

MATHEMATICAL MODELING OF SIMULTANEOUS REMOVAL OF SO₂ AND NO USING SORBENT SYNTHESIZED FROM ASH

by

HENRY FOO CHEE YEW

Thesis submitted in fulfillment of the

requirements for the degree of

Master of Science

June 2010

ACKNOWLEDGEMENTS

I would not ever wish to end my chapter here, sadly I have to but another will begin. Within one and a half years of my MSc program, I have learned more about myself, life and science during my study at School of Chemical Engineering, Universiti Sains Malaysia. This is mainly due to superb learning environment created by Prof. Madya Dr. Lee Keat Teong. He not only fosters the important spirits of Passion, Mission and Vision toward my research and seemed to never miss a single line of my thesis draft! Not forgetting my co-supervisor, Prof. Abdul Rahman Mohamed for his guidance and helpful insight into my works. Everything about School of Chemical Engineering is first class: my Dean, Deputy Dean, office staff, technicians, my colleagues, the resources, and the forward-looking drive by all lecturers that continuously pushed the boundaries of my study. I owe my deepest gratitude to you all. Ultimately, I am grateful to be honored as USM fellowship holder and thankful for its financial funding in this research.

This thesis would not have been possible unless receiving greatest support from my family. My parents and siblings have sacrificed for many years for me and have shaped me into who I am today. They instilled in me a love for knowledge and a strong work ethic that has enabled me to accomplish anything I set my mind to. Truly, I am indebted to many of my colleagues to support me throughout these years. My seniors, Kelly, Jib, Meei Mei, Kok Tat, Yin Foong and Thiam Leng; my beloved friends, Shuit, Man Kee, Kian Fei, Wei Ming, Kah Ling, Chiew Hwee, Kim Yang, Lee Chung, Zhi Hua, Kiew Ling and Peyong; are among the many people prior to my studies have contributed to my desire to accomplish my MSc. All those laughs and joys that we go through these years, surely I would never forget in my life. Thanks guys!

TABLE OF CONTENTS

ACI	KNOWI	EDGEME	NT	ii
LIS	Г OF TA	ABLES		ix
LIS	Г OF FI	GURES		xi
LIS	Г OF PI	LATES		xvi
LIS	Г OF Al	BBREVIAT	TIONS	xviii
LIS	Г OF SY	MBOLS		xix
ABS	TRAK			xxii
ABS	TRAC	ſ		xxiv
CHA	APTER	1- INTROI	DUCTION	1
1.1	Sulfur Dioxide (SO ₂)			
1.2	Nitric	Oxide (NO)		6
1.3	Acidic	Gas Contro	ol Technology	7
	1.3.1	Flue Gas I	Desulfurization	8
		1.3.1 (a)	Wet Scrubbers (wet method)	9
		1.3.1 (b)	Spray Dry Scrubbers (semi-dry method)	9
		1.3.1 (c)	Sorbent Injection (dry method)	10
	1.3.2	Flue Gas	Denitrification	10
	1.3.3	Combined	d Technology of DeSO _x /DeNO _x	11
1.4	Proble	m Statemen	t	12
1.5	Resear	ch Objectiv	es	14
1.6	Scope	of study		15
1.7	Organi	ization of Th	ne Thesis	17
CHA	APTER	2 – LITER	ATURE REVIEW	19

2.1	Mathematical Modeling of Gas-solid Reaction	19
2.2	Catalytic Gas-solid Reaction	20
2.3	Non-catalytic Gas-solid Reaction	21

2.4	I Simpl	ification of Chemical Complexities and Computational Effort	24
	2.4.1	Pseudo-Steady State Approximation	24
	2.4.2	Isothermal Condition	25
	2.4.3	Single Reactant for Gas and Solid	25
	2.4.4	Simplification in Physico-Chemical Properties	25
	2.4.5	Equimolar Counter Diffusion Assumption	26
2.5	5 Gas-se	olid Reaction Models	26
	2.5.1	Heterogeneous Model	27
		2.5.1 (a) Unreacted Shrinking Core Model (SCM)	27
	2.5.2	Homogeneous Model	29
	2.5.3	Intermediate Model	31
		2.5.3 (a) Grain Model	32
2.6	6 Partia	l Differential Equations	35
2.7	7 Metho	odology of Solution for Differential Equations	36
	2.7.1	Method of Lines	39
	2.7.2	Finite Element Method	41
	2.7.3	Finite Volume Method	42
	2.7.4	Fourier Analysis of Linear PDEs	44
	2.7.5	Function Space Method	45
		2.7.5 (a) Collocation	46
	2.7.6	Multigrid Method	48
	2.7.7	Simple Finite Difference Method	50
		2.7.7 (a) Backward Finite Differences	51
		2.7.7 (b) Forward Finite Differences	53
		2.7.7 (c) Central Finite Differences	54
2.8	3 Summ	nary	56
CI	HAPTER	3 – THEORETICAL	59
3.1	Proble	em Definition	61
3.2	2 Proble	em Formulation	61
3.3	3 Mode	l Development	62
	3.3.1	Model 1: Formulation of a Basic Mathematical Model Based on a Global Reaction Between SO ₂ and CFA/CaO/CaSO ₄	62
		3.3.1 (a) Gas Phase	65

		3.3.1 (b)	Solid Phase	65
		3.3.1 (c)	Rate of Reaction	69
	3.3.2		Formulation of Precise Mathematical Model Based on Proposed Mechanism of Elementary Reaction	72
		3.3.2 (a)	Macrokinetic Analysis	73
		3.3.2 (b)	Mesokinetic Analysis	75
		3.3.2 (c)	Converting the Equation in Dimensionless Form	76
		3.3.2 (d)	Effectiveness Factor	77
		3.3.2 (e)	Internal Effectiveness Factor	78
		3.3.2 (f)	Overall Effectiveness Factor	79
		3.3.2 (g)	External Mass Transfer Coefficient	79
		3.3.2 (h)	Microkinetic Study; Mechanism of Reaction between SO ₂ /NO and Sorbent	80
3.4	Partial	Differential	l Equations	84
3.5	Metho	dology of S	olution	86
	3.5.1	Finite Dif	ference Method and Multigrid method	87
	3.5.2	Solution of	of Model 1	88
	3.5.3	Solution of	of Model 2	92
	3.5.4	Algorithm	n Development	96
CH	APTER	4 – RESUL	TS AND DISCUSSION	98
4.1	Model	1 (Single G	lobal Reaction)	99
	4.1.1	Model Va	lidation	99
	4.1.2	Effect of	Variables	107
		4.1.2 (a)	Effect of Concentration	107
		4.1.2 (b)	Effect of Temperature	109
		4.1.2 (c)	Effect of Relative Humidity	111
4.2	Model	2 (Mechani	sm with Series Reaction Steps)	112
	4.2.1	Model Va	lidation	112
	4.2.2	Reaction	Mechanism	123
		4.2.2 (a)	Absorption of SO ₂ (reaction 1)	126
		4.2.2 (b)	Selective Catalytic Oxidation of SO ₂ (reaction 5)	127
		4.2.2 (c)	Selective Catalytic Oxidation of NO (reaction 3)	128
		4.2.2 (d)	Regeneration of CeO_x (reaction 4)	129
		4.2.2 (e)	Radical Chain Reactions (reaction 6-11)	129

		4.2.2 (f)	Decomposition of NO_2 (reaction 15)	130	
		4.2.2 (g)	Formation of Solid Products (reaction 1, 13 & 14)	131	
		4.2.2 (h)	Crystallization of Ca(OH) ₂ (reaction 2)	131	
	4.2.3	Effect of V	Variables	132	
		4.2.3 (a)	Effect of Concentration	133	
		4.2.3 (b)	Effect of Temperature	134	
		4.2.3 (c)	Effect of Relative Humidity	135	
	4.2.4	Competiti	ve Reactions	136	
	4.2.5	Rate Controlling Step			
	4.2.6	Activation	n Energy	151	
	4.2.7	Deactivati	on of Sorbent	151	
	4.2.8	Deactivati	on of Radical Chain Reactions	159	
		4.2.8 (a)	Production of OH Radical	159	
	4.2.9	Effectiven	ess Factor	162	
		4.2.9 (a)	Internal Effectiveness Factor (IEF)	162	
		4.2.9 (b)	Overall Effectiveness Factor (OEF)	167	
		4.2.10	Structure and reactivity	172	
4.3	Compa	rison of Mo	del 1 and Model 2	174	
	4.3.1	Model 3 (I	Reconstruction of Model 1 with Mechanism)	175	
	4.3.2	Rate Cont	rolling Step	182	
		4.3.2 (a)	Thiele modulus under different initial SO ₂ concentrations	182	
		4.3.2 (b)		183	
		4.3.2 (c)	Thiele modulus under different operating temperatures	184	
		4.3.2 (d)	Thiele modulus under different relative humidity	185	
	4.3.3	Effectiven	ess Factor	185	
		4.3.3 (a)	Internal Effectiveness Factor	185	
		4.3.3 (b)	Overall Effectiveness Factor	186	
	4.3.4	Deactivati	on of Sorbent	187	
		4.3.4 (a)	Conversion of CaO	188	
		4.3.4 (b)	Production of CaSO ₄ 2H ₂ O	188	

CHA	APTER 5 – CONCLUSIONS AND RECOMMENDATIONS	190
5.1	Conclusions	190
5.2	Recommendations	193
REF	ERENCES	195
APP	ENDICES	
APP	ENDIX A1	206
APP	ENDIX A2	207
APP	ENDIX A3	208
APP	ENDIX A4	209
APP	ENDIX B1	210
APP	ENDIX B2	211
APP	ENDIX B3	212
APP	ENDIX B4	213
APP	ENDIX B5	214
APP	ENDIX B6	220
APP	ENDIX C1	CD
APP	ENDIX C2	CD
APP	ENDIX D	233
APP	ENDIX E	235
APP	ENDIX F1	CD
APP	ENDIX F2	CD
APP	ENDIX F3	CD
APP	ENDIX F4	CD
APP	ENDIX F5	CD
APP	ENDIX F6	CD
APP	ENDIX F7	CD
APP	ENDIX G	CD
APP	ENDIX H	CD
APP	ENDIX I	CD
APP	ENDIX J	CD

APPENDIX K	CD
APPENDIX L1	CD
APPENDIX L2	CD
APPENDIX L3	CD
APPENDIX L4	CD
APPENDIX L5	CD
APPENDIX L6	CD
APPENDIX M1	CD
APPENDIX M2	CD
APPENDIX M3	CD
APPENDIX M4	CD
APPENDIX M5	CD
APPENDIX M6	CD
APPENDIX N1	CD
APPENDIX N2	CD
APPENDIX O1	CD
APPENDIX O2	CD
APPENDIX P1	CD
APPENDIX P2	CD
APPENDIX R	CD
APPENDIX Q	CD

