
Universitat Aut̀onoma de Barcelona

Departament d’Enginyeria de la Informació i de les
Comunicacions

CONTRIBUTIONS TO M OBILE AGENT PROTECTION

FROM M ALICIOUS HOSTS

SUBMITTED TO UNIVERSITAT AUTÒNOMA DE BARCELONA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OFDOCTOR OFPHILOSOPHY IN COMPUTERSCIENCE

by Carles Garrigues Olivella

Bellaterra, June 2008

Adviser:

Dr. Sergi Robles Martı́nez



c© Copyright 2008 by Carles Garrigues Olivella



I certify that I have read this thesis and that in my opinion itis fully

adequate, in scope and in quality, as a dissertation for the degree of

Doctor of Philosophy.

Bellaterra, June 2008

Dr. Sergi Robles Martı́nez

(Adviser)

Committee:

Dr. Josep Rif̀a - Universitat Aut̀onoma de Barcelona

Dr. Nikos Migas - Napier University

Dr. Juan Raḿon Velasco - Universidad de Alcalá

Dr. Antorio Moreno - Universitat Rovira i Virgili

Dr. Jordi Sabater - Institut d’Investigació en Intel.ligència

Artificial (IIIA)





A la meva Laura





Abstract

Several advantages have been identified in using mobile agents in distributed systems. The

most frequently cited advantages include: reduction of network load, decrease in communi-

cation latency, dynamic adaptation, and better support formobile devices with intermittent

connections, among others. However, the benefits offered bymobile agents have not been

sufficient to stimulate their widespread deployment. The main reason why mobile agents

have not been widely adopted yet, despite their technological benefits, is their inherent

security risks. Many breakthroughs have been achieved in the security, reliability and effi-

ciency of mobile agents, but there are security issues stillremaining unsolved.

The core work of this thesis revolves around the protection of mobile agents against

malicious hosts. In order to provide a solution to some of thecurrent security issues,

first of all, an itinerary protection protocol is presented that supports free-roaming agents.

Itinerary protection protocols proposed to date limit the agent’s ability to migrate at will.

Therefore, this thesis presents a protocol that allows agents to discover new platforms at

runtime, so that applications can take full advantage of thebenefits provided by mobile

agent itineraries.

Second, a protocol is presented that protects mobile agentsagainst external replay at-

tacks. External replay attacks are based on resending the agent to another platform, so as

to force the reexecution of part of its itinerary. The proposed protocol counters this kind of

attacks without limiting the agent’s ability to visit certain platforms repeatedly.

The security solutions presented in this thesis are based onthe fact that trusted plat-

forms can be found in many, if not most, mobile agent-based scenarios. By incorporating

vii



trusted platforms in the agent’s itinerary, the proposed solutions provide a balanced trade-

off between security and flexibility.

In order to promote the development of secure mobile agent-based applications, this

thesis also presents a development environment that facilitates the implementation of the

proposed agent protection protocols as well as other security solutions.



Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Sergi Robles, for the encouragement,

sound advice and lots of good ideas he provided me throughoutthe duration of my PhD

studies. None of this would have been possible without him.

I would also like to thank all the members of the Department ofInformation and Com-

munications Engineering for providing a friendly environment in which to work. In partic-

ular, I would like to thank Joan Borrell for spreading his spirit and enthusiasm onto others,

and for his helpful advice and support. Besides, a note of thanks is due to those with whom

I shared so many enjoyable lunches and stimulating discussions. I would like to say a big

’thank you’ to Jordi Cucurull, who had the misfortune to be my office mate during the last

five months of thesis preparation, and endured my whining during all this time.

I would also like to express my gratitude to Dr. William Buchanan, who accepted me

into his research group at Napier University, and to Dr. Nikos Migas, who offered me help,

advice and discussion, and who deserves much of the credit for the research paper that was

written during my stay at Napier.

I am also grateful to all my friends and family, and I especially wish to thank my parents

for their continued support and faith in me.

Lastly, and most importantly, I would like to thank my wife Laura for helping me get

through the difficult times, and for all the emotional support, entertainment, and care. This

thesis is dedicated to her.

ix





Contents

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Mobile Agent Security 9

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Malicious host problem: unrealistic approaches . . . . . .. . . . . . . . . 11

2.2.1 Execution tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Cooperating agents . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Computing with encrypted functions . . . . . . . . . . . . . . . .. 13

2.2.5 Tamper-proof devices . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Malicious host problem: realistic approaches . . . . . . . .. . . . . . . . 14

2.3.1 Protecting the agent computational results . . . . . . . .. . . . . . 14

2.3.2 Protecting the agent’s itinerary . . . . . . . . . . . . . . . . .. . . 16

2.3.3 Self-protected mobile agents . . . . . . . . . . . . . . . . . . . .. 18

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



3 Defining the agent’s itinerary 23

3.1 Related work on defining agent’s itinerary . . . . . . . . . . . . .. . . . . 24

3.2 Explicit itineraries for free-roaming agents . . . . . . . .. . . . . . . . . . 25

3.3 Node special properties . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30

3.3.1 Unchanged location property . . . . . . . . . . . . . . . . . . . . .30

3.3.2 Dynamic location property . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Securing dynamic itineraries 37

4.1 Assumptions made with regard to trusted platforms . . . . .. . . . . . . . 38

4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 The protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Building the protected itinerary . . . . . . . . . . . . . . . . . .. 42

4.3.2 Management of the protected itinerary . . . . . . . . . . . . .. . . 47

4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Simulation and tests . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 External replay attack protection 63

5.1 Related work on agent replay attacks . . . . . . . . . . . . . . . . . .. . . 64

5.2 Replay attack protection . . . . . . . . . . . . . . . . . . . . . . . . . . .67

5.2.1 Requirements of the solution . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 The protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Simulation and tests . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



6 Promoting the development of secure mobile agents 89

6.1 Related work on mobile agent software engineering . . . . . .. . . . . . . 90

6.1.1 Mobile agent platforms . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.2 Simplifying agent development . . . . . . . . . . . . . . . . . . .90

6.2 Development environment . . . . . . . . . . . . . . . . . . . . . . . . . .92

6.3 MACPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 MACPL types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.2 Scope of variables . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.3 Built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.4 Function libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Auxiliary Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Itinerary Designing Tool . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Agent Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusions 111

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A MACPL language specification 117

A.1 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.5 Built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.6 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.7 Precompilation directives . . . . . . . . . . . . . . . . . . . . . . . .. . . 127

A.8 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B MACPL implementation example 129



Bibliography 133



List of Tables

4.1 Execution times (ms) for agents with protected and unprotected itineraries . 61

5.1 Execution times (ms) for agents protected and unprotected against replay

attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Execution times (ms) for agents protected and unprotected against replay

attacks with dynamically located nodes . . . . . . . . . . . . . . . . .. . 86

xv





List of Figures

3.1 Example itinerary with three stages or nodes. . . . . . . . . .. . . . . . . 25

3.2 Example itinerary with anif node. . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Example itinerary with aswitchnode. . . . . . . . . . . . . . . . . . . . . 27

3.4 Example itinerary with asetnode. . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Example itinerary with aloopnode. . . . . . . . . . . . . . . . . . . . . . 28

3.6 Example itinerary with adiscoverernode and a dynamically located node. . 29

3.7 Example itinerary with theunchanged locationproperty set on a node. . . . 31

3.8 Use of theunchanged locationproperty on aloopnode. . . . . . . . . . . . 31

3.9 Itinerary of a shopping agent that includes twodiscoverernodes and two

dynamically located nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Itinerary of a completely free-roaming agent . . . . . . . .. . . . . . . . . 33

3.11 Example itinerary with two dynamically located nodes associated with the

samediscoverernode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Representation of a chain of digital envelopes. . . . . . . . .. . . . . . . . 41

4.2 Modified chain of digital envelopes to support dynamic itineraries. . . . . . 42

4.3 Example itinerary with aloop, adiscovererand a dynamically located node. 45

4.4 Reconstruction of the itinerary of figure 3.9 when two platforms are dis-

covered for node 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Itinerary of an agent implementing a hotel reservation system . . . . . . . . 59

5.1 Simple itinerary where the same platform is visited twice . . . . . . . . . . 68

5.2 Itinerary containing a loop with three platforms that are visited repeatedly . 68

xvii



5.3 Authorisation entities (AE) and authorisation nodes (AN) assigned to the

nodes of a complex itinerary . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Components of an agent protected against replay attacks .. . . . . . . . . 74

5.5 Algorithm for checking trip markers insequencenodes . . . . . . . . . . . 75

5.6 Algorithm for trip marker handling inloopnodes . . . . . . . . . . . . . . 77

5.7 Components of an agent protected against replay attacks with an agent-

driven implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Itinerary of the car purchasing service agent . . . . . . . . .. . . . . . . . 84

5.9 Itinerary of the car purchasing service agent with dynamically located car

dealers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Components of the Agent Builder with its main inputs and outputs . . . . . 94

6.2 Overview of the mobile agent development environment . .. . . . . . . . 96

6.3 Itinerary Designing Tool . . . . . . . . . . . . . . . . . . . . . . . . . .. 107



Chapter 1

Introduction

A mobile agent is a software that can move autonomously from one computer to another

while executing [Whi94]. The migration of the whole running process, along with its state,

code and resources is what makes mobile agents different from other kinds of distributed

applications.

Several advantages have been identified in using mobile agents in distributed systems

[LO99]. The most frequently cited advantages include: reduction of network load, by

moving agents to the data servers instead of transferring large amounts of data through

the network; decrease in communication latency, by interacting locally with the resources

available at the remote servers; dynamic adaptation, for agents can react autonomously to

the changes in their execution environment; and better support for mobile devices with

intermittent connections, for mobile agents can operate asynchronously without requiring

a continuously open connection, among others.

Numerous applications have been developed that demonstrate the benefits of mobile

agent technology. One of the most promising application areas for mobile agents is e-

commerce [GMM98]. In these applications, mobile agents canbe exploited to compare

and gather information on prices of goods, negotiate on behalf of their owners, select the

best product according to the owners’ preferences, and thenproceed to the purchase.

Another application domain that exploits the advantages ofmobile agents is the one

1



2 CHAPTER 1. INTRODUCTION

related tosea-of-dataapplications [Rob02]. In these applications, massive amounts of data

are distributed among several servers, and these data cannot be sent across the network due

to bandwidth constraints, legal restrictions, or other limitations. The use of mobile agents

in these applications allows data to be processed locally, using data mining techniques, ma-

chine learning algorithms, or other methods. An example of this kind of applications can be

found in [VMRC+06], where an agent-based information gathering system forhealthcare

institutions is presented. In this case, mobile agents are used to search for patient medical

records that are spread across different institutions.

However, the benefits offered by mobile agents have not been sufficient to stimulate

their widespread deployment. The advantages of mobile agents were initially overstated,

and some authors referred to mobile agents as a unifying solution that could be used to

implement any distributed application. This initial hype soon contrasted with the severe

security threats that researchers associated with the use of mobile agent technology. These

misunderstandings and concerns resulted in the development of few commercial mobile

agent systems and fewer standards. Consequently, most distributed applications are devel-

oped nowadays using other paradigms that provide fewer advantages but also raise fewer

issues.

Despite this daunting reality, new breakthroughs in the security, reliability and effi-

ciency of this technology have been made [ARO04, ZOL04, BCG07]. Besides, a constant

trickle of publications in international journals and conferences demonstrates that the topic

has not been abandoned by the research community. Several studies have shown that mo-

bile agents provide an intuitive and appealing abstractionthat simplifies the design and

implementation of many distributed applications [Mil99].Furthermore, while most ap-

plications realised using mobile agents can be equally implemented using traditional ap-

proaches, there is no single alternative to all of the functionality supported by the mobile

agent technology [HCK97]. Therefore, we believe that mobileagents can still play an

important role in the future of distributed computing.

However, some of the security concerns raised by mobile agent technology still linger,

and they represent one of the main obstacles currently hindering the wider acceptance of



3

mobile agents [Bor02]. In general, mobile agent security canbe divided into two broad

areas: host security, which implies protecting the host platform from a malicious agent;

and agent security, which implies protecting the agent froma malicious platform.

With regard to host security, the problems related to the protection of the execution envi-

ronment have significantly been mitigated. The most suitable proposed techniques include:

using safe code interpretation [LOW97], where the set of available instructions prevents

the agent from attacking the platform; usingSoftware-based Fault Isolation[WLAG93],

which is also known assandboxing, and is based on limiting program accessibility to a

closed domain, among others.

As for agent security, agents also need to be protected against tampering by the hosts

they visit. This problem is clearly much harder than the previous one [GKCR98]. The

platform that executes the agent must have access to its codeand resources. Therefore, a

malicious platform can easily examine and divert the intended execution of the agent, and

any attempt to detect a wrong execution or tampering of data is subject to diversion, too.

The techniques proposed so far to provide a complete protection against malicious hosts

have proved to be impractical, for they cannot be effectively implemented in real-life ap-

plications. Some of the better known approaches are the use of tamper-proof hardware

[WSB98] or encrypted functions [ST98], but they have serious drawbacks. Regarding the

first approach, the problem stems from the fact that it is extremely unlikely that tamper-

proof hardware will be available on every platform in the near future. With regard to the

second approach, the encrypted functions known to date can only be used to implement

rational functions and polynomials, and are thus not suitable for general programming.

The mobile agent community has largely accepted that it is unlikely that there will ever

be a complete solution to the malicious host problem [Zac03]. Because of this, recent

proposals focus on providing partial solutions aimed at preventing a subset of the attacks

that can be mounted against an agent. The most important proposals in this area are based

on the protection of the agent’s initial itinerary and its computational results.

Regarding the protection of the agent’s computational results, satisfactory solutions

have already been devised [MS03, ZOL04]. These are based on storing the agent’s results



4 CHAPTER 1. INTRODUCTION

inside an append-only data structure, in such a way that onlyadditions of new elements

are allowed. Any modification or deletion of an element can bedetected afterwards, and

appropriate actions can be taken against the offending platform.

On the other hand, the solutions aimed at protecting the agent’s itinerary are based on

allowing platforms to access only their corresponding parts of the agent’s code and data

[MB03]. Thus, platforms cannot access or modify parts of the agent’s itinerary intended

for other platforms.

Although the current proposals for itinerary protection are technically valid, their util-

isation involves an important loss of flexibility. First of all, itinerary protection protocols

presented to date force programmers to definestatic itineraries, in which all platforms

must be known in advance, and thus agents are not allowed to discover and visit new plat-

forms at runtime. Secondly, some proposals also protect agents from external replay attacks

[Yee03], in which an agent is forced to perform unintended migrations to the same plat-

form, but these proposals preclude agents from visiting a certain platform several times.

Thus, they limit the programmer’s ability to define itineraries that contain round-trips.

The loss of flexibility introduced by current protocols is due to the fact that they always

assume the worst possible scenario, in which every platformin the agent’s itinerary is

potentially malicious. This assumption, however, is hardly realistic [Rot99].

Let us examine the scenario of a shopping agent. Consider thata mobile agent is created

to search for a flight plan that meets a costumer’s requirements. The costumer creates an

itinerary with several airline companies and the agent is dispatched to collect offers from

all of them. After visiting all the airline companies, the agent compares the collected

results and commits to the best offer. In order to develop this application, two different

strategies could be implemented. The first strategy could beto compare the collected offers

and proceed to the purchase in the last airline company visited by the agent. The second

strategy could be to do so after migrating to a trusted platform, so that the costumer could

be confident that a fair comparison of offers and purchase wasconducted.

