In this paper, some of these relations that have 
been found for the European power grid are presented. Evidences for a critical 
relation between topology and dynamics are summarized, using some basic 
topological measures widely used in the developing complex networks 
paradigm. Finally, strategies for optimal management and operation of such 
networks are suggested. 
Keywords:  power grid, complex networks, reliability. 

1 Introduction 

The relation between structure and dynamics covers much of the literature 
devoted to complex networks science [1]. It is now obvious that the structure of a 
network affects and determines its collective dynamical behaviour and, at the 
same time, networks can modify their wirings in order to adapt certain dynamics 
to a required objective function [2]. When dynamic processes exceed the 
network's capability to handle them properly, there appear dramatic and usually 



unexpected effects such as congestions and jams [3] or cascading failures in 
infrastructure and organizational networks. [4, 5]  
 
This last case is particularly relevant for power grids, where the most dramatic 
dynamical effects show themselves directly in form of blackouts and, indirectly, 
in form of huge economic and even human losses [6]. These major events, and 
the causes that generate them, are recorded and stored by public organizations. In 
Europe, this job is done by the Union for the Co-Ordination of Transport of 
Electricity (UCTE) and these events, given in total loss of power, energy not 
supplied, restoration time and equivalent time of interruption, are published 
monthly since 2002, and segregated by country and cause. [7] 
 
One first attempt to correlate network reliability measures and structural 
topology for the European power grid can be found in [8]. Given real reliability 
measures from the UCTE, it is found that there seems to exist indeed a positive 
correlation between static topological robustness measures and real non-
topological reliability measures such as energy not supplied, total loss of power 
and equivalent time of interruption. This fact leads the authors to classify the 
power grids of most of the European countries in two groups, namely fragile and 
robust grids, by means of a topological measure (see Section II below). They 
present both analytical and numerical estimations of the boundaries for network 
collapse under attack and failure, using a mean field theoretical approach.  
 
The aim of the following sections is the exploration of some more different 
measures that relate this behaviour with the internal topological structure of the 
networks. The paper is organized as follows. In section II, some previous 
findings are summarized and updated in order to justify more broadly our 
subsequent work. In section III, the mean degree is proposed as a first evidence 
of relation between structure and dynamics. Section IV presents the motifs 
abundance as another segregation measure between robust and fragile networks. 
In Section V, we present the patch size distribution as a third and more tentative 
evidence for network robustness. Finally, Section VI summarizes our findings 
and outlines some proposed strategies for an improved grid design. 
 

2 European power grid robustness update 

The European power grid can be described in terms of a graph ( )EV ,=Ω , 
where { }Ni vvV K=  indicates the set of N  nodes (transformers, substations or 
generators in  our  context) connected by the set of actual links between pairs of 
nodes { }ijeE = . Here, { }jiij vve ,=  indicates that there is an edge (and thus a 
link) between nodes iv  and jv . Two connected nodes are called adjacent, and 
the degree k  of a given node is the number of edges connecting it with other 
nodes. The mean of k  over V  is known as the mean degree >< k . Besides k  



and >< k , an additional property widely used is the cumulated degree 
distribution. This is defined as the (normalized) probability that a node chosen 
uniformly at random has a degree k  or higher (i.e., the fraction of nodes in the 
graph having k  or more edges) [9]. All European countries’ power grids have 
exponential cumulated degree distributions [10]. That is, the probability 
( )KkP ≥  of having a node linked to k or more other nodes follows 

 
( ) ( )γkCKkP −=≥ exp  (1) 

 
where C  is a normalization constant, k  is the node degree and γ  is a 
characteristic parameter. Table 1 offers a summary of the basic topological 
features exhibited by the European power grids segregated in two groups: robust 
( 5,1<γ ) and fragile ( 5,1>γ ) power grids, as can be found in [8]. 
 

