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Pasangan Monokutub-antimonokutub,

Dyon Vorteks dari Teori Medan

Yang-Mills-Higgs SU(2)

Abstrak

Monokutub magnet dan dyon merupakan penyelesaian topologi soliton dalam

ruang tiga dimensi, ia muncul dalam teori tolok Yang-Mills-Higgs di mana kumpu-

lan tolok non-Abelian SU(2) dipecah secara spontan oleh medan Higgs kepada

baki kumpulan simetri U(1). Walaupun cas magnet adalah dikuantumkan dari

segi topologi, tetapi cas elektrik tidak.

Dalam tesis ini, monokutub magnet dan dyon dikaji dalam konteks teori

medan SU(2) Yang-Mills-Higgs yang juga dikenali sebagai model SU(2) Georgi-

Glashow. Matlamat kajian ini adalah untuk mendapatkan informasi tentang

kewujudan dan ciri-ciri soliton topologi tersebut, struktur dan kelakuan ia den-

gan mengaji persamaan medan klasik.

Secara umumnya, ansatz yang bersesuaian amat penting dalam menyele-

saikan persamaan-persamaan pergerakan tertib kedua. Langkah yang seterusnya

adalah samada menyelesaikan persamaan tersebut secara analitik atau secara be-

rangka. Ulasan tulisan yang awal mengenai monokutub magnet dan dyon telah

diterangkan dalam tesis ini.

Dengan menggunakan transformasi tolok yang sesuai, kami mendapati ba-

hawa cas magnet monokutub boleh dipindahkan dari medan Higgs ke medan

tolok dan sebaliknya. Keputusan menunjukkan bahawa singulariti tali dari tolok

Abelian boleh dialihkan dengan mengubah parameter dari sudut kutub terkawal

(Boulware et al., 1976) selepas transformasi tolok.

Kami juga mengkaji penyelesaian monokutub yang bercas topologi satu per

dua. Penyelesaian tersebut tidak semestinya mematuhi persamaan Bogomol’nyi

viii



tertib pertama dan ia mempunyai ketumpatan tenaga yang tak terhingga pada

asalan. Keputusan kami menunjukkan bahawa monokutub separuh ini sebe-

narnya adalah monokutub separuh jenis Wu-Yang dan ia boleh memiliki cas

elektrik dan menjadi dyon sparuh.

Penyelesaian monokutub yang baru bersimetri paksian telah dikaji secara be-

rangka dengan mengeneralisikan penyelesaian jarak jauh asimptotik dari monoku-

tub ’t Hooft-Polyakov kepada fungsi eliptik Jacobi. Keputusan menunjukkan ba-

hawa sesetengah daripada monokutub yang bersimetri paksian ini adalah terherot

jika dibandingkan dengan monokutub ’t Hooft-Polyakov.

Dengan mengkaji secara berangka, kami mendapati dyon pasangan monokutub-

antimonokutub dan dyon vorteks cincin boleh membawa cas elektrik dan memi-

liki cas magnet yang lenyap. Dalam kes di mana keupayaan Higgs adalah lenyap,

kesemua sifat-sifat dyon seperti jumlah tenaga, jarak antara monokutub dan an-

timonokutub, diameter dyon vorteks cincin meningkat secara eksponen ke ke-

takhinggaan semasa jumlah cas elektrik menghampiri nilai tak terhingga. Untuk

kes keupayaan Higgs yang tak lenyap, jumlah cas elektrik akan akhirnya men-

capai nilai genting yang terhingga dan kesemua sifat-sifat tersebut juga akan

menghampiri nilai gentingnya.

Akhirnya, kaedah berangka yang digunakan dalam kajian kami telah dit-

erangkan. Masalah komputasi berangka yang berkaitan diterangkan dengan teliti

dan langkah-langkah balas untuk meningkatkan prestasi komputeran diperke-

nalkan.
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Monopole-antimonopole Pair,

Vortex Dyons of The SU(2)

Yang-Mills-Higgs Field Theory

Abstract

Magnetic monopoles and dyons are topological soliton solutions in three space

dimensions, which arise in Yang-Mills-Higgs gauge theory where the non-Abelian

gauge group SU(2) is spontaneously broken by the Higgs field to a residual sym-

metry group U(1). While the magnetic charge is quantized due to topological

arguments, the electric charge is not.

In this thesis, the magnetic monopoles and dyons are studied in the context of

the SU(2) Yang-Mills-Higgs field theory which is also known as the SU(2) Georgi-

Glashow model. The aim is to gain information on the existence and properties of

these topological solitons, their structure and behaviour by studying the classical

field equations.

Generically, an appropriate ansatz is pivotal in solving the second order equa-

tions of motion which are a set of nonlinear partial differential equations. Then

the next step is either solving them analytically or numerically. The early litera-

ture review on magnetic monopoles and dyons are described in this thesis.

By applying a proper gauge transformation, we found that the magnetic

charge of the monopole can be transferred from the Higgs field to the gauge field

and vice versa. The results show that the string singularity from the Abelian

gauge can be removed by varying the parameter from the regulated polar angle

(Boulware et al., 1976) after gauge transformation.

We also study the one half topological charge monopole solutions. These

solutions do not necessarily satisfy the first order Bogomol’nyi equations and

they possess infinite energy density at the origin. Our results show that these

x



half-monopoles are actually a half Wu-Yang type monopole and they can possess

electric charge and become half-dyons.

New axially symmetric monopole solutions are studied numerically by gener-

alizing the large distance asymptotic solution of the ’t Hooft-Polyakov monopole

to the Jacobi elliptic functions. The results show that some of these axially sym-

metric monopoles are distorted if compared with the ’t Hooft-Polyakov monopole.