LIST OF PUBLICATIONS	252
----------------------	-----

LIST OF TABLES

Page

Table 1.1	Exhaust flue gas generated by combustion of fossil fuels (In SI metric units and in USA customary units).	3
Table 1.2	Various threshold limits for SO ₂ and NO _x .	4
Table 1.3	Physical and chemical properties of SO ₂ .	5
Table 1.4	Physical and chemical properties of NO.	7
Table 2.1	Summary of mathematical model available for gas-solid reactions.	23
Table 3.1	Boundary condition for different dependent variables used in Model 2.	95
Table 4.1	RMSE for models with various combination and its corresponding kinetic parameters.	104
Table 4.2	Reactions and stoichoimetric equations for $DeSO_x/DeNO_x$ mechanism proposed by Model 2.	114
Table 4.3	Operating condition in each experimental run of (Model 2).	115
Table 4.4	Corresponding reaction and diffusion constants in Model 2.	116
Table 4.5	Reaction stages of flue gas removal in Model 2.	126
Table 4.6	Sequential coding of dominant reaction for flue gas removal (Model 2).	140
Table 4.7	Thiele modulus value at 5% internal effectiveness factor (Model 2).	147
Table 4.8	Sequential coding of reactions controlled by rate of diffusion (Model 2).	149
Table 4.9	Conversion of Calcium Oxide for Model 2.	154
Table 4.10	Conversion of ceria oxide for Model 2.	155
Table 4.11	Production of Calcium Hydroxide for Model 2.	156
Table 4.12	Production of Gypsum for Model 2.	157

Table 4.13	Production of OH Radical for Model 2.	160
Table 4.14	Internal Effectiveness Factor (IEF) for Model 2.	165
Table 4.15	Overall Effectiveness Factor (OEF) for Model 2.	170
Table 4.16	Corresponding reaction and diffusion constants in Model 3.	181
Table 4.17	Operating condition in each experimental run for Model 3.	182
Table 4.18	Breakthrough Time of Thiele Modulus under Different SO ₂ Concentrations (Model 3).	183
Table 4.19	Breakthrough Time of Thiele Modulus under Different NO Concentrations (Model 3).	184
Table 4.20	Breakthrough Time of Thiele Modulus under Different Temperatures (Model 3).	184
Table 4.21	Breakthrough Time of Thiele Modulus under Different Relative Humidity (Model 3).	185
Table 4.22	Internal Effectiveness Factor for Model 3.	186
Table 4.23	Overall Effectiveness Factor for Model 3.	187
Table 4.24	Conversion of CaO for Model 3.	188
Table 4.25	Production of Gypsum for Model 3.	189
Table 5.1	Comparison of various models.	192
Table D.1	Physical properties of Model 1.	233
Table D.2	Physical properties of Model 2.	233

LIST OF FIGURES

Page

Figure 2.1	Schematic representative of structural model.	33
Figure 2.2	Unsteady-State Heat Conduction in a One-dimensional Slab.	40
Figure 3.1	Packed-bed reactor.	73
Figure 3.2	Mass transfer and reaction steps for a catalyst pellet.	78
Figure 3.3	Flow chart for the methodology of solution.	86
Figure 3.4	A portion of the two-dimensional grid system (Model 1).	89
Figure 3.5	Solution steps of partial differential equations (Model 1).	91
Figure 3.6	A portion of the two-dimensional grid system (Model 2).	93
Figure 3.7	Solution steps of partial differential equations (Model 2).	96
Figure 3.8	Schematic illustration of flowchart for Model 1 and 2.	97
Figure 4.1	Experimental and simulated desulfurization breakthrough curves for various SO_2 initial concentrations (ppm). Reaction temperature = $70^{\circ}C$, relative humidity = 60% and NO concentration = 500 ppm (Model 1).	105
Figure 4.2	Experimental and simulated desulfurization breakthrough curves for various NO initial concentrations (ppm). Reaction temperature = 70° C, relative humidity = 60% and SO ₂ concentration = 2000 ppm (Model 1).	105
Figure 4.3	Experimental and simulated desulfurization breakthrough curves for various reaction temperatures (°C). SO ₂ initial concentration = 2000 ppm, NO initial concentration = 500 ppm and relative humidity = 60% (Model 1).	106
Figure 4.4	Experimental and simulated desulfurization breakthrough curves for various relative humidity (%). Reaction temperature = 80° C, SO ₂ initial concentration = 2000 ppm, and NO initial concentration = 500 ppm (Model 1).	106
Figure 4.5	Parity plot for experimental vs. simulated data points (Model 1).	107
Figure 4.6	The duration of time the sorbent could maintain 80% removal of initial SO_2 concentration at various SO_2 initial concentrations and	108

various NO initial concentrations. Reaction temperature = 70° C and relative humidity = 60% (Model 1).

- Figure 4.7 The duration of time the sorbent could maintain 80% removal of 110 the initial SO_2 concentration at various relative humidity and various reaction temperatures. SO_2 initial concentration = 1500 ppm and NO initial concentration = 500 ppm (Model 1).
- Figure 4.8 Experimental (*) and simulated (-) breakthrough curves for NO 117 removal at various initial SO₂ concentration (a) 0 ppm (b) 500 ppm (c) 1000 ppm (d) 2000 ppm (e) 2500 ppm. Reaction temperature = 87° C, Relative humidity = 50%, and NO initial concentration = 500 ppm (Model 2).
- Figure 4.9 Experimental (*) and simulated (-) breakthrough curves for SO₂ 118 removal at various initial NO concentration (a) 0 ppm (b) 500 ppm (c) 1000 ppm (d) 1500 ppm (e) 2000 ppm. Reaction temperature = 87° C, Relative humidity = 50%, and SO₂ initial concentration = 2000 ppm (Model 2).
- Figure 4.10 Experimental (*) and simulated (-) breakthrough curves for SO₂ 119 removal at various operating temperatures (a) 70° C (b) 87° C (c) 100° C (d) 120° C (e) 150° C (f) 170° C. Relative humidity = 50%, SO₂ initial concentration = 2000 ppm, and NO initial concentration = 500 ppm (Model 2).
- Figure 4.11 Experimental (*) and simulated (-) breakthrough curves for NO 120 removal at various operating temperatures (a) 70° C (b) 87° C (c) 100° C (d) 120° C (e) 150° C (f) 170° C. Relative humidity = 50%, SO₂ initial concentration = 2000 ppm, and NO initial concentration = 500 ppm (Model 2).
- Figure 4.12 Experimental (*) and simulated (-) breakthrough curves for SO₂ 121 removal at various relative humidity (a) 0% (b) 30% (c) 50% (d) 60% (e) 70% (f) 80%. Reaction Temperature = 87°C, SO₂ initial concentration = 2000 ppm, and NO initial concentration = 500 ppm (Model 2).
- Figure 4.13 Experimental (*) and simulated (-) breakthrough curves for NO 122 removal at various relative humidity (a) 0% (b) 30% (c) 50% (d) 60% (e) 70% (f) 80%. Reaction Temperature = 87°C, SO₂ initial concentration = 2000 ppm, and NO initial concentration = 500 ppm (Model 2).

Figure 4.14	Parity plot for	experimental	vs. simulated dat	ta points (Mode	el 2). 12	3
-------------	-----------------	--------------	-------------------	-----------------	-----------	---

- Figure 4.15 Outlook of CeO₂/CaO/RHA mixed sorbent particle. 125
- Figure 4.16 Selectivity of CeO_2 , HO_2 and OH toward NO for run 1. 139

- Figure 4.17 Experimental and simulated desulfurization breakthrough curves 178 for various SO_2 initial concentrations (ppm). Reaction temperature = $70^{\circ}C$, relative humidity = 60% and NO concentration = 500 ppm (Model 3).
- Figure 4.18 Experimental and simulated desulfurization breakthrough curves 178 for various NO initial concentrations (ppm). Reaction temperature $= 70^{\circ}$ C, relative humidity = 60% and SO₂ concentration = 2000 ppm (Model 3).
- Figure 4.19 Experimental and simulated desulfurization breakthrough curves 179 for various reaction temperatures ($^{\circ}$ C). SO₂ initial concentration = 2000 ppm, NO initial concentration = 500 ppm and relative humidity = 60% (Model 3).
- Figure 4.20 Experimental and simulated desulfurization breakthrough curves 179 for various relative humidity (%). Reaction temperature = 80° C, SO₂ initial concentration = 2000 ppm, and NO initial concentration = 500 ppm (Model 3).
- Figure 4.21 Parity plot for experimental vs. simulated data points (Model 3). 180
- Figure A.1 XRD spectra of (a) sorbent E1 (corresponding sorbent selected in 207 Model 2), (b) sorbent D14, (c) sorbent E2 and (d) sorbent D34 (Dahlan et al., 2010).
- Figure A.2 FTIR spectra of spent sorbent after subjected to simulated flue gas 208 (a) in the absence of NO, (b) in the presence of 1000 ppm NO and (c) 500 ppm NO at fixed concentration of SO₂ (2000 ppm).
- Figure E.1 Selectivity of CeO₂, HO₂ and OH toward NO for run 1 235
- Figure E.2 Selectivity of CeO₂, HO₂ and OH toward NO for run 2 235
- Figure E.3 Selectivity of CeO₂, HO₂ and OH toward NO for run 3 236
- Figure E.4 Selectivity of CeO₂, HO₂ and OH toward NO for run 4 236
- Figure E.5 Selectivity of CeO₂, HO₂ and OH toward NO for run 5 237
- Figure E.6Selectivity of CaO, CeO2 and OH toward SO2 for run 6237
- Figure E.7 Selectivity of CaO, CeO₂ and OH toward SO₂ for run 7 238
- Figure E.8 Selectivity of CaO, CeO₂ and OH toward SO₂ for run 8 238
- Figure E.9 Selectivity of CaO, CeO₂ and OH toward SO₂ for run 9 239
- Figure E.10 Selectivity of CaO, CeO_2 and OH toward SO₂ for run 10 239

Figure E.11	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 11	240
Figure E.12	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 12	240
Figure E.13	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 13	241
Figure E.14	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 14	241
Figure E.15	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 15	242
Figure E.16	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 16	242
Figure E.17	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 17	243
Figure E.18	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 18	243
Figure E.19	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 19	244
Figure E.20	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 20	244
Figure E.21	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 21	245
Figure E.22	Selectivity of CeO_2 , HO_2 and OH toward NO for run 22	245
Figure E.23	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 23	246
Figure E.24	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 24	246
Figure E.25	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 25	247
Figure E.26	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 26	247
Figure E.27	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 27	248
Figure E.28	Selectivity of CaO, CeO ₂ and OH toward SO ₂ for run 28	248
Figure E.29	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 29	249
Figure E.30	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 30	249
Figure E.31	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 31	250
Figure E.32	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 32	250
Figure E.33	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 33	251
Figure E.34	Selectivity of CeO ₂ , HO ₂ and OH toward NO for run 34	251

LIST OF PLATES

Page

Plate A.1 SEM micrographs of spent sorbent after subjected to relative 206 humidity of (a) 30% and (b) 70% (100x and 5000x magnifications).