Clearly, the second strategy would be the one preferred by most costumers. Relying on



1.1. OBJECTIVES 5

a trusted platform, such as the agent’s home platform, is certainly much easier than allow-

ing the agent to make sensitive decisions on a potentially malicious platform, regardless

of the itinerary protection protocol used. Consequently, this example application shows

that regarding all platforms as potentially malicious doesnot reflect the reality of many

applications.

However, the lack of flexibility of current agent protectionprotocols is not the only

concern currently impeding the wider use of secure mobile agents. The complexity of

programming applications that make use of these security solutions is also an important

issue to overcome [MY06].

Therefore, this thesis pursues two main objectives: First of all, to provide a solution to

the limitations of current agent protection protocols; andsecond, to design new tools and

methodologies that simplify the development of secure mobile agents. These objectives are

detailed in the following section.

1.1 Objectives

The first objective of this thesis is to provide a convenient way to define explicit itineraries

for free-roaming agents. Defining explicit itineraries implies storing the itinerary informa-

tion in a separate data structure. By storing and maintainingthis data structure outside the

main agent code, the protection of the itinerary is significantly simplified.

The second objective is to define an itinerary protection protocol that supports free-

roaming agents. Itinerary protection protocols presentedto date sacrifice most of the flex-

ibility provided by mobile agent itineraries, for they limit the mobile agent’s ability to

migrate at will. Therefore, this thesis aims to allow agentsto discover new platforms at

runtime, so that applications can take full advantage of thebenefits provided by the mobile

agent paradigm.

The third objective is to define a protocol for the protectionof mobile agents against

external replay attacks. External replay attacks are basedon resending the agent to an-

other platform so as to force the reexecution of part of its itinerary. The current solutions



6 CHAPTER 1. INTRODUCTION

proposed for this problem do not allow agents to visit the same platform several times.

Therefore, this thesis intends to counter this kind of attacks without limiting the agent’s

ability to visit certain platforms repeatedly.

Finally, the last objective is to encourage the developmentof secure mobile agent ap-

plications. The implementation of the security mechanismsrequired by mobile agents can

turn out to be more time-consuming than the implementation of the agent tasks. Therefore,

new tools have to be created that simplify to the greatest extent possible the tasks carried

out by both the designer of security protocols and the developer of new applications.

1.2 Contributions

The main contributions of this thesis are based on the fact that trusted platforms can be

found in many, if not most, mobile agent-based scenarios. By incorporating trusted plat-

forms in the agent’s itinerary, this thesis presents, first of all, an itinerary protection proto-

col that supports free-roaming agents, and second, a replayprotection protocol that allows

agents to loop over a certain number of platforms an undetermined number of times. Thus,

the resulting protocols provide a balanced trade-off between security and flexibility.

In order to promote the development of secure mobile agent-based applications, this

thesis also presents a development environment that facilitates the implementation of the

proposed agent protection protocols as well as other security solutions.

The contributions of this thesis have given rise to some publications in international

journals and conferences. The main contributions made towards the first and second ob-

jectives have been presented in [GRB08a]. The protocol proposed to accomplish the third

objective has been presented in [GMB+08]. Besides, a patent has been filed and is currently

pending [GRB08b]. Finally, the development environment devised to attain the fourth ob-

jective has been submitted to the Journal of Networks and Computer Applications. Never-

theless, this thesis provides an integrated perspective onthese contributions.



1.3. THESIS STRUCTURE 7

1.3 Thesis structure

The remaining chapters of this thesis are organised as follows.

Chapter 2 presents a literature review of mobile agent security issues and most relevant

techniques proposed to address these issues. The chapter places special emphasis on the

techniques proposed to address the malicious host problem.The described techniques are

classified according to their suitability for practical applications.

Chapter 3 provides, first of all, an overview of the related work on defining the agent’s

itinerary. Then, it presents a new way of defining explicit itineraries for mobile agents.

Some considerations regarding the implementation of theseitineraries are discussed at the

end of the chapter.

Chapter 4 describes an itinerary protection protocol for free-roaming agents, which

is based on introducing some trusted platforms into the agent’s itinerary. The chapter also

discusses what assumptions are made with regard to trusted platforms. The implementation

of an example application that shows the viability of the proposed protocol is presented at

the end of the chapter.

Chapter 5 describes a protocol for the protection of mobile agents against agent replay

attacks. A survey of the related work on agent replay attacksis also presented. After defin-

ing the proposed protocol, the chapter presents the implementation and experimentation

work conducted in order to prove the validity of the proposedprotocol.

Chapter 6 outlines, first of all, the related work on mobile agent engineering, focusing

mainly on the approaches proposed to date to simplify the development of mobile agents.

Then, this chapter describes a development environment aimed at aiding in the development

of secure mobile agents. The key element of the proposed environment is the Agent Builder

and the MACPL language, which are described in detail.

Chapter 7 summarises the work of the thesis and provides some hints of future research

directions.

Appendix A provides a detailed description of MACPL features. The chapter analy-

ses its types, variables, operators, special keywords, built-in functions and precompilation



8 CHAPTER 1. INTRODUCTION

directives.

Appendix B provides an example of MACPL programming, which shows the simplicity

and utility of this language.



Chapter 2

Mobile Agent Security

In this chapter, we analyse the security threats that arise in a mobile agent system, and

we provide a survey of the most relevant solutions proposed so far. Security threats are

first classified into four categories, depending on the source of the attack and the entity

being attacked. We then focus on the types of threats that aremost difficult to deal with:

the threats stemming from an agent platform attacking an agent. We outline the better

known techniques available to address this type of attacks,presenting them in two different

categories: First, those proposing methods that cannot be effectively implemented in real-

life applications. Second, those providing feasible solutions that are suitable for practical

applications.

2.1 Overview

Since the beginning of mobile agent research, many securityissues have been identified.

In [JK00], these issues were classified according to the source of the attack and the entity

being attacked: agents against agents, agents against platforms, others against platforms,

and platforms against agents.

In the first category—agents against agents—we can find attacks in which agents mod-

ify or access another agent’s data, disguise their identityin order to falsify a transaction,

9



10 CHAPTER 2. MOBILE AGENT SECURITY

or repeatedly send messages to another agent in order to launch a denial of service attack,

among others. The second category—agents against platforms—includes threats in which

agents perform some malicious action on a resource they can access to (e.g., deleting a

file), consume an excessive amount of system resources, gainaccess to a service to which

they are not entitled, and so on.

With regard to these two first categories, in which the attacker is an agent, sound so-

lutions have already been proposed. Among the solutions that provide an acceptable level

of protection, the most efficient one is calledSoftware-based Fault Isolation[WLAG93].

This mechanism, also known assandboxing, is based on limiting program accessibility to

a closed domain, in such a way that the program address space and available resources are

confined within this domain.

Other mechanisms proposed for these kinds of attacks include: using safe code interpre-

tation [LOW97], where the set of available instructions prevents the agent from attacking

the platform; signing the code in order to authenticate the agent owner, together with some

mechanism to determine the level of trust of this owner [Gra95]; sending logical demon-

strations along with the code, in order to proof that the execution of that code is secure

(Proof Carrying Code [NL96]), among others.

Regarding the third category—others against platforms—thesource of the attack can be

any external entity that is not part of the agent platform. This external entity can perform

attacks against the platform resources (files, communication ports, etc.) or against the

platform’s communications with the outside. In these cases, security greatly depends on

the mechanisms provided by the operating system. Additionally, a secure communication

channel, established using mechanisms such as Transport Layer Security [DR06] or IPSec

[KA98], can be used to secure the communication between the platform and other parties.

The last type of attack—platforms against agents—is the most difficult to prevent. It is

obvious that if a platform is to execute an agent, it must havecomplete access to the agent

code, state and data. There is nothing to prevent the platform from analysing the agent

code, from corrupting its state or data, from manipulating its execution environment, or

from executing it multiple times in order to, for example, generate multiple purchases in



2.2. MALICIOUS HOST PROBLEM: UNREALISTIC APPROACHES 11

a shopping scenario. If some agent data is to be kept secret from the platform, it must be

stored in a way that even the agent itself cannot directly access (encrypted with the key of

a different platform, for instance).

Several mechanisms have been proposed to address the malicious host problem. The

next subsections discuss some of the better known approaches. First of all, we present those

that have a limited applicability because they can only be used if certain assumptions hold.

Then, we will present those approaches that can be effectively implemented in real world

applications.

2.2 Malicious host problem: unrealistic approaches

Some of the better known solutions to the malicious host problem are impractical, for

they have been designed for particular scenarios that are actually rarely found in real-life

applications. The following is a discussion of the better known ones.

2.2.1 Execution tracing

Execution tracing [Vig98] is a technique that allows unauthorised modifications of an agent

to be detected upon completion of the agent execution. The protocol proposed in [Vig98] is

based on recording the agent’s behaviour on each platform inorder to build a trace of its ex-

ecution. The trace is composed of a sequence of identifiers corresponding to the operations

executed by the agent. Platforms must produce and maintain traces of all executed agents,

so that agent owners can request these traces after the agenthas terminated its execution,

and verify that the agent code or state has not been maliciously modified.

This approach has several drawbacks, such as the size and thenumber of logs to be

kept by platforms, or the possible lack of connection between the owner and the platforms

once the agent has returned to the home platform. Besides, theverification mechanism is

too expensive to be applied systematically, and can only be used when the owner has a

suspicion that the agent execution has been corrupted.



12 CHAPTER 2. MOBILE AGENT SECURITY

2.2.2 Cooperating agents

In [Rot99], Roth describes a protocol for detecting manipulations of the agent execution

through co-operating agents. Roth considers applications to be designed using two or more

mobile agents that co-operate in order to achieve their goals. The itineraries of these agents

must have no single platform in common, and platforms can collude with each other as

long as the collusion does not involve platforms of different agent itineraries. The itinerary

and the operations performed by every agent must be tracked by their co-operating agents,

so that any tampering with the execution of an agent can be detected by its co-operators.

In order for this protocol to be secure, the interaction between the agents must always take

place over a secure authenticated channel.

Roth’s protocol suffers from several limitations, the first one being the complexity of

defining subgroups of platforms that will not collaborate with each other to attack the ap-

plication. The second limitation is the need to establish a secure authenticated channel

between the agent and its co-operators, which may not be possible to provide in all scenar-

ios. Besides, this technique undermines the agent’s autonomy, for it requires the agent to

interact with other agents in order to carry out its tasks.

2.2.3 Obfuscation

Code obfuscation [Hoh98] aims at generating executable agents which cannot be attacked

by reading or manipulating their code. This technique is based on transforming the agent

code in such a way that it is functionally identical to the original one, but it is impossible

to understand it. The approach also establishes a time interval during which the agent and

its sensitive data are valid. After this time elapses, any attempt to attack the agent becomes

worthless. In [HR99], a modification of this approach is presented to prevent hosts from

repeatedly executing an agent in order to obtain different outputs and draw conclusions

about its behaviour. This modification is based on recordingevery input event on a trusted

third party.



2.2. MALICIOUS HOST PROBLEM: UNREALISTIC APPROACHES 13

The major drawback of these techniques is the difficulty in establishing the time re-

quired by an attacker to understand an obfuscated code. Similarly, no mechanism is cur-

rently known for quantifying the amount of time required by an agent to accomplish its

task, especially in heterogeneous environments. As a result, restricting the lifetime of a

mobile agent is not feasible in practise.

2.2.4 Computing with encrypted functions

Computing with encrypted functions is a technique proposed by Sander and Tschudin

[ST98] to achieve code privacy and code integrity. Their technique is based on creating

encrypted programs that can be executed without decryptingthem. Supposing that a mo-

bile agent has to execute a certain functionf, then f is encrypted to obtainE(f), and a

program is created that implementsE(f). Platforms executeE(f) on a cleartext input value

x, without knowing what function they actually computed. Theexecution yieldsE(f(x)),

and this value can only be decrypted by the agent owner to obtain the desired resultf(x).

The main problem of this technique is that the authors have only found encryption

schemes for polynomials, using homomorphic encryption andfunction composition tech-

niques. Thus, their proposal is not suitable for general programming.

2.2.5 Tamper-proof devices

The use of tamper-proof devices is based on performing part or the entire agent execution

on a physically sealed environment, which can be trusted to execute the agent correctly.

Tamper-proof devices can be provided by a trusted third party and, if necessary, they can

be inspected periodically to verify that their security hasnot been compromised. Tamper-

proof devices can be used to carry out cryptographic operations with a private key that must

be kept secret from the remote host. They can also have their own private key, for example,

to sign partial results generated by the agent.

Approaches such as [WSB98] or [Yee99] propose performing the entire agent execution

on tamper-proof devices. The cost of these solutions is highbecause each platform must



14 CHAPTER 2. MOBILE AGENT SECURITY

be provided with an expensive tamper-proof device. Besides,these techniques are only

suitable for closed environments, such as corporate networks or computational grids, where

a tamper-proof device has been installed in every platform.As a result, these techniques

imply a loss of agent autonomy.

In order to reduce the cost of the solution, other approachesbased on smart cards have

been proposed in [Kar00] or [FM99]. In these solutions, the tamper-proof device has lim-

ited computation capabilities, and is only used to execute security-sensitive operations.

However, the security of these approaches is limited because the platform controls the

communication between the agent and the tamper-proof device. Thus, the inputs or outputs

that are provided to or produced by the device can be easily tampered with.

2.3 Malicious host problem: realistic approaches

In this section, we provide a survey of some of the most widelyaccepted techniques for

mobile agent protection against malicious hosts.

2.3.1 Protecting the agent computational results

Researchers have devised several mechanisms aiming at protecting the results generated by

agents during their execution. These protocols allow owners to verify the identity of the

host in which a given result was obtained, and can also be usedto check whether the agent

has visited all the platforms initially specified in the itinerary.

In [Yee99], Yee proposes a mechanism that involves signing the data generated by the

agent in each platform with the platform’s private key. Oncethe agent returns to its origi-

nator, it can verify the integrity of the results using the public keys of the visited platforms.

Yee also proposes a variation of this method based on PartialResult Authentication Codes

(PRACs). According to this method, the owner generates a list of cryptographic key pairs

suitable for asymmetric encryption, and the private keys (k1 · · · km) are given to the agent.

The agent then uses eachki to sign the results computed on platformi. Before migrating



2.3. MALICIOUS HOST PROBLEM: REALISTIC APPROACHES 15

to platformi + 1, the agent destroyski. Again, once the agent returns to its originator, the

owner can verify the integrity of the results with the corresponding public keys.

The problem of these proposals is that they do not achieve data integrity when the

agent chooses freely the next platform to visit at each stageof its itinerary. In this case, a

malicious platform could remove previously collected results without being detected.

In [KAG98], Karjoth et al. improve Yee’s proposals in order to ensure the integrity and

confidentiality of the data generated by free-roaming agents. Their approach is based on

binding each result to all previously collected results andto the identity of the subsequent

itinerary platform. The problem of this approach is that theagent results are not bound to

the agent code, thus allowing malicious platforms to generate fake results and append them

to the chain of previous results, as described by Roth in [Rot01a].

In [KT01], Karnik and Tripathi propose to create an append-only container to store

agent results. According to their protocol, a cryptographic checksum is used to bind the

current results to the previous ones. This allows agents to add new results to the container,

while preventing malicious platforms from modifying results previously generated. How-

ever, this protocol suffers from some limitations. First, fake results can be added to the

append-only container, using the attack described in [Rot01a]. Furthermore, a collusion

of two malicious platforms can easily truncate the chain of results collected between these

two platforms.

The attacks described in [Rot01a] were overcome by Roth in [Rot01b] and [Rot02].