By study numerically, we found that the monopole-antimonopole pair dyon

and vortex ring dyon can carry electric charges and possess vanishing magnetic

charge. In the case when Higgs potential is vanishing, all the properties of the

dyons such as total energy, separation between monopole and antimonopole, di-

ameter of the vortex ring dyon increase exponentially to infinity when the net

electric charge approach infinity. For non-vanishing Higgs potential case, the net

electric charge will eventually reach its finite critical value and all the aforemen-

tioned properties also approach their critical values as well.

Finally, the numerical methods that are used in our aforementioned works are

described. The related numerical computational problems are discussed in detail

and the countermeasures to improve the computing performance are explained.
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Chapter 1

Introduction

1.1 Symmetry in Physics

The beauty of physics often reveals itself as a symmetry or duality in our

physical theories. The principle of symmetry has been permeating into theoretical

physics and playing a main role in the description of all fundamental forces. Even

Einstein himself was quite convinced that beauty was a guiding principle in the

search for important results in theoretical physics. To put simply, symmetry is

an operation that doesn’t change how thing behaves relative to the outside world.

So from a physicist’s point of view, symmetry can be referring to an operation in

space, like rotation, that doesn’t change the result of an experiment.

There exist four fundamental forces which can describe all the interactions

among matter constituents, namely the gravitational force, electromagnetic force,

strong nuclear force and weak nuclear force. Albeit we understand quite well

about the electromagnetic and the nuclear (strong and weak) forces, however

the gravitational force still remains as a puzzle up to now. All of these forces

are governed by gauge principle which is best understood in terms of symmetry

group. To put in a nutshell, the symmetries of the SU(3) group describe the

strong force, the SU(2) group describes the weak interaction, the U(1) group de-

scribes the electromagnetic force and the symmetry of Lorentz group describes

the gravitational force (Carmeli, 1982). As expressed by C. N. Yang, the theo-

retical physicist, the role of symmetry is central to the entire modern physics in

describing the properties of quantum particles (Yang, 2003).

All the physical phenomenon that happen either in macroscopic world or in

microscopic world can be described in the language of mathematics. Physicists

used to regard those most powerful physical theories which have a compact form

of mathematical expression as the beauty or elegance of these theories. Paul
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Adrien Maurice Dirac famously expressed this as “It is more important to have

beauty in one’s equations than to have them fit experiment”. Although it sounds

a bit exaggerated but it reflects well how important is the role of mathematics in

physical theories. However, many physicists would disagree with the statement

above if science is solely following the aesthetic theory without referring to the

experiment. A theory can only be considered true if it could be possibly tested

by any feasible experiment. Without experimental guidance, one would be easily

lost.

1.2 Magnetic Monopoles and Dyons

In physics, a magnetic monopole is a hypothetical particle which possesses

only magnetic charge. On the other hand, a dyon is a magnetic monopole, that

also carry electric charge (Julia and Zee, 1975).

Unlike electric charges which can be isolated, magnetic materials always have

two ‘poles’, namely north pole and south pole. If one tries to split a magnetic

bar into two pieces, it always ends up with two smaller magnetic bars with both

north and south poles. Evidently it is impossible to isolate a single magnetic pole

and only the combination of north and south poles seem to exist.

Electricity and magnetism are quite well-known to people for centuries. Sup-

posedly, the field equations of electromagnetism are symmetrical between electric

and magnetic field in vacuum. However, the symmetry between electricity and

magnetism is ruined by the fact that a single electrical charge particle such as

electron is ubiquitous, while a single magnetic pole has not been observed yet.

From what has been discussed above, Maxwell’s equations are no longer symmet-

ric under the duality transformation. Hence, the absence of magnetic monopoles

leads to the broken symmetry in electrodynamics. Paul A. M. Dirac, one of the

founders of quantum mechanics and quantum electrodynamics, is the one who

first introduced the quantum theory of magnetic charge (Dirac, 1931). He found

that quantum mechanics literally allow the existence of magnetic monopoles.

2



This idea was consistent with Maxwell’s equations and as a result provided an

explanation for the observed quantization of electric charge.

Quantum field theory (QFT) was born of the necessity of dealing with the

marriage of special relativity and quantum mechanics (Zee, 2003). It is the best

and most complete theoretical framework to describe the quantum behaviour of

elementary particles at high speed. QFT comprises the modern particle theory’s

ideas such as non-Abelian gauge theories, spontaneous symmetry breaking, soli-

ton concept and so on. Once we consider in the framework of non-Abelian gauge

theories, the new versions of Maxwell’s equations are no longer linear and hence

it may advocate soliton solutions. Solitons are non-linear wave solutions with

finite nonzero energy that can describe particles with structure when the theory

respects the principle of relativity.

In the context of non-Abelian gauge theories, the soliton also requires a Higgs

field, that is a scalar field which provides a means of ascribing mass to other par-

ticles and to itself. This Higgs mechanism ‘spontaneously break’ the gauge sym-

metry to a subgroup and consequently the soliton that arises is actually the mag-

netic monopole. In next chapter we will find that how this spontaneous symmetry

breaking is intimately pertaining to the existence of topological monopole solu-

tions. The cardinal difference between topological monopole and Dirac monopole

is that the former appear as regular, soliton-like solutions and they are natu-

ral and ineluctable. Moreover, the conservation of magnetic charge arises as the

outcome of topological defect and not due to some symmetry argument.