Group Country Short Form 
(from UCTE) 

Exp. Deg. Dist. 
( )γ  

Grid size 
( )N  

Mean Degree 
( )>< k  

Robust 

Belgium 
Holland 
Germany 
Italy 
Romania 
Greece 

BE 
NL 
DE 
IT 
RO 
GR 

1,005 
1,086 
1,237 
1,238 
1,418 
1,457 

53 
36 

445 
272 
106 
27 

2,18 
2,11 
2,51 
2,70 
2,49 
2,44 

Fragile 

Portugal 
Poland 
Slovak Rep. 
Switzerland 
Czech Rep. 
France 
Hungary 
Spain 
Serbia 

PT 
PL 
SK 
CH 
CZ 
FR 
HU 
ES 
RS 

1,606 
1,641 
1,660 
1,850 
1,883 
1,895 
1,946 
2,008 
2,199 

56 
163 
43 

147 
70 

667 
40 

474 
65 

2,57 
2,60 
2,41 
2,53 
2,51 
2,69 
2,35 
2,82 
2,49 

Table 1:  Robust and fragile European grids, ordered by increasing γ , the  
 exponential degree distribution characteristic parameter. Size 
(number of nodes N ) and mean degree >< k  are also shown  as 
reference. The analyzed cumulated grid size is 96% of the whole 
UCTE size. 

 
For this paper and countries in Table 1, data from UCTE considered in [8] has 
been updated up until August, 2008. Figure 1(a) shows cumulated European 
power grid indexes for each group: percentage size (i.e., number of nodes over 
the whole UCTE size, which is 2 783 nodes), energy share (i.e., cumulated 
electricity consumption over the UCTE energy consumption), and power share 
(i.e., national cumulated highest load over the UCTE power generation). The 
energy and power normalization has been done using national electricity 



consumption and highest load on the 3rd Wednesday of December respectively. 
For year 2007 (last year available) these cumulated values reached 2 392 TWh 
and 389 GW for the countries considered in Table 1, respectively [11]. As we 
can see, grids in the fragile group (i.e., 5,1>γ ), though represent two thirds of 
the UCTE size, share almost as much power and energy as grids in the robust 
group (i.e., 5,1<γ ). Figure 1(b) shows cumulated European power grid reliability 
indexes for each group: energy not supplied (ENS), total power loss (TPL), 
restoration time (RT) and equivalent interruption time (EIT), which can be found 
in [7]. For each group, these values have been obtained as cumulated percentage 
of MWh (ENS), MW (TPL) and minutes (RT), over the whole UCTE cumulative 
value for the same time period. Equivalent time of interruption is normalized by 
definition. 
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(b) Reliability indexes share
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Figure 1: Power grid indexes vs. reliability indexes (updated August 2008). 

Networks in the fragile group, though share almost as much power 
and energy as networks in the robust one, accumulate between 
60% and 70% of the energy not supplied (ENS), restoration time 
(RT) and total equivalent interruption time (EIT). The total loss of 
power (TLP) is almost equivalent in both groups. 

 



 
As we can see, except for the total power loss value, there is an obvious 
unbalanced situation, being the share of the grids in the fragile group much more 
significant than that of the robust one. Sadly, network reliability data has been 
published only from 2002 onwards. This short statistical period is sensible to 
extreme and rare events. In November 2006, 10 million people suffered the 
consequences of a major event triggered in the German power grid (16 724 MW 
loss). Without this single event, the share in total power loss (TPS) would be 
60% for the fragile group and 40% for the robust one (where Germany is 
included). 

3 First evidence: mean degree deviation 

Node degree has been widely used to evaluate structural properties and 
connectivity distribution of complex networks [12, 13]. The degree distribution 
(i.e., the fraction of nodes in the graph having precisely k  edges), as opposed to 
the cumulated degree distribution formerly presented, is usually much more 
mathematically tractable. It has been stated that the cumulated degree 
distribution of the networks studied in this work follows an exponential function. 
By the very nature of the exponential function, it can be assumed that their 
degree distribution is also exponential.  
 
Here, a first evidence of a correlated tendency between degree distribution and 
reliability indexes has been done comparing graphs in Table 1 with the simplest 
graph we can define, which is the Erdös – Rényi (ER) graph [14]. This graph is 
obtained as follows: given a set of N  nodes, each pair of them is connected with 
constant probability Nk , where >< k  is the mean degree. For large N , the 
probability that a vertex has k  edges follows a Poisson distribution, 
 

( ) ( ) !exp kkkkp k
−=  (2) 