LIST OF ABBREVIATIONS

ACGIH	American Conference of Governmental Industrial Hygienists
ADP	Adenosine diphosphate
AMG	Algebraic Multigrid
API	American Petroleum Institute
BET	Brunauer-Emmett-Teller method
CFA	Coal fly ash
CVFE	Control volume finite element
DeNO _x	Denitrification
DeSO _x	Desulfurization
DWT	Discrete Wavelet Transform
ESP	Electrostatic precipitators
FDM	Finite Difference Method
FEM	Finite element method
FGD	Flue gas desulfurization
FGDN	Flue gas denitrification
FV	Finite volume
FVE	Finite volume element
FVM	Finite Volume Method
Iso	Isothermal
JSM – 35 CF	Model of SEM equipment
MAQG	Malaysian Air Quality Guidelines
MG	Multigrid
MOL	Method of lines
MSc	Master
MSU	Michigan State University
NAAQS	National Ambient Air Quality Standards
Non	Non-isothermal
ODE	Ordinary differential equation
OSHA	Occupational Safety and Health Administration
PDE	Partial differential equation

PEL	Permissible Exposure Limit
PSS	Pseudo steady-state
QSARs	Quantitive structure-activity relationships
RAD-C	Model of XRD equipment
RHA	Rice husk ash
RMSE	Root mean squared error
SI	International System of Units
SCM	Unreacted shrinking core model
SCO	Selective catalytic oxidation
SCR	Selective catalytic reduction
SEM	Scanning electron microscope
SIM	Sharp Interface Model
SCNR	Selective noncatalytic reduction
TLV	Threshold Limit Value
TOF	Turn over frequency
TST	Transition state theory
US	United State
USS	Unsteady-state
VODE	Variable-coefficient Ordinary Differential Equation solver
WHO	World Health Organization
XRD	X-ray diffraction
XRF	X-ray fluorescence

LIST OF SYMBOLS

Α	Reactant A
A_{s}	Transversal bed section in Model 1 (m ²)
A_1	Arbitrary constant in Eq. (3.45)
A_{c}	Cross-sectional area of the tube in Model 2 (m^2)
b	Stoichoimetric coefficient
В	Reactant B
B_1	Arbitrary constant in Eq. (3.45)
С	Order of reaction in Eq. (3.27)
C_{A}	Concentration of gas A
C_{AS}	Concentration of gas A at surface of pellet
$C_{_{NO}}$	Concentration of NO (mol/m ³)
C_{so}	Concentration of SO ₂ (mol/m ³)
C_s	Concentration of SO ₂ (ppm)
d_{p}	Diameter of spherical particle (m)
D	Coefficient of diffusion (constant, m ² /s)
D_e	Coefficient of diffusion (m^2/s)
D_o	Pre-exponential constant for coefficient of diffusion in Model 2 (m^2/s)
$D_{\scriptscriptstyle AB}$	Gas diffusivity
D_{eo}	Pre-exponential constant for coefficient of diffusion in Model 1 (m^2/s)
E	Activation energy for gas-solid diffusion in Model 2 (J/mol)
E_a	Activation energy for reaction (J/mol)
$E_{\it diff}$	Activation energy for gas-solid diffusion in Model 1 (J/mol)
E_{gas}	Activation energy for gas-phase diffusion (J/mol)
F	Fitting parameter for Eq. (3.25)
F_3	Coefficient of plugging in for Eq. (3.72) (J/mol)
F_5	Coefficient of plugging in for Eq. (3.74) (J/mol)

F_7	Coefficient of plugging in for Eq. (3.75) (J/mol)
g	Order of reaction in Eq. (3.24)
k	Rate constant (m/s)
k_{g}	Rate constant for gas phase (m/s)
k_{go}	Pre-exponential constant for rate constant of gas phase (m/s)
k _o	Pre-exponential constant for rate constant (m/s)
L_{o}	Length of reactor (m)
т	Order of reaction in Eq. (3.22)
М	Molecular weight (g/gmol)
n	Flow rate of feed gas (mol/s)
Р	Solid product
r	Pore radius (m)
r_A	Reaction rate of gas A (mol/m ² .s)
$r_{A}^{''}$	Reaction rate of gas A (mol/m ² .s)
r _s	Reaction rate $(mol/m^2.s)$
R	Specific gas constant (J/mol.K)
Re	Reynolds number
RH	Relative humidity
S	Solid particle
Sc	Schmidt number
S_{e}	Specific surface area (m^2/g)
Sh	Sherwood number
t	Reaction time (s)
U	Superficial molar average velocity through the bed (m/s)
V_{R}	Volume of reactor (m ³)
W	Weight of sorbent (g)
X	Conversion
Y	Dimensionless SO ₂ concentration
Ζ.	Length position (m)
Ζ	Dimensionless length position
Е	Porosity

ρ	Density of gas (kg/m ³)
τ	Tort (s)
$ ho_c$	Density of sorbent CeO ₂ /CaO/RHA (kg/m ³)
γ	Surface heterogeneity parameter (J/mol)
γ_o	Pre-exponential constant (J/mol)
arphi	Dimensionless variable
λ	Dimensionless variable
ϕ	Thiele modulus
η	Internal effectiveness factor
Ω	Overall effectiveness factor
\mathcal{E}_{b}	Porosity of reaction bed in Model 2
\mathcal{U}_o	Flow rate (m^3/s)
υ	Kinematic viscosity (m ² /s)
α	Pre-exponential constant
$ ho_{\scriptscriptstyle B}$	Density of sorbent CaO/CaSO ₄ /CFA (mol/m ³)

REFERENCES

- Afroz, R., Hassan, M.N. and Ibrahim, N.A. (2003). Review of air pollution and health impacts in Malaysia. *Environmental Research* **92**, 71-77.
- Alaei, B. and Petersen, S.A. (2007). Geological modelling and finite difference forward realization of a regional section from the Zagros fold-and-thrust belt. *Petroleum Geoscience* **13**, 241-251.
- Aris, R. (1972). Mobility, permeability, and the pseudo-steady-state hypothesis. *Mathematical biosciences* **13**, 1-8.
- Åström, K.J. and Eykhoff, P. (1971). System identification-A survey. *Automatica* 7, 123-162.
- Ausman, J.M. and Watson, C.C. (1962). Mass transfer in a catalyst pellet during regeneration. *Chemical Engineering Science* **17**, 323-329.
- Bai, Y., Li, Y., Wu, S., Liu, P., Gao, X., Luo, Z. & Cen, K. (2009). Simultaneous absorption of SO2 and NO from flue gas with CaCO3 and liquid phase oxidation. *Huanjing Kexue Xuebao / Acta Scientiae Circumstantiae* 29(3), 505-510.
- Bajaj S., Sambi S.S. and Madan A.K. (2004a). Predicting anti-HIV activity of phenethylthiazolethiourea (PETT) analogs: computational approach using Wiener's topochemical index. J Mol Struct (THEOCHEM) 684, 197-203.
- Bajaj S., Sambi S.S. and Madan A.K. (2004b). Predicting of carbonic anhydrase activation by tri-/tetrasubstitued-pyridinium-azole compounds: a computational approach using novel topochemical descriptor. QSAR Comb Sci 23, 506-514.
- Bank, R.E., Dupont, T.F. and Yserentant, H. (1988). The hierarchical basis multigrid method. *Numerische Mathematik* **52**, 427-458.
- Bares, J., Marecek, J., Mocek, K. and Erdos, E. (1970). Kinetics of the reaction between the solid medium carbonate and the gaseous sulphur dioxide. III. Study in an integral fixed-bed reactor. *Collection Czechoslov. Chem. Comm.* 35, 1628-1641.

- Baukal, C.E. Jr. (2004). *Industrial Combustion Pollution and Control*. New York: Marcel Dekker.
- Bausach, M., Pera-Titus, M., Fité, C., Cunill, F., Izquierdo, J.-., Tejero, J. & Iborra, M. (2005). Kinetic modeling of the reaction between hydrated lime and SO₂ at low temperature. *AICHE Journal* **51**(5), 1455-1466.
- Bhattacharya, A.P., Prakash, S. & Sanyal, S. (1987). Kinetics of calcium oxide sulphur oxides water system. *Indian Journal of Environmental Protection* **7**(1), 34-36.
- Boudreau, B.P. (1996). A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. *Computers and Geosciences* 22, 479-496.
- Cai, W. and Wang, J. (1996). Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs. SIAM Journal on Numerical Analysis 33, 937-970.
- Calvelo, A. and Cunningham, R.E. (1970). Criterion of applicability of the moving boundary model. *Journal of Catalysis*, **17**(2), 143-150.
- Chemical and Engineering News (2006). [Online]. [Accessed 16th December 2009]. Available from World Wide Web: <u>http://pubs.acs.org/cen/coverstory/84/pdf/8428production.pdf.</u>
- Chorkendorff, I., Niemantsverdriet, J.W. (2007). Concepts of Modern Catalysis and Kinetics. Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
- Christopher-Chia, K.C., Lee, K.T., Fernando, W.J.N., Bhatia, S. & Mohamed, A.R. (2005). Modeling and simulation of flue gas desulfurization using CaO/CaSO4/coal fly ash sorbent. *Journal of Chemical Engineering of Japan* 38(6), 391-396.
- Constantinides, A. & Mostoufi, N. (1999). Numerical Methods for Chemical Engineers with Matlab Applications. USA: Prentice Hall.
- Courtois, X., Bion, N., Marécot, P. and Duprez, D. (2007). Chapter 8 The role of cerium-based oxides used as oxygen storage materials in DeNOx catalysis.
- Cutlip, M. B., and Shacham, M. (1999). *Problem Solving in Chemical Engineering* with Numerical Methods. New Jersey: Prentice Hall.

- Dahlan, I., Lee, K.T., Kamaruddin, A.H. and Mohamed, A.R. (2009). Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal. *Journal of hazardous materials* 166, 1556-1559.
- Dahlan, I., Ahmad, Z., Fadly, M., Lee, K.T., Kamaruddin, A.H. & Mohamed, A.R. (2010). Parameters optimization of rice husk ash (RHA)/CaO/CeO2 sorbent for predicting SO2/NO sorption capacity using response surface and neural network models. *Journal of hazardous materials*.
- Dalpasquale, V.A., Sperandio, D., Monken e Silva, L.H. & Kolling, E. (2008). Fixed-bed drying simulation of agricultural products using a new backward finite difference scheme. *Applied Mathematics and Computation* 200, 590-595.
- Dalton, S.M. (1990). State-of-the-art of flue gas desulfurization technologies. Proceeding. Power Gen'90, Orlando, FL, December 1990.
- de Nevers, N. (2000). *Air Pollution Control Engineering*, 2nd edn. Whitehouse Station: McGraw-Hill.
- Diffenbach, R.A., Hilterman, M.J., Frommell, E.A., Booher, H.B. & Hedges, S.W. (1991). Characterization of calcium oxide-fly ash sorbents for SO2 removal. *Thermochimica Acta* **189**(1), 1-24.
- DoĞu, T. (1981). The Importance of Pore Structure and Diffusion in the Kinetics of Gas-Solid Non-catalytic Reactions: Reaction of Calcined Limestone with SO2. *The Chemical Engineering Journal* 21, 213-222.
- Dunn, J.P., Stenger, H.G. & Wachs, I.E. (1999). Molecular structure-reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts. *Catalysis today* **53**, 543-556.
- Dureja, H. and Madan, A.K. (2007). Topochemical models for the prediction of poly(ADP-ribose) polymerase inhibitory activity of indole-1-ones. *Medicinal Chemistry Research* **16**, 15-27.
- Eddings, E.G. and Sohn, H.Y. (1993). Simplified treatment of the rates of gas-solid reactions involving multicomponent diffusion. *Industrial and Engineering Chemistry Research*, **32**(1), 42-48.
- Eichwald, O., Yousfi, M., Hennad, A. and Benabdessadok, M.D. (1997). Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the

analysis of NO reduction from flue gases. *Journal of Applied Physics* 82, 4781-4794.

