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failure definition= (0.1Pmaximum) MPa 
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Rayap dan Perlakuan Isotermal Lesu terhadap Pateri Eutektik 

SnPb, SnBi dan SnZn dalam Pembungkusan Microelektonik 

pada Anjakan Suhu Sederhana 

 

Abstrak 

Bahan penyambungan dalaman digunakan untuk menyambung komponen litar 

lekap, pasif dan diskrete keatas lapik kupram atau lapik lain, dan didalam 

lubang papan litar tercetak.  Ketika ini, amalan industri adalah dengan 

menggunakan kitaran termal sebagai kaedah untuk pengujian keutuhan papan 

litar tercetak yang telah dipasang dengan komponennya.  Spesimen pukal aloi 

pateri 63Sn37Pb diuji dengan isotermal lesu pada tiga suhu sederhana tinggi 

(30, 40 dan 50o C), tiga beban frekuensi (6, 60 dan 600 kpm) dan dengan 

beban puncak terikan yang berlainan.  Spesimen didapati gagal berleluasa 

secara rayap dengan tenaga aktivasi dalaman beranggaran 60 KJ mol-1, dan 

eksponen ketegasan berubah diantara 1 dan 2,  dan didalam keadaan 

eksperimen yang sama, pengujian rayap statik menunjukkan tenaga aktivasi 

sebanyak 85 KJ mol-1 dan nilai purata eksponen ketegasan sebanyak 1.5.  

Ujian keterikan lesu kitar terkendali pada suhu, frekuensi, puncak keterikan dan 

nilai R berlainan menghasilkan nilai purata keterikan bergerak-balas mundur 

secara eksponential.  Pada R=-1, nilai purata ketegasan bergerak-balas kesifar 

serta merta untuk semua terikan, frekuensi dan suhu yang diuji. Ujian isoterma 

lesu yang dijalankan  pada R=-1, beban frekuensi 600 kpm dan pada dua suhu 

berlainan menunjukan mekanisma pembaikan kerosakan rayap dan 

memajukan fenomena interaksi “rayap-lesu” didalam bahan pukal aloi pateri.   

Fraktografi keatas spesimen retak menunjukan perubahan didalam mekanisma 

retak, dari mikro-lompang kepada mikro-retak.  Meskipun, data kitaran termal 

tidak diperolehi untuk perbandingan dengan eksperimen yang telah dijalankan, 

pemerhatian dari eksperimen mengesyorkan kaedah yang sesuai dan wajar 

didalam melaksanakan pengujian isotermal lesu.  Justeru, dalam perbandingan 

dengan kehadiran  sebahagian data dari kitaran termal, pengujian isotermal 

lesu adalah cadangan alternatif untuk pengujian keutuhan bahan penyambung 

dalaman aloi pateri eutektik. 
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Creep and Isothermal Fatigue Behaviour of Eutectic SnPb, SnBi 
and SnZn Solders used in Microelectronic Packaging at Mildly 

Elevated Temperatures 
 

 

 

Abstract 
 

Interconnect materials are used to connect surface mounting components and 

other passive and discrete circuit components on to copper pads or lands, and 

in holes on the printed circuit boards.  Presently, the industrial practice is using 

thermal cycling as a method for reliability testing of circuit boards with 

assembled components.  Bulk specimens of 63Sn37Pn solder alloy were 

subjected to isothermal fatigue at three mildly elevated temperatures (30, 40 

and 50oC), loading frequencies (6, 60 and 600 CPM) and at different applied 

peak stresses (ranging from 8.75 to 33.25 MPa).  The specimens were found to 

fail predominantly due to creep with activation energy of about 60 KJ mol-1 with 

stress exponents varying between 1 and 2, and under the same experimental 

conditions, static creep tests showed activation energy of 85 KJ mol-1 and an 

average stress exponents of 1.5.  Strain-controlled fatigue tests conducted at 

different temperatures, loading frequencies, three different applied peak strains 

and different R-values resulted in the mean stress responses to decay 

exponentially.  At R=-1, the mean stress responses decayed instantaneously to 

zero value for all applied peak strains, loading frequencies and temperatures.  