 
The motivation to choose such a graph model is twofold: first, it is commonly 
accepted that the tail of a Poisson distribution decays qualitatively as an 
exponential function; second, the ER graph model stands for a generation 
algorithm with the smallest set of assumptions, thus being an interesting 
candidate for any null model. Therefore, equation (2) can be used in order to 
classify the robustness and fragility of the European power grids. To do so, we 
compare the actual mean degree >< k  of every grid with that of the Poisson 
distribution >< 'k  that best fits the real degree distribution and calculate its 
normalized deviation as 
 

k
kk

k
'−

=∆  (3) 

 



Deviations from the ER random graph behaviour are shown in Figure 2. For 
every country, ordered by its γ  parameter, it presents a slightly exponential 
(broken line) increasing mean degree normalized deviation as γ  increases. This 
fact would suggest a more fragile behaviour as the network is less well fitted by 
the Poisson distribution, i.e. rather unexpectedly, as the network is less randomly 
designed. Observed deviations might be explained for several reasons, mainly 
variations in the topology due to planarity and network motifs. Unlike random 
graphs, European power grids are almost planar graphs in the sense that they 
can be drawn in the plane in such a way that no two edges intersect [14]. This 
fact is still under investigation and results will be published elsewhere. The 
possible influence of network motifs is analyzed in the next section. 
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Figure 2: Mean degree normalized deviation (equation 3) as function of the 

γ  parameter. Lines added for visual aid. 
 

4 Second evidence: network motif analysis 

Though global similarities may arise, networks might display very different local 
structure. This local structure can be characterized by patterns termed network 
motifs, or subgraphs, that appear at a much higher frequency than expected in 
randomized networks [15]. Functional or adaptive interpretations aside, network 
motifs can be used to characterize and compare the local structure of networks, 
even from different fields. [16] 
 
Figure 3 shows the evolution of three particular four-node subgraph patterns: 
linear, star and star with triangle. We group the last two together as they 
represent high connectivity motifs. We observe a notable increase of 
interconnected local topologies in spite of linear ones, as the fragility of the 
networks increases with γ . Although in order to be synthetic only grids with 



more than one hundred nodes have been considered (i.e., Germany, Italy, 
Romania, Poland, Switzerland, France and Spain), this behaviour is followed by 
the rest of the grids as well: fragility seems to increase as the elements of the grid 
become more interconnected and motifs such as stars and triangles began to 
appear. Although aging infrastructures, excessive power delivered through 
increasing long distances and other possible causes may influence the increasing 
fragility of the power grids, it seems reasonable to think that maybe, on a 
topological basis, the application of the (N-X) contingency criteria, which 
favours connectivity and interconnectedness, though originally intended to avoid 
interruptions in power service, would difficult, at the same time, the islanding of 
disturbances. Nonetheless, a grid’s dynamical model to certify this hypothesis is 
needed and already under development. 
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Figure 3: Subgraph abundances for power grids of size higher that 100 nodes 

as function of the exponent γ  of the exponential degree 
distribution. These subgraphs display patterns of change with γ  
that are not independent of each other. (Upper part: UCTE’s grids 
short form, from Table 1). 

 

5 Third evidence: patch size distribution 

For a last and more tentative, topological measure of the reliability of a power 
grid, we introduce here the patch size distribution. We compare the distribution 
of land patches enclosed by transportation cable lines for two different countries. 
The rationale behind this measure is basically inspired by concepts developed 
and used in (a) power distribution planning [17] and (b) landscape ecology. [18] 
 
On one hand, the objective of transport and distribution planning is to provide an 
ordered and economical expansion of equipment and facilities to meet the 
utilities’ future electrical demand, with an acceptable level of reliability. 
Considering the space as the substrate where the grid evolves and expands, we 

+
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would expect a somehow regular distribution of substations and transformers, at 
least at a transport level, where the main objective is the distribution of bulk 
power in spite of population density or even geographical accidents. 
Nonetheless, power grids have evolved for a long time, usually without common 
long term planning criteria. It seems thus, that an optimal or even regular spatial 
distribution cannot be attained without redundancies and suboptimal designs. 
 