His protocol is based on a combination of two ideas. First of all, platforms only use their

private keys to decrypt agent data if they can verify that these data belong to the agent. For

this purpose, the data must be securely bound to the agent code before being encrypted.

Second, the results generated by the agent execution are bound to the agent code so that

they cannot be reused for another agent.

Finally, in [MS03], Maggi and Sisto put together the underlying ideas of different pro-

posals [Yee99, KAG98, KT01, Rot01b] to define a protocol that is configurable according

to the protection level required by the application.



16 CHAPTER 2. MOBILE AGENT SECURITY

2.3.2 Protecting the agent’s itinerary

The protection of the agent’s itinerary is one of the most commonly used techniques for

agent protection against malicious platforms. The proposed techniques aim at preventing

platforms from accessing or manipulating parts of the agent’s itinerary intended for other

platforms. For this purpose, the proposed protocols are usually based on encrypting every

platform-specific information using the corresponding platform’s public key. As a result,

each platform is only given access to its corresponding partof the itinerary, as well as the

address of its predecessor and successor platforms. The most relevant proposed protocols

are discussed below.

In [BRSR99], Borrellet al. secure the agent’s itinerary by protecting the information

intended for each platform as follows:

I = [ek, el, · · · , et], k, l, t ∈ (1, · · · , n) (2.1)

where

ei = Pi(hi,mi, hi+1) (2.2)

I denotes the protected itinerary, which is composed of a series of entriesei randomly

sorted.Pi is an asymmetric encryption method using the public key of platformi. hi is the

address of platformi, andmi is the information intended for platformi.

To ensure that the itinerary is traversed in the correct order, a non-repudiation proto-

col [ZG96] is executed whenever a mobile agent is migrated from one platform to the next.

Thus, the owner can verify that the agent has followed the itinerary as expected. Obviously,

this solution assumes the existence of a Trusted Authority to guarantee a secure execution

of the non-repudiation protocol. It is worth noting that Borrell et al.’s protocol prevents

platforms from modifying the entries of the protected itinerary, for these entries are ran-

domly sorted and the identity of the target platform is hidden by public key encryption.

However, if the agent itinerary had only two hops, the first platform could easily modify

the information intended for the second.



2.3. MALICIOUS HOST PROBLEM: REALISTIC APPROACHES 17

In [WSUK00], Westhoffet al. propose a protocol based on creating an onion-like

structure to encapsulate the agent’s route information as follows:

I = e1 = P1(home, h2, So(home, h1, h2, t, e2)))

e2 = P2(h1, h3, So(h1, h2, h3, t, e3)))
...

en = Pn(hn−1, ∅, So(hn−1, hn, ∅, t, ∅)))

(2.3)

where we follow the same notation used for equation 2.2.home denotes the agent’s home

platform address.So is a digital signature using the owner’s private key, andt is a trip

marker used to prevent replay attacks [Yee03].

As can be seen, the protected itinerary includes the addresses of the platforms that must

be visited, but not any platform-specific code or data. However, this protection scheme

could be easily extended to include platform-specific information inside the protected itin-

erary.

In [KT01], Karnik and Tripathi propose thetargeted statemechanism, as a way to

protect parts of the agent that aretargetedtowards particular platforms. This mechanism is

based on creating a vector of encrypted objects as follows:

So(P1(m1), · · · , Pn(mn)) (2.4)

Karnik and Tripathi’s protocol was not designed to protect the agent’s itinerary, but to

provide the agent with information that can only be revealedto some platforms. As a result,

this protocol suffers from some limitations. First, it doesnot guarantee that the itinerary

will be traversed in the correct order. A malicious platformmight forward the agent to

an incorrect platform by sending it to randomly chosen platforms until finding one that

is member of the initial itinerary. Additionally, as described in [Rot01a], this protocol is

vulnerable to interleaving attacks [MvOV97], which allow malicious platforms to obtain

information intended for other platforms.

In [RMAB02], Robleset al. present a secure mobile agent platform called MARISM-A.

MARISM-A provides secure migration, secure communication between agents, protection



18 CHAPTER 2. MOBILE AGENT SECURITY

of agents’ results and itinerary protection. The itineraryprotection provided by MARISM-

A is flexible because different itinerary protection protocols can be used depending on the

specific requirements of the application. The set of itinerary protection protocols supported

by MARISM-A includes protocols such as [WSUK00] or [BRSR99], and this set can be

extended to adapt to new application requirements.

Finally, in [MB03], Mir and Borrell present a protocol based onbuilding the protected

itinerary as a chain of digital envelopes, in such a way that they can only be opened in the

correct order. First of all, a random symmetric key is generated for each itinerary platform

(r1 · · · rn). Then, for each migration from a platformi to its successorj, the following

expression is computed:

tij = hj, Pj(So(hi, hj, t, rj)) (2.5)

The valuetij is calledtransition from i to j. Once all transitions have been computed,

the protected itinerary is constructed as follows:

I = t01, So(t, [e1, · · · , en]) (2.6)

where

ei = Eri
(mi, tij) (2.7)

andEri
is a symmetric encryption method using the secret keyri.

The protocol presented by Miret al. supports different types of itinerary stages. Due to

the fact that itinerary stage types will be discussed later in chapter 3, we have only presented

here a slightly simplified version of the protocol, which is equivalent in terms of security.

2.3.3 Self-protected mobile agents

Protecting the agent’s itinerary prevents platforms from accessing parts of the agent code

or data intended for other platforms. Most itinerary protection mechanisms presented so

far only define a way to create the protected itinerary, and assume that platforms know how

to extract information from this protected itinerary.



2.3. MALICIOUS HOST PROBLEM: REALISTIC APPROACHES 19

The problem of these approaches, usually calledplatform-driven, is that the set of plat-

forms that the agent can visit is restricted to those supporting the specific itinerary protec-

tion scheme implemented by the agent. In addition, any change in the agent’s structure

will imply changes in all itinerary platforms. Furthermore, platforms are forced to support

multiple protection schemes if different types of secure mobile agents need to be executed.

In order to overcome these limitations, a solution based on self-protected mobile agents

was proposed by Ametlleret al. in [ARO04]. According to Ametlleret al., the agent

protection mechanisms are not managed by the platform, but by the agent itself. This

approach is calledagent-driven.

Itinerary protection mechanisms presented so far did not make a clear definition of the

different components of an agent. In [ARO04], Ametlleret al. define agents as a pairC,

D, whereC is the main agent code that will be executed on all platforms,andD is the

protected itinerary that contains the code and data intended for each platform.

The protection ofD usually involves encrypting each platform-specific code and data

using the public key of the target platform. The codeC then deals with the management of

this protected itinerary, extracting the code and data intended for each platform, executing

the local task, and migrating the agent to its next destination.

In order to decrypt the information included in D, the codeC needs to use the plat-

forms’ private keys. However, giving agents direct access to private keys would involve

serious security problems. Consequently, Ametlleret al. require each platform to have a

cryptographic service providing a public decryption function to agents.

The public decryption function decrypts the agent’s data using the platform’s private

key, but the decrypted data is only returned to the agent for which it was encrypted. Thus,

malicious agents cannot decrypt data stolen from other agents. In order to verify that the de-

crypted data really belongs to the requesting agent, platforms verify that such data includes

an integrity tokenA computed as follows:

A = H(C) (2.8)

whereH is a cryptographic hash function.



20 CHAPTER 2. MOBILE AGENT SECURITY

Thus, agent developers must always bind any platform-specific code or data to the agent

instance using a hash of its main codeC. Otherwise, agents will not be able to decrypt their

itinerary data. Each stage of the agent’s itinerary is thus encrypted as follows:

di = Pi(mi, H(C)) (2.9)

wheremi is the part of the itinerary that can only be revealed to platform i.

This mechanism prevents any tampering with the mobile agentcodeC that deals with

the decryption of the itinerary data. However, an attacker might still insert arbitrary data in

the protected itineraryD. All it would require is the inclusion of a hash ofC along with the

bogus data to be encrypted and inserted inD.

To prevent this kind of attack, Ametlleret al. propose verifying the validity of the data

extracted from the protected itinerary as follows:

1. A random pair of cryptographic keys is generated:Pa, the public key, andSa, the

private key.

2. The public keyPa is inserted in the agent’s main codeC (e.g. as a static data mem-

ber).

3. The private keySa is used to sign every platform-specific code or data includedin

the protected itinerary. Thus, the previous equation 2.9 isreplaced by

di = Pi(SSa
(mi), H(C)) (2.10)

whereSSa
is a digital signature using the private keySa.

4. The agent’s main codeC is modified to verify the validity of the itinerary data as

follows:

(a) The platform’s public decryption function is called to decryptPi(SSa
(mi), H(C)).

This operation can only succeed if the codeC has not been modified after the

agent creation.



2.4. CONCLUSIONS 21

(b) The cryptographic service returnsSSa
(mi) to the agent, and the signature ofmi

is verified using the public keyPa inserted in the main codeC.

This mechanism prevents any manipulation of the agent’s protected itineraryD. The

main agent codeC cannot be modified because its integrity is verified by the platform’s

cryptographic service, andC verifies the authenticity of the data extracted fromD, which

must have been signed by the agent developer.

2.4 Conclusions

Research efforts in the field of mobile agent security have been quite intense over the last

decade. Regarding the protection of platforms from agent or external attacks, several sound

solutions have been presented. The problem of malicious hosts attacking an agent is by far

the most difficult to solve. Although achieving a complete solution is considered impos-

sible, protocols have been presented that mitigate severalproblems. The most relevant

proposals address the protection of the agent’s itinerary and the protection of the results

generated during the agent execution. These advances have permitted the use of mobile

agent technology to implement multiple distributed applications. However, some problems

still remain unsolved and need to be addressed. In the following chapters, we will cover the

protection of the itinerary of free roaming agents, the prevention of external replay attacks,

and the simplification of the development of secure mobile agents.



22 CHAPTER 2. MOBILE AGENT SECURITY



Chapter 3

Defining the agent’s itinerary

In the previous chapter, we have seen that several protocolshave been proposed for the

protection of the agent’s itinerary. These protocols are usually based on storing the itinerary

information in a separate data structure, and then on using cryptographic mechanisms to

protect this data structure. When the itinerary informationis stored and maintained outside

the main agent code, the itinerary is said to beexplicit, and its protection is significantly

simplified.

The itinerary protection protocols presented to date do notsupport the protection of

free-roaming agents. Agents are thus forced to travelstatic itineraries, that is, itineraries in

which all platforms are known in advance. However, most mobile agent-based applications

are devised usingdynamicitineraries, in which some platforms are discovered at runtime.

One of the goals of this thesis is to provide a solution to thisproblem. For this purpose,

first of all, this chapter presents a convenient way to define explicit itineraries for free-

roaming agents. As will be seen, using explicit itinerariesto create free-roaming agents

promotes the reuse of these itineraries and simplifies theirprotection. Then, in chapter 4,

we will present a protocol aimed at protecting dynamic itineraries.

23



24 CHAPTER 3. DEFINING THE AGENT’S ITINERARY

3.1 Related work on defining agent’s itinerary

Mobile agent itineraries have been implemented in different ways depending on the com-

plexity and flexibility required by the application. The first approach was to merge tasks

and migration instructions into a single code, so that everytask was followed by a migra-

tion instruction to move the agent to its next destination. When this approach is taken, we

say that the itinerary isimplicit in the agent code.

In order to improve the readability, reusability and protectability of code,explicit itin-

eraries were later introduced in [WPW+97]. In this case, the agent code is divided into

stages, where each stage is usually executed on a different platform, and the information of

all itinerary stages is stored in a separate data structure.The agent’s explicit itinerary may

only contain information regarding only the locations to bevisited by the agent. However,

the itinerary usually includes every platform-specific code and data as well. From now on,

we will use the termnodeto refer to a stage of the agent’s itinerary which is associated

with a specific task and platform.

The data structure that contains the agent’s explicit itinerary can be managed by the

platform (thus following a platform-driven approach), or it can be managed by the agent

itself, by executing a code that is common to all platforms ofthe itinerary (agent-driven

approach).

First explicit itineraries were sequential [WPW+97], which involves that all platforms

were visited one after the other, in the order initially specified by the programmer. For

example, a sequential itinerary could be that of an agent that orders some flowers first, then

buys a ticket for the theatre and finally reserves a table in a restaurant. The disadvantage

of sequential itineraries is their lack of flexibility. Theydo not allow the programmer to

define alternative routes, or routes that can be travelled inany order, among others.

In order to overcome these limitations,flexible explicititineraries were introduced in

[SRM98]. Flexible itineraries are composed of different types of nodes. These node types

allow agents to make decisions about their travel plan at runtime, based on their previous

computations or on other parameters. As an example, three node types were defined in



3.2. EXPLICIT ITINERARIES FOR FREE-ROAMING AGENTS 25

[SRM98]: thesequence, where the agent has only one possible destination after thecurrent

node, so no decision needs to be made; thealternative, where the agent can choose its next

destination from a set of platforms; and theset, where the agent has to visit all the platforms

of a set in any order.

However, as can be seen, no proposal presented so far allows programmers to define

explicit itineraries for free-roaming agents, which involves discovering the location of one

or more platforms at runtime. As mentioned earlier, the use of explicit itineraries signif-

icantly simplifies the protection of every platform-specific code and data. Therefore, the

next section presents a new set of node types for the definition of dynamic itineraries. In

chapter 4, a protocol will be presented for the protection ofthese itineraries.

3.2 Explicit itineraries for free-roaming agents

As stated earlier, flexible itineraries are comprised of different types of nodes. It is worth

noting that our usage of the termnodeis quite different from that found in computer net-

works terminology, where a node simply refers to a location in the network. Here, an

itinerary node is a stage of the agent execution that is associated with a certain task and a

certain platform. This platform, however, does not necessarily have to be specified at the

time of creating the agent; it can be determined by the agent at runtime.

In order to represent the itinerary of a mobile agent, we use agraphical notation in

which each node type is depicted by a different symbol. The set of symbols we use will be

presented later. Figure 3.1 shows the representation of an example itinerary comprising a

sequence of three nodes.

2
platform B

3
platform C

1
platform A

Figure 3.1: Example itinerary with three stages or nodes.



26 CHAPTER 3. DEFINING THE AGENT’S ITINERARY

As shown in the figure, each node is associated with a numerical identifier, which ap-

pears inside the node’s symbol. The name placed under each node is an identifier of the

execution platform, which could be its hostname, for example. In this case, the agent first

visits platformA and executes the task assigned to node 1. Then, it visits platform B and

executes the task assigned to node 2; and so on.

This section presents a new set of node types devised to achieve two aims: First, en-

abling the definition of the agent’s itinerary with the same flexibility that general purpose

languages provide to control the execution flow of a program.Second, enabling the defi-

nition of nodes associated with platforms determined at runtime. The resulting set of node

types is described next.

Sequence:In this type of node, the agent simply executes the local taskand migrates to

the platform associated with the next itinerary node. In figure 3.1, we have seen an

example itinerary with threesequencenodes. As this figure shows,sequencenodes

are depicted by the symbol.

If: The if node has a subitinerary associated with it, which is comprised of one or more

nodes of any type. The local task of this node includes a method that is executed to

decide whether or not the agent must traverse said subitinerary. Figure 3.2 shows an

example itinerary with twosequencenodes and anif node. Theif node is depicted by

the symbol . In this example, the subitinerary associated with theif node contains

only one node.

2
platform B

3
platform C

1
platform A

Figure 3.2: Example itinerary with anif node.