Isothermal fatigue tests conducted at R=-1, 600 CPM frequency and at two 

different temperatures showed creep damage repair mechanism and enhances 

creep-fatigue interaction phenomenon in the bulk solder material during 

mechanical cycling.  Fractography of fractured specimen showed a change in 

fracture mechanism, that is, from micro-voids to micro-cracks observations.  

Even though, thermal cycling data were unavailable for comparison with those 

from isothermal fatigue, observations obtained from the experiments conducted 

suggested suitable and appropriate methods in conducting isothermal fatigue 

tests.  Hence, in comparison with presence of some thermal cycling data, the 

isothermal fatigue test is a proposed alternative test for reliability testing of 

eutectic interconnects.  
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Chapter 1  Introduction 

 
 

1.0 Low melting temperature solder alloys 

Low melting temperature solders, particularly, eutectic tin-lead alloy had been 

in used for decades as interconnect alloy in integrated chips packaging.  This 

alloy had been chosen due to factors such as low melting temperature 

(183
o
C), acceptable wettability, and exhibited single eutectic temperature and 

the most important of all, a lot of research had been conducted on this 

specific alloy and that this alloy could be taken as a reference alloy if other 

lead-free solder alloy is to be considered as a substitution alloy.  One of the 

major concerns in using this alloy is the reliability of the solder joint formed. 

Solder joints are subjected to mechanical loadings during handling and when 

the system is in used, the mechanical properties of solder joints such as their 

fatigue, creep and shear strength are important in determining packaging 

reliability and integrity. 

 

1.1 Problem statements 

1.1.1 Thermal cycling for reliability testing of solder alloys as interconnect 

materials has been cited to inherit the following problems, (i) It involves a long 

period of testing since this testing involves time to complete failure, (ii) it is 

costly and laborious in nature, (iii) Tested parts normally involve intricate 
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shapes of the IC chip packaging and therefore results obtained were not 

easily interpreted.  Other promising techniques such as mechanical cycling [1, 

2, 3] and drop test [1] were among others examined by various researchers 

as alternatives to thermal cycling. 

 

1.1.2 The eutectic tin-lead solder alloy is a soft alloy, and is ductile in nature 

and some circumstances the alloy may exhibit super plasticity behaviour [4, 

5].  This alloy has a melting temperature of 183
o
C and at room temperature of 

25
o
C has homologous temperature of 0.45, which indicates that the alloy 

undergo creep deformation processes at room temperature [6, 7].  And, it is 

due to this behaviour which has made the evaluation of bulk property such as 

strength and young’s modulus a difficult task. 

 

1.1.3 Fatigue testing of eutectic tin-lead solder alloy will eventually result in 

the specimen to creep [7, 8].  The sample elongated and exhibited as 

specimen failure under creep test due internal tensile forces which developed 

in the bulk material during testing.  In order to observe the internal tensile 

force, strain controlled fatigue tests were conducted at various applied strains, 

R-values and effect at mildly elevated temperatures.  

 

1.2 Research objectives 

The primary objectives of this research are, 
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1.2.1 To investigate creep phenomenon in as-received eutectic tin-lead 

solder alloy under tensile loads at mildly elevated temperatures (30, 40 and 

50
o
C) 

1.2.2 To study the developed internal tensile stress in the bulk eutectic tin-

lead solder sample under strain controlled fatigue at different applied strains, 

R-values, loading frequency and temperatures.  

 

1.2.3 To study the effect of stress controlled fatigue on the standard 

dimension bulk eutectic tin-lead solder alloy at selected R-values, loading 

frequency and temperatures 

             

1.3 Organisation of the thesis 

Chapter two of this thesis gives the background theory and the relevant 

literature survey.  Chapter three describes the materials and experimental 

method. Chapter four consists of detail results and chapter five on the 

discussion.  Chapter six is on research conclusions, and suggestions on 

future work.  
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Chapter 2  Literature review 
 
 
2.1  Integrated Circuit Chips 

2.1.1  Introduction 

The electronic industry has been recognized as one of the most dynamic and 

important industry in this scientific age.  Everyone accepts that electronics had 

improved the world we live in, tremendously.  Two of the essential technologies 

which had improved our lives are electronic packaging and electronic assembly, 

respectively.   