On the other hand, and keeping forestry, agriculture and farming aside, the 
principal actors in the spatial processes that transform and change the land are 
technological infrastructures such as roads, railways and, in a lesser extent, 
energy transportation infrastructures such as the power grid. These processes of 
land fragmentation and transformation have important and sobering 
consequences in economics, biodiversity, conservation, global warming and 
society [19]. Quantification of fragmentation through spatial indexes is currently 
becoming a common practice in landscape ecology and related disciplines [20]. 
Recently, the effective mesh size has been proposed as a fragmentation measure 
and a tool for environmental monitoring. It has been used to evaluate the 
evolution of land fragmentation caused by transportation infrastructure and urban 
development. [21] 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Patch size obtention example for the island of Mallorca. The whole 

area totA  of the island can be fragmented into three smaller areas 
(or patches), with individual area iA . In defining the patches, 
double lines are considered single lines and isolated nodes (i.e., 
Cas Tresorer and Es Bessons in the figure) can not be used, as they 
do not limit the area contained in the patch. (UCTE map snapshot 
from UCTE website, http://www.ucte.org/resources/uctemap/ ). 

 
The effective mesh size expresses the probability that any two randomly chosen 
points in the region under observation may be connected (i.e., not separated by 
artificial barriers such as roads or urban areas). It is useful when the region under 
study is kept constant since it shows effectively the evolution of the land 
fragmentation over time. But it is of little use when the objective is to compare 

totA  iA  



different regions at the same moment of time, since a common normalization 
factor can not be used. 
 
The patch size distribution allows to overcome this last problem and to show the 
structure of the spatial distribution for different grids. We essentially consider 
cable lines as virtual spatial fragmentation limits and calculate the distribution of 
the size of the resulting areas (Figure 4). Political frontiers, seas and oceans 
would be the very outmost limits of the patches for every country. 
 
 

Group Country 
Grid size 
( )N  

Electricity 
consumption 

(TWh) 

Served  
area 

(km2) 

Population 
(millions) 

Robust Germany 445 556 357 050 82 
Fragile Spain 474 261 493 519 42 

Table 2:  Comparative data for Germany and Spain (year 2007). For Spain, 
all data considered is peninsular. National electricity consumption 
for every year in the UCTE since 2002, can be found at [11]. 
Spanish electricity consumption and its segregation into peninsular 
and extra-peninsular data can be found at: 
http://www.ree.es/sistema_electrico/informeSEE.asp. 

 
Here, two power grids of similar number of nodes but different robustness 
behaviour have been compared (Table 2): Germany, a robust grid with 445 
nodes and Spain, a fragile one with 474 nodes. Though similar in size, Table 2 
shows some striking differences in population (and therefore electricity 
consumption) and covered area: Germany’s grid deals with more than two times 
electricity consumption than that of Spain, but in an area being 27% smaller. 
 
Figure 5 shows the absolute frequency of patches as function of their area, in 
square kilometres. Both distributions span for over five orders of magnitude in 

iA . But while the German grid keeps this frequency almost constant for all these 
orders of magnitude, the Spanish grid begins to strongly deviate for values of iA  
lower than 500 km2. Though the geography and area of Spain do obviously differ 
from that of Germany, a similar pattern but with different absolute frequency 
values would be expected. We insist this is a much more tentative measure and it 
has to be much further explored, but this fact would suggest a  much messier and 
intricate Spanish grid, heavily inhomogeneous at the spatial level and, 
consequently, much more difficult to control and more prone to failures of 
different kind. We notice as well the inherent difficulties that arise in finding two 
grids with similar size, each one belonging to each group, i.e. fragile and robust.  
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Figure 5: Absolute frequency of patches vs. patch size for Spain and 

Germany, in log-linear plot. The lower limit for iA  is 4 km2. 
 

6 Summary and discussion 

The European electricity transmission system is a huge infrastructure formed by 
more than 200 000 km of transmission lines and almost 2 800 substations. As 
any other engineered system, it has been designed with a purpose: to deliver its 
2 300 TWh of energy in an almost faultless way and satisfy demand with 
production instantly. It is, nonetheless and at the same time, a complex system 
where unexpected and seemingly lawless phenomena such as blackouts and 
cascading failures arise. The aim of this work has been the exploration of some 
evidences that relate the outcome of this unexpected behaviour (in form of 
reliability indexes) with the engineered part of the grid (i.e. its topological 
structure). Although reliability data has been recently published and it can be 
biased due to extreme and rare events, a notable correlation has been found 
between networks’ cumulative degree distribution parameter γ  and reliability 
indexes such as energy not delivered, total loss of power, restoration time and 
equivalent time of interruption. There are three main tendencies that tend to 
increase with the fragility of the networks: (a) a deviation from a random graph 
null model degree distribution, quantified by the mean degree deviation  k∆ ; 
(b) an increased preponderance of star and triangle motifs in spite of linear ones; 
and (c) an irregular patch size distribution. Evidences (a) and (b) would suggest 
an increased fragility when the topology of the network deviates from a random 
one, maybe in search of a higher interconnectedness. This would suggest that the 
same contingency criteria that favours connectivity, though originally intended 
to avoid interruptions in power service, would difficult, at the same time, the 