As shown in the figure, the agent first visits platformA and executes the task assigned



3.2. EXPLICIT ITINERARIES FOR FREE-ROAMING AGENTS 27

to node 1, which decides whether or not to enter the subitinerary associated with node

1. If the agent decides to do so, it will execute the tasks of nodes 2 and 3 on platforms

B andC respectively. Otherwise, it will hop directly to platformC to execute the task

of node 3.

Switch: Theswitchnode has two or more subitineraries associated with it. The local task

includes a method that chooses which subitinerary must be traversed next. Figure 3.3

shows an itinerary with aswitchnode and two subitineraries associated with it. The

switchnode is depicted by the symbol.

3
platform C

1
platform A

2
platform B

4
platform D

Figure 3.3: Example itinerary with aswitchnode.

As shown in the figure, when the agent visits node 2, it must choose which node

must be visited next: 3 or 4. Depending on the choice, the agent will end its itinerary

performing the task assigned to node 3 or the one assigned to node 4.

Set: The set node also has two or more subitineraries associated with it.In this case,

however, after executing the local task assigned to this node, all subitineraries are

traversed by the agent. This traversal can be done in sequence, one subitinerary after

the other (in any order), or it can be done in parallel, sending a clone of the initial

agent to each subitinerary. Whether this traversal is done inparallel or in sequence

depends on the final implementation. Figure 3.4 shows an example itinerary with a

setnode associated with two subitineraries. In this case, one of the subitineraries has

two nodes. Thesetnode is depicted by the symbol.

As this figure shows, the agent can either visit nodes 2 and 3, and then visit node

4, or it can do the opposite: visit node 4 and then nodes 2 and 3.Depending on the



28 CHAPTER 3. DEFINING THE AGENT’S ITINERARY

2
platform B

3
platform C

1
platform A 4

platform D

5
platform A

Figure 3.4: Example itinerary with asetnode.

implementation, the agent could even clone itself in node 1,so that both subitineraries

were traversed in parallel. This example also shows that theagent’s itinerary can

include platforms that are visited in more than one node. In this case, platformA is

visited in nodes 1 and 5.

Loop: Theloopnode has only one subitinerary associated with it. The agentfirst visits the

loopnode, and then it traverses said subitinerary repeatedly. After each iteration, the

agent returns to theloop node, where it executes the local task and decides whether

or not to perform a new iteration. Figure 3.5 shows an exampleitinerary with aloop

node and a subitinerary composed of two nodes. Theloop node is depicted by the

symbol .

2
platform B

3
platform C

1
platform A

4
platform D

Figure 3.5: Example itinerary with aloopnode.

As shown in the figure, the agent first executes the task assigned to node 1 and de-

cides whether or not to enter the subitinerary starting at node 2. If it chooses not to

do so, it will migrate directly to platformD, and such subitinerary will never be tra-

versed. Otherwise, the agent will travel to platformsB andC, and then it will return



3.2. EXPLICIT ITINERARIES FOR FREE-ROAMING AGENTS 29

to A. In platformA, the agent will decide again whether or not to enter the following

subitinerary, thus starting the whole process again.

Discoverer: Thediscoverernode also has a subitinerary associated with it. This subitin-

erary can contain nodes that do not have an assigned platforminitially. Thus, these

nodes are calleddynamically locatednodes, and they have no associated platform at

the time of creating the itinerary. A dynamically located node is not a different node

type. It is introduced into the itinerary using a special property that can be set on any

type of node: thedynamic locationproperty, which will be described in detail in the

next section. Thediscoverernode determines where the dynamically located nodes

will be visited.

Figure 3.6 shows an itinerary with adiscoverernode and a dynamically located node.

Thediscoverernode is depicted by the symbol, and the dynamically located node is

depicted by replacing the platform’s name by the symbol “#”.Thedynamic location

property is set on asequencenode in this example, but it could be set on any other

type of node.

1 2
#platform A

3
platform B

Figure 3.6: Example itinerary with adiscoverernode
and a dynamically located node.

In the example of figure 3.6, the platform where node 2 will be visited is not known

at the time of creating the itinerary. Thus, node 2 has thedynamic locationproperty

set. In node 1, the agent will execute a task that will determine what platform is

assigned to node 2.

The set of node types presented so far provides a flexible means of defining the agent’s

migration flow. In order to use these node types, the programmer should not introduce

any migration from one platform to another within the local task of a node. Thus, for the



30 CHAPTER 3. DEFINING THE AGENT’S ITINERARY

sake of clarity, migrations should only take place during the transition from one node to the

next. In the next section, we will describe two node special properties that are necessary

to introduce dynamism into the agent’s itinerary: thedynamic locationproperty, which has

already been introduced, and theunchanged locationproperty.

3.3 Node special properties

In this section, we describe theunchanged locationproperty and thedynamic location

property, which allow programmers to create itinerary nodes the task of which is executed

on platforms that are determined at runtime.

3.3.1 Unchanged location property

Theunchanged locationproperty is used to specify that the task of a node will be executed

on the previous platform visited by the agent. This implies that, after executing the local

task, the agent performs no migration and resumes its execution on the same platform

where it was being executed.

An example of the use of this property can be seen in figure 3.7.The unchanged lo-

cationproperty is depicted by replacing the platform’s name by a left arrow ( ), meaning

“same as previous”. In this itinerary, the agent visits node4 after finishing any of the two

subitineraries associated with theswitchnode 1. As node 4 has theunchanged location

property set, this node will be visited in platformB or C depending on the decision made

in node 1. Theunchanged locationproperty is set on asequencenode in this example, but

it could be set on any other type of node.

This property is especially useful when it avoids performing unnecessary migrations.

An example of this situation can be seen in figure 3.8. In this case, the programmer wants to

evaluate the loop condition on platformA the first time, and then on platformC subsequent

times. By setting theunchanged locationproperty onloop node 2, the programmer is

relieved of the need to introduce an additional platform into the agent’s itinerary for the



3.3. NODE SPECIAL PROPERTIES 31

2
platform B

41
platform A

3
platform C

Figure 3.7: Example itinerary with theunchanged locationproperty set on a node.

3
platform B

4
platform C

2 5
platform D

1
platform A

Figure 3.8: Use of theunchanged locationproperty on aloopnode.

evaluation of the loop condition. As a result, no migration is needed to reach node 2 and

decide whether a new iteration has to be started.

3.3.2 Dynamic location property

Thedynamic locationproperty, as mentioned earlier, is used in combination withdiscov-

erer nodes in order to allow agents to visit platforms discoveredat runtime. Thediscov-

erer’s local task determines what platform is assigned to the dynamically located nodes.

Figure 3.9 shows an example itinerary in which the agent has to visit two discoverer

nodes and two dynamically located nodes. In this case, thedynamic locationproperty has

been set on anif node and asequencenode.

The itinerary of figure 3.9 could be that of an agent sent out tofind a cheap flight and

hotel for a business trip. First of all, the agent queries a remote search engine in order to

find an airline company offering flights to a certain destination (node 1). Once the airline

company is found, the agent migrates to this company’s platform and searches for a cheap

flight that fits within the budget (node 2). If such flight is found, the agent buys the ticket



32 CHAPTER 3. DEFINING THE AGENT’S ITINERARY

5
Home

platform

2
#

1
Home

platform

3 4
#

(Airline
 company)

(Hotel)

Figure 3.9: Itinerary of a shopping agent that includes twodiscoverer
nodes and two dynamically located nodes

and queries the remote search engine again to find a cheap hotel in the destination (node

3). Once the hotel is found, the agent migrates to the hotel’splatform to negotiate a good

price for the stay. After booking the hotel, the agent returns to the home platform. As can

be seen, the tasks of nodes 2 and 3 are executed on the same platform since node 3 has the

unchanged locationproperty set.

It is worth noting that, by placing all dynamically located nodes inside the subitinerary

of adiscoverernode, the programmer is prevented from defining faulty itineraries in which

the agent would have to migrate to a dynamically located nodethat had no associated

discoverernode.

Thedynamic locationproperty and thediscoverernode can also be used in combination

with other node types in order to define the itinerary of a completely free-roaming agent.

An example of such itinerary is shown in figure 3.10. In this case, the agent developer

only specifies the starting point of the itinerary, where theagent must be sent to start its

execution. The rest of the agent execution takes place on platforms discovered at runtime,

and the agent can visit as many platforms as necessary in order to accomplish its task.

As shown in the figure, the agent assigns a new platform to node4 at each iteration of

the loop node 2. On each of these platforms, the agent executes the task of node 4 and,

in addition, the tasks of nodes 2 and 3. The task of node 2 checks whether the agent has

finished its itinerary and, if that is not the case, the task ofnode 3 determines where to

migrate next.



3.4. IMPLEMENTATION ISSUES 33

3 4
#

21
platform A

Figure 3.10: Itinerary of a completely free-roaming agent

In addition to the functionality presented so far, thediscoverernode can also be used

to assign multiple platforms to one or more dynamically located nodes. In the example

itinerary of figure 3.9, the agent could decide that several hotels have to be visited in order

to negotiate the best price for the stay. In this case, the same task would be executed in all

hotels.

Furthermore, the itinerary associated with adiscoverernode can contain several dy-

namically located nodes, as shown in the example of figure 3.11. In this case, the agent

may assign two different sets of platforms to nodes 2 and 4.

1 2
#platform A

3
platform B

4
#

Figure 3.11: Example itinerary with two dynamically located nodes
associated with the samediscoverernode.

3.4 Implementation issues

Thus far, we have provided a theoretical description of a setof node types and properties

aimed at allowing programmers to define dynamic itineraries. In this section, we will

present some considerations regarding the implementationof these itineraries and their

corresponding agents.

First of all, the information of the explicit itinerary can be stored inside the agent in

multiple ways. If no security is required, the itinerary canbe carried by the agent in a



34 CHAPTER 3. DEFINING THE AGENT’S ITINERARY

data structure such as the one represented by the following expression. This expression

corresponds to the itinerary of figure 3.5.

I =
[

(1,m1, loop, [(B, 2), (D, 4)]), (2,m2, seq, [(C, 3)]),

(3,m3, seq, [(A, 1)]), (4,m4, seq, [])
] (3.1)

As this expression shows, the explicit itinerary is structured as a list, where each el-

ement contains the following information:i, the node’s numeric identifier;mi, the task

associated with nodei; type, the node type; and[[locationj, j] · · · [locationk, k]], the list of

locations and identifiers corresponding to the subsequent nodesj · · · k.

The data structure that contains the explicit itinerary canbe managed by the platform,

following a platform-driven approach, or it can be managed by the agent itself, following

an agent-driven approach.

In the first case, the platform accesses the agent’s explicititinerary to obtain the local

task that has to be executed and the subsequent platform where the agent has to migrate

next. In the second case, all these operations are performedby the agent by executing a

code that is common to all platforms. We refer to this code as the agent’scontrol code.

In order to implement agents using the set of node types presented in this chapter, the

agent-driven approach is preferable, for it allows platforms to manage all agents in the same

way, without knowing how they are internally structured. This is especially important as

there may be different ways of storing the explicit itinerary inside the agent, and there may

be multiple ways of protecting the data structure that contains such explicit itinerary.

Whether using a platform-driven or an agent-driven approach, different alternatives can

be considered when implementing the behaviour associated with some itinerary nodes.

Regarding thesetnode type, the implementation can generate several clones to traverse

the different subitineraries associated with this node, orthe implementation can traverse

all the subitineraries in sequence. The sequential approach can be used to implement fault-

tolerant mechanisms, so that if the agent encounters problems starting a certain subitinerary,

it can try with another and return to the problematic one later. The cloning approach can

be used to parallelise the execution, thus increasing the performance of the application.



3.5. CONCLUSIONS 35

Regarding thediscoverernode, it might be the case that the agent was not able to assign

a platform to a certain dynamically located node. Differentstrategies may be implemented

to deal with this situation, such as aborting the execution,or skipping that node and con-

tinuing with the subsequent one, among others.

3.5 Conclusions

The dynamic locationand unchanged locationproperties, in combination with these-

quence, if, switch, set, loop, anddiscoverernodes previously presented, comprise a com-

plete solution for the definition of flexible explicit itineraries for free-roaming agents.

Although this set of node types and properties has been devised to be a general pur-

pose one, new node types or properties can be added in the future, for example, to meet

the specific requirements of a certain application, and thiswill have no real effect on the

protection protocols presented in chapters 4 and 5.

The use of flexible explicit itineraries divides the design of mobile agents into two

different levels: global, where the programmer designs themigratory behaviour of the

agent; and local, where the programmer defines the agent’s behaviour at each of the steps

of its travel. As a result, the implementation of mobile agent applications is significantly

simplified.

Defining agents based on flexible explicit itineraries has other advantages as well. First

of all, the itinerary is easier to reuse, for the different stages of the itinerary are clearly

separated and can be easily modified or changed for those of other agents previously im-

plemented. Second, the data structure that stores the agentitinerary can be protected using

cryptographic mechanisms. Therefore, the set of node typesand properties defined in this

chapter provide a convenient way to define itineraries for free-roaming agents. The next

chapter will be devoted to presenting a protocol for the protection of dynamic itineraries.



36 CHAPTER 3. DEFINING THE AGENT’S ITINERARY



Chapter 4

Securing dynamic itineraries

The advances in mobile agent security have provided solutions to many of the problems

initially identified, such as the protection of platforms against malicious agents, or the

protection of the agents’ computational results, among others. Nevertheless, as mentioned

earlier in chapter 2, some issues still must be addressed, mostly regarding the protection of

agents against malicious platforms [JK00].

Several proposals have been presented to prevent platformsfrom tampering with the

code carried by the agent or with the results generated by itsexecution. Regarding the

protection of the agent code, the most widely accepted proposals are based on using itin-

erary protection protocols [WSUK00, MB03]. These protocols use public key algorithms

to encrypt the information intended for each itinerary platform. Thus, the information that

becomes visible to a platform is reduced to a minimum: the agent’s current task and the

next destination.

However, itinerary protection protocols presented to dateonly support static itineraries

because the public key of each itinerary platform must be known in advance. As a result,

current developments still cannot take full advantage of the benefits provided by the mobile

agent technology. This is compounded by the fact that most mobile agent applications are

devised using dynamic itineraries. Examples of these applications can be found in many

areas: grid computing [KBD02], data mining [KLM03], networkrouting [MV07], P2P

37



38 CHAPTER 4. SECURING DYNAMIC ITINERARIES

networks [LF06], sensor networks [WQ04], intrusion detection systems [HN05], ad-hoc

networks [LCT+05], among others.

In order to support free-roaming agents, this chapter presents a protection protocol

based on introducing trusted locations into the agent’s route. Traditional approaches as-

sume that all platforms are potentially malicious, but thismakes the protection of dynamic

itineraries unfeasible. By introducing some trusted platforms into the itinerary, the pro-

posed protocol secures the information associated with dynamically located nodes. Before

presenting such protocol, the following section discusseswhat assumptions are made when

the programmer incorporates a trusted platform into the agent’s itinerary.

4.1 Assumptions made with regard to trusted platforms

When the programmer introduces a trusted platform into the agent’s itinerary, he believes

that the agent’s task will be executed on that platform as expected. The protocol presented

in this chapter assumes that, if the programmer trusts a certain platform, then this platform

will execute the agent’s task honestly. For example, if the programmer decides to execute

the task of aloop node on a trusted platform, then it is assumed that such platform will

execute the loop condition included in this task honestly. As a result, the agent will perform

the expected number of loop iterations.