Integrated circuit (IC) chips and other circuit components are not isolated 

islands.  They are connected and interconnected with other components for 

maximum performance.  Packaged chips and other embedded circuit networks 

are delicate work pieces which require shelter and protection from hostile 

surrounding environment.  IC chips packaging focuses on how silicon chip is 

packaged efficiently and reliably which form a powerful component of bigger 

electronic device.  IC packaging is therefore an important technology to be 

developed for device efficiency and reliability.  Further, according to Moore’s law 

[9] which was formulated in the 1960s, stated that the transistor count on an 

integrated circuit doubles every 18 month.  This has been the driving force for 

package miniaturization, light weight, efficient and low gadget cost. 

The materials employed in the packaging of chips and connecting to 

other components on circuit board must be reliable and compatible, both 
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electrically and mechanically.  For instance, solders are used as interconnecting 

media between packaged IC chips to printed circuit boards.  In the real 

microelectronic joining, solders are expected to perform as structural alloys 

where the operating temperature (usually, 0.5 to 0.8 of melting temperature, in 

oK) and the total strain (usually, greater than 11 percent) are considerably high.  

These working conditions are described as aggressive to assigned solder 

materials, as compared to most structural materials experiencing the same 

working environment [10, 11, 12].    

The following pages reveal how different solder materials were employed 

in the designing of different chip packages, their physical and mechanical 

properties and solder materials behaviour while in applications. 

 

2.1.2 Packaging of Integrated Circuit Chips 

The concept of component miniaturization is to be achievable without sacrificing 

quality, reliability, increasing product cost or even power consumption.  

Packaging technology helps to make these devices possible, and this 

technology focuses on how a chip or many chips are packaged reliably and 

efficiently.  Packaged IC chips are not isolated islands and must be connected 

to other board components through inputs and outputs interconnection system.  

It also requires protection from the harsh external environment.  This is done by 

placing chip/s in a chip-carrier and thus forms the first level of IC chip packaging.   

Figure 2.1 illustrates the various level of packaging starting from chip level 

packaging, the second level of packaging (or printed circuit board packaging) 
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and the mother board packaging (or the third level packaging).   Figure 2.2 

shows schematic diagram of the first level of chip packaging. 

 

 

Figure 2.1: A schematic illustration of different packaging levels of IC chip and other 
circuit sub-components [13] 

 

   

Figure 2.2: Schematic diagram showing the first level of IC packaging [14] 

     

2.1.3 Types and construction of chip carriers 

According to Dally [14], chip carriers are classified according to the materials 

used in their construction and the types of leads used for the input/output (I/O) 
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connections.  The two common materials used are plastics and ceramics.  

Plastics cases, formed by injection molding are used for low and moderate cost 

electronic products, while ceramic cases are used for products that require 

stringent hermeticity.  Military aircraft electronics and general avionics 

applications are some examples. 

There are three types of chip to board interconnections which are 

currently in used.  They are (i) pin in-hole, (ii) leads soldered to solder pads (e.g, 

J-leads and gull-wing, and (iii) metallised pads on chip carrier soldered to solder 

pads on circuit board.  Schematic diagrams in Figures 2.3 to 2.5 show these 

constructions. 

The dual in-line (DIP) type of chip packaging is an example of pin in-hole 

carrier.  These carriers have two rows of pins that are arranged at 2.54-mm 

centres along the longer sides of the package, and are available in many 

different sizes. 

 
     
       Figure 2.3: Pin-hole package [14] 
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    Figure 2.4: J-leaded package [14] 

 
 

       
 
     Figure 2.5: Metallised pads on chip carrier soldered to solder pads [14] 

 

They are often used for power devices with 8 to 64 connecting pins.  These pins 

are short and are relatively large in cross-sectional area; as such they are stiff 

and robust.  They are inserted into holes in the circuit board by “pick and place” 

machines, and soldered on the underside of the board by passing through a 

standing wave of molten solder.  The disadvantages of this type of chip carrier 

is its poor area efficiency which limits the number of I/O connections and due to 

its poor wire ability limits its usefulness in housing high density logic chips.  