islanding of disturbances: i.e. the more connected an element is, the easier would 
be for a disturbance to reach. Evidence (c) has to be taken with caution, as more 
work is needed in order to fully understand how planar random graph topologies 
can generate such patch size distributions. It is obvious that strategies for optimal 
management and operation of these networks can not be separated from its 
dynamical behaviour. The relation between probability distributions of reliability 
indexes, reasons of main events (overloads, endogenous or exogenous failures, 
etc.) and network’s topological fragility indexes, such as γ , are now questions 
under research. Engineers calculate, and calculation requires a theory or at least 
an organized framework [22]. It is our hope to define how these different factors 
constrain and are constrained by the real dynamics of the power grid in order to 
unravel the laws governing complex systems like this. 
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Abstract

Power grids are prone to failure. Time series of reliability measures such as
total power loss or energy not supplied can give significant account of the
underlying dynamical behavior of these systems, specially when the resulting
probability distributions present remarkable features such as an algebraic
tail, for example. In this paper, seven years (from 2002 to 2008) of Europe’s
transport of electricity network failure events have been analyzed and the
best fit for this empirical data probability distribution is presented. With the
actual span of available data and although there exists a moderate support
for the power law model, the relatively small amount of events contained in
the function’s tail suggests that other causal factors might be significantly
ruling the system’s dynamics.

Key words: power grid, complex networks, time series
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1. Introduction

There has been in recent years an increasing awareness about infrastruc-
ture networks security and reliability [1, 2, 3]. Modern society’s functional
capacity relays on an optimal operation of infrastructure and information
networks such as roads, railways, gas and oil pipes or Internet. Particularly

∗Corresponding author
Email addresses: rosas@mmt.upc.edu (Mart́ı Rosas-Casals ), ricard.sole@upf.edu

(Ricard Solé)
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vital, and at the same time quite prone to failure, are electric power transmis-
sion networks. These are extremely complex engineered systems, composed
of multiple and interconnected elements, whose reliability depends both on
each component’s behavior and, at the same time, on the many different dy-
namical interactions that span over and rule the overall connectivity of the
system.

Although it is not always the case, a malfunction of a power transmission
system shows usually itself as a blackout. This is a direct consequence of
a cascading failure involving several of its composing and linking elements.
This fact turns the study of the details of failures in power transmission
networks from a traditional engineering point of view a hard task, if not an
impossible one most of the times. In order to reduce the inherent complexity
of this detailed approach, some new ways have been proposed in recent years.
One of them is that of ignoring the details of particular failures and to focus
on the study of global behaviors and dynamics of time series with approxi-
mate global models. Concepts such as criticality and self-organization have
been applied to characterize blackout data, suggesting that the frequency of
large blackouts is governed by non trivial distribution functions such as power
laws and, consequently, that power systems are designed and operated near
a critical point. (For a comprehensive review on this approach, see Ref.[4]
and references therein).

This paper analyses for the first time, and as far as we know, the statistics
of major electric transmission network events in the European power grid
from this aforementioned complex systems approach. Following essentially
the statistical analysis presented in Ref.[5], we estimate the basic parameters
of the power-law model, then calculate the goodness-of-fit between the data
and the power law and finally we compare the power law with alternative
hypotheses via a likelihood ratio test. The paper is organized as follows.
In section II European major events data is presented and explained. In
section III blackout data is analyzed. Finally, section IV summarizes our
main results.

2. UCTE major events data

European power network reliability data can be found in the Union for
the Co-ordination of Transmission of Electricity (UCTE) web page, publicly
available from 2002 onwards in monthly statistics format [6]. The UCTE
is the association of Transmission System Operators (TSOs) in continental
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Europe and manages data from 24 different European countries. Due to
the complexity of events, sometimes involving more than one TSO, types of
interruptions in the network and short time given to gather this informa-
tion, UCTE major events data is somehow limited in its scope and does not
provide a fully detailed account of some events. It is, nonetheless,the best
documented source that has been found. For each major event, it summarizes
the following information:

• Country.