Moreover, it is assumed that the agent platform and the computer it runs on are protected

with appropriate mechanisms so as to prevent attacks from third parties that might alter

the agent execution. In this case, security greatly dependson the mechanisms provided

by the operating system and the good design of associated protocols. The study of what

mechanisms are required to guarantee the secure execution of the agent platform is out of

the scope of this thesis.

The proposed protocol also assumes the existence of a security infrastructure that allows

agent developers and users to determine whether a platform is trustworthy or not. An

example of such infrastructure can be found in [TM01]. In this work, the authors describe

a security framework for a mobile agent system which incorporates a simple trust model.



4.2. NOTATION 39

Such model is based on establishing trust relationships in amanner similar to that used in

public key infrastructures to handle distributed authentication.

The identification of trustworthy platforms can also be grounded on simpler mecha-

nisms, such as relying on real-world trust relationships. For example, the platform associ-

ated with a bank where the user has an account, or the platformfrom which the agent was

first launched, can be safely introduced into the agent’s itinerary as trusted platforms.

4.2 Notation

Before presenting the proposed protocol, we will describe first the notation used.

• n denotes the total number of itinerary nodes.

• pi denotes the platform assigned to nodei.

• mi denotes the agent’s code and data to be executed in nodei.

• hi denotes the address of platformpi.

• Pi denotes an asymmetric encryption function using the publickey of platformpi.

• Si denotes a digital signature function using the private key of platformpi.

• Er denotes a symmetric encryption function using the secret key r.

• H denotes a cryptographic hash function.

• ai · · ·Ai denotes the set of direct successors ofi. For example, ifi is a set node

associated with three subitineraries, theni has three direct successors, and thus the

setai · · ·Ai has three elements.

• bi · · ·Bi denotes the set of direct predecessors ofi.

• If i is adiscoverernode, then



40 CHAPTER 4. SECURING DYNAMIC ITINERARIES

– li · · ·Li denotes the set of all nodesq such thathq is discovered in nodei.

– bli · · ·BLi denotes the set of all direct predecessors of nodesli · · ·Li.

• If i is a dynamically located node, then

– di denotes thediscoverernode wherehi is discovered.

– hdi
denotes the address of the platform assigned to nodedi.

• If i is not a dynamically located node, then

– di denotes the agent owner.

– hdi
denotes the address or identifier associated with the owner.

• o denotes the agent owner. Note that the owner can be referred to aso ordi. However,

di denotes the owner only wheni is not a dynamically located node. Otherwise, it

denotes thediscoverernode wherehi is discovered. On the other hand,o always

denotes the agent owner.

4.3 The protocol

This section presents a protocol aimed at protecting flexible explicit itineraries constructed

with the set of node types described in chapter 3. This protocol pursues three main objec-

tives:

Integrity: Platforms must not be able to modify the agent’s itinerary undetectably.

Confidentiality: Platforms must not be able to access itinerary information corresponding

to other platforms.

Authenticity: Platforms must be able to verify the identity of the agent owner.



4.3. THE PROTOCOL 41

The proposed protocol is based on the protocol presented by Mir and Borrell in [MB03].

The main difference between their approach and the proposedone is the support fordis-

coverernodes, thedynamic locationproperty and theunchanged locationproperty, which

enable the definition of free-roaming agents.

The general idea behind the proposed protocol is to construct a chain of digital en-

velopes, each of which containing two elements: the data, and the encrypted key that al-

lows decrypting the following envelope. A representation of this scheme is shown in figure

4.1.

Data
P  (key2)2

1

E
key1 Data

P  (key3)3

2

E
key2 Data

null

4

E
key4Data

P  (key4)4

3

E
key3

Figure 4.1: Representation of a chain of digital envelopes.

The envelopes shown in this figure represent the entries of the protected itinerary. Every

envelope is encrypted using a random symmetric key, and thissymmetric key is in turn

encrypted using the public key of the platform entitled to open the envelope. Thus, each

envelope can only be decrypted by the intended platform.

Additionally, the envelopes can only be opened in the correct order, for the symmetric

key used to decrypt an envelope is protected inside the previous envelope.

The problem of protecting dynamic itineraries is that not all public keys are known in

advance. This makes it impossible to build a chain of digitalenvelopes as the one previ-

ously described. More specifically, the platforms assignedto dynamically located nodes

are discovered by the agent at runtime, in the correspondingdiscoverernodes. Therefore,

the public keys of the platforms assigned to dynamically located nodes are not available

when the protected itinerary is initially created.

In order to solve this problem, the protocol proposed in thischapter is based on pro-

tecting the information of dynamically located nodes usingthe public keys of their corre-

spondingdiscoverernodes. Then, when the agent visits adiscoverernode, the public keys

of the newly discovered platforms are used to rebuild the protected itinerary. This scheme



42 CHAPTER 4. SECURING DYNAMIC ITINERARIES

involves changing the chain of digital envelopes, as shown in figure 4.2.

Data
P  (key2)
key3
key4

2

1

E
key1

Data
blank

3

E
key3 Data

null

4

E
key4Data

P  (key3)3

2

E
key2

Discoverer
node

Dynamically
located node

Figure 4.2: Modified chain of digital envelopes to support dynamic itineraries.

As this figure shows, the envelope associated with thediscoverernode contains two

additional symmetric keys: First, the one used to encrypt the dynamically located node

(key4); and, second, the one used to encrypt the predecessor of thedynamically located

node (key3). When the agent visits thediscoverernode 1, it determines where to visit node

4, and it uses the public key of the newly discovered platformto encryptkey4. Thus, the

agent generatesP4(key4). Then, it useskey3to rebuild the envelope 3, in order to replace

theblankwith P4(key4).

As a result, the protocol presented in this chapter allows programmers to create pro-

tected itineraries with dynamically located nodes. This approach, however, requires agents

to execute the tasks ofdiscoverernodes on trusted platforms, and also requires these trusted

platforms to be known in advance.

The construction of the protected itinerary, and then the operations required to handle

such itinerary are presented in the following sections. Thecombined actions comprise the

itinerary protection protocol which supports free-roaming agents.

4.3.1 Building the protected itinerary

Regarding the construction of the protected itinerary, firstof all, a random symmetric key

is created for every itinerary node. Thus, the following setof keys is obtained:

r1 · · · rn



4.3. THE PROTOCOL 43

Next, for each possible migration from a nodei to any of its successorsj ∈ {ai · · ·Ai},

the transition from i to j (tij) is generated. The value of this transition depends on which

property, if any, has been set on nodej.

If neither theunchanged locationnor thedynamic locationproperty has been set on

nodej, then the transitiontij is computed as follows:

tij = j, hj, Pj(So(id, rj, hdj
), Sdj

(id, hj)) (4.1)

As shown in the above equation, the transition fromi to j contains the random sym-

metric keyrj associated with nodej. This random symmetric key will be used to encrypt

the entry (or envelope) of the protected itinerary associated with nodej. In order to ensure

that only platformpj has access torj, this symmetric key is encrypted using the public key

of platformpj (see figure 4.1).

Additionally, tij includes other information that is used to prevent malicious manipula-

tions of this transition:

• First, it includeshdj
, which is the owner’s address or identifier becausej is not a

dynamically located node.

• Second, it includesSdj
(id, hj), wheredj is the owner becausej is not a dynamically

located node. By introducinghj into the transition, platformpj will be able to verify

that nodej was certainly assigned to platformpj.

• Finally, tij includes a unique agent identifierid that is used to prevent replay attacks.

The prevention of replay attacks will be covered in detail inchapter 5. As can be

seen, this trip marker is included twice, so as to bind together So(id, rj, hdj
) and

Sdj
(id, hj), and prevent their reuse in other agents.

As can be seen,id, rj andhdj
are signed by the owner (So), so that platformpj will be

able to verify the identity of the agent owner and the integrity of this information.

The expression shown in equation 4.1 is used to build those transitionstij in which

nodej has neither theunchanged locationnor thedynamic locationproperty set. If nodej



44 CHAPTER 4. SECURING DYNAMIC ITINERARIES

has thedynamic locationproperty set, then the transitiontij is computed as follows:

tij = j, blank (4.2)

As can be seen, the expressionhj, Pj(So(id, rj, hdj
), Sdj

(id, hj)) is replaced by the spe-

cial value ‘blank’. This is due to the fact thathj is not known at the time of creating the

itinerary, and the public key needed to computePj(So(id, rj, hdj
), Sdj

(id, hj)) is not avail-

able either (see envelope 3 of figure 4.2). As explained in thenext section, this transition

will be rebuilt at runtime in thediscoverernodedj associated withj.

If node j has theunchanged locationproperty set, then the value oftij depends on

which property, if any, has been set on nodei. If neither theunchanged locationnor the

dynamic locationproperty has been set on nodei, then the transitiontij is computed as

follows:

tij = j, hi, Pi(So(id, rj, hdj
), Sdj

(id, hi)) (4.3)

As shown in the above equation, the transitiontij is equivalent to that shown in equation

4.1. The only difference is thathj is replaced withhi because the agent will visit nodej

in the same platform assigned to nodei. For this same reason, this transition is encrypted

using the public key of platformpi.

If both nodesj andi have theunchanged locationproperty set, then equation 4.3 must

be replaced with

tij = j, hbi
, Pbi

(So(id, rj, hdj
), Sdj

(id, hbi
)) (4.4)

The equivalent change should be made in the above expressionif node bi had theun-

changed locationproperty set as well.

Finally, if nodei has thedynamic locationproperty set, and nodej has theunchanged

location property set, then the transitiontij is computed as shown in equation 4.2. Note

that, in this case, nodej is treated as a dynamically located node because its task will be

executed on the platform assigned to nodei at runtime.

Once all transitionstij have been created, the protected itinerary is constructed as fol-

lows:

I = t01, [e1 · · · en] (4.5)



4.3. THE PROTOCOL 45

3
platform B

4
platform C

2 6
platform D

1
platform A

5
#

Figure 4.3: Example itinerary with aloop, adiscovererand a dynamically located node.

wheret01 = 1, h1, P1(So(id, r1, hd1
), Sd1

(id, h1)) is the transition needed by the agent to

decrypte1 in the first platform of the itinerary. The value of each entryei depends on the

type of nodei. If i is not adiscoverernode, thenei is computed as follows:

ei = Eri
(So(id, i,mi, typei), [ti ai

· · · ti Ai
]) (4.6)

As this equation shows, every entryei contains a unique agent identifier (id), a node identi-

fier (i), a task (mi), a node type (typei), and a list of transitions from nodei to its successors

ai · · ·Ai ([ti ai
· · · ti Ai

]).

If i is adiscoverernode, thenei is computed as follows:

ei = Eri

(

So

(

id, i,mi, discoverer,

[So(id, rli , hi) · · ·So(id, rLi
, hi)], [rbli · · · rBLi

]
)

, [ti ai
]
) (4.7)

As this equation shows,ei contains only one transitionti ai
becausei is adiscoverernode

and has only one direct successor. In addition,ei includes two lists:[So(id, rli , hi) · · ·

So(id, rLi
, hi)] and[rbli · · · rBLi

]. If we draw an analogy between the contents ofei and the

first envelope shown in figure 4.2, then the first list is equivalent tokey4, and the second list

is equivalent tokey3. As will be seen in the next section, the first list contains the symmet-

ric keys needed to rebuild the transitions to the dynamically located nodes (li · · ·Li), and

the second list contains the symmetric keys needed to decrypt the entries of the protected

itineraryebli · · · eBLi
, where the newly generated transitions will be included.

In order to exemplify the creation of a protected itinerary,figure 4.3 shows an example

itinerary comprised of six nodes, one of which is aloop, another one is adiscoverer, and



46 CHAPTER 4. SECURING DYNAMIC ITINERARIES

the remaining ones aresequencenodes. Applying the proposed protocol to this itinerary

would yield the following protected itinerary.

I = t01,
[

Er1
(So(id, 1,m1, seq), [t12]), Er2

(So(id, 2,m2, loop), [t23, t26]),

Er3
(So(id, 3,m3, discoverer, [So(id, r5, B), So(id, r2, B)], [r4, r5]), [t34]),

Er4
(So(id, 4,m4, seq), [t45]), Er5

(So(id, 5,m5, seq), [t52]),

Er6
(So(id, 6,m6, seq), [])

]

(4.8)

where

t01 = 1, A, P1(So(id, r1, o), So(id, A)) , t12 = 2, A, P1(So(id, r2, o), So(id, A)) ,

t23 = 3, B, P3(So(id, r3, o), So(id, B)) , t34 = 4, C, P4(So(id, r4, o), So(id, C)) ,

t45 = 5, blank , t52 = 2, blank , t26 = 6, D, P6(So(id, r6, o), So(id,D))

As these expressions show, the proposed protection of the explicit itinerary attains the

objectives initially established.

With regard to authenticity, the symmetric keysr1 · · · rn, which are used to encrypt the

entries of the protected itinerary, are digitally signed bythe agent owner. Additionally,i,

mi, andtypei are also signed to prevent their modification in dynamicallylocated nodes.

Thus, the authenticity of every itinerary entry can be verified.

The authenticity of the itinerary entries ensures that attackers can neither generate their

own entries nor modify existing ones. Entries cannot be removed either because remov-

ing an entryei implies removing the keyrai
that allows to decrypt the subsequent entry

eai
. Furthermore, the unique agent identifierid prevents the reuse of entries previously

generated by the same owner. Therefore, the integrity of theprotected itinerary is also

guaranteed.

As for the confidentiality of the itinerary information, each symmetric keyri is en-

crypted in such a way that it can only be decrypted by platformpi. Thus, platformpi is

only allowed to decryptei, and all other itinerary entries remain hidden. The confidentiality

of itinerary entries is thus guaranteed as well.

Additionally, every transition to a given nodei includes the addresshi of the platform

assigned toi. Thus, platforms can verify that they were certainly part ofthe initial itinerary.



4.3. THE PROTOCOL 47

Regarding the dynamically located nodes, their informationis initially accessible to

their correspondingdiscoverernodes, and remains hidden to the remaining nodes. There-

fore, provided that the platforms assigned todiscoverernodes are trustworthy, the authen-

ticity, integrity and confidentiality of dynamically located nodes are achieved.

It is also worth noting that the platforms assigned todiscoverernodes must be known

initially, for their addresses must be signed by the owner and introduced into the protected

itinerary (see equation 4.7).

In order to understand how the protected itinerary is handled, the next section describes

the operations required to (1) verify that the itinerary hasnot been tampered with; (2)

extract and execute the local task; and (3) rebuild the protected itinerary at runtime to

enable the execution of the tasks assigned to dynamically located nodes.

4.3.2 Management of the protected itinerary

The steps required to manage the protected itinerary at runtime depend on the type of node

that the agent is visiting. The following is the set of operations that must be performed

when the agent is not visiting adiscoverernode.

1. Leti be the current node, and letg ∈ {bi · · ·Bi} be one of the predecessors ofi. Then

the transitiontgi placed at the beginning of the protected itinerary is decrypted using

the platform’s private key. Thus,So(id, ri, hdi
), Sdi

(id, hi) is obtained. For example,

in the first platform of the itinerary,t01 is decrypted andSo(id, r1, o), So(id, h1) is

obtained.

2. The signature ofSo(id, ri, hdi
) is verified, and if this verification does not succeed,

the agent execution is discarded.

3. The signature ofSdi
(id, hi) is verified, and if this verification does not succeed, the

agent execution is discarded. Note that, ifi is not a dynamically located node, then

di is the owner. Otherwise,di is thediscoverernode associated withi.