The pin grid array (PGA), as shown in Figure 2.6 is used as substitutes 

for DIPs when additional I/O connections are required or when a lower thermal 

resistance is also a requirement.  The body of the package is fabricated from 

ceramic, with multilayer alumina and has a cavity for chip placement.  Around 
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this cavity is a ledge which supports metallised pads used to bond wires that 

lead to the chip.  The pins are about 20 to 25 mil in diameter are brazed into the 

ceramic substrate.  When a chip is fixed in the cavity, a ceramic or kovar lid is 

placed over it and sealed using inorganic solders that do not out-gas. 

 

 

   Figure 2.6: Pin-Grid Array packaging [14] 

  

2.1.4 Leaded surface mounted chip carriers  

When leads from chip carrier are soldered on to pads or lands on the surface of 

circuit board, they are known as “surface mounted” chips, as shown in Figures 

2.4 and 2.5.  The quad flat pack (QFP) is an example in which leads are 

deployed along all four sides of the package and are spaced at 1.27-mm 

centres.  The leads are cut and shaped to gull wing configuration prior to 

mounting on the circuit board (Figure 2.4).  The advantage of this type of 

packaging is its relatively small size compared to DIPs, with same number of I/O 

connections.  However, the disadvantage of this packaging is due to fragile 

leads and the necessity to solder individual leads to the circuit board.    
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2.1.5 Leadless surface mounted chip carriers  

Leads are fragile and can be deformed during shipping, so that their 

replacement with metallised pads (Figure 2.5) shows major advantages.  The 

metallised pads are 1.27- mm centres and provide an area efficient chip carrier.  

These pads are connected to the corresponding pads or lands on the circuit 

board using solder paste. 

 

2.2   Chip-to-chip carrier mounting 

The silicon chip is bonded to the chip carrier to prevent any movement relative 

to its housing during the entire life of the product.  The bonding methods vary 

depending on the quality of the chip carrier being produced.  A high 

performance chip carrier has its body fabricated from ceramic and meets 

stringent hermetic requirement [13, 14].  It uses eutectic solder alloy of gold and 

silicon as the bonding materials.  This alloy has a melting temperature of 390 oC, 

does not out-gas with time and exhibits a high thermal conductivity (2126 

W/m/oC), aiding in the transfer of heat from the chip to the casing. 

In contrast, the bonding of a chip to plastic carrier does not achieve 

“hermetic seal”, in part due to differences in coefficient of thermal expansion 

(CTE) between the plastic housing and the silicon chip.  Silicon has a coefficient 

of thermal expansion (CTE) of 4.0 x 11-6 oC-1 compared to the epoxy 

encapsulation which has CTE of 27 x 11-6 oC-1 and the Bis-melamine triazine 

polymer (BT) which has CTE of 11 x 11-6 oC-1.   Direct bonding of a chip to 

plastic carrier would induce large thermal stresses due to temperature changes.  
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This problem is resolved by incorporating a ‘lead-frame” into the housing (Figure 

2.7).  The lead frame serves the following functions: 

(i). The lead-frame is a copper alloy that has a coefficient of thermal 

expansion closed to that of silicon and so can be used as bonding interface. 

(ii)  It provides leads that are protrude/extend out of packages 

(iii) It provides a surface to which connecting leads from the chip can be 

welded 

 

 

Figure 2.7: A typical lead frame used for chip bonding in a plastic DIP housing [14]  

 

2.3 Chip-to-chip carrier connections 

The input/output (I/O) connections from a chip consist of a number of bonding 

pads usually arranged around the top edge of the chip.  The pads are miniature 

in size, each measuring about 0.127 mm2 and placed at 0.254 mm apart.  On a 

dense chip, the pad size is about 0.076 mm2 and is spaced at 0.0112 mm apart.  

Connections are made between these bonding pads and the chip carrier 

through wire bonding.  In application, there are three different methods of chip-

to chip carrier connections, namely automatic wire bonding, tape automated 
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bonding and flip-chip bonding.  These methods are described in detailed by Lau 

[13] and Dally [14]. 