1.3 Why Magnetic Monopoles?

Readers may wonder why we need a magnetic monopole and what is the

outcome that it brings to our physical world? In principle, a magnetic monopole

can solve many open questions in physics. For instance, with the existence of

magnetic monopole we could preserve the symmetrization of electromagnetism in

term of Maxwell’s equations. If one allows for the possibility of “magnetic charge”

3



analogous to electric charges, Maxwell’s equations become completely symmetric

under the interchange of electric and magnetic fields, i.e. duality transformation.

The existence of magnetic monopoles could explain the quantization of electric

charge (Dirac, 1931, 1948). In nature, all electric charges that are found on

particles seem to carry an integer multiples of the electron’s charge. Let say, we

denote the electron’s charge as e, then all electric charges that are found in nature

can be written as ne, for some integer n. This peculiar characteristic of electric

charge is known as the quantization of electric charge. No one could explain

this phenomenon until Dirac introduced the idea of magnetic monopole, whereby

he proposed the Dirac quantization condition which says that in the presence of

magnetic monopole, the product of electric and magnetic charges must be equal

to an integer multiple of 1/2. The detailed description of quantization condition

will be discussed in Chapter 2.

Magnetic monopoles and dyons are very common predictions of some Grand

Unified Theory (GUT) models. GUT is a theory that seeks to unify the three

fundamental forces i.e. electromagnetic, weak and strong force into a single fun-

damental interaction described by a larger gauge symmetry such as SU(5) or

SO(10), which is larger than the standard model SU(3) × SU(2) × U(1). Some

properties of monopoles such as their mass are model dependent. Monopoles

seem to appear as a price that one has to pay in any theories that are inten-

tionally unifying electromagnetism with other fundamental forces such as GUT,

supersymmetry, extra dimension, string theory and so forth (Bais, 2005).

One of the significant predictions of GUT (Georgi and Glashow, 1974) and

yet has not been observed experimentally is the proton decay. Proton decay is

an analogical form of radioactive decay in which the proton decays into lighter

subatomic particles, such as a neutral pion and a positron. Rubakov (1981, 1982)

and Callan (1982a,b) proposed that the grand unified monopoles could catalyze

proton decay. With the presence of GUT monopoles, the inert baryon, proton

can decay with dramatic rates at low energy. After all, proton decay is a feasible

4



indirect observation that could prove the validity of GUT.

On the other hand, the existence of monopole could provide an explanation

for the quark confinement which is a phenomenon that quarks cannot be isolated.

It was widely believed that due to the condensation of color-magnetic monopoles,

the quarks are confined in flux lines through dual Meissner effect (Nambu, 1974;

Mandelstam, 1976; ’t Hooft, 1981; Polyakov, 1977).

1.4 The Existence of Monopoles

Given that the exotic monopoles should exist, but the question is why they

are not seen up to now. Certain grand unified theories have them because mag-

netic monopoles are an inextricable prediction of grand unification in the early

universe. According to the aforementioned section, it can be seen that the exis-

tence of monopoles are able to solve several open questions in physics. Obviously,

magnetic monopoles play an important role in our universe which could not be

ignored.

It has been generally believed that the standard Weiberg-Salam model, which

is in accord with nature, does not have monopole solutions. However, in 1997

Cho and Maison (1997) have succeeded in obtaining model equations for a new

type of monopole or dyon solution in the electroweak Weinberg-Salam model.

This one-monopole is a non-trivial hybrid between the Abelian Dirac monopole

and the non-Abelian ’t Hooft-Polyakov monopole. However, this Cho-Maison

monopole solution is still a theoretical result and the existence of such monopole

is still waiting for empirical evidence. Whatever it is, the crucial challenge before

searching for the magnetic monopole is to find the Higgs particle in the first place.

This is because without the Higgs particle, the whole mathematical structure of

the theory which leads to monopole solution will be in doubt.

To date, many attempts have been made to detect magnetic monopoles but

none have been found. One of the tantalizing recorded event is by Blas Cabrera

(Cabrera, 1982) on the night of February 14, 1982 (sometimes referred to as
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the “ Valentine’s Day Monopole”), had the perfect signature hypothesized for

a magnetic monopole. Their monopole detectors are using the technique called

“superconducting quantum interference device”, or SQUID. A superconducting

ring is used to detect the moving magnetic monopole based on the long range

electromagnetic interaction between the magnetic particle and the macroscopic

quantum state of the ring. However, when Cabrera’s laboratory later on built an

improved detector and other research groups tried to repeat the experiment, no

similar reproducible evidence was found.

Another interesting cosmic ray experiment in 1975 which was carried out by

the team of Price et al. (1975) engendered the announcement of the detection

of a moving magnetic monopole. But that result was soon withdrawn in 1978

after serious errors were found by further analysis by Price et al. (1978) group.

Recently, the searches of magnetic monopole have been carried out at high en-

ergy accelerators. Researchers try to detect the magnetic monopole immediately

after their production in high-energy collisions such as e+-e−, e-p, p-p, and p-p̄

interactions at various high energy colliders. For instance in 1990, a search at the

Fermilab Tevatron collider using plastic track detectors seems to rule out mag-

netic monopole with masses up to 850 GeV (Bertani et al., 1990). Experiments at

the Large Electron-Positron Collider 2 (LEP2) excluded masses below 102 GeV

(OPAL Collaboration, 2008).

Recently in 2008, attention has turned to condensed matter system because

a monopole-like quasiparticle could be observed in a kind of crystalline mag-

netic material know as spin ice (Castelnovo et al., 2008). It can show emergent

phenomena that resemble magnetic monopoles in some respect. A year later,

two team of researchers from France and Germany (Fennell et al., 2009; Morris

et al., 2009) successfully reported the observation of certain states of spin ice

that resemble magnetic monopoles configurations by using neutron scattering ex-

periments. The materials used are holmium titanate Ho2Ti2O7 and dysprosium

titanate Dy2Ti2O7. However, these ‘quasi-monopoles’ should not be confused
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with the actual monopole particles because they are not elementary particles.