- Fogler, H.S. (1992). Elements of chemical reaction engineering. United States: Prentice-Hall Inc.
- Garea, A., Herrera, J.L., Marques, J.A. & Irabien, A. (2001). Kinetics of dry flue gas desulfurization at low temperatures using Ca(OH)₂: competitive reactions of sulfation and carbonatin. *Chemical Engineering Science* **56**, 1387-1393.
- Garea, A., Viguri, J.R. and Irabien, A. (1997). Kinetics of flue gas desulphurization at low temperatures: Fly ash/calcium (3/1) sorbent behaviour. *Chemical Engineering Science* **52**, 715-732.
- Georgakis, C. and Aris, R. (1975). Diffusion, reaction and the pseudo-steady-state hypothesis. *Mathematical biosciences* **25**, 237-258.
- Granite, E.J., Pennline, H.W. and Hoffman, J.S. (1999). Effects of photochemical formation of mercuric oxide. *Industrial and Engineering Chemistry Research* 38, 5034-5037.
- Gray, S. & Henderson (1974). Land use and water resources in temperate and tropical climates : H.C. Pereira. Cambridge University Press, London and New York, N.Y., 1973, pp. 246.
- Gupta, P. and Saha, R.K. (2004). Analysis of gas-solid noncatalytic reactions in porous particles: Finite volume method. *International Journal of Chemical Kinetics* **36**, 1-11.
- Gupta, P. and Saha, R.K., 2003(a). Mathematical modeling of noncatalytic fluidsolid reactions - Generalized mathematical modeling of fluid-solid noncatalytic reactions using finite volume method: Isothermal analysis. *Journal* of Chemical Engineering of Japan **36**, 1308-1317.
- Gupta, P. and Saha, R.K., 2003(b). Mathematical modeling of noncatalytic fluidsolid reactions - Generalized mathematical modeling of fluid-solid noncatalytic reactions using finite volume method: Nonisothermal analysis. *Journal of Chemical Engineering of Japan* 36, 1298-1307.
- Hall, Lowell H. and Kier, Lemont B. (1976). *Molecular connectivity in chemistry and drug research*. Boston: Academic Press. ISBN 0-12-406560-0.

- Han, Y.-., Ueda, W. & Moro-Oka, Y. (1999). Activity control by structural design of multicomponent Scheelite-type molybdate catalysts for the selective oxidation of propene. *Journal of Catalysis* 186(1), 75-80.
- Han, K., Lu, C., Cheng, S. Zhao, G., Wang, Y., Zhao, J. (2005). Effect of characteristics of calcium-based sorbents on the sulfation kinetics. *Fuel* 84, 1933-1939.
- Hartman, M. and Trnka, O. (1993). Reaction between calcium oxide and surface area of their calcines. *Chemical Engineering Science* **49**, 615-624.
- Heineken, F.G., Tsuchiya, H.M. and Aris, R. (1967). On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. *Mathematical biosciences* **1**, 95-113.
- Hendrik, T., Todeschini, Roberto, Viviana, C., Raimund, M., Hugo, K. (2002). Handbook of Molecular Descriptors. Weinheim: Wiley-VCH.
- Hiptmair, R. (1999). Multigrid method for Maxwell's equations. SIAM Journal on Numerical Analysis **36**, 204-225.
- Hiroaki, T., Tmohiro, I., Tsutomu, U., Hideshi, H. & Hideaki, K. (1995). Highly active absorbent for SO₂ removal prepared from coal fly ash. *Ind. Eng. Chem. Res.*, **34**(4), 1404-1411.
- Ishida, M. and Wen, C.Y. (1968). Effectiveness factors and instability in solid-gas reactions. *Chemical Engineering Science* 23, 125-137.
- Ishizuka, T., Tsuchiai, H., Murayama, T., Tanaka, T. & Hattori, H. (2000). Preparation of active absorbent for dry-type flue gas desulfurization from calcium oxide, coal fly ash, and gypsum. *Industrial and Engineering Chemistry Research* 39(5), 1390-1396.
- Izquierdo, J.F., Fite, C., Cunill, F., Iborra, M. & Tejero, J. (2000). Kinetic study of the reaction between sulfur dioxide and calcium hydroxide at low temperature in a fixed-bed reactor. *Journal of hazardous materials* **B76**, 113-123.
- Jia, Z., Liu, Z. & Zhao, Y. (2007). Kinetics of SO₂ removal from flue gas on CuO/Al₂O₃ sorbent-catalyst. *Chem, Eng. Technol* **30**(9), 1211-1227.

- Jia, L., Song, H., Fang, W., Li, Q., Gao, J., Li, J. & Zhang, Q. (2010). Removal of SO₂ at low temperature using dead Bacillus licheniformis. *Fuel* 89(3), 672-676.
- Jiang, X.D., Li, R., Qiu, R. (2006). Kinetic model of non-thermal plasma flue gas desulfurization in a wet reactor. *Chemical Engineering Journal* **116**, 149-153.
- Johnson, S.H. & Hindmarsh, A.C. (1983). Numerical dynamic simulation of solidfluid reactions in isothermal porous spheres. *Journal of computational physics* **52**(3), 503-523.
- Jozewicz, W. & Rochelle, G.T., (1986). Fly ash recycle in dry scrubbing. Environ. Prog. 5, 219-223.
- Jung, B.H. and Kumar Sarkar, T. (2001).Time-domain electric-field integral equation with central finite difference. *Microwave and Optical Technology Letters* **31**, 429-435.
- Kakaras, E. & Giannakopoulos, D. (1995). Modeling of flue gas desulphurization using dry additives. *Chemical Engineering and Processing* **34**, 421-432.
- Karatepe, N., Ersoy-Mericboyu, A., Yavuz, R. & Kucukbayrak S. (1999). Kinetic model for desulphurization at low temperatures using hydrated sorbent. *Thermochimica Acta* 335(1-2), 127-134.
- Kiely, G. (1997). Environmental Engineering. London: McGraw-Hill.
- Krishna, K., Bueno-Lopez, A., Makkee, M. & Moulijn, J.A. (2007). Potential rareearth modified CeO₂ catalysts for root oxidation part II: Characterization and catalytic activity with NO + O₂. *Applied catalysis B: Environmental* **75**, 201-209.
- Kuropka, J. (2008). Simultaneous desulphfurisation and denitrification of flue gases. *Environment Protection Engineering* **34**(4), 187-195.
- Lacey, D.T., Bowen, J.H. and Basden, K.S. (1965). Theory of noncatalytic gas-solid reactions. *Industrial and Engineering Chemistry Fundamentals* **4**, 275-281.
- Levenspiel, O. (1999). Chemical Reaction Engineering. United States: John Wiley & Sons.

- Li, Y., Qi, H. You, C., Xu, X. (2007). Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures. *Fuel* **86**, 785-792.
- Liu, C.-. & Shih, S.-. (2004). Kinetics of the reaction of iron blast furance slag/hydrated lime sorbents with SO2 at low temperatures: Effects of sorbent preparation conditions. *Chemical Engineering Science* **59**(5), 1001-1008.
- Liu, C.-. & Shih, S.-. (2008). Kinetics of the reaction of hydrated lime with SO₂ at low temperatures: Effects of the presence of CO₂, O₂, and NO_x. *Ind. Eng. Chem. Res.* **47**, 9878-9881.
- Liu, X.-., Zhao, C.-., Wu, S.-. & Qian, X.-. (2002). Experimental study of the desulfurization performance of calcium oxide activated by steam humidification. *Reneng Dongli Gongcheng/Journal of Engineering for Thermal Energy and Power* **17**(1), 10-13+101.
- Ma, S.-., Su, M., Ma, J.-., Jin, X., Sun, Y.-. & Zhao, Y. (2009). Experimental research for simultaneous removal of SO₂ and NO_x by aqueous Oxidation of O₃. *Huanjing Kexue/Environmental Science* **30**(12), 3461-3464.
- Maier, G. & Novati, G. (1990). Extremum theorems for finite-step backwarddifference analysis of elastic-plastic nonlinearly hardening solids. *International Journal of Plasticity* **6**, 1-10.
- Mura, G., Lallai, A. & Olla, P. (1991). On the kinetics of dry desulfurization with calcium oxide. *The Chemical Engineering Journal* **46**(3), 119-128.
- Nayroles, B., Touzot, G. and Villon, P. (1992). Generalizing the finite element method: Diffuse approximation and diffuse elements. *Computational Mechanics* 10, 307-318.
- OSHA/EPA Occupational Chemical Database (2007). [Online]. [Accessed 16th December 2009]. Available from World Wide Web: <u>http://www.osha.gov/web/dep/chemicaldata/#target.</u>
- Patisson, F. and Ablitzer, D. (2000). Research news: Modeling of gas-solid reactions: Kinetics, mass and heat transfer, and evolution of the pore structure. *Chemical Engineering and Technology* 23, 75-79.
- Patisson, F., Francois, M.G. and Ablitzer, D. (1998). A non-isothermal, nonequimolar transient kinetic model for gas-solid reactions. *Chemical Engineering Science* **53**, 697-708.

- Perry, R.H., Green, D.W. (1997). *Perry's Chemical Engineer's Handbook*, 7th edn. Whitehouse Station: McGraw-Hill.
- Qi, H., Li, Y., You, C. and Xu, X. (2007). Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures. *Fuel*, **86**, 785-792.
- Raithby, G.D. and Chui, E.H. (1990). Finite-volume method for predicting a radiant heat transfer in enclosures with participating media. *Journal of Heat Transfer* 112, 415-423.
- Randall, J.L. (2007). Finite difference methods for ordinary and partial differential equations. Philadelphia: Society for Industrial and Applied Mathematics (SIAM).
- Rehmat, A., Saxena, S.C., Land, R. and Jonke, A.A. (1978). Noncatalytic gas-solid reaction with changing particle size: unsteady state heat transfer. *Canadian Journal of Chemical Engineering* 56, 316–322.
- Rehmat, A., Saxena, S.C., Land, R. and Jonke, A.A. (1978). Noncatalytic gas-solid reaction with changing particle size: unsteady state heat transfer. *Canadian Journal of Chemical Engineering* **56**, 316-322.
- Rodriguez, J.A. (2003). Electronic and chemical properties of mixed-metal oxides: Basic principles for the design of DeNOx and DeSOx catalysts. *Catalysis Today* 85, 177-192.
- Samuel, R. (1968). Analytic Syntax by Otto Jespersen. Language 46(2), 442-449.
- Shamardan, A.B. (1990). Central finite difference schemes for nonlinear dispersive waves. *Computers and Mathematics with Applications* **19**, 9-15.
- Shen, J., Smith, J.M. (1965). Diffusional effects in gas solid reactions. *Ind Eng Chem Fund* **4**, 293-310.
- Sohn, H.Y. and Szekely, J. (1972). A structural model for gas-solid reactions with a moving boundary-III. A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. *Chemical Engineering Science*, 27(4), 763-778.
- Stüben, K. (2001). A review of algebraic multigrid. *Journal of Computational and Applied Mathematics* **128**, 281-309.