 

2.4 Updates on integrated circuit packaging 

Lau [9] had identified two main problems in IC packaging.  They are termed as 

“on-chip signal delay” and “signal delay from packaged ICs”.  The signal delay 

from packaged ICs has not been addressed as vigorously as on-chip signal 

delay.  IC packages therefore experience “loss function” which need to be 

addressed.  Packaging engineers proposed that the problem could be 

addresses by increasing the number of pin counts, which in-turn increases 

package performance.  (The package performance is measured in terms of on-

chip clock frequency.  For instance, some microprocessors were designed with 

1100 package pin count and 400 MHz device clock frequency)  

Application specific integrated circuits (ASICs), static random access 

memory (SRAM), dynamic random access memory (DRAM) and other 

microprocessor chips are examples of devices which have been designed to run 

faster than 110 MHz, and their pin count had been increased to 1200.  

According to Lau [13], further improvement in chip performance is achievable if 

the present technology, known as the fine pitch technology, having a pitch of 

less than 650 m could further be improved.  In this way, the number of pin 

count could be increased which improves microprocessor performance by 

having a faster device clock frequency. 

However, with the application of fine pitch technology and the concurrent 

reduction in packaging delays, the conventional chip packaging technology is 
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nearing its practical limitations.  Problems which relate to these limitations and 

which resulted in highly undesirable effects are lead coplanarity, package 

cracking, fine pitch limitations and relatively long leads.  Long leads are known 

to inherit stray inductance, resistance and capacitance.  Figure 2.8 shows 

examples of conventional chip packages: they are plastic chip carrier (PLCC), 

plastic quad flat pack (PQFP) and thin small outline package (TSOP). 

 
 

 

   Figure 2.8: Some conventional chip packages [13] 

 

Advanced IC packaging promises a more reliable performance than the 

conventional packages, in terms of finer lead pitches, thinner package profiles 

and smaller foots prints on the circuit board.  Figure 2.12 shows some examples 
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of advanced IC packages.  They are tape carrier packages (TCP), pin grid 

arrays (PGA), ceramic ball grid arrays (CBGA), plastic ball grid array (PBGA), 

tab ball grid arrays (TBGA)                                                                                                                                                             

 

 

           Figure 2.12: Some advanced chip packages [13] 

 

2.5 Ball Grid Array – an overview 

In the past decades, pin grid arrays (PGAs) and quad flat packs (QFPs) have 

been the electronic industry’s major chip carrier packages.  The ceramic pin grid 

array (CPGAs) packages were found versatile and flexible, since both the 

number of layers and size could be varied.  Thus, CPGA chip carriers can 

satisfy a broad range of applications.  However, the requirements for an 
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increasing performance and for providing additional functions require an ever-

increasing integration.  It is therefore, difficult for PGAs to remain cost effective 

since there is a practical limitation on the pin arrays and pin attachment cost is 

high.  These limitations are partly solved by using ball gird arrays (BGAs).  

BGAs are not only cost effective and surface mount compatible, but are much 

smaller in physical size and exhibit superior electrical performance compared to 

PGAs and QFPs. 

BGAs utilize an area array of solder balls which are mounted on the 

underside of the package to achieve an optimum solder joint to a printed circuit 

board (Figure 2.11).  The Joint Electron Device Engineering Council (JEDEC) of 

the United States of America proposed that grid pitches of 1.0, 1.27 and 1.5 mm 

were suitable for BGAs.  These pitches will provide I/O densities exceeding 

2000 for a 50 mm BGA package.   

 

    Figure 2.11:  Solder spheres located on an area array of chip bonding pads [14] 

 

Depending on the application and design, the AMKOR/ANAM BGA package is 

constructed using double-sided or multi-layer printed circuit laminate with the 

chip die or dies attached to it with a silver filled epoxy.  A conventional plastic 

transfer moulding process is used to encapsulate the die for moisture resistance.  
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After further processing, the solder balls are then attached to the backside of 

the substrate.  A schematic diagram representing the Amkor/Anam’s cavity 

down super BGA is as shown in Figure 2.11   

 

 

                                   Figure 2.11: Amkor BGA package [13] 