Paul Adrien Maurice Dirac’s quantum theory of magnetic monopole had in-

spired a large number of subsequent developments. He is often quoted on the

importance of mathematical elegance in one’s equations. Ironically towards the

end of Dirac’s career, he became less certain about the existence of monopoles

due to the complete lack of experimental evidence. In 1981, Dirac was invited to

attend a symposium at Abdul Salam International Center for Theoretical Physics

in Trieste to commemorate the 50th anniversary of his monopole paper. He wrote

a letter in response (Dirac, 1981):

“I am inclined now to believe that monopoles do not exist. So many

years have gone by without any encouragement from the experimental

side.”

Seemingly Dirac has abandoned his earlier dictum: “It is more important to

have beauty in one’s equations than to have them fit experiment”. In fact, beauty

is very difficult to define therefore it is not supposed to follow any aesthetic theory

alone. All the physical theory has to be justified by feasible experiment, otherwise

it will not be considered as science regardless of how ‘elegant’ or ‘beautiful’ the

theory is. Ultimately, magnetic monopole has to pass the rigorous experimental

test or else it will still remain as a hypothetical particle and not a physical one.

To sum up, the lack of observational evidence however does not preclude

the possibility that magnetic monopoles do exist. The question of whether the

magnetic monopoles really exist or not still remains as an open question to the

whole world. Even though their existence remains a mystery, we can at least be

certain that if they do exist, they are a very rare phenomenon in our world.
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1.5 SU(2) Yang-Mills-Higgs Theory

Throughout this thesis, the field theory model that will be used in which

monopole solutions arise is the SU(2) Yang-Mills-Higgs (YMH) theory. This

theory also known as the SU(2) Georgi-Glashow model, was once considered as

an alternative to the Standard Model of electroweak interactions (Georgi and

Glashow, 1972a). It is a SU(2) gauge group model with triplet of real Higgs

fields. The SU(2) YMH Lagrangian in 3+1 dimensions with non vanishing Higgs

potential is:

L = −1

4
F a
µνF

aµν − 1

2
DµΦaDµΦa − V,

V =
1

4
λ(ΦaΦa − µ2

λ
)2, (1.1)

where µ is the Higgs field mass and λ is the strength of the Higgs potential which

are constants. The vacuum expectation value of the Higgs field is υ = µ/
√
λ and

the metric used is gµν = (− + ++). The SU(2) internal group indices a, b, c run

from 1 to 3 and the spatial indices are µ, ν, α = 0, 1, 2, and 3 in Minkowski space.

Here we use the Einstein summation convention to represent sums: any index

that is repeated twice is summed over.

The Lagrangian (1.1) is gauge invariant under the set of independent local

SU(2) transformations at each space-time point. The covariant derivative of the

Higgs field and the gauge field strength tensor are given respectively by

DµΦa = ∂µΦa + eεabcAbµΦc,

F a
µν = ∂µA

a
ν − ∂νAaµ + eεabcAbµA

c
ν . (1.2)

Since the gauge field coupling constant e can be scaled away, we can set e to one

without any loss of generality.
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The equations of motion that follow from the Lagrangian (1.1) are

DµF a
µν = ∂µF a

µν + eεabcAbµF c
µν = eεabcΦbDνΦ

c, (1.3)

DµDµΦa = λΦa(ΦbΦb − µ2

λ
). (1.4)

The energy-momentum tensor Tµν which follows from the Lagrangian (1.1) and

the equations of motion (1.3) and (1.4) is (Prasad and Sommerfield, 1975)

Tµν = F a
µρF

aρ
ν +DµΦaDνΦ

a + gµνL (1.5)

and the Hamiltonian density is given explicitly by

T00 = F a
0ρF

aρ
0 +D0ΦaD0Φa + g00L

= F a
0ρF

aρ
0 +D0ΦaD0Φa + g00

(
−1

4
F a
αβF

aαβ − 1

2
DαΦaDαΦa − V

)
= Ea

i E
a
i +D0ΦaD0Φa − 1

2
(Ea

i E
a
i −Ba

i B
a
i )

−1

2
D0ΦaD0Φa +

1

2
DiΦ

aDiΦ
a + V

=
1

2
(Ea

i E
a
i +Ba

i B
a
i +D0ΦaD0Φa +DiΦ

aDiΦ
a) + V, (1.6)

where

Ea
i = F a

i0 and Ba
i = −1

2
εijkF

a
jk. (1.7)

It is conserved by virtue of the field equations:

∂µT
µν = 0. (1.8)

Therefore, the static Hamiltonian, also known as the total energy of the system,

is

E =

∫
d3xT00 =

∫
d3x (Ea

i E
a
i +Ba

i B
a
i +D0ΦaD0Φa +DiΦ

aDiΦ
a) + V, (1.9)

where the potential of the scalar fields is given in the second equation of (1.1).
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1.5.1 The SU(2) Gauge Group

Consider now the SU(2) group, the gauge potential and the field strengths

can be written as (Rubakov, 2002),

Aµ = e
σa

2i
Aaµ, Fµν = e

σa

2i
F a
µν , Φ =

σa

2i
Φa, (1.10)

and σa are the Pauli matrices with commutation relations [σa/2, σb/2] = εabcσ
a/2

and it have the following properties,

σaσb = iεabcσc + δab, Tr(σa) = 0, Tr(σaσb) = 2δab. (1.11)

Here all Roman indices a, b, c take the values 1, 2, 3.