- Szekely, J. and Evans, J.W. (1970). A structural model for gas-solid reactions with a moving boundary. *Chemical Engineering Science* **25**, 1091-1107.
- Takeda, M., Ina, H. and Kobayashi, S. (1982). Fourier-transform method of Fringepattern analysis for computer –based topography and interferometry. *Journal of the Optical Society of America* **72**, 156-160.
- Thomas, J.M., Thomas, W.J. (1997). Principles and Practice of Heterogeneous Catalysis. New York: VCH Publishers Inc.
- Tischer, R.E. (1991). Furnace and in-duct sorbent injection. Proceeding. Acid rain retrofit seminar: The effective use of lime, Philadelphia, PA; National Lime Association.
- Toole-O'Neil, B. (1998). *Dry Scrubbing Technologies for Flue Gas Desulfurization*. Boston: Kluwer Academic Publishers.
- Tsay, O.T., Ray, W.H. and Szekely, J. (1976). Modeling of hematite reduction with hydrogen plus carbon monoxide mixtures 2. the direct reduction process in a shaft furnace arrangement. *AICHE Journal* **22**, 1072-1079.
- Tsuchiai, H., Ishizuka, T., Ueno, T. Hattori, H. & Kita, H. (1995). Highly active absorbent for SO₂ removal prepared from coal fly ash. *Ind. Eng. Chem. Res.* **34**, 1404-1411.
- Usui, H., Fukuma, H. & Sano, Y. (1983). Fully developed turbulent flow in isoceles triangular ducts. *Journal of Chemical Engineering of Japan*, **16**(1), 13-18.
- Valipour, M.S., Mohamed Hashemi, M.Y. and Saboohi, Y. (2006). Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study. *Advanced Powder Technology* 17, 277-295.
- Vobis, J., Mocek, K., and Erdöss, E. (1981). Contribution to the study of the reaction between the solid sodium carbonate and gaseous sulphur dioxide. *Collection Czechoslov. Chem. Comm.* 46 (1981), 2281–2288.
- Weisz, P.B. and Goodwin, R.D. (1963). Combustion of carbonaceous deposits within porous catalyst particles I. Diffusion-controlled kinetics. *Journal of Catalysis* 2, 397-404.

- Wen, C. Y. (1968). Non-catalytic heterogeneous solid fluid reaction models. Industrial & Engineering Chemistry 60, 34-54.
- Wen, C.Y. and Wang, S.C. (1970). Thermal and diffusional effects in noncatalytic solid gas reactions. *Ind Eng Chem*, 62(8), 30-51.
- Wen, C.Y. and Wei, L.Y. (1970). Simultaneous noncatalytic solid-fluid reactions. *AICHE Journal*, **16**(5), 848-856.
- WHO (2006). *Air Quality Guidelines Global Update 2005*. Geneva: World Health Organization.
- Wiener H. (1947). Correlation of heat of isomerization and difference in heat of vaporization of isomers among paraffin hydrocarbons. *J Am Chem Soc* **69**, 2636-2638.
- Wu, J.C., Fan, L.T. & Erickson, L.E. (1990). Three-point backward finite-difference method for solving a system of mixed hyperbolic-parabolic partial differential equation. *Computers and Chemical Engineering* 14, 679-685.
- Wu, S.R. (2003). A priori error estimates for explicit finite element for linear elastodynamics by Galerkin method and central difference method. *Computer Methods in Applied Mechanics and Engineering* **192**, 5329-5353.
- Yagi, S. and Kunii, D. (1955). Studies on Fluidized-Solids Reactors for Particles with Decreasing Diameters. *Chem. Eng.*, Jpn. 19, 500-506.
- Yan, Y., Peng, X.-. & Wang, B.-. (2003). Investigation on flue gas desulfurization in a circulating fluidized bed. *Zhongguo Dianji Gongcheng Xuebao/Proceedings* of the Chinese Society of Electrical Engineering 23(11), 173-177.
- Yu, K.O., Gillis, P.P. (1981). Mathematical Simulation of Direct Reduction. *Met. Trans. B*, **12B**, 111-120.

Yugeta, E. (2001). Japan's Coal Technology. Japan: Center for Coal Utilization.

Zerroukat, M., Power, H. and Chen, C.S. (1998). A numerical method for heat transfer problems using collocation and radial basis functions. *International Journal for Numerical Methods in Engineering* **42**, 1263-1278.

- Zhang, X., Liu, X.-., Song, K.-. and Lu, M.-. (2001). Least-squares collocation meshless method. *International Journal for Numerical Methods in Engineering* **51**, 1089-1100.
- Zumdahl, S.S. (2005). *Chemical Principles*. Geneva: Houghton Mifflin College Division.

PEMODELAN MATEMATIK BAGI PENYINGKIRAN SERENTAK SO₂ DAN NO DENGAN MENGGUNAKAN BAHAN SERAP YANG DISINTESIS DARIPADA ABU

ABSTRAK

Pemodelan matematik dan penyelidikan gunaan menggabungkan kekuatan daripada matematik gunaan, kajian kinetik dan analisis berangka untuk menerbitkan, menganalisis dan menyelesaikan model matematik bagi masalah yang kompleks. Kesemua teknik ini digunakan dalam kajian ini untuk menyelesaikan satu tindak balas gas pepejal kompleks bagi penyingkiran sulfur dioksida (SO₂) dan nitrogen oksida (NO) daripada gas serombong menggunakan bahan serap yang disintesis daripada abu. Secara umumnya, kompleksiti masalah ini merangkumi tiga peringkat kajian analisis kinetik iaitu makro-, meso- dan mikro-skopik. Model 1 telah dibangunkan berdasarkan satu kadar tindak balas global antara SO₂ dan abu terbang batu $\frac{\text{arang}}{\text{CaO}}$ (bahan serap kering). Secara spesifik, ungkapan fasa gas eksponen, ungkapan fasa pepejal struktur dan model penyusutan inti tanpa tindakbalas yang diubahsuai (SCM) dengan penambahan terma faktor penutupan permukaan $(f(\theta))$ telah digunakan bagi tujuan pembangunan model. Meskipun kombinasi kajian kinetik makro- dan meso-skopik yang diimplementasikan dalam Model 1 memberikan "root mean squared error" (RMSE) yang rendah dengan nilai 4.77% (antara data eksperimen dengan jangkaan), tetapi sisihan data jangkaan yang tinggi pada kandungan kelembapan relatif yang tinggi (pada 70%) telah diperhatikan. Oleh kerana itu, Model 2 yang berdasarkan mekanisma tindak balas yang terdiri daripada 15 tindak balas asas telah dicadangkan untuk dibangunkan bagi mengkaji dengan lebih lanjut proses penyahsulfuran/penyahnitrifikasi (DeSO_x/DeNO_x) serentak oleh bahan serap yang dihasilkan daripada CeO₂/CaO/abu sekam padi pada

aras mikroskopik. Dengan bantuan mekanisma tindak balas yang dicadangkan, Model 2 mendedahkan aspek-aspek tersirat yang tidak boleh dijelaskan oleh model heterogen tipikal (contoh, SCM atau SCM yang diubahsuai) seperti selektiviti tindak balas, modulus Thiele yang mentakrifkan langkah penentu kadar, urutan langkahlangkah tindak balas yang menerangkan proses $DeSO_x/DeNO_x$ dan kedua-dua faktor keberkesanan dalaman dan keseluruhan yang mewakili terma resapan. Nilai RMSE yang munasabah sebanyak 6.50% telah diperolehi bagi Model 2 dengan membandingkan data daripada 34 kajian eksperimen dan melebihi 2514 titik data dengan data jangkaan. Oleh itu, keputusan ini menunjukkan bahawa 15 langkah tindak balas yang dicadangkan dalam mekanisma sebelum ini adalah boleh dipercayai pada tahap keyakinan yang tinggi. Tambahan pula, kestabilan mekanisma tindak balas yang dicadangkan dalam Model 2 diuji dengan membina semula Model 1 dengan menggunakan mekanisma yang sama dan model baru dinamakan Model 3. Model 3 dibangunkan dengan menggunakan langkah dan methodologi yang sama seperti dalam Model 2. Keputusannya, Model 3 didapati dapat menjangkakan data eksperimen dengan nilai RMSE yang lebih kecil iaitu 3.11%. Oleh itu, ini tidak hanya membuktikan bahawa model matematik yang berasaskan mekanisma adalah kaedah yang lebih sesuai dalam mewakili tindak balas heterogen gas pepejal tetapi juga memperkukuhkan lagi kestabilan mekanisma tindak balas yang dicadangkan dalam Model 2. Tambah lagi, Model 3 kini boleh digunakan untuk menjelaskan sisihan data jangkaan yang didapati dalam Model 1 dengan penjelasan sumbatan liang oleh penukaran CaO, pembentukkan CaSO₄.2H₂O dan penghabluran Ca(OH)₂.

MATHEMATICAL MODELING OF SIMULTANEOUS REMOVAL OF SO₂ AND NO USING SORBENT SYNTHESIZED FROM ASH

ABSTRACT

Mathematical modeling and applied analysis combine the strengths of applied mathematics, kinetic studies and numerical analysis to derive, analyze and solve mathematical models of complex problems. These techniques were used in this study for solving a complex heterogeneous gas-solid reaction for the removal of sulfur dioxide (SO_2) and nitrogen oxide (NO) in flue gas using siliceous sorbent. Generally, its complexities encompassed three level of studies; macro-, meso- and micro-scopic kinetic analysis. Model 1 was developed based on a global reaction rate between SO₂ and coal fly ash/CaO/CaSO₄ (dry sorbent). Specifically, exponential gas phase expression, structural solid phase expression and modified un-reacted shrinking core model (SCM) with the inclusion of surface coverage factor $(f(\theta))$ were used for model development. Although the combinations of macro- and meso-scopic kinetic study implemented in Model 1 was found to give low root mean squared error (RMSE) of 4.77% (between experimental and predicted data), but strong discrepancy of data prediction at high relative humidity (at 70%) was observed. Therefore, Model 2 was subsequently developed based on a proposed reaction mechanism which consists of 15 elementary reactions in order to further study the microscopic level of simultaneous desulfurization/denitrificantion (DeSO_x/DeNO_x) process using sorbent synthesized from CeO₂/CaO/rice husk ash. With the help of the proposed reaction

mechanism, Model 2 unravels some hindering aspects in which typical heterogeneous models (i.e. SCM or modified SCM) are unable to explain such as selectivity of reaction, Thiele modulus that defines rate limiting step, sequence of reaction steps that depicts DeSO_x/DeNO_x processes and both internal and overall effectiveness factors that re-present diffusion-dependence term. An acceptable RMSE value of 6.50% was obtained for Model 2 by comparing data from 34 experimental runs and over 2514 data points with predicted data. Thus, this result assures that the 15 reaction steps proposed in aforementioned mechanism is truly reliable at a very high confidence level. In addition, the stability of the reaction mechanism proposed in Model 2 was tested by reconstructing Model 1 with similar mechanism and naming it Model 3. Model 3 was developed using the same procedures and methodology applied in Model 2. As the result, Model 3 was able to predict the experimental data with a smaller RMSE value of 3.11%. Therefore, this does not only proved that the mechanism-based mathematical model is a better method in expressing the complex heterogeneous gas solid reaction but also inevitably affirms the stability of the reaction mechanism proposed in Model 2. In addition, Model 3 was then able to explain the data prediction discrepancy found in Model 1 that is because of pores plugging due to the conversion of CaO, formation of CaSO₄.2H₂O and crystallization of Ca(OH)₂.