 

The composition of the BGA solder spheres alloys is governed by specification 

QQ-S-571, Revision F [15].  The typical lead-containing alloy compositions 

suggested by the specification are as shown in Table 2.1: 

 

      Table 2.1: Typical lead-containing solder spheres; diameters and tolerances  
[15, 16] 

 
 

Alloy composition Sphere diameter, 
mm 

Tolerance, mm 

63 Sn37Pb 0.305 0.013 
 

63 Sn37Pb 
 

0.508 0.025 

63 Sn37Pb 
 

0.635 0.025 

63 Sn37Pb 
 

0.762 ±0.025 

62Sn36Pb2Ag 
 

0.762 ±0.025 

11.5Sn812.5Pb 0.8812 0.051 
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2.6 Advantages and drawbacks in application 

The advantages of using BGAs over other types of packaging were highlighted 

by Lau [13] are as below. 

(i) It represents as saving on precious printed circuit board (PCB) surface 

area.  For example, typical package dimension of 31 mm x 31 mm with a 

pitch of 1.5 mm enables 400 input/output (I/O) connections to be made. 

(ii)  It eliminates problem of coplarity, skewness and bending associated with     

the use of leaded packages during PCB assembly 

(iii) It improves assembly, electrical performances, IC package yield and   

board assembly yield. 

(iv) It allows IC package to be self-centered when positioned on the PCB 

due to wide pad areas. 

 

The disadvantages in the usage of BGAs are due to the followings: 

(i)  It is due to the softening of BGA spheres and cracking of interconnects 

had been reported during re-flow soldering and thermal cycling processes.  

Hence, there is a requirement for highly reliable solder interconnects 

(ii) Inspection is difficult and expensive, and test methods are not well 

established.  Inspection is only possible using X-ray or ultra-sonic technique 

 

 

2.7       Interconnect and surface mounting materials 

 
Both metallic and non-metallic solders had been used as interconnect or 

surface mounting materials for electronic devices.  Table 2.2 shows candidates 
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of solder material with their approximate melting temperatures.  The most widely 

used solders in the electronic assemblies are either eutectic or near eutectic tin-

lead alloys.  However, lead is also known to pose a risk to human health and 

recently a bill to control the use of lead was introduced in the United States 

Congress.  This has stimulated in the use of lead-free solders, especially for the 

electronic industry.  The bill also proposed banning of lead from a variety of 

uses, such as in the petroleum, automotive and other related chemical industry.  

Glazer [17] and Vincent et al., [18] highlighted some interconnect 

materials that have potential as substitute for eutectic or near eutectic tin-lead 

alloy. Some eutectic or near-eutectic solder alloys, for example 58Bi42Sn, 

1212.3Sn0.7Cu and SnBiAgCu were reported to be potentially viable lead-free 

solder alloys.  Table 2.2 shows some lead containing, lead-free alloys as well as 

non-metallic adhesives used as surface mounting materials. 

 

 

2.8 Desirable properties of surface mounting materials 

Glazer [17] has identified some most important desirable properties and 

characteristics of interconnect and surface mounting materials. They can be 

grouped under three broad headings, namely physical and microstructure, 

corrosion and oxidation and mechanical properties. 

 

2.8.1 Physical properties 

Some important physical properties are melting temperature and melting 

temperature range, coefficient of thermal expansion, surface tension and 

electrical resistivity values.    For example, the melting temperature and melting 
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temperature range determine both the maximum possible operating 

temperature of a component and the minimum short-term temperature 

 

             Table 2.2: Some typical interconnect and surface mounting materials [17] 

 

Lead-
containing 

alloys 

Melting 
temp., 

oC 

Lead-free 
alloys 

Melting 
temp., 

oC 

Non-metallic 
solders 

Softening 
temp., oC 

 
63Sn37Pb 

 
183 

 
Sn0.7Cu 

 
227 

 

 
 
 
 
 
 
 
 
 
 
 
Metal-filled 
Thermoplastic  
/ thermosets 

 
 
 
 
 
 
 
 
Low curing 
temperature
, that is, 
room 
temperature  
to about  
140 

o
C 

 
Sn5Pb 

 
232 

 
Sn4Cu0.5Ag 

 
216 

 
InPb 

 
…. 