48 CHAPTER 4. SECURING DYNAMIC ITINERARIES

4. The agent identifierid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is discarded.

5. hi is compared with the current platform’s address, in order toverify that the current

platform is certainly part of the initial itinerary. Without this verification, the follow-

ing attack would be possible: Letpz be a malicious platform assigned to nodez. pz

decrypts the transitiontbz z placed at the beginning of the itinerary. Thenpz encrypts

tbz z again using the public key of platformpi, and sends the agent topi. Platformpi

decryptstbz z, and ends up executing the task assigned to nodez because it does not

realise thattbz z is actually intended for platformpz.

6. ei is decrypted usingri, thus obtaining(So(id, i,mi, typei), [ti ai
· · · ti Ai

]) (see equa-

tion 4.6).

7. The signature ofSo(id, i,mi, typei) is verified, and if this verification fails, the agent

execution is discarded.

8. The agent identifierid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is discarded.

9. The agent executes the current taskmi. If i is not asequencenode, the agent chooses

which of the following nodes must be visited next. Let us assume that the following

node to be visited by the agent isai.

10. ti ai
is placed at the beginning of the protected itinerary, thus replacing the transition

tgi previously obtained in step 1.

11. The agent is migrated to platformpai
, where the execution of these steps is started

again.

When the agent has to visit adiscoverernode, the handling of the protected itinerary

requires several additional operations. Leti be thediscoverernode. Then, first of all, a plat-

form must be assigned to each dynamically located nodeli · · ·Li associated withi. Second,



4.3. THE PROTOCOL 49

the transitions to nodesli · · ·Li must be rebuilt using the list[So(id, rli , hi) · · ·So(id, rLi
, hi)]

included inei. Finally, the symmetric keys included in the list[rbli · · · rBLi
] must be used

to modify the corresponding entriesebli · · · eBLi
. Thus, the old transitions initialised using

the special value ‘blank’ must be replaced with the newly generated transitions.

The following is a detailed description of all the operations involved.

1. The transition placed at the beginning of the protected itinerary is decrypted using

the platform’s private key, thus obtainingSo(id, ri, hdi
), Sdi

(id, hi).

2. The signature ofSo(id, ri, hdi
) is verified, and if this verification does not succeed,

the agent execution is discarded.

3. The signature ofSdi
(id, hi) is verified, and if this verification does not succeed, the

agent execution is discarded.

4. The agent identifierid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is discarded.

5. hi is compared with the current platform’s address, in order toverify that the current

platform is really the one assigned to nodei.

6. ei is decrypted usingri, thus obtaining the following information (see equation 4.7):

(

So

(

id, i,mi, discoverer, [So(id, rli , hi) · · ·So(id, rLi
, hi)], [rbli · · · rBLi

]
)

, [ti ai
]
)

7. The signature of

So

(

id, i,mi, discoverer, [So(id, rli , hi) · · ·So(id, rLi
, hi)], [rbli · · · rBLi

]
)

is verified, and if this verification fails, the agent execution is discarded.

8. The agent identifierid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is discarded.



50 CHAPTER 4. SECURING DYNAMIC ITINERARIES

9. The agent executes the current taskmi. As i is a discoverernode, the agent deter-

mines what platforms are assigned to the dynamically located nodes. The agent is

thus discovering the platformspli · · · pLi
.

10. Using the symmetric keys included in the list[rbli · · · rBLi
], the entriesebli · · · eBLi

are decrypted and modified in order to replace the transitions to the dynamically

located nodesli · · ·Li. For this purpose, the following operations are performed:

(a) Letrc be one of the symmetric keys included in[rbli · · · rBLi
]. Thenrc is used to

decryptec. Thus,(So(id, c,mc, typec), [tc ac
· · · tc Ac

]) is obtained (see equation

4.6).

(b) For each transitiontcy ∈ {tc ac
· · · tc Ac

} such thaty ∈ {li · · ·Li}, tcy is rebuilt

as follows:

tcy = y, hy, Py(So(id, ry, hi), Si(id, hy)) (4.9)

whereSo(id, ry, hi) is included in the list[So(id, rli , hi) · · ·So(id, rLi
, hi)] that

was obtained in step 6.hy is the address of platformpy ∈ {pli · · · pLi
}, which

was discovered in step 9. Note that, in this case,i is thediscoverernode asso-

ciated with nodey and, therefore,Si(id, hy) is signed using the private key of

pi.

(c) The new transitionstc li · · · tc Li
are substituted for the previous ones insideec.

11. The transitionti ai
obtained in step 6 is placed at beginning of the protected itinerary,

thus replacing the one previously obtained in step 1.

12. The agent is migrated to platformpai
.

The steps described above show how the transitions to dynamically located nodes are

rebuilt when the agent is visiting their correspondingdiscoverernode. Thus, the agent can

visit these dynamically located nodes performing the same operations carried out in any

other node.



4.3. THE PROTOCOL 51

The lists[So(id, rli , hi) · · ·So(id, rLi
, hi)] and [rbli · · · rBLi

], which are required to re-

build the protected itinerary, are only available to thediscoverernode. Therefore, the

information of dynamically located nodes is kept confidential at all times. However, the

discoverernode must be associated with a trusted platform, in order to ensure that the

information available to this platform is not maliciously used. Otherwise, a dishonest plat-

form could easily alter the code and data assigned to dynamically located nodes and their

direct predecessors.

In order to exemplify the management of a protected itinerary, the following steps show

how the protected itinerary of equation 4.8 is handled during the agent execution.

1. The agent is migrated to platformA. The transitiont01 is decrypted usingA’s private

key, andSo(id, r1, o), So(id, A) is obtained.

2. The signature ofSo(id, r1, o) is verified.

3. The signature ofSo(id, A) is verified.

4. The agent identifierid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is discarded.

5. A is compared with the current platform’s address, in order toverify that the current

platform is really the one assigned to node1.

6. e1 is decrypted usingr1, andSo(id, 1,m1, seq), [t12] is obtained.

7. The signature ofSo(id, 1,m1, seq) is verified.

8. The agent identifierid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is discarded.

9. The agent executesm1.

10. The transitiont12 = 2, A, P1(So(id, r2, o), So(id, A)) is placed at the beginning of the

protected itinerary. Thus, the protected itinerary shown in equation 4.8 is replaced



52 CHAPTER 4. SECURING DYNAMIC ITINERARIES

by:

I = t12,
[

Er1
(· · · ), · · · , Er6

(· · · )
]

(4.10)

11. Node 2 has theunchanged locationproperty set. As a result, the next platform of

the itinerary, which can be obtained fromt12, is A again. Therefore, no migration is

performed because the agent is already inA.

These steps are now repeated to execute the task assigned to node 2. In this case,

however, step 9 requires an additional operation because node 2 is aloop:

9. The agent executesm2. As the current node type isloop, m2 includes a method that

evaluates the loop condition and chooses which node must be visited next: 3 or 6.

Let us assume that the agent decides to visit node 3, thus entering theloopsubitinerary.

When the agent is migrated to platform B, the following steps are performed:

1. The transitiont23 is decrypted usingB’s private key, andSo(id, r3, o), So(id, B) is

obtained.

2. The signature ofSo(id, r3, o) is verified.

3. The signature ofSo(id, B) is verified.

4. The agent identifierid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is discarded.

5. B is compared with the current platform’s address in order to verify that the current

platform is really the one assigned to node3.

6. e3 is decrypted usingr3, and the following information is obtained:

(So(id, 3,m3, discoverer, [So(id, r5, B), So(id, r2, B)], [r4, r5]), [t34])

7. The signature ofSo(id, 3,m3, discoverer, [So(id, r5, B), So(id, r2, B)], [r4, r5]) is ver-

ified.



4.3. THE PROTOCOL 53

8. The agent identifierid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is discarded.

9. The agent executes taskm3. As the current node type isdiscoverer, m3 includes a

method that determines where the tasks of nodes 5 and 2 will beexecuted. Let us

assume that the agent assigns nodes 5 and 2 to platformE.

10. Using the symmetric keys included in the list[r4, r5], the entriese4, e5 are decrypted

and modified in order to replace the transitions to the dynamically located nodes 5

and 2. For this purpose, the following operations are performed:

(a) e4 is decrypted usingr4, and(So(id, 4,m4, seq), [t45]) is obtained.

(b) t45 is rebuilt as follows:

t45 = 5, E, P5(So(id, r5, B), S3(id, E)) (4.11)

Note thatSo(id, r5, B) has been obtained in step 6.S3 is a digital signature

usingB’s private key, andP5 is an asymmetric encryption function using the

public key of platformE.

(c) The entrye4 is re-encrypted, replacing the previoust45 with the newly generated

in the previous step.

These same steps are now repeated usingr5 to decrypte5, and the previoust52 is

replaced byt52 = 2, E, P2(So(id, r2, B), S3(id, E)).

11. The transitiont34 is placed at the beginning of the protected itinerary.

12. The agent is migrated to platformC.

The protected itinerary is managed in platformC by performing the same steps previ-

ously explained for node 1. Note that, once the transitionst45 andt52 have been rebuilt in

node 3, the agent can visit nodes 5 and 2 as if they were not dynamically located nodes.

The agent will eventually exit the loop (node 2) and will finish its execution on platformD.



54 CHAPTER 4. SECURING DYNAMIC ITINERARIES

As can be seen, the information associated with nodes 5 and 2 always remains confi-

dential and immutable.e5 ande2 are always protected with their corresponding symmetric

keys—r5 andr2—which are protected insidee3.

Only platform B has access toSo(id, r5, B) and So(id, r2, B), which are needed to

rebuild the transitionst45 andt52. Moreover, only platformB has access to the symmetric

keysr4 andr5 that enable the modification ofe4 ande5. Consequently, only platformB

is allowed to determine where the tasks of nodes 5 and 2 will beexecuted, and to rebuild

the itinerary accordingly. Obviously, platformB must be trusted by the owner, and the

proposed protocol assumes that this platform will not modify the contents ofe4, e5 or e2.

It is worth noting that the contents ofe5 ande2 are signed by the agent owner. Con-

sequently, the platforms dynamically assigned to nodes 5 and 2 are not allowed to modify

these entries of the protected itinerary. Otherwise, the following attack would be possible:

Let us assume that nodes 5 and 2 were associated with platformZ in a given loop iteration,

and then they were associated with platformE in the next loop iteration. As both platforms

Z andE are accessing the same entries of the protected itinerary—e5 ande2—, platformZ

could easily modify the tasksm5 andm2 executed later on platformE. However, this attack

is not possible because these tasks are signed by the agent owner.

The operations previously described to construct the protected itinerary, together with

the steps described above to manage this protected itinerary, comprise the complete proto-

col aiming at protecting flexible explicit itineraries for free-roaming agents.

4.3.3 Discussion

The protocol presented in this chapter ensures the integrity, authenticity and confidential-

ity of dynamic itineraries. In order to achieve these objectives, the protocol is based on

introducing trusted platforms into the agent’s itinerary.

The platforms assigned todiscoverernodes are allowed to access the information as-

sociated with dynamically located nodes, as well as the information of their direct prede-

cessors. Therefore, the programmer must be confident that these platforms are not going to



4.3. THE PROTOCOL 55

alter the code or data associated with these nodes.

The agent itinerary, however, can be defined in such a way thatall dynamically located

nodes are placed immediately after their correspondingdiscoverernode. This allowsdis-

coverernodes to rebuild the transitions to dynamically located nodes without needing to

decrypt the entries of their predecessors.

Including trusted platforms in the itinerary might be difficult for some specific applica-

tions in which each host of the agent’s itinerary was supposed to be potentially malicious.

However, this is not the case of most applications. Moreover, several strategies can be used

to reduce the number of trusted platforms that must be introduced in the itinerary. First of

all, all discoverernodes can be associated with the same trusted platform (e.g.the agent

home platform). Secondly, the agent itinerary can be definedin such a way that the dis-

covery of new platforms and the reconstruction of the itinerary are conducted in different

platforms. Thus, the agent always migrates to the same trusted platform to rebuild the

itinerary, regardless of where the new platforms are discovered.

The proposed protocol does not support assigning multiple platforms to the same dy-

namically located node. This would involve using the same symmetric key to encrypt

several itinerary entries. As a result, this would allow platforms to decrypt and modify the

entries corresponding to other platforms discovered at runtime. Additionally, rebuilding

the transition to a node of any type other thansequencewould involve replicating the sub-

itinerary associated with this node. As a result, this mightimply replicating most of the

entries of the protected itinerary, and changing the successors associated with some nodes.

As an example, this problem could arise in itineraries such as the one shown in figure

3.9, where thedynamic locationproperty is set on anif node. In this case, assigning two

different platforms to node 2 would involve rebuilding the agent’s itinerary as shown in

figure 4.4.

As this figure shows, the reconstruction performed in node 2 would involve duplicating

four entries of the protected itinerary, and changing the successor associated with node 4.

For all these reasons, assigning multiple platforms to the same dynamically located node is

not supported by the proposed protocol.



56 CHAPTER 4. SECURING DYNAMIC ITINERARIES

52
#

1

3 4
#

2
#

3 4
#

Figure 4.4: Reconstruction of the itinerary of figure 3.9 when
two platforms are discovered for node 2

4.4 Implementation

The proposed protocol has been implemented and experimentation work has been carried

out in order to prove its viability. The Java-based Jade platform [BCPR03] has been used

as the agent execution environment.

Agents have been implemented following an agent-driven approach, as proposed by

Ametller et al. in [ARO04]. This involves providing mobile agents with a code that is

executed as soon as the agent is initiated on all platforms, and which deals with the man-

agement of the protected itinerary. We refer to this code as thecontrol code. As mentioned

earlier in previous chapters, the agent-driven approach has several advantages over the

platform-driven one. First of all, platforms can handle theexecution of any agent in the

same way, regardless of how the agent is internally structured and protected. Moreover,

the agent control code can be easily reused in different applications, and it can implement

complex itinerary management algorithms that involve, forinstance, rebuilding the agent’s

itinerary at runtime.

According to [ARO04], agents can decrypt their itinerary data using platforms’ pri-

vate keys without having direct access to these private keys. This decryption is performed

using a call to a public decryption function provided by platforms. This public decryp-

tion function verifies that the decrypted data really belongs to the requesting agent. Thus,

agents are not allowed to decrypt itinerary information stolen from other agents. A detailed

description of Ametlleret al.’s protocol is provided in section 2.

The agent-driven implementation of the proposed protocol has been carried out through



4.4. IMPLEMENTATION 57

the following steps: First, generation of a random pair of cryptographic keys (kp, ks). Sec-

ond, generation of the agent’s control code, which containsthe public keykp as a compile-

time constant that will never change during the lifetime of the agent. Third, generation of

the protected itinerary.

With regard to the generation of the agent’s control code, the implementation performs

the steps described in section 4.3.2, so that the agent is able to manage its own itinerary

and protection mechanisms. Some steps, however, have been modified slightly in order to

adapt the implementation to the requirements of the agent-driven approach. The following

are the changes performed:

• In step 1, the transition placed at the beginning of the protected itinerary must be

decrypted using the platform’s private key. In order to do so, the control code calls

the platform’s public decryption function. Additionally,the control code verifies the

signature of the data returned by this function, using the public key kp as described

in [ARO04]. If this verification fails, the control code aborts the agent execution.

• When the agent is visiting adiscoverernode, the transition to every dynamically

located node must be rebuilt (see equation 4.9). The controlcode rebuilds this tran-

sition as follows:

tcy = y, hy, Py(Sks
(So(H(C), ry, hi), Si(H(C), hy)), H(C)) (4.12)

whereH(C) is a cryptographic hash of the agent’s control code. As can beseen, the

agent identifierid is computed as a hash of the agent’s control code. Additionally,

this hash value is appended to the data that is then encryptedby Py.