LIST OF PUBLICATIONS

Journal:

Henry, F., Lee, K.T., Fernando, N. & Mohamed, A.R. Kinetic model of coal fly ash/Ca based sorbent for flue gas desulphurization at low temperatures. *Journal of Brazilian Chemical Engineering* (Submitted)

Henry, F., Lee, K.T., Fernando, N. & Mohamed, A.R. Mathematical modeling and mechanism study of simultaneous removal of SO₂ and NO using sorbent synthesized from CeO₂/CaO/Rice Husk Ash (RHA). *American Institute of Chemical Engineers* (Submitted)

CHAPTER ONE

INTRODUCTION

Flue gas is a gas that exits to the atmosphere via a duct in a chimney for smoke and waste gases. Quite often, it refers to the combustion exhaust gas produced at power plants. Its compositions will usually contain significant amount of N₂, O₂, CO_2 and water vapor, but also pollutants such as nitric oxides (NO_x), sulfur dioxide (SO₂), and fly ash (Eichwald et al., 1997). For instance, the combustion product gas resulting from the burning of fossil fuels are combusted with ambient air (as differentiated from combustion with pure oxygen) is referred. Since dry ambient air contains roughly (by volume) 78.08% N₂, 20.95% O₂, 0.93% Ar, 0.038% CO₂, and trace amounts of water vapor, on average around 1% (Granite et al., 1999; Toole-O'Neil, 1998), hence, the largest part of the flue gas from most fossil fuel combustion is uncombusted nitrogen. The next largest part of the flue gas is carbon dioxide which can be as much as 10 to 15 in volume percent or more of the flue gas. This is closely followed by water vapor (in volume) created by the combustion of hydrogen compound in the fuel with atmospheric oxygen. Apart from that, a typical flue gas from the combustion of fossil fuels will also contain some very small amount of nitrogen oxides, sulfur dioxide and particular matter. Nitrogen oxides are derived from nitrogen in ambient air as well as from any nitrogen-containing compounds in the fossil fuel while sulfur dioxide is derived from any sulfurcontaining compounds in the fuels. Particulate matter is composed of very small particles of solid materials and very small liquid droplets which give flue gases their smoky appearance.

Nowadays, a large amount of flue gas that is emitted to the ambient atmosphere comes from steam generators in power plants and process furnaces in large refineries, petrochemical and chemical plants, and incinerators. These industries burn huge amounts of fossil fuels and subsequently release undesired end product as flue gas to ambient atmosphere. **Table 1.1** shows the total amount of flue gas typically generated by burning fossil fuels such as natural gas, fuel oil and coal. The data in **Table 1.1** were obtained by stoichoimetric calculations (Zumdahl, 2005). Besides, it is of interest to note that the total amount of flue gas generated by coal combustion is only 10 percent higher than the flue gas generated by natural gas combustion.

Although environmental problems were not an issue of interest to the world until the last century, some historical events have shown the impact of certain manmade pollutants on human health particularly pollutant present in combustion flue gas. Due to the harmful impact of air pollutants, it must be removed before the flue gas is emitted to the atmosphere. In this regard, many countries in the world have started to impose emission standard toward combustion flue gas. Emissions standards are requirements that set specific limits to the allowable amount of pollutants that can be released to the environment. Many emissions standards focus on regulating pollutants released from industry and power plants. Frequent policy alternatives to emissions standards are technology standards (which mandate the use of a specific technology) and emission trading.

Combustion Data	Fuel Gas	Fuel Oil	Coal
Fuel properties:			0.000
Gross caloric value, MJ/Nm ³	43.01		
Gross heating value, Btu/scf	1,093		
Gross caloric value, MJ/kg	,	43.50	
Gross heating value, Btu/gallon		150,000	
Gross caloric value, MJ/kg		,	25.92
Gross heating value, Btu/pound			11,150
Molecular weight	18		
Specific gravity		0.9626	
Gravity, ^o API		15.5	
Carbon/hydrogen ratio by weight		8.1	
Weight % carbon			61.2
Weight % hydrogen			4.3
Weight % oxygen			7.4
Weight % sulfur			3.9
Weight % nitrogen			1.2
Weight % ash			12.0
Weight % moisture			10.0
Combustion air:			
Excess combustion air, %	12	15	20
Wet exhaust flue gas:			
Amount of wet exhaust gas, Nm ³ /GJ of fuel	294.8	303.1	323.1
Amount of wet exhaust gas, scf/10 ⁶ Btu of fuel	11,600	11,930	12,714
CO_2 in wet exhaust gas, volume %	8.8	12.4	13.7
O_2 in wet exhaust gas, volume %	2.0	2.6	3.4
Molecular weight of wet exhaust gas	27.7	29.0	29.5
Dry exhaust flue gas:			
Amount of dry exhaust gas, Nm ³ /GJ of fuel	241.6	269.3	293.60
Amount of dry exhaust gas, scf/10 ⁶ Btu of	9,510	10,600	11,554
fuel			
CO_2 in dry exhaust gas, volume %	10.8	14.0	15.0
O_2 in dry exhaust gas, volume %	2.5	2.9	3.7
Molecular weight of dry exhaust gas	29.9	30.4	30.7

Table 1.1: Exhaust flue gas generated by combustion of fossil fuels (In SI metric units and in USA customary units) (Zumdahl, 2005)

Note: Nm³ at 0°C and 101.325 kPa, and scf at 60°F and 14.696 psia.

Table 1.2 shows the standards used to regulate the emissions of nitrogen oxides (NO_x) and sulfur oxides. SO₂ and NO have received special attention due to

the fact that these two pollutants have toxic and acidic characteristics. Both of these pollutants have been linked to the formation of acid rain and many other undesirable environmental hazards. In the following section, a more detail description on SO_2 and NO will be given followed by various technologies available for the removal of SO_2 and NO.

Pollutant	Countries/Institutions Coal-fired		Standards
		power plant	(air quality/ambient) (ppm)
		limits (ppm) ¹	
SO_2	Malaysia	350	
	USA	260	
	Australia	70	
	Germany	140	0.021 (annual average) ²
			$0.049 (24 \text{ h average})^2$
	Japan	50-200	
		(plant specific)	
	Belgium	400	
	MAQG ³		0.037 (24 h average)
	WHO^4		0.007 (24 h average)
	_		0.175 (10 min)
	NAAQS ⁵		0.028 (annual average)
			0.128 (24 h average)
	AGGIH-TLV ⁶		2
	OSHA-PEL ⁶		5
NO	ACGIH-TLV ⁶		25
	OSHA-PEL ⁶		25
NO_2	Germany ²		0.024 (24 h average)
	MAQG ³		0.112 (1 h average)
	WHO^4		0.014 (annual average)
	_		0.07 (1 h average)
	NAAQS ⁵		0.035 (annual average)
	ACGGIH-TLV ⁶		3
- 1	OSHA-PEL ⁶	4	5

Table 1.2: Various threshold limits for SO₂ and NO_x.

¹Yugeta (2001); ²Kiely (1997); ³Afroz *et al.* (2003); ⁴WHO (2006); ⁵de Nevers (2000);

⁶OSHA/EPA Occupational Chemical Database (2007).

Note: MAQG (Malaysian Air Quality Guidelines); WHO (World Health Organization); NAAQS (National Ambient Air Quality Standards); ACGIH-TLV (American Conference of Governmental Industrial Hygienists-Threshold Limit Value); OSHA-PEL (Occupational Safety and Health Administration-Permissible Exposure Limit).

1.1 Sulfur Dioxide (SO₂)

Sulfur dioxide (also sulphur dioxide) is the chemical compound with the formula SO₂. It is a gas produced by volcanoes naturally and in various industrial processes by human civilization particularly during combustion of fossil fuel in which its detail information on its properties are listed in **Table 1.3** (Perry and Green, 1997). Since coal and petroleum often contain sulfur compounds, their combustion generates sulfur dioxide. Further oxidation of SO₂, usually in the presence of a catalyst such as NO₂, forms H_2SO_4 , and thus acid rain. This is one of the causes for concern over the environment impact due to the use of these fossil fuels as power sources.

Properties	Value		
Molecular Formula	SO ₂		
Molar mass	64.07 g/mol		
Appearance	Colorless gas		
Density	2.551 g/L (gas)		
	1.46 g/cm ³ (liquid, -10°C)		
Melting Point	-75.5°C, 198 K, -104°F		
Boiling Point	-10.0°C, 263 K, 14°F		
Solubility in water	22.97 g/100 mL (0°C)		
	11.58 g/100mL (20°C)		
	9.4 g/100 mL (25°C)		
Solubility	Very soluble in acetone, methyl isobutyl		
-	ketone, acetic acid, alcohol soluble in		
	sulfuric acid		
Acidity (pKa)	1.81		
Viscosity	$0.403 \text{ cP} (0^{\circ}\text{C})$		

Table 1.3: Physical and chemical properties of SO₂ (Perry and Green, 1997).

Note: Properties were inspected under 1 atm and 25°C

Although SO_2 is the deleterious source that causes acid rain, its role as a main reactant in several useful processes is undeniable. For example, SO_2 is used as a precursor to produce sulfuric acid, a preservative to dry apricots, an antibiotic and antioxidant in winemaking to protect wine from spoilage by bacteria and oxidation, a reductant to decolorize substances, a refrigerant and a reagent or solvent in laboratory solvent that has been widely used for dissolving highly oxidizing salts. Nevertheless, a high concentration of SO_2 that violated the emission standard will cause acid rain, disease, difficulty in breathing and even premature death. Therefore, reduction in emission of such air pollutant is required for industrial operations. In this standpoint, capture and removal of SO_2 is accomplished by devices known as flue gas desulfurization unit or commonly scrubbers.

1.2 Nitric Oxide (NO)

Nitric oxide or nitrogen monoxide is a chemical compound with chemical formula NO. It is a colorless gas and its detail physical and chemical properties of NO are reviewed and listed in **Table 1.4** (Perry and Green, 1997). This gas is an important signaling molecule in the body of mammals, including humans, and is an extremely important intermediate feedstock in the chemical industry. It is also an air pollutant produced by cigarette smoke, automobile engines and power plants. Although NO has relatively few direct uses, it is produced in a massive scale as an intermediate in the Ostwald process during the synthesis of nitric acid from ammonia. For example, in 2005, US alone produced 6M metric tons of nitric acid (Chemical and Engineering News, 2006).

In pharmacology, nitric oxide is considered an anti-anginal drug: it causes vasodilatation, which can help with atherosclerosis by improving blood flow to the heart. However inhaling too much of NO gases will result in direct tissue or vascular collapse associated with septic shock, whereas chronic expression of NO is associated with various carcinomas and inflammatory conditions including juvenile diabetes, multiple sclerosis, arthritis and ulcerative colitis. Hence, monitoring of such deleterious gases in the atmosphere is an ongoing issue that must be given careful attention. The technique used in controlling the emission of NO in power plant is known as flue gas denitrification.

Properties	Value		
Molecular formula	NO		
Molar mass	30.006 g/mol		
Appearance	Colorless gas		
Density	1.269 g/cm^3 (liquid)		
	1.3402 g/L (gas)		
Melting point	-163.6°C, 110 K, -262°F		
Boiling point	-150.8°C, 122 K, -239 °F		
Solubility in water	7.4 ml/100ml (STP)		
Solubility	Soluble in alcohol, CS_2		

Table 1.4: Physical and chemical properties of NO (Perry and Green, 1997).