 
Sn2Mg 

 
200 

 
PbBi 

 
….. 

 
Sn12Zn 

 
11212 

 
11Sn88Pb2Ag 

 
….. 

 
Sn58Bi 

 
138 

 
62Sn36Pb2Ag 

 
….. 

 
Sn52In 

 
120 

   
Bi32In 

 
1112 

   
Bi26In17Sn 

 
712 

   
Bi66In 

 
72 

   
110Sn 

 
232 

   
Sn3.5Ag 

 
227 

   
Sn7.5Bi2Ab

0.5Cu 

 
 

207 

   
In3Ag 

 
143 

 

 

a component has to survive.  Table 2.2 shows some typical lead containing and 

lead-free solder alloys used as interconnect or surface mounting materials.  In 

addition to alloy’s low melting temperature, the ideal solder material for 

electronic application should also possess a narrow melting temperature range 

so that solidification occurs over a narrow temperature range.  For this 
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application, a candidate material with eutectic or near eutectic composition is 

often chosen.    

The surface tension of molten solder has an important role in determining 

its wetting behaviour.  Flux is employed in soldering process to reduce surface 

tension at the solder/vapour interface and enhances the system’s wetting 

behaviour.  On the other hand, the relatively high surface tension of tin-lead 

solder influences the capillary flow of solders and self-alignment of surface 

mounted components.  It also helps in retaining circuit components on to printed 

circuit board during second-side re-flow of surface mounted devices. Table 2.3 

shows and compares surface tension values of eutectic tin-lead to lead-free 

solder alloys. 

 

            Table 2.3: Comparison of surface tension values at (TL + 50) oC [17] 
 

 
Alloy 

Ts /
oC Tl /

oC Surface tension/mN m-1 

Air N2 (<20 ppm O2 

63 Sn37Pb 183 … 417 464 

125Sn5Sb 240 …. 468 4125 

1212.3Sn0.7Cu 227 … 4121 461 

126.5Sn33.5Ag 221 … 431 4123 

125.5Sn4Ag0.5Cu 207 212 ……. …. 

121Sn12Zn 11212 … 518 487 

42Sn58Bi 138 … 3112 3412 

110Sn 232 … … … 

 
  

The coefficient of thermal expansion (CTE) of the solder material influences the 

stress-strain distributions of a joint while in application and during product 

reliability testing.  To eliminate large differences in the stress and strain of 

various parts in the whole packaging, it desirable to have parts CTE closely 

match to each other.  As an illustration on the significance of coefficient of 



 

 21 

thermal expansion of various materials used, a typical construction of plastic 

ball grid array (Figure 2.12) is cited as an example.  The materials CTE is as 

shown in Table 2.4.  In most packaging designs, a joint failure was observed in 

the interconnect/solder material.  

 

 

Figure 2.12: Plastic ball grid array with different materials of construction 

 

Table 2.4: Materials of construction against coefficient of thermal expansion [17] 
 

 

2.8.2 Microstructure 

Earlier workers like Glazer [17] defined microstructures as the combination of 

phases that are present in a material, which comprises of defects, its 
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morphology and distribution.  The composition and microstructure of an alloy 

determine its properties and hence are important determinants of reliability of 

solder joints.  Microstructure is a function of the composition of the material, 

thermal, mechanical and in some cases electromagnetic property.      

Higher tensile strengths and lower melting temperatures are some 

reasons for the use of eutectic compositions.  Eutectic alloys comprise of two 

phases, which solidify concurrently at the eutectic temperature.  The solidified 

microstructure is usually lamella or may be fine or degraded lamella if the matrix 

is cooled rapidly.  In this case, due to controlled diffusion process which occur 

within the microstructure.  Interaction between substrate and molten solder 

causes the microstructure of the solidified solder to be sensitive to the time-

temperature profile used in its solidification.  These interactions not only 

influence the nature of the substrate/solder interface, but also influence the 

composition of the solder, and subsequently the resultant microstructure.  