• Substations involved.

• Reason (R). Broadly classified into four groups: (1) overloads (also
calculated brakes), (2) failures (false operation, failure in protection
device or other element), (3) external (outside impacts and very ex-
ceptional weather and natural conditions) and (4) other or unknown
reasons.

• Energy Not Supplied (ENS). Measured in MWh, as loss of energy
from the consumption side.

• Total Loss of Power (TLP). Measured in MW, as loss of production
from the generation side.

• Restoration Time (RT). Measured in minutes. Note that since ENS
and TLP are measured from different sides, RT can not be assumed as
the ratio of ENS over TLP. It can be considered, therefore, an inde-
pendent reliability measure.

• Equivalent Time of Interruption (ETI). Defined as the duration
of an interruption in minutes multiplied by the energy not supplied
divided by the consumption for the last 12 months. Defined in this
way, the ETI allows a direct comparison between TSOs in terms of
interruptions that occurred during a year.

From 2002 to 2008, both years inclusive, 908 major events have been
noticed. Due to the complexity of events some entries have zero value in
one or more of their categories. While these zeroed values have not been
considered, the rest of numerical values are effective measures of major events
occurred in the UCTE power grid and, consequently, they have all been
included in order to develop the analysis presented in this paper.
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3. Probability distribution analysis

The study of the statistics and dynamics of series of events with ap-
proximate global models has been one of the most popular topics in the
last twenty years, specially within the interdisciplinary study of complex
systems. Probability distribution functions with a heavy tailed dependence
in terms of event or object sizes seem to be ubiquitous statistical features
of self-organized natural and social complex systems [7]. The appearance of
algebraic distributions, specially power laws, is often thought to be the signa-
ture of hierarchy, robustness, criticality and universal subjacent mechanisms
[8]. Electric power transmission networks have not escaped this captivation
for power laws quest. Time series of usual measures of blackout size like en-
ergy unserved, power loss or number of customers affected, have been shown
to be algebraically distributed in North America [9], Sweden [10], Norway
[11], New Zealand [12] and China [13]. This apparent ubiquitous evidence
have led to believe and try to demonstrate that power systems (a) tend to
self-organize near a critical point and (b) that there may be some universality
ruling the inner depths of these systems.

In spite of this evidence, most of the aforementioned literature relay on
poorly performed statistical analysis and results can not be trusted. In some
cases methodologies are not clearly explained (i.e., Ref.[11]) or simple visual
inspection can clearly dismiss the analysis performed to rule in the power law
hypothesis (i.e., Ref.[10] and Ref.[13]). In other cases, proper usage of statis-
tical tools have given new results that limit the scope of the original analysis
(i.e., Ref.[9] is dismissed as insufficiently substantiated in Ref.[16] and rean-
alyzed in Ref.[5], finding moderate support for the power law hypothesis and
even some for an exponential distribution).

In this section we analyze the probability distributions of three malfunc-
tion measures of the European power grid: energy not supplied (ENS), total
loss of power (TLP) and restoration time (RT). The results are summarized
in Table 1 and shown in Figure 1. The methodology that has been used is
that described in Ref.[5], where a maximum likelihood approach is proposed
to estimate the heavy tailed function from the data and a significance test is
constructed for testing the plausibility of the power law. Measures shown in
Table 1 are generic statistics on one side and results of the aforementioned
statistical analysis on the other. We assume a quantity x follows a power
law if it is drawn from a probability distribution p(x) ∝ x−α, where α is
the scaling parameter of the distribution. Since the probability density of a
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Maximum likelihood

Data set n 〈x〉 σ xmax x̂min α̂ ntail p Support for PL

ENS 690 552 7004 180000 185±72 1.7±0.1 104±120 0.24 Moderate

TLP 576 400 1790 26746 615±244 2.1±0.2 57±96 0.36 Moderate

RT 897 510 3328 44640 150±68 1.69±0.07 157±115 0.73 Ok

Table 1: UCTE major events generic statistics and power law fits. For each measure we
give the number of occurrences n, mean 〈x〉, standard deviation σ, maximum observed
occurrence xmax, lower bound to the power law behavior x̂min, scaling parameter value
α̂, occurrences in the power law tail ntail and p value p. The last column indicates the
support for whether the observed data is well approximated by a power-law distribution.
Estimated uncertainties for x̂min, α̂ and ntail are also shown.