Note: Properties were inspected under 1 atm and 25°C

1.3 Acid Gas Control Technology

Generally, the technological alternatives to reduce SO_2/NO from combustion process can be grouped into three major categories; pretreatment/pre-combustion control, process & combustion modification, and post-combustion control. In pretreatment control, for instance, sulfur content in fossil fuel is usually removed prior to combustion (fuel cleaning) or fuel with lower content of sulfur (fuel switching) is used to reduce SO_2 emission in power generation. While in process and combustion modification, several strategies can be implemented. One strategy is to use an alternative method for generating the energy needed for daily factory operation, for example to use electrical energy instead of burning fossil fuel. The other alternative is to burn high-sulfur coal in a fluidized bed combustor (where the bed contains limestone particles) instead of using a traditional combustor/boiler.

However, most of these methods for controlling acidic gases emission are not viable alternatives for industrial combustion processes due to economical constraints (in pretreatment control) and the systems are either too complex or still in the development state (in process & combustion modification). As a result, attention is usually focused on SO₂/NO post-treatment methods, which can also be referred as Flue Gas Desulfurization (FGD) and Flue Gas Denitrification processes (FGDN) respectively.

1.3.1 Flue Gas Desulfurization

Lately, international legislation around the world has imposed the need for installing FGD's unit in power plants especially coal-fired power plants to control SO_2 emissions. There are currently many technologies available for FGD and it categorized into three main groups which are dry sorbent injection, semi-dry and wet processes.

1.3.1 (a) Wet Scrubbers (Wet Method)

The wet scrubber process is by far the most common Flue Gas Desulfurization method use today and can achieve a sulfur dioxide removal efficiency rate of 99% (Dalton, 1990). This process involves spraying the flue gas with aqueous slurry of lime (CaO) or limestone (CaCO₃) in a spray tower or absorber. The SO₂ is removed through a series of chemical reactions between the slurry and SO₂ to produce calcium sulfate and calcium sulfite. The resultant slurry has traditionally been disposed off by mixing with fly ash from the power plant and a fixative lime and discarded in a landfill. However if a forced oxidation step is included either in the scrubber process or afterwards, the slurry can be turned entirely into gypsum and can then be sold and utilized in the manufacturing of wallboard, cement, and agricultural soil amendments.

1.3.1 (b) Spray Dry Scrubbers (Semi-Dry Method)

Spray dry scrubbers is the second most common method of Flue Gas Desulfurization, achieving an efficiency rating between 93-97% (Jozewicz and Rochelle, 1986). This method uses a water based sorbent containing lime or calcium oxide that is sometimes referred to as lime milk. This lime slurry is atomized in a reactor vessel in the form of an extremely fine spray of droplets. The heat from the flue gases entering the vessel evaporates the water from the slurry and the newly hydrated lime reacts with SO_2 to form a dry mixture of calcium sulfate/sulfite. The benefits of this process include the elimination of any water treatment process due to complete evaporation. However, this technology is limited to volume of flue gases

produced from power plants in the 200 MW range and requires the use of the more expensive sorbent lime rather than limestone.

1.3.1 (c) Sorbent Injection (Dry Method)

The third method of Flue Gas Desulfurization is the Sorbent Injection method. The Sorbent Injection involves spraying a dry sorbent, usually limestone or hydrated lime (Ca(OH)₂) into the flue gases in the upper part of the furnace. The sorbent reacts with SO₂ and produces gypsum as a byproduct, which is later captured in a fabric filter or via electrostatic precipitators (ESP) together with unused sorbent and fly ash. Nevertheless, efficiency for this process can be as low as 50% (Tischer, 1991). If humidification of the flue gases is added to the process and the sorbent is sprayed further along in the flue gas duct where temperatures have cooled considerably, the sulfur dioxide removal efficiency can be boosted to 80%. The advantages of this method include low capital and operating costs, ease of retrofitting and operating, and the non-requirement to handle slurry or wastewater.

1.3.2 Flue Gas Denitrification

Unlike the removal of SO_2 , the technology available to remove NO is mainly post-combustion. In post-combustion flue gas treatment includes selective catalytic reduction (SCR) and selective noncatalytic reduction (SCNR) (de Nevers, 2000; Baukal, 2004). In SCR process, a gaseous mixture of ammonia (NH₃) and air is injected into an exhaust stream with the presence of a catalyst within a specific temperature range (approximately 230-600°C) (Dahlan et al., 2009). NO and NH₃ will then react on the catalyst surface to form nitrogen and water. The NO removal efficiency depends on the type of catalyst, effective surface area of catalyst, residence time, amount of ammonia added, NO concentration in the flue gas and the usage of the catalyst. In the SCNR process, NH₃ or urea-based sorbents are added into an exhaust system, whereby flue gas temperature is between 870-1200°C (Dahlan et al., 2009). NO will be reduced to nitrogen and water without involving catalyst. The efficiency of this process is a function of the flue gas temperature, residence time and type/amount of reagent used.

1.3.3 Combined Technologies of DeSO_x/DeNO_x

Aimed at reducing both deleterious gases, a so-called combined desulfurization/denitration (DeSO_x/DeNO_x) processes have received great attention recently. Being the utmost advantage, it saves the volume of sorbent by simultaneously removal of both flue gases with single particle compared with conventional SCR/FGD separate systems. Researchers had applied this technology in dry FGD process and study its performance. In one study, the use sorbent prepared from CeO₂/CaO/RHA was investigated (Dahlan et al., 2009). Basically, CeO₂ is a rare earth metal which is classified as catalyst. However, CaO doped with CeO₂ gave it an ability to donate his free oxygen electron rather than use the oxygen from atmosphere during oxidation process. Therefore, CeO₂ exists partly as catalyst and reactant at the same time. Due to the excess oxygen's supply, regeneration step of CeO_x to CeO₂ became feasible and overwhelmed. As the result, CeO₂ will be classified as catalyst rather than a reactant in this study. It is strongly believed that CeO₂ acts as a selective catalytic oxidation (SCO) agent that aggressively oxidized

NO molecule to a less harmful species, NO₂. On the other hand, CaO represents the dry-flue gas desulfurization reagent where it can react with SO₂ and formed a solid product by chemisorptions process. Moreover, additional of RHA into the preparation of the sorbent has unambiguously increased its surface areas greatly. Phenomenon of such steep increment in surface area is attributed to the pozzolanic reaction between CaO and RHA. Although the threshold of aforementioned method is still at the development stage, it has shown much potential to render FGD process in a more effective in cost and removal efficiency compared with conventional dry FGD system.

1.4 Problem Statement

Lately, international legislation around the world has imposed the need for installing FGD's unit in power plants especially coal-fired power plants to control SO₂ emissions. There are currently many technologies available for FGD but the most common commercial technology adopted is the wet-process method with lime stone derivatives as absorbent. However, this technology requires high investment cost that might not be economically viable for small scale power plants. On the other hand, recent studies have shown that calcium based-sorbent prepared from various siliceous materials such as coal fly ash, rice husk ash and oil palm ash can be used effectively to remove SO₂ especially for small scale application. This dry-process was proven to be significantly cheaper and simpler than the current wet-process with less space requirement, easier to retrofit and produces dry solid product, which is easier to handle (Qi *et al.*, 2007). In addition to this, the silicious calcium based dry sorbent can also be easily modified by impregnation metals for the simultaneous

removal of NO. However, lower efficiency for SO_2 removal using these silicious sorbent in dry-process is still hindering this technology from being completely commercialized.

In order to improve the removal efficiency, a combined $DeSO_x/DeNO_x$ technique has been applied to simultaneously remove both deleterious gases of SO₂ and NO by using single particle of sorbent whereas in this study, performances of a sorbent prepared from CeO₂/CaO/RHA were studied. Somehow, these removal processes are predicted to be proceeding in a complex concurrent and consecutive mechanism. Therefore, the mechanism of these strong coupling reactions still remained as a controversial topic and some endless unambiguous postulation. To further facilitate the combined $DeSO_x/DeNO_x$ technique, efforts are required to study the kinetics of this process thoroughly (i.e. study on effect of physical properties such as temperature, concentration and relative humidity toward its reaction rate). With a better understanding regarding the complex synergism, the kinetics could be elucidated in details and computed the output accurately. Therein, optimization steps would be easier and boosting the development of a better sorbent with such knowledge.

1.5 Research Objectives

The main objective of this study is to develop a reaction mechanism for simultaneous removal of SO_2 and NO utilizing dry-type sorbent synthesized from ash. At the same time, the undertaken study aims to achieve the following measurable objectives.

- 1. To develop mathematical model based on a coal fly ash (CFA)/Ca based sorbent for flue gas desulfurization at low temperatures (Model 1).
- To develop mathematical model based on a mixed oxides sorbent synthesized from CeO₂/CaO/Rice Husk Ash (RHA) for simultaneous removal of SO₂ and NO (Model 2).
- To propose a mechanism of elementary reactions for simultaneous removal of SO₂ and NO.
- 4. To study the effect of various parameters affecting sorption capacity of both sorbents (on Model 1 and 2).
- 5. To examine the robustness of the mechanism proposed in Model 2.

1.6 Scope of Study

In this study, two mathematical models were developed based on two different types of sorbents to remove flue gases which are CaO/CaSO₄/CFA and CeO₂/CaO/RHA respectively. Nevertheless, both models are used to provide the frameworks for describing the rates at which a chemical reaction occurs and enables us to relate the rate to a reaction mechanism that illustrates how the molecules react via intermediates to eventual the end product. With this information, the rate can then be related to the macroscopic process parameters such as concentration, pressures and temperatures. Hence, kinetics study provides a tool to link the microscopic world of reacting molecules to the macroscopic world of industrial reaction engineering.

The main objective of this research is to study the kinetic of the reaction between SO_2/NO and silicious sorbent. However it is a very broad field of study that is closely interwoven with numerous other scientific disciplines. This becomes immediately evident if we realize that $DeSO_x/DeNO_x$ process as a phenomenon that encompasses many level of study. The first level of investigation is on reactions at the elementary level involving the breaking of bonds in reactants and the formation of bonds in products. Generally, such analysis is categorized as microscopic kinetic analysis and is the domain of spectroscopy, computational chemistry and kinetics and mechanism on the level of elementary reaction steps.

The next level of study is that of small active particles, with typical dimensions of between 1 and 10 nm (Qi et al., 2007), and inside the pores of support particles which is related to mesoscopic kinetic analysis. For this level, the points of interest are the size, shape, structure and composition of the active particles, in

particular of their surfaces, and how these properties relate to sorption reactivity. This is the domain of sorbent preparation, characterization, testing on the laboratory scale, and mechanistic investigations. Transport phenomena such as the diffusion of molecules inside pores may affect the rate at which products form and become an important consideration at this level. Much academic research as well as exploratory work in industry occurs on this scale.

Lastly, the most common researches in engineering field is the microscopic level in which reactors set up as 25 cm test reactor in the laboratory or the 10 m high reactor vessel in an industrial plant whereas the sorbent forms the heart of the FGD unit (Jiang et al., 2006). Nevertheless catalytic/noncatalytic gas-solid reaction as a discipline is only one of many other aspects of reaction engineering, together with, for example, the design of efficient reactors that are capable of handling high pressure, offer precise control of temperature, enable optimized contact between reactants and catalyst and removal of products, are resistant to corrosion, make optimum use of energy resources, and are safe during operation.

In describing the kinetics of catalytic/noncatalytic reactions on the scale of reactors, extrinsic factors dealing with the mass and heat transport properties of reactants and products through the reactor bed are as important as the intrinsic reactivity of the molecules reacting at the active site. The sorbent's mechanical stability, sensitivity to temperatures, are important in addition to its intrinsic properties such as activity and selectivity. This research will encompass all the three level of study whenever appropriate.