Intermetallic particles, which are brittle and may initiate cracking while in service 

may also be present in the bulk solder, either because they form in the bulk 

during solidification or they break away from the interface layers. 

The other fundamental property of solder materials is the material 

resistivity.  It is very dependent on temperature, composition and microstructure.  

Resistivity values are normally low, and therefore its exact value is not 

significant to circuit functionality.  Some typical values of electrical resistivity of 

materials of construction used in the construction of an IC packages are as 

shown in Table 2.5 
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Table 2.5: Comparison of electrical resistivity values of typical materials used in the 
construction of IC packages [17] 

 
 

Materials of 
construction 

Typical resistivity values/ 

.cm 

 
Solder alloys 

63Sn37Pb 
126.5Sn3.5Ag 

58Bi42Sn 
50Sn50In 
48Sn52In 

Lead frame materials 
Cu 

Cu-0.6Fe-0.05Mg-
0.02P-0.23Sn 

Fe-52Ni 
Fe-42Ni(Alloy 42) 

 
Pure metals 

Ag 
Bi 
In 
Pb 
Sn 

 
 

11 (low) : 11 (high) 
11(Low): 12.3 (high) 
30(Low): 34.4 (high) 
14.7(low): 30 (high) 

14.7 
 

1.73 
 

2.65 
43.2 
57 
 
 

1.512 
111 
8.8 

20.6 
11.1 

 
 
 
2.8.2.1 Eutectic tin-lead 

The eutectic tin-lead alloy is an example of a binary alloy, which was widely 

used as interconnect or surface mount material before a proposal was imposed 

for replacement material due to toxicity of lead.  At atmospheric pressure 

(Figure 2.13), the three equilibrium phases exhibited are: (i) liquid (L), (ii) a lead-

rich phase and centred cublic solid solution () of tin in lead with maximum 

solubility of 112 wt % Sn, (iii) and a tin rich-phase with body centred cubic 

tetragonal () phase with maximum solubility of 2.5 wt. % lead.   

During eutectic cooling (Figure 2.14), the liquid transformation occurs as: 

  L61.12 wt % Sn, 38.1 wt%Pb            112wt%Sn 81wt%Pb   +  127.5 wt% Sn 2.5 wt % Pb  ….( 2.1) 
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  and  are two solid solutions formed during the eutectic reaction.  The 

compositions of these two solid solutions are 112 wt % Sn and 81 wt% Pb and 

127.5 wt % Sn and 2.5 wt % Pb, respectively.  The -platelet nucleates and 

grows in the eutectic liquid due to inward diffusion of lead atoms and outward 

diffusion of tin atoms from nucleus to the adjacent regions, enhancing a lead-

rich -solid.  The adjacent region continues to increase in tin content until the 

composition reaches 127.5 wt % Sn and solidifies as  platelets.  This process 

of eutectic solidification continues until completion, and  and  micro-

constituents are fully observed.   

The lamella growth was cited as an example of a preferentially orientated 

plane-front steady-state growth by previous researchers like Wineguard [19], 

and cited by Askeland [4], Morris et al., [20] and Frear et al., [21].  The growth 

phenomenon was further described as a cooperative growth process since the 

solute rejected ahead of one phase became immediately incorporated in the 

adjacent region, and both phases grew simultaneously at the same rate.  A 

distinct boundary between adjacent grains is observed when a lamellae grain 

grows continuously until contact is made with a mould wall or with similar 

growing grains.  The lamellae spacing within the eutectic grain is determined by 

the cooling rate, a faster cooling rate results in fine lamellae. 
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Figure 2.13: Tin-lead phase diagram (Harris et al., [22]) 

 

 

 
Figure 2.14:  Formation of two distinguished lamella grains during cooling of eutectic 

tin-lead alloy (Morris et al., [20]) 
 

 

2.8.3 Mechanical properties 

Solder joints formed both, electrical and mechanical connections in an 

electronic assembly.  As metallic solders are good electrical conductors, their 

mechanical properties shall be reviewed.  The mechanical properties of a 

material describe its response to an externally imposed stress and generated 

strains.  Glazer [17] categorized conditions under which these stresses or 

strains were imposed, and they can be divided into three broad categories, 
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