With regard to the generation of the agent’s protected itinerary, the implementation

undertakes the operations described in section 4.3.1. However, the following modifications

are required to allow the control code to use the platforms’ public decryption function.

First of all, all public key encryptions are performed in such a way that the data to be

encrypted are previously signed usingks. Additionally, a hash of the agent’s control code



58 CHAPTER 4. SECURING DYNAMIC ITINERARIES

H(C) is appended to the result of this signature. As an example, the transition shown in

equation 4.1 is computed as follows:

tij = j, hj, Pj(Sks
(So(id, rj, hdj

), Sdj
(id, hj)), H(C)) (4.13)

Attaching a hash of the agent’s control code to the encrypteddata allows platforms to verify

that the control code remains unaltered. Signing the data tobe encrypted withks prevents

attackers from reusing transitions of previously executedagents. Performing this signature

is not essential for the security of the proposed protocol because the unique agent identifier

H(C) is already included for this purpose. However, it has been implemented for the sake

of consistency with the protocol proposed in [ARO04].

The second modification to the protocol described in section4.3.1 involves constructing

the entriesei associated withdiscoverernodes as follows:

ei = Eri

(

So

(

H(C), i,mi, discoverer, [Sks
(So(H(C), rli , hi)) · · ·

· · ·Sks
(So(H(C), rLi

, hi))], [rbli · · · rBLi
]
)

, [ti ai
]
) (4.14)

As can be seen, every element of[Sks
(So(H(C), rli , hi)) · · ·Sks

(So(H(C), rLi
, hi))]

is signed usingks. These signatures, together with the hash of the control code, allow the

agent to rebuild the transitions to the dynamically locatednodes, as shown in equation 4.12.

All these modifications to the way the protected itinerary isconstructed and managed

allow the agent to handle its own protection mechanisms. As mentioned earlier, protecting

agents using an agent-driven approach is preferable to using a platform-driven one, for it

enables developers to customise the set of implemented security mechanisms depending

on the specific requirements of their applications. In addition, platforms are not forced to

support all existing security protocols, thus facilitating maintenance as well.

4.4.1 Simulation and tests

In order to prove the viability of the proposed protocol, experiments have been performed

simulating a simple mobile agent-based application. This application implements a hotel

search and reservation system.



4.4. IMPLEMENTATION 59

The system allows an individual to find the cheapest hotel in agiven destination, taking

into account the user preferences with regard to room facilities and guest services. The

application provides a graphical user interface where the search criteria are defined. After

defining the search criteria, a mobile agent is started that,first of all, queries a remote hotel

search engine to obtain a list of the five cheapest hotels in the destination. The agent then

visits each one of these hotels and checks their room availability for the desired dates, their

room facilities, services, etc. In addition, the agent can also negotiate a special discount for

long stays.

Once all hotels have been visited, the agent returns to the its home platform, and decides

whether there is any offer that fits the user’s needs and budget. If there is none, the agent

performs another query in order to find the next five cheapest hotels, and the whole process

is started again. Otherwise, if the agent finds an acceptableoffer, it proceeds with the

reservation process. The agent’s itinerary defined for the implementation of this example

application is shown in figure 4.5.

2 3

1 8
Home

platform

#

4
#

5
#

6
#

7
#

(hotels)

Home
platform

Figure 4.5: Itinerary of an agent implementing a hotel reservation system

By implementing this application using mobile agent technology, the search and ne-

gotiation process is automated, and the application can be used in devices with slow or

intermittent connections, such as mobile phones, PDAs, etc.

Protecting the explicit itinerary using the protocol presented in this chapter keeps po-

tentially malicious hotels from modifying the code executed on other hotels. Preventing

modifications to the code intended for other hotels is of utmost importance in this appli-

cation. Otherwise, it would be possible for a hotel to modifythe agent’s code in such a



60 CHAPTER 4. SECURING DYNAMIC ITINERARIES

way that the agent itself increased the offers obtained fromother hotels. The following

expression shows the initial protected itinerary:

I = t01,
[

Er1
(So(H(C), 1,m1, loop), [t12, t18]), Er2

(So(H(C), 2,m2, discoverer,

[Sks
(So(H(C), r3, HP )), Sks

(So(H(C), r4, HP )), Sks
(So(H(C), r5, HP )),

Sks
(So(H(C), r6, HP )), Sks

(So(H(C), r7, HP ))], [r2, r3, r4, r5, r6]), [t23]),

Er3
(So(H(C), 3,m3, seq), [t34]), Er4

(So(H(C), 4,m4, seq), [t45]),

Er5
(So(H(C), 5,m5, seq), [t56]), Er6

(So(H(C), 6,m6, seq), [t67]),

Er7
(So(H(C), 7,m7, seq), [t71]), Er8

(So(H(C), 8,m8, seq), [])
]

whereHP denotes the agent’s home platform, and

t01 = 1, HP, P1(Sks
(So(H(C), r1, o), So(H(C), HP )), H(C)) ,

t12 = 2, HP, P1(Sks
(So(H(C), r2, o), So(H(C), HP )), H(C)) ,

t23 = 3, blank , t34 = 4, blank , t45 = 5, blank , t56 = 6, blank , t67 = 7, blank ,

t71 = 1, HP, P1(Sks
(So(H(C), r1, o), So(H(C), HP )), H(C)) ,

t18 = 8, HP, P8(Sks
(So(H(C), r8, o), So(H(C), HP )), H(C))

It is worth noting that, in order to guarantee the confidentiality and integrity of previ-

ously collected offers, the proposed protocol must be used in combination with some other

mechanism aimed at protecting the agent’s computational results (such as [MS03]).

This example application shows an environment where platforms are discovered dy-

namically and might be interested in modifying the code executed by the agent for their

own benefit. In order to validate the proposed protocol, thisapplication has been simu-

lated by introducing several malicious platforms into the agent’s itinerary. These malicious

platforms acted as dishonest hotels trying to access or modify the agent’s code intended

for other platforms. As expected, none of the attacks succeeded because every platform-

specific code and data was encrypted using a symmetric key that was only available to the

intended platform.

The experiments performed also compared the execution times of a protected agent

with an unprotected one, in order to determine if the proposed protection protocol increased

the execution times to overly high values. The agent was given an itinerary with different



4.4. IMPLEMENTATION 61

number of hotels to visit, and a number of tests were conducted to determine whether or not

the protection resulted in an exponential increase of the execution times. The evaluation

setup used to make the tests was made up by 7 computers with 2 GHz Intel Pentium(R)

IV processors and 256 MB RAM memory each. These computers wereconnected in a

laboratory to a 100 Mbps Ethernet LAN. Table 4.1 shows the resulting execution times.

Num. of iterations: 2 4 6 16

Unprotected Exec time: 12416 24500 36644 96986
agent Time/node: 776 816 832 850

Protected Exec time: 19096 37166 54956 144836
agent Time/node: 1193 1238 1249 1270

Increase: 53.8% 51.7% 49.9% 49.3%

Table 4.1: Execution times (ms) for agents with protected and unprotected itineraries

As table 4.1 shows, the execution time increases linearly with the number of hotels

visited. The execution time of a protected agent is approximately 50% higher than that of

an unprotected agent. However, this increase depends largely on the specific application

implemented. In our simulation, the time spent by the agent handling protection mecha-

nisms significantly impacted the overall execution time. Other applications could require

the agent to execute a lot more time-consuming tasks, and thetime spent handling protec-

tion mechanisms would be negligible.

The increase in the execution time is readily understandable if we take into account the

complexity of the cryptographic protection protocol presented in this chapter. The overhead

introduced by the execution of this protocol is completely acceptable for the simulated

application. However, this might not be the case for other applications, and the trade-off

between computational cost and security level should be weighed.



62 CHAPTER 4. SECURING DYNAMIC ITINERARIES

4.5 Conclusions

Previous protocols aimed at protecting the agent’s itinerary only allowed agents to travel

to platforms known beforehand. As a result, these approaches limited the mobile agent’s

ability to migrate at will. Unfortunately, most mobile agent applications are devised using

dynamic itineraries. Therefore, this limitation was a serious impediment to the deployment

of mobile agent technology, for most of the flexibility provided by this technology had to

be sacrificed.

In this chapter, a novel protocol has been presented for the protection of both static

and dynamic itineraries. The protocol is based on adding trusted platforms to the agent’s

itinerary. This is not a limitation as it could seem at first sight because trusted platforms are

usually found in real applications. By using the public keys of these trusted platforms, the

information associated with dynamically located nodes is kept confidential. The protocol

protects dynamic itineraries from tampering, impersonation and disclosure attacks, thus

providing a balanced trade-off between security and flexibility.

An example application has also been presented, showing howthe proposed protocol

can be used to implement a hotel reservation system. In this application, agents are used

to find the best offer for a hotel room. Hotels are discovered dynamically, and the itinerary

is always rebuilt on a trusted platform: the agent’s home platform. Experiments have been

conducted using this implementation, and these experiments have proved that dynamic

itineraries are effectively protected, and agents are executed in reasonable times.

The protocol presented in this chapter attains the objectives initially established, but it

does not protect agents against replay attacks. In these attacks, the agent is captured in a

platform and it is repeatedly sent to its next destination. This causes the agent to re-execute

part of its itinerary. The next chapter is devoted to presenta protocol to withstand these

attacks.



Chapter 5

External replay attack protection

This chapter presents a protocol for the protection of mobile agents against agent replay

attacks. Agent replay attacks can be classified into two different categories [Yee03]:

Internal replay attacks: These occur when the agent is forced to execute repeatedly on

a single platform using different inputs, aiming to obtain different responses and

analyse its behaviour.

External replay attacks: These are performed by malicious platforms by resending the

agent to another platform, thus making the agent reexecute part of its itinerary.

Internal replay attacks are impossible to avoid because theplatform has complete con-

trol over the execution, and can always reset the agent to itsarrival state. On the contrary,

external replay attacks can be avoided if platforms keep a record of previously executed

agents.

The problem of current solutions [Yee03, WSUK00, WSB98, LSL00,Sue03, MB03,

CLSY06, CAOR+05] against external replay attacks is that they do not allowan agent to be

executedn times on the same platform, especially ifn is determined at runtime. However,

the agent’s itinerary often contains roundtrips that require the same platform to be visited

several times. Thus, current solutions force programmers to sacrifice some of the inherent

flexibility in mobile agent itineraries.

63



64 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

In order to enhance security and flexibility, this chapter presents a solution based on

authorisation entities. The advantage is that these entities are entitled to generate new

identifiers for the agent, thus allowing the repeatable migration of the agent to the same

platform. Therefore, the proposed solution allows programmers to develop secure mobile

agent applications and still maintaining the agents’ intrinsic flexibility.

5.1 Related work on agent replay attacks

Replay attacks [Syv94] have traditionally been considered as a form of network attack.

They are based on capturing some of the messages exchanged between two entities and

sending them again at a later time. These attacks are usuallyperformed during authorisation

or key agreement protocols, in order to perform, for example, masquerade attacks.

Traditional mechanisms to prevent replay attacks are basedon using nonces, times-

tamps, session tokens, or any other information that allowsentities to bind their messages

to the current protocol run [Aur97]. For example, an HTTP exchange between a browser

and a server may include a session token that uniquely identifies the current interaction

session. The token is usually sent as an HTTP cookie, and is calculated as a hash of the

session data, user preferences, and so on.

Mobile agent systems are also exposed to traditional replayattacks. Any communica-

tion between two agents, or two platforms, or an agent and a platform is exposed to this

kind of attacks. Mechanisms like the ones previously mentioned (based on nonces and

session tokens) can be used to withstand these attacks.

In addition to traditional replay attacks, mobile agent systems are also exposed toagent

replay attacks. Agent replay attacks are not based on replaying a message sent across the

network, but on reexecuting an agent that has already been executed on a platform. In

addition, these attacks are usually performed by platformswhich are part of the agent’s

itinerary, and they are harder to prevent in this case. When agent replay attacks are per-

formed by external platforms, they can easily be detected using mechanisms designed to

prevent traditional replay attacks. Agent replay attacks can be divided into two classes:



5.1. RELATED WORK ON AGENT REPLAY ATTACKS 65

internal and external replay attacks.

Internal replay attacks occur when a dishonest platform repeatedly runs an agent with

the same or different set of inputs each time. A platform might execute an agent multiple

times in order to understand its behaviour, or until the desired output is obtained. This type

of attack is also known asblackbox testing[Hoh98], and is usually performed when the

agent’s code has been protected using some obfuscation technique.

This kind of attacks is performed inside a single platform, and cannot be externally

observed by any other entity. Even if the agent tried to record all its actions on an exter-

nal monitoring service, the execution environment could still interfere with these external

communications, and route the messages to an incorrect recipient, or alter the contents of

the messages, and so on. Moreover, agent attempts to store their state information in a

secure external entity could be easily bypassed by malicious platforms altering the agent

execution. In practise, internal replay attacks are impossible to prevent or detect [Yee03].

External agent replay attacks occur when a dishonest platform propagates an agent to

a remote host, without this migration being defined in the agent’s itinerary. This kind of

attack is especially difficult to deal with, for it is difficult to distinguish between a legal

migration of the agent to its next destination and a replayedmigration that the agent did

not intend to do. For example, supposing that the agent’s itinerary includes a migration

from platformA to B, then platformA is authorised to send the agent to platformB, and

the agent is also authorised to be executed on platformB. As a result, no authentication

mechanism can be used to prevent platformA from maliciously resending the agent to

platformB multiple times. This kind of attack can be carried out against a shopping agent,

for example, in order to generate unintended purchases.

In order to provide a solution to this problem, [Yee03] suggests considering a replay

attack as an illegal state transition. Every platform within the itinerary implements a state

transition inconsistency detection (STID) algorithm, which is able to determine when a mi-

gration from one platform to another is an illegal transition. The problem of this approach

is that platforms must be aware of all possible illegal statetransitions for every agent ex-

ecution. In addition, illegal state transitions may be mistakenly identified if the agent is



66 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

performing a loop in which the same platform is visited repeatedly.

In [Vig98], a protocol is presented that allows replay attacks to be detected upon com-

pletion of an agent execution. The protocol is based on recording the agent execution on

each platform. Platforms must keep a log of the operations performed by every agent, so

that agent owners can detect any malicious manipulation of the agents’ itineraries. This

technique suffers from some drawbacks, such as the size of the logs that have to be main-

tained. In general, detecting replay attacks after they have been performed is useless in

many occasions. For example, if the agent is buying a product, detecting a replay attack

that leads to buying the product more than once is usually inappropriate, especially if the

price of the product is too low to justify future legal actions.

Other work [WSUK00, WSB98, LSL00, Sue03, MB03, CLSY06] on mobile agent pro-

tection against malicious platforms suggests the use of trip markers for preventing replay

attacks. A trip marker is an agent identifier that must be stored by platforms, which can

be used to detect and prevent future attempts of reexecutingthe same agent. Again, the

problem of these solutions is that they do not take into account the case where the agent’s

itinerary includes one or more platforms that must be visited more than once. As a result,

a legal reexecution of the agent on the same platform can be misinterpreted as a replay

attack.

These issues were identified by [CAOR+05], who proposed a solution based on includ-

ing counters inside the agent’s trip marker. Every platformis assigned a different counter,

which indicates the maximum number of times that an agent canbe executed on a platform.

Platforms keep a record of which agents have been executed, and the number of times they

have done so. Before starting the execution of an agent, platforms check that the number of

times that the agent has been previously executed does not exceed the number of allowed

executions stored in the agent’s trip marker.