1.7 Organization of the Thesis

This thesis consists of five chapters and each chapter covers different scope of study. Chapter 1 (Introduction) presents a brief introduction on flue gas especially SO_2 and NO. It gives the definition of flue gas, selected certain properties of exhaust gas from combustion, standard of flue gas emission and general information of SO_2 and NO. Apart from that, several techniques of flue gas removal are discussed leading to the problem statement that justifies the basis and rationale on the necessity of this research study followed by the objectives of this research. At the end of this chapter, the overall contents of this thesis are summarized in this thesis layout.

Chapter 2 (Literature Review) elucidates information concerning mathematical modeling of gas-solid reactions. All information given in this chapter is based on the study accomplished by other researchers over the past decade of hard work. It includes some reviews on two types of gas-solid reactions classified as catalytic and noncatalytic reaction. Nevertheless the core of this research accounts on how a mathematical model is developed. Thus, in this chapter, a detail survey on the available model nowadays that defined the gas-solid reaction of flue gas removal and the fundamental of theories involved were discussed as well. Finally, a summary is given to address the background information of this present study and points out some specific problems which is about to be solved in chapter 3.

Chapter 3 (Theoretical) describes in detail on how a mathematical model is developed from a fundamental theory. There are 2 models developed based on 2 sets of experimental data separately. For Model 1, the mathematical model is derived based on the study of coal fly ash/Ca based sorbent and for Model 2, the mathematical model is derived based on the study of a mixed oxides sorbent of $CeO_2/CaO/RHA$. Generally, the mathematical model developed takes into account many levels which are macro-, meso- and micro-kinetic study. From these different standpoints of consideration, a methodology of solution is presented at the end of this chapter to solve all the partial differential equations.

Chapter 4 (Results and Discussion) is divided into 3 main sections. In the first section, preliminary study of a global mathematical model on the removal of SO₂ using coal fly ash/Ca based sorbent was carried out (Model 1). Generally this global mathematical model only covers the first two level of research which is macro- and meso-kinetic studies. Next section, a second mathematical model (Model 2) that includes macro-, meso- and micro-kinetic studies was discussed. This second mathematical model is based on the independent study of simultaneous removal of SO₂ and NO using CeO₂/CaO/RHA sorbent. The ultimate specialty of the second model is the mechanism proposed. It explains the microscopic world of elementary reactions for sorption activity. Finally, the last part of this chapter is to check the robustness of the mechanism proposed in Model 2. This is done by developing Model 3. Model 3 is developed by using the mechanism proposed in Model 1.

Chapter 5 (Conclusion and Recommendation) gives the concluding remarks of all the findings obtained throughout this research based on their significance and importance related to this current study. Recommendations for future research are also given.

CHAPTER TWO

LITERATURE REVIEW

2.1 Mathematical Modeling of Gas-Solid Reaction

Gas solid reaction is classified as heterogeneous reaction since the main reactants are in a different phase or due to formation of solid products with gaseous/aqueous reactants. Åström and Eykhoff (1974) defined a mathematical model as a representation of the essential aspects of an existing system (or a system to be constructed) which presents knowledge of that system in usable form. In short, mathematical modeling uses mathematical language to describe a system. It is used to explain the phenomena happening within the system and the models can take many forms, including but not limited to dynamical systems, statistical models, differential equations, or even game theoretic models. These and other types of models can overlap with a given model involving a variety of abstract structures.

Therefore in this review, fundamental mathematical models which are normally used to simulate multiple heterogeneous reactions with a complex set of physicochemical and thermal phenomena are presented. In a broad sense, the reaction of a porous solid particle with a gaseous species is a fairly complex process in which complete analysis needs consideration of a large number of physical and chemical rate processes. It involves mass transport of gaseous reactants and products in the surrounding gas phase, mass transport in the interior of the porous particle, and reaction on its external and internal surface area. On top of that, for exothermic reaction systems, it may also be necessary to consider the effects of heat transport in the surrounding gas phase or even in the interior of the porous particle. These processes, however, are not unique to non-catalytic gas-solid reactions but are encounter in other reactive systems, catalytic gas-solid reactions for instance. Generally, gas solid reaction are sub-categorize to catalytic solid gas reaction and non-catalytic gas solid reaction.

2.2 Catalytic Gas-Solid Reaction

Most solids in gas-solid reactions act as heterogeneous catalysts and catalyze reactions with reactants in the gas phase. For example, in the study carried by Courtois et al.(2007), finely confined cerium oxides serves as a catalyst for the oxidation of nitric oxide. In principle, CeO₂ provides an active site where elementary reactions take place. The specific activity of such site is scientifically of great interest when comparing the importance of different metals or geometric configurations. Therefore, Turn Over Frequency (TOF) is used as the criterion for catalyst activity measurement. It is defined as the number of reactant molecules that are converted over this site per second. However the industry is more concern on the activity per unit volume of catalyst. Having a high dispersion is important, but provided the particles must have a high number of the desired sites. Apart from that, durability and selectivity also form important considerations. It is not favorable to have a high conversion of reactants if it leads to a wide range of different products. This would result in expensive separation procedures for isolating the relevant products. Thus, an ideal catalyst must be able to give high conversion and high selectivity simultaneously.

Normally heterogeneous catalysts are typically "supported," which means that the catalyst is dispersed on a second material that enhances the effectiveness or minimizes their cost (Rodriguez, 2003). Sometimes the support is merely a surface upon which the catalyst is spread to increase the surface area. More often, the support and the catalyst interact, affecting the catalytic reaction. Nevertheless, heterogeneous catalytic gas-solid reaction has several aspects in common with gassolid reaction un-catalyzed by porous solid; but the ultimate difference is that the solid matrix inside the particle does not change its chemical composition with time for catalytic gas-solid reaction.

2.3 Non-catalytic Gas-Solid Reaction

Non-catalytic gas-solid reaction consider porous particle of solid reactant introduced in a gaseous environment containing the gaseous reactant. Generally, gaseous species *A* diffuses through the surrounding gas phase into the pores and reacts with solid particle *S* according to the reaction

$$S(solid) + A(gas) + \dots \rightarrow P(solid) + \dots$$
 (2.1)

The reaction initiates on the external and internal surface of the porous solid particle. Because of the formation of solid product P, a progressively thicker solid product layer covers the reaction surface through which the gaseous reactant A must diffuse in order to reach the unreacted solid. At any time t, therefore, the porous medium is characterized by two receding surfaces, the unreacted-reacted solid interface (reaction surface) and the solid-gas interface (pore surface) (Chorkendorff and Niemantsverdriet, 2007).

Examples of non-catalytic gas-solid reactions include coal gasification, roasting of pyrites, and pyrolysis. Such reactions also find wide applications in some auxiliary operations in air pollution control. DoĞu (1981) reported that the pore structure variations during gas-solid reactions and the initial pore structure of the solid reactant played a very important role in the kinetics of SO₂ removal. The initial pore size distribution of the solid reactant (CaO) was found to affect both the diffusion resistance of the gaseous reactant (SO_2) through the pores and the active surface area of the solid. It was found that diffusion is the rate limiting step in the reaction which is inversely proportional to the particle size. The maximum fractional conversion of CaO to CaSO₄ decreases with increase in temperature owing to faster pore mouth closure, while the initial rate increases. The reaction rate constant decreases exponentially with time owing to formation of a CaSO₄ layer on the CaO surfaces. Although it was shown that the experimental results agree well with the analytical expressions derived from the proposed model, evolution of the pore structure of the solid causes most of the difficulties encounter in their mathematical modeling because of the physicochemical changes that the reacting solid undergoes. Table 2.1 summarizes mathematical models of non-catalytic gas solid reaction that are currently developed and summarized into six different domain which are reaction state, thermodynamic status, components involved, diffusivity, solution method and model classification accordingly.

Authors	Year	PSS/USS	Non/Iso thermal	Single/ multiple	Diffusivity	Solution method	Model
Yagi and Kunni	1955	PSS	Iso	Single	Constant	Analytical	SCM
Shen and Smith	1965	PSS	Iso	Single	Constant	Analytical/numerical	SCM
Wen	1968	PSS	Iso	Single	Constant	Analytical/numerical	SCM
Ishida and Wen	1968	PSS	Non	Single	Exponential	Analytical	SCM
Calvelo and Cunningham	1970	PSS	Iso	Single	Effective	Analytical	SCM
Szekely and Evans	1970	PSS	Iso	Single	Constant	Analytical	Grain
Szekely and Evans	1970	PSS	Iso	Single	Constant	FDM	Grain
Wen and Wang	1970	PSS	Non	Single	$D \propto T$	Analytical	SCM
Wen and Wei	1970	PSS	Non	Multiple	$D \propto T$	Analytical	SCM
Sohn and Szekely	1972	PSS	Iso	Single	Constant	Numerical integration	SCM
Rehmat and Saxena	1978	PSS	Non	Single	$D \propto T$	Analytical	SCM
Tsay et al.	1976	PSS	Iso	Multiple	Constant	Analytical	SCM
Yu and Gillis	1981	PSS	Iso	Single	Constant	Numerical	Homogeneous
Johnson and Hindmarsh	1983	USS	Iso	Single	Stephen/Maxwell	FDM	Homogeneous
Usui et al.	1983	Both	Iso	Single	Constant	FDM/analytical	Zone
Hindmarsh and Johnson	1983	USS	Non	Multiple	Stephen/Maxwell	FDM	Homogeneous
Eddings and Sohn	1993	PSS	Iso	Multiple	Effective Maxwell	FDM	SCM
Patisson et al.	1998	USS	Non	Single	Stephen/Maxwell	FVM	Homogeneous
Patisson and Ablitzer	2000	PSS	Non	Single	Effective	FVM	Homogeneous
Patisson and Ablitzer	2000	USS	Non	Single	Effective	FVM	Homogeneous
Gupta and Saha	2004	PSS	Iso	Single	$D \propto T^{eta}$	FVM	SIM
Gupta and Saha	2003	USS	Non	Both	$D \propto T^{eta}$	FVM	SIM
Gupta and Saha	2003	USS	Iso	Single	$D \propto T^{eta}$	FVM	Zone
Valipour et al.	2006	USS	Iso	Multiple	Effective	FVM	Grain

Table 2.1: Summary of mathematical model available for gas-solid reactions.

2.4 Simplifications of Chemical Complexities and Computational Effort

With reference to **Table 2.1**, mathematical modeling of gas-solid reaction with solid product and chemical complexities is normally very complicated and cannot be solved easily and accurately. It may also take very lengthy computational effort. Therefore, many researchers follow the approach of using relatively simple formulations to develop a kinetic model whose assumptions were made to simplify the equations. The most important simplifications that have been used in the literature can be classified into four main approximations which are Pseudo-steady state, isothermal condition, single reactant for gas and solid and simplification in physic-chemical properties.

2.4.1 Pseudo-Steady State Approximation

By taking the Pseudo-steady state approximation, the accumulation term in the gaseous phase is neglected and the governing equations are relatively simplified for analytical solution. This approximation has been extensively used in modeling work reported in the literature except for study in which a numerical method solution is required. Pseudo-steady state approximation has been shown to be valid for isothermal gas-solid reactions (Rehmat and Saxena, 1976). However this will cause significant error when this assumption is used in the case of non-isothermal models (Wen, 1968; Aris,1972; Georgakis and Aris, 1975; Heineken, 1967).