Under SU(2) gauge transformation ω, the gauge potentials and Higgs field

transform as

Aµ → A′µ = ωAµω
−1 − (∂µω)ω−1, (1.12)

Φ → Φ′ = ωΦω−1. (1.13)

The SU(2) gauge transformation ω(x) can also depend on space-time point xµ as,

ω(x) = exp(−θa(x)Ta)

= cos

(
1

2
θ(x)

)
I + in̂a(x)σa sin

(
1

2
θ(x)

)
,

(1.14)

where I is identity matrix, Ta = σa
2i

are the generators of the SU(2) gauge

transformation and n̂a(x) is the unit vector defined by

θa(x) = n̂a(x)θ(x). (1.15)

Here θa(x) is real for a real SU(2) gauge transformation and complex for a complex
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SU(2) gauge transformation. The pure gauge term in Eq.(1.12) then becomes

e
σa

2i
Aaµ (pure) = −(∂µω)ω−1, (1.16)

which can be written as

eAaµ (pure) = −iTr{σa(∂µω)ω−1}

=
1

2
Tr
{
σaσb

(
n̂b∂µθ + (∂µn̂b) sin θ

)
+ 2σcσdεabd(∂µn̂b)n̂c sin2 θ

2

}
= n̂a∂µθ + (∂µn̂a) sin θ + 2εabc(∂µn̂b)n̂c sin2 θ

2
. (1.17)

By using the formula (Actor, 1979),

ωσaω
−1 = σa cos θ + εabcn̂bσc sin θ + 2n̂a(n̂bσb) sin2 θ

2
, (1.18)

the right hand side of gauge potential Eq.(1.12) can be written explicitly as

A′aµ = cos θAaµ + sin θεabcA
b
µn̂c + 2 sin2 θ

2
n̂a(n̂bA

b
µ)

+
1

e

{
n̂a∂µθ + sin θ ∂µn̂a + 2 sin2 θ

2
εabc(∂µn̂b)n̂c

}
,

(1.19)

whereas the Higgs field from Eq.(1.13) can be written as

Φ′a = cos θΦa + sin θεabcΦ
bn̂c + 2 sin2 θ

2
n̂a(n̂bΦ

b). (1.20)

1.5.2 Spontaneous Symmetry Breaking of SU(2) group

By using spontaneous symmetry breaking, mass can be introduced into the

Yang-Mills-Higgs theory (Rubakov, 2002). The coupling of Higgs field in Yang-

Mills theory will force the gauge bosons to acquire mass. Let us consider again the

Lagrangian density that is given in Eq.(1.1). The SU(2) gauge symmetry can be

spontaneously broken to U(1). The minimum of the potential energy is realized

at |Φa
vac| = µ/

√
λ = υ. If we take the ground state or vacuum field configuration
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of Φa
0 to be

Φ1
0 = Φ2

0 = 0, Φ3
0 = υ, (1.21)

the gauge transformation from Eq.(1.13) gives the same minimum, so we have a

symmetry. In order to break this symmetry and find the particle spectrum, we

have to perturb around this minimum. Let us consider the perturbations η(x)

about the ground state υ, it become

Φ1
0 = Φ2

0 = 0, Φ3
0 = υ + η(x). (1.22)

By substituting the above equations into the Lagrangian (1.1), considering only

to quadratic order and neglecting the higher order in η, the potential become

V =
1

4
λ(ΦaΦa − µ2

λ
)2

=

(√
λ

2
(υ + η(x))− µ2

2
√
λ

)2

= µ2η2. (1.23)

Assuming that the field Aaµ is small and to linear order, we have

F a
µν u Faµν where Faµν = ∂µA

a
ν − ∂νAaµ. (1.24)

After substituting equations (1.22) to Lagrangian (1.1), it becomes

L = −1

4
F a
µνF

aµν − 1

2
DµΦaDµΦa − 1

4
λ(ΦaΦa − µ2

λ
)2

= −1

4
FaµνFaµν +

1

2
(∂µη)2 +

1

2
e2υ2A2

µA
2
µ +

1

2
e2υ2A1

µA
1
µ − µ2η2.

(1.25)

By doing so, we can recognize the mass term in the Lagrangian, which means

that the mass term is written in analogy to the mass term in scalar field La-

grangian (Zee, 2003). Overall, the particle spectrum of the theory then consists
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of a massless photon, two massive vector bosons and a massive scalar field. Two

components of massive vector field A1
µ, A2

µ, which also known as intermediate

vector boson will acquire the same mass MW = eυ. The massive scalar field

is η(x) and its mass is equal to MH =
√

2λυ. Instead of two real fields, it is

convenient to consider a single complex vector field:

W±
µ =

1√
2

(
A1
µ ± iA2

µ

)
. (1.26)

This complex vector fields W±
µ will have electric charge ±e (This is the reason for

calling the gauge coupling e). We would like to interpret A3
µ as the Abelian gauge

potential which corresponding to unbroken U(1) electromagnetic subgroup. It is

representing the massless photon, so that electromagnetism is embedded into the

theory. In conclusion, the nonzero vacuum expectation value of the Higgs field

breaks the non-Abelian SU(2) gauge symmetry to the Abelian U(1) symmetry.