power law distribution diverges as x → 0, there must exist a lower bound to
the power law behavior [16]. We denote this lower bound as xmin and the
number of events contained in the upper range as ntail. Finally, the p-value
denotes the significance test result: the power law is ruled out if p ≤ 0.1. As
we can see, the power law model is a plausible one for every data set con-
sidered (i.e., the p-value for the best fit is sufficiently large) and the scaling
parameter values are similar to those encountered in the literature for the
ENS and TLP distributions [4, 14]. Yet the power law model explains only
a small amount of events: 15% for ENS (ntail = 104), less than 10% for TLP
(ntail = 57) and 17% for RT (ntail = 157) (even though it holds the better
fit, with p = 0.73). We believe that measures such as ntail and xmin are
fundamental to estimate the span of the power law behavior and to develop
further quantitative models, yet these values have not been considered in any
of the aforementioned references. Only in the reanalysis of Ref.[9] done in
Ref.[5] we have found an estimate for ntail that gives an explanation for a
28% of the events.

We assume that the limited span of available data in each set might have
a sensible influence in the final power law fitting outcome. It is nonetheless
evident from these results that (a) power law behavior can not be assumed
for the whole data observed, (b) we can not accept the existence of any
critical point at this stage of the data span and (c) there must be right now
considerably more dynamics not explained by the power law model.

In order to check if other distributions may be a better fit, we have per-
formed log likelihood and p-value tests with respect to log-normal, exponen-
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Figure 1: Cumulative distribution functions P (x) and their maximum likelihood power
law fits for the UCTE reliability measures energy not supplied, total loss of power and
restoration time.

tial, stretched exponential (Weibull) and power law with cut off distributions.
Results are shown in Table 2. Positive log likelihood values favor the power
law hypothesis and p-values higher than 0.1 imply no significance on the re-
sults. Log-normal, Weibull and exponential distributions can be ruled out
as p ≥ 0.1 in the first two and p = 0 in the latter with positive LR values.
Power law with cut off can be ruled out in the ENS and TLP data sets though
it is a plausible option for the RT data set.

log-normal exponential Weibull PL + cut off

Data set LR p LR p LR p LR p

ENS -0.405 0.68 2.64 0.00 -0.393 0.69 -0.419 0.36

TLP 0.319 0.75 3.42 0.00 0.467 0.64 -0.08 0.68

RT -0.382 0.70 7.57 0.00 -0.329 0.74 -1.7 0.06

Table 2: Test of power-law behavior. Positive values of the log likelihood ratios LR favors
the power law model. Values of p ≥ 0.1 imply though that result can not be trusted.
The exponential distribution is definitely ruled out as possible model and only for the
restoration time RT, the power law with cut off could be considered a valid model.
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4. Summary and discussion

Power outages are considered unexpected phenomena in power grids.
They appear without warning and, though widely investigated, there is not a
common accepted theory that explains neither their pervasiveness nor their
inner dynamics. The statistical overabundance of big blackouts has been ex-
plained using theories of systems failure able to reproduce their empirically
found probability distribution. This distribution is considered a power law
for most of the literature encountered, with the consequences that this al-
gebraic tail involves (i.e., self-organization, criticality and universalities). In
order to add one more reference to this field, in this paper we have analyzed
seven years of disturbances data for the UCTE power grid and for three ma-
jor event measures: energy not supplied, total loss of power and restoration
time. Although evidences for self-organized criticality have been suggested
for even five years of data [15], support for the power law hypothesis has been
found moderate for two (ENS and TLP) of the three measures considered.
Moreover, the amount of events explained by the power law hypothesis can
be considered negligible. These facts make it difficult to accept the existence
of an equilibrium point near criticality for the UCTE power grid, at least at
this stage of data analysis, and it also suggests that most of the power grid
dynamics should be explained by different models, other than power law.

There still exist many complexities not explained in this systems. Ongo-
ing research is now focused in analyzing major events probability distribu-
tions in connection with (a) the reasons that trigger these major events and
(b) the structure and topology of the power grids involved in these major
malfunctions. Results will be published elsewhere.
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