The total number of degrees of freedom is conserved. According to the La-

grangian density Eq.(1.1), there are 3 massive scalar fields (Φ1,Φ2,Φ3) and three

massless vector fields (A1
µ, A

2
µ, A

3
µ). So that the initial number of degrees of free-

dom is

3 + 2× 3 = 9. (1.27)

Each scalar field contributes one degree of freedom whereas each vector field

component contribute two degrees of freedom. This is because electromagnetic

wave has two polarization of E and B. After the symmetry breaking there are

one massive scalar η and two massive vector bosons (A′1µ , A
′2
µ ) and one massless

boson A′3µ so that

1 + 2× 3 + 2 = 9, (1.28)

where each massive vector boson contributes 3 degrees of freedom.
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1.6 Natural Units and Dimension Analysis

In physics, natural units are physical units of measurement based only on

universal physical constants. According to the convention of particle physics, we

use natural units in which the speed of light c and the Planck constant divided

by 2π, ~ are both set equal to 1. In other words, we take c and ~ to be dimen-

sionless. Therefore, the only non-trivial dimension is the dimension of mass. In

natural units, length and time have the same dimension which is the inverse of

the dimension of mass (and of energy and momentum). Particle physicists tend

to count dimension in term of mass as they are used to thinking of energy scales.

This is in contrast to condensed matter physicists, who usually count dimension

in term of length scales. For a detailed description of natural units and dimension

analysis, readers are advised to refer the book by Rubakov (2002) and Zee (2003).

Whereas for the detailed of conversion factors in natural units, please refer to the

book by Dominguez-Tenreiro and Quiros (1988).
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Chapter 2

Literature Review on Monopoles and Dyons

2.1 Electromagnetic Duality

The idea of magnetic monopoles is closely related to the idea of electromag-

netic duality in classical electrodynamics. The four well-known Maxwell’s equa-

tions are

∇ · E = ρe, (2.1)

∇ ·B = 0, (2.2)

∇× E +
∂B

∂t
= 0, (2.3)

∇×B− ∂E

∂t
= Je. (2.4)

where E is the electric field, B is the magnetic field, ρe is the electric charge

density, and Je is the electric current density. Let us consider the Maxwell’s

equations in vacuum first; when ρe = Je = 0, all the right hand side of the above

equations appear to be zero and they become symmetric and invariant under the

transformation

E→ B and B→ −E. (2.5)

This symmetry is known as electromagnetic duality. We can generalize the duality

transformation (2.5) to duality rotations which are parameterized by an arbitrary

angle θ (Harvey, 1996)

E → cos θE + sin θB,

B → − sin θE + cos θB. (2.6)

Unfortunately, this symmetry seems to be ruined by the fact that we have

not yet observed any magnetic charges but only electric charges. To understand

15



the argument, let there be no magnetic charge but only electric charge density ρe

and current density Je. The Maxwell equations become exactly the same as the

previous equations (2.1)-(2.4) where the ρe and Je are nonzero.

The equations (2.2) and (2.3) seem to be missing something on their right hand

sides. This is because the above Maxwell’s equations assume there is no magnetic

charge, therefore there is no magnetic current density Jm. Consequently, the

absence of magnetic charge ruins the symmetrization of electromagnetic duality.

In physics jargon the absence of magnetic charge breaks the symmetry.

In order to retain the electromagnetic duality again, we assume that there

exist magnetic charge ρm and magnetic current density Jm (Jackson, 1999). The

Maxwell equations after modification would then be

∇ · E = ρe, ∇ ·B = ρm,

∇× E +
∂B

∂t
= Jm, ∇×B− ∂E

∂t
= Je. (2.7)

Now the above Maxwell’s equations with both electric and magnetic source terms

look more symmetric. Besides that, they are left unchanged under the following

duality transformations (Song, 1996)

E→ B; B→ −E

ρe,Je → ρm,Jm; ρm,Jm → −ρe,−Je.
(2.8)

Apparently, the invariance of the equations of electrodynamics under duality

transformations conjecture the existence of isolated magnetic poles which would

be the counterparts of electric charges. In other words, the existence of magnetic

monopole in the universe is essential in order to keep the symmetrization of

Maxwell’s equations in electromagnetism.
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2.2 Dirac Monopole and Charge Quantization

The idea of magnetic monopoles began with Dirac’s paper on Quantized Sin-

gularities in the Electromagnetic Field which was published in the Proceedings

of the Royal Society of London A on 29 May 1931 (Dirac, 1931). The Dirac

monopole is based upon a straightforward generalization of the electric monopole.

By analogy with the electric field E of a point electric charge, the magnetic field

B of a point magnetic monopole can be written as,

E = e
r

r3
→ B = g

r

r3
. (2.9)

These fields can be expressed in terms of potential, E = −∇φ and B = ∇×A.

But we will have a contradiction here because we know that in vector calculus

the divergence of a curl is equal to zero, i.e. ∇ · (∇×A) = 0.

In order to evade this problem, we introduce the Dirac delta function

δ(r) =

 0, if r 6= 0

∞, if r = 0

 (2.10)

and Maxwell’s equations are generalized to

∇ · E = 4πeδ3(r) → ∇ ·B = 4πgδ3(r). (2.11)

So there is a delta function singularity in the A field. Take a sphere surrounding

the point monopole. At the top of sphere, there is a small circle that is centered

around the north pole.

The flux of the magnetic field through the circle is given by,

∫
B · dS =

∫
∇×A · dS =

∮
A · dl. (2.12)

If the circle is infinitesimally small, including only the north pole, then the line

17



integral around this small circle is zero. But if the circle is made successively

larger, until it includes the entire sphere, then the surface integral over the B is

4πg. However the line integral over the A field must be zero because the loop has

become an infinitesimally small loop surrounding the south pole. It seems that

we have encounter a new contradiction here.

To avoid this, the A field must be singular along the negative z -axis. There

must be an unphysical singularity that extends from the origin down to the south

pole and beyond. This singularity is called the Dirac String. The vector potential

cannot be defined on the Dirac string, but it is defined everywhere else.

The wave function in the presence of monopole must be single-valued when

we go around the Dirac string. The wave function for free particle is

Ψ ≈ exp

(
i

~

)
(p · r− Et). (2.13)

In the presence of electromagnetic field, we make the standard substitution p→

p− (e/c) A. With this substitution, the wave function picks up new phase factor

Λ given by,

Λ = exp
−ie
c~

(A · r) . (2.14)

In order for the wave function to be single-valued when we go around a loop, this

phase factor α must be equal to one. The line integral around the Dirac string

must therefore be 2πn, where n is an integer. Then we have

2πn =
e

c~

∮
A · dl =

e

c~

∫
B · dS =

e

c~
4πg. (2.15)

Hence, the final Dirac quantization condition is

e = n
~c
2g
. (2.16)

The above charge quantization condition implies that the existence of a single

monopole would explain the observed quantization of all electric charges.
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2.3 Wu-Yang Monopole

In 1975, T.T. Wu and C.N. Yang found a method to describe magnetic

monopole without the need for Dirac string singularities (Wu and Yang, 1975).

To avoid introducing singularities in the coordinate system, one divides the sphere

into more than one overlapping region and defines a singularity-free coordinate

system in each region.

The space outside of a magnetic monopole will be divided into two overlapping

regions, Ra and Rb (Wu and Yang, 1976). A vector potential (Aµ)a in Ra and a

vector potential (Aµ)b in Rb will be defined as below:

Ra : 0 ≤ θ < 1
2
π + δ, r > 0, 0 ≤ φ < 2π

Rb : 1
2
π − δ < θ ≤ π, r > 0, 0 ≤ φ < 2π

Rab : 1
2
π − δ < θ < 1

2
π + δ, r > 0, 0 ≤ φ < 2π

(2.17)

where we assume δ such that 0 < δ ≤ 1
2
π. The above mathematical expressions

tell us that the region Ra covers a bit more than the upper hemisphere, whereas

the region Rb covers a bit more than the lower hemisphere as shown in Fig.2.1.

Take the vector potentials to be

(Ar)a = (Aθ)a = 0, (Aφ)a = g
r sin θ

(1− cos θ),

(Ar)b = (Aθ)b = 0, (Aφ)b = −g
r sin θ

(1 + cos θ).
(2.18)

After that, we will “glue” the two vector potentials along the equator. The

final gluing process between these two different field configurations is accom-

plished by making a gauge transformation between the two configurations along

the equator. In the overlap region the ∆A is given by,

∆A = Aa −Ab = (Aa − Ab)êφ =
g

r

2

sin θ
êφ. (2.19)
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g

Ra

bR

Figure 2.1: Division of space outside of monopole g into overlapping regions of
Ra and Rb

After that, take a loop at the polar angle θ,

∮
∆A · dr =

∫
g

r

2

sin θ
r sin θdϕ = 4πg. (2.20)

But according to the Bohm-Aharonov experiment (Aharonov and Bohm, 1959),

the relevant phase factor is exp
(
ie/c~

∮
A · dr

)
. Therefore we need or allow

exp

(
i
e

c~

∮
A · dr

)
= 1

e

c~

∮
A · dr = 2nπ

eg =
n~c
2
. (2.21)

Hence, the magnetic monopoles can exist but it must be quantized in units of

g0 = ~c
2e

(in unit ~ = c = 1). Once again we obtain the Dirac quantization,

eg =
1

2
n. (2.22)

2.4 ’t Hooft Polyakov Monopole

The solution of finite energy stringless magnetic monopoles in non-Abelian

gauge theories with spontaneously broken symmetry was first discovered by ’t Hooft
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(1974) and Polyakov (1974). They found that such objects were actually three-

dimensional topological solitons. A soliton is a stable localized solution to the

classical field equations which has finite nonzero energy. These regular magnetic

monopoles are not put in by hand (as in the original work of Dirac) but are an

inevitable outcome of the non-Abelian SU(2) gauge group which upon sponta-

neous symmetry breaking to U(1) yields solitonic solutions that carry magnetic

charge.

Lets consider the SU(2) Georgi-Glashow model with gauge group SU(2) sym-

metry group which has been mentioned in Chapter 1 (1.1), containing the gauge

field strength F a
µν (a is the internal group indices run from 1 to 3) and triplet of

real Higgs fields Φa. The Lagrangian is

L = −1

4
F a
µνF

aµν − 1

2
DµΦaDµΦa − 1

4
λ(ΦaΦa − µ2

λ
)2. (2.23)

The covariant derivative of the Higgs field and the gauge field strength tensor

are given respectively by equations (1.2), whereas the equations of motion that

follow from the Lagrangian (2.23) are given by equations (1.3) and (1.4). The ’t

Hooft-Polyakov ansatz is:

Φa =
ra

er2
H(r), Aan = εamn

rm

er2
[1−K(r)], Aa0 = 0. (2.24)

These ansatz will reduce the equations of motion (1.3) and (1.4) to

r2d
2K

dr2
= KH2 +K(K2 − 1),

r2d
2H

dr2
= 2K2H +

λ

e2
H(H2 − r2). (2.25)

A solution of these equations must satisfy the following boundary conditions

K(r)→ 1, H(r)→ 0, as r → 0,

K(r)→ 0, H(r)→ r, as r →∞. (2.26)
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Evidently, these ordinary differential equations (ODE) cannot be solved analyt-

ically for all general values of λ, unless it is considered in the BPS limit where

λ = 0 which will be discussed later. However, a numerical solution is still possible

and it was reported in Bais and Primarck (1976) and Kirkman and Zachos (1981).

2.4.1 Electromagnetic Field and Charge Quantization

Nevertheless we still can prove the existence of monopole without solving the

equations of motion (2.25) directly. Here, we are interested in static solutions in

which the gauge potential have the non-trivial form

Aai = −εiab
rb

er2
(r →∞); Aa0 = 0 (2.27)

Φa = υ
ra

r
(r →∞), (2.28)

where the vacuum expectation value, υ = µ√
λ
. Equation (2.28) implies |Φ| = υ,

therefore the right hand side of the equation (1.4), vanishes at infinity. One can

show that Φa is covariantly constant at infinity, namely DµΦa = 0. At spatial

infinity the field Φ is pointing radially outward, so this configuration is known

picturesquely as a hedgehog. ’t Hooft found a gauge invariant definition of the

Abelian electromagnetic field tensor,

Fµν =
1

|Φ|
ΦaF a

µν −
1

e|Φ|3
εabc(DµΦb)(DνΦ

c). (2.29)

For the special case Φ = (0, 0, 1), one gets Fµν = ∂µAν − ∂νAµ and it reduces the

electromagnetic field to the usual one. Now, by defining

Aµ =
1

|Φ|
ΦaAaµ, (2.30)

after a straightforward calculation it gives,

Fµν = ∂µAν − ∂νAµ −
1

e
εabcΦ̂

a(∂µΦ̂b)(∂νΦ̂
c), Φ̂a = Φa/|Φ|. (2.31)
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With this definition, we can now calculate the magnetic and electric charge of

the monopole. We find that Aµ = 0 and that:

F0i = 0, Fij = − 1

er3
εijkr

k, Bk =
rk

er3
. (2.32)

With this value of the magnetic field, then we can show that the total flux

through a sphere surrounding the monopole is given by 4π
e

. But the total flux of

a monopole is given by 4πg. Therefore, the monopole magnetic charge obeys the

constraint

eg = 1, (2.33)

which is twice the Dirac case.

2.4.2 Topological Charge

The topological magnetic current (Arafune et al., 1975) is defined to be

kµ =
1

8π
εµνρσ εabc ∂

νΦ̂a ∂ρΦ̂b ∂σΦ̂c, (2.34)

which is also the topological current density of the system and the corresponding

conserved topological magnetic charge is

M =

∫
d3x k0 =

1

8π

∫
εijkε

abc∂i

(
Φ̂a∂jΦ̂

b∂kΦ̂
c
)
d3x

=
1

8π

∮
d2σi

(
εijkε

abcΦ̂a∂jΦ̂
b∂kΦ̂

c
)

=
1

4π

∮
d2σi Bi. (2.35)

For such configuration, the static energy for the system is

E =

∫
d3x

(
1

2
Ba
i B

a
i +

1

2
DiΦ

aDiΦ
a +

1

4
λ(ΦaΦa − µ2

λ
)2

)
. (2.36)
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A necessary condition for finiteness of the energy is the requirement

ΦaΦa = υ2, r →∞. (2.37)

The boundary condition (2.27) and the above condition suggest that the direction

of the fields Φa in internal space may depend on the direction in physical three-

dimensional space.

Φa|r→∞ = Φa(n) where n =
r

r
.

This particular boundary condition defines a map of the sphere at spatial

infinity, S2
∞, onto a sphere S2 in the internal space SU(2) manifold. Such map-

pings fall into a denumerable infinity of homotopy classes which form the group

π2(S2) = Z, where π2 is the second homotopy group and the elements of Z are

integers, i.e., the winding number n.

2.4.3 The Mass of the Monopole

The mass of the monopole (its static energy) can be estimated by rewrit-

ing Eq.(2.36) in term of the dimensionless quantities by operate the rescaling

(Weinberg and Yi, 2007)

Φ→ Φ/υ, Aµ → Aµ/υ, r → eυr. (2.38)

This isolates the dependence on e and υ, and leads to the following mass formula:

Msoliton =
MW

α
f(λ/e2), α = e2/4π, MW = eυ, (2.39)

where MW is the mass of the charged intermediate vector boson (MW ≈ 50 −

60GeV) and f(λ/e2) is a monotonically increasing function which satisfies f(0) =

1. Therefore this soliton is expected to have a very large mass ≥ 104GeV (Mar-

ciano, 1978; Georgi and Glashow, 1972b).
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2.5 Julia-Zee Dyon

So far we have only considered solutions with zero electric charge. In this

section we will discuss solutions which predict particles with non-zero electric

and magnetic charge. Julia and Zee (1975) have shown that the same SU(2)

model that is used in ’t Hooft-Polyakov monopole also yields a dyon solution

with non-zero electric and magnetic charge. The Julia-Zee ansatz is

Φa =
ra

er2
H(r), Aan = εamn

rm

er2
[1−K(r)], Aa0 =

ra

er2
J(r). (2.40)

Substituting the ansatz back into equation (1.3) and (1.4) yields

r2d
2K

dr2
= K(H2 − J2) +K(K2 − 1),

r2d
2H

dr2
= 2K2H +

λ

e2
H(H2 − r2),

r2d
2J

dr2
= 2K2J. (2.41)

One cannot solve the equations (2.41) in closed form, but numerical solutions can

be obtained when it satisfies the following boundary conditions (Julia and Zee,

1975; Actor, 1979):

As r → 0, K(r)→ 1, H(r)→ 0, J(r)→ 0.

As r →∞,

K(r) → Ar exp
(
−r
√
β2 −M2

)
,

J(r) → Mr + C +O(1/r),

H(r) →
(
eµ√
λ

)
r + . . . , (2.42)

where A is constant, M is a new parameter with the dimension of mass, C is

the unknown constant which has to be found numerically and β =
(
eµ√
λ

)1/2

. The

25