The problem of this approach, however, is that the number of times that a given platform

can be visited must be known in advance, specifically when theagent’s itinerary is created,

so that this information can be introduced inside the agent’s trip marker. Consequently, this

approach does not allow the agent to dynamically decide on the number of times a given



5.2. REPLAY ATTACK PROTECTION 67

platform will be visited.

Preventing the agent from being executed more than once has also been referred in

the literature as ensuring theexactly-once execution property[SRM98]. This property is

usually considered when designing fault-tolerant mechanisms for mobile agents. Ensuring

the exactly-once execution property implies that, when theagent is launched to do a certain

task: first, the task will be eventually executed, regardless of host or communication failures

that may occur; and second, the task will not be performed more than once.

Solutions presented to ensure the exactly-once execution property are based on us-

ing external entities that monitor the execution of the agent. When a failure prevents the

agent from continuing its itinerary, another agent is launched to resume the execution at

the point the original agent left it. The problem of these solutions is that the communica-

tions between the agent and the monitoring system lead to considerable traffic overheads.

In addition, these protocols severely reduce the agent’s autonomy because the agent has

to constantly interact with the monitoring entity. Thus, they sacrifice one of the major

advantages associated with the use of mobile agent technology.

To summarise, no solution presented so far against replay attacks allows an agent to

dynamically determine the number of repeated executions ofthe same task on one or more

platforms along its itinerary. Considering that one of the greatest appeals of mobile agents

is their dynamism and flexibility, hard-coding the number ofpossible migrations to a plat-

form in advance can be a serious impediment to the implementation of real-life applica-

tions. The next section describes the proposed protocol which solves this problem.

5.2 Replay attack protection

Protecting mobile agents against all kinds of replay attacks becomes a serious and complex

problem to solve. The simplest case is where the itinerary does not contain any loops in

its itinerary, that is, the agent does not need to repeatedlyexecute the same task on one or

more platforms. In a loop-free scenario, if the agent has to migrate to a certain platform

several times, it will do so in different nodes of its itinerary, which means that it will be



68 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

executing different tasks. Replay attacks are easy to prevent in this case. Platforms can

store an identifier of the node visited by the agent, togetherwith the agent’s trip marker.

Figure 5.1 shows an example of this kind of itinerary. In thiscase, platformB is visited in

two different nodes of the itinerary: nodes 2 and 4.

2
platform B

3
platform C

4
platform B 

...1
platform A

Figure 5.1: Simple itinerary where the same platform is visited twice

The most difficult case is where the agent has to visit the samenode several times,

especially if this number of times is determined at runtime.Figure 5.2 shows an example

of this kind of itinerary.

1
platform A

2
platform B

4
platform D

3
platform C

5
platform E 

Figure 5.2: Itinerary containing a loop with three platforms that are visited repeatedly

As shown in the figure, the itinerary contains aloop node, which is associated with

platformB. The detection of replay attacks is especially difficult, for example, when plat-

form C resends the agent to platformD. How can platformD determine whether the new

reexecution is a replay attack or a new iteration of the loop?

Before presenting the proposal for external replay attack prevention, the next section

describes the requirements that any valid solution should fulfil.



5.2. REPLAY ATTACK PROTECTION 69

5.2.1 Requirements of the solution

First of all, different agents must have different identifiers or trip markers, even if they

perform exactly the same tasks. This also implies that any new instance of the same agent

must carry a different trip marker.

Secondly, a valid solution to replay attacks has to focus on their prevention, rather than

just on their after-the-fact detection.

Thirdly, platforms must store the trip markers of the agentspreviously executed, along

with an identifier of the node visited by the agent, to allow agents to revisit the same

platform in different nodes of its itinerary.

Finally, a valid solution to replay attacks should not involve the interaction of the agent

with external entities. This allows the agent to run autonomously, without depending on

the control or interaction with any monitoring service.

5.2.2 The protocol

The proposed protocol for the protection against replay attacks is based on using trip mark-

ers and authorisation entities. A trip marker is anauthorisationthat allows the agent to

visit a certain set of nodes. Each node has an authorisation entity associated with it, and

this entity is the only one entitled to generate the trip markers (authorisations) required to

visit that node. Platforms must store the trip markers of previously executed agents, so that

no trip marker can be used more than once to visit the same node.

The steps required to create a replay-safe mobile agent, andthen the operations car-

ried out to detect and prevent replay attacks are presented in this section. The combined

actions comprise the protection protocol which tackles replay attacks in mobile agent envi-

ronments.

In order to create a replay-safe mobile agent, the programmer must define the set of

nodes that comprise the agent’s itinerary, assigning the following information to each one

of them:

• a node identifier



70 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

• a task

• a node type

• an authorisation entity

• an authorisation node

• a set of next destinations

Although different node types can be used to create the explicit itinerary, for the pur-

poses of the proposed protocol only two types are considered: thesequenceand theloop.

Other node types can be introduced into the agent’s itinerary, but they are treated in the

same way assequencenodes. Therefore, they will not be taken into account in the defini-

tion of the proposed protocol.

The programmer must assign an authorisation entity and an authorisation node to every

node. The authorisation node is the node where the agent’s trip marker must be gener-

ated. This implies that the agent’s trip marker is only validif it has been generated in the

appropriate authorisation node. The authorisation entityis the corresponding platform or

individual that must generate and sign the trip marker. In some cases, as explained next, a

node can have no authorisation node associated with it: whenthe node is visited using an

authorisation generated by the agent owner.

The authorisation node that is assigned to each node dependson whether or not the

node is located inside a loop. If a node is located in the subitinerary of aloop node, then

its authorisation node is theloop node itself. The corresponding authorisation entity is

the platform assigned to theloop node. In all other cases, the node has no associated

authorisation node, and the corresponding authorisation entity is the agent owner. As an

example, figure 5.3 shows which authorisation entity and node are associated with each

node of a complex itinerary. This itinerary contains two loops, one nested inside the other.

The itinerary shown in figure 5.3 has an outer loop starting atplatformA. In this plat-

form, the agent decides how many iterations of the outer loophave to be performed. If



5.2. REPLAY ATTACK PROTECTION 71

1

platform A

AE: Owner

2

platform B

3

platform C

4

platform D

platform E 

AE: Platform C
AN: 3

AE: Platform A
AN: 1

AE: Platform A
AN: 1

AN:

5
AE: Owner

AN:

Figure 5.3: Authorisation entities (AE) and authorisationnodes
(AN) assigned to the nodes of a complex itinerary

the agent decides to enter this loop, it will visit platformB and then platformC, which is

the starting point of the inner loop. The inner loop containsjust one node, associated with

platform D. When the agent exits the inner and the outer loop, it migratesto platformE,

where it reaches the end of its itinerary.

The itinerary shown in figure 5.3 has three different authorisation entities: the agent

owner, platformA and platformC. PlatformA is the starting point of the outer loop, and

thus it is the authorisation entity of nodes 2 and 3. On the other hand, platformC is the

authorisation entity of node 4 because this node belongs to the inner loop. The remaining

nodes have no associated authorisation node, and their authorisation entity is the agent

owner.

The proposed protocol requires authorisation entities to be trusted by the owner. Oth-

erwise, no protection mechanism could be used to prevent a malicious platform from cor-

rupting the agent execution, so the number of loop iterations could be easily altered as well.

It is important to note that this protocol makes the same assumptions with regard to trusted

platforms as the protocol presented in chapter 4. This meansthat if the programmer trusts a

certain platform, then it is assumed that such platform willnot subvert the agent execution.



72 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

In the example of figure 5.3, platformA and platformC must be trusted by the programmer,

and thus the protocol assumes that these platforms will execute the tasks of nodes 1 and 3

correctly.

Once the aforementioned information has been assigned to every node, the program-

mer must secure the itinerary using a protection protocol. This protocol must satisfy the

following properties:

• It must not allow platforms to access or modify any part of theitinerary which is

intended for other platforms.

• It must not be possible to introduce new nodes in the itinerary.

• It must not be possible to traverse the itinerary nodes in an order different from the

order initially defined.

• Every itinerary node must be uniquely bound to the agent it belongs to. As a result,

it must not be possible to reuse any part of the agent’s itinerary in a different agent.

• It must support flexible itineraries, which allow the agent to make decisions about its

travel plan at runtime.

In order to define the proposed protocol, it will be assumed that a unique agent identi-

fier is used to bind the itinerary nodes with the agent. This agent identifier can be simply a

timestamp attached to a big random number, or any other information that uniquely iden-

tifies each agent instance. An example of a protocol that guarantees all the properties

mentioned above is the one presented in chapter 4.

After defining all itinerary nodes and securing them using anitinerary protection pro-

tocol, the programmer must generate a trip marker for the agent. Agent trip markers must

always contain the following information:

Agent identifier: This is the same identifier included in the protected itinerary, which en-

sures that any given agent instance can be uniquely identified.



5.2. REPLAY ATTACK PROTECTION 73

Authorisation node: This is the identifier of the node where the trip marker is generated.

Expiry date: This is the date after which the trip marker can no longer be used. It al-

lows platforms to remove expired trip markers from their tables, which is usually

convenient but has no real effect on the protocol.

Loop counter: This counter is incremented by one unit every time the agent has to start a

new loop iteration.

In the trip marker initially created by the programmer, the authorisation node is not set

because the programmer has no associated itinerary node. This is consistent with what has

been specified in the itinerary nodes. When the authorisationentity of a node is the agent

programmer, then the node has no associated authorisation node.

The trip marker initially created must be signed by the agentprogrammer or owner.

This trip marker must then be placed at the top of the agent’s trip marker stack. As will be

seen later, the trip marker stack stores trip markers previously used by the agent during its

execution. The top of this stack always contains the trip marker currently used. The trip

marker used in the first itinerary platform must always be signed by the owner, for this is

the authorisation entity assigned to the first itinerary node.

Thus far, the steps required to create a replay-safe mobile agent have been described.

Figure 5.4 shows a representation of the components of an agent resulting from this pro-

tection. Next, the operations conducted by platforms to prevent a mobile agent from being

replayed are presented.

In order to start the execution of an agent, the information of the current node must

be extracted from the protected itinerary. The operations carried out to do this extraction

depend on the itinerary protection protocol used. In most cases, this implies using the

platform’s private key, which ensures that no other platform can access the contents of the

current node. By extracting the current node from the protected itinerary, the following

information is obtained: current node identifier, agent identifier, task, type, next platforms,

authorisation entity and authorisation node.



74 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

Agent

Protected Itinerary:

Trip marker stack:

Signed AgentID CountExpiry

Node 1 Node n...

Node info

Auth node ID
by Auth Entity

Auth entity

NodeID

AgentID

Type

Task

Auth node ID

Next platform

Figure 5.4: Components of an agent protected against replay attacks

In addition, the agent’s trip marker must be retrieved from the top of the agent’s trip

marker stack. The trip marker contains the agent identifier,authorisation node, expiry date

and loop counter.

Platforms must maintain a table with the trip markers of previously executed agents.

Along with the trip markers, these tables must contain the node identifiers associated with

the tasks executed by the agents. To effectively prevent replay attacks, platforms should

only remove entries from their tables once they have expired.

In order to ensure that the agent is not being replayed, the agent’s trip marker must be

used to carry out some verifications, which depend on whetherthe current node type is

sequenceor loop. In case that the node type issequence, the set of checks to perform is

summarised in the algorithm of figure 5.5. The most relevant lines of this algorithm are

described in detail below:

Line 1: The public key of the current authorisation entity is obtained from a public key

server. With this public key, the trip marker signature is verified.

Line 2: The authorisation node extracted from the current node is used to verify that the

trip marker has been generated in the appropriate itinerarynode. This involves check-

ing that the authorisation node included in the trip marker is equal to that extracted

from the current node.



5.2. REPLAY ATTACK PROTECTION 75

1: verify trip marker (TM) signature
2: check current auth. node = TM auth. node
3: check agent’s identifier
4: check current date< expiry date
5: check platform’s TM table
6: if agent was not executed beforethen
7: save TM in platform’s table
8: else
9: if node ident. is differentthen

10: save TM in platform’s table
11: else
12: if loop counter> previous onethen
13: replace previous TM from platform’s table
14: else
15: discard agent execution
16: end if
17: end if
18: end if
19: run agent

Figure 5.5: Algorithm for checking trip markers insequencenodes

Line 3: The agent identifier extracted from the current node is used to verify that the trip

marker belongs to this very agent. Thus, the agent identifierincluded in the trip

marker must be equal to the one obtained from the current node. This prevents a trip

marker from being reused in a different agent, even if it was generated by the same

owner.

Line 4: The trip marker expiry date is checked. If the trip marker hasexpired, the agent

execution is discarded.

Line 5: The agent identifier is used to look for a previous trip markerof the same agent in

the platform’s trip marker table.

Line 7: If there is no trip marker with the same agent identifier, the new trip marker, along

with the current node identifier, is stored in the platform’strip marker table.

Line 9: Otherwise, this means that the same agent was executed before on this platform.



76 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

In this case, the agent’s current node identifier is comparedwith the node identifier

of the previous execution.

Line 10: If the new node identifier is different, it means that the agent is visiting a different

itinerary node. The new trip marker, along with the current node identifier, is stored

in the platform’s trip marker table.

Line 12: Otherwise, this means that the same itinerary node was visited before. The cur-

rent loop counter is then compared with the one included inside the previous trip

marker obtained from the trip marker table.

Line 13: If the current loop counter is greater than the previous one,it means that the agent

is performing a new iteration of a loop. In this case, the previous trip marker from

the trip marker table is replaced by the current one.

Line 15: Otherwise, this means that the current trip marker has already been used, and the

agent execution is discarded.

Line 19: If the agent execution has not been discarded in any of the previous steps of the

algorithm, the current node’s task is executed.

The above algorithm is necessary in order to verify that the agent is not being replayed

when its current node type issequence. When the current node type isloop, basically the

same checks are performed, but two additional operations are required.

Firstly, a new trip marker for the agent must be generated andsigned. This new trip

marker authorises the agent to visit all the nodes included inside the loop. The new trip

marker is added to the top of the agent’s trip marker stack, thus keeping the previous trip

marker in the second position of this stack. This allows the agent to recover the trip marker

used before entering the loop, which is essential because the trip marker generated by the

current platform will no longer be valid when the agent exitsthe loop.

Secondly, if the signature verification performed inline 1 of the previous algorithm

fails, the trip marker signature must be verified using the current platform’s public key. This



5.2. REPLAY ATTACK PROTECTION 77

allows the agent to be executed on theloop node’s platform using a trip marker generated

by this very platform in a previous iteration.

As an example, in the itinerary of figure 5.3, platformA is the authorisation entity of

nodes 2 and 3. For each iteration of these two nodes, platformA must generate and sign a

new trip marker for the agent. In addition, it must verify thesignature of the current trip

marker with either its own public key or the owner’s. Once theagent exits the loop, the

trip marker signed by platformA must be removed from the top of the agent’s trip marker

stack, so that the original trip marker signed by the owner can be used again to continue the

agent execution on platformE.

The algorithm shown in figure 5.6 summarises the operations carried out when the

current node type isloop.

1: verify TM signature with the pubkey of either the
current platform or the current authorisation entity

2: check TM auth. node = current node or current
auth. node.

3 to 18: the same operations as algorithm of fig. 5.5

19: generate new TM by incrementing loop counter
20: sign new TM with current platform’s private key
21: if this is the first iterationthen
22: add new TM to agent’s TM stack
23: else
24: replace previous TM from agent’s TM stack
25: end if
26: run agent
27: if agent exits loopthen
28: Remove TM from the top of stack
29: end if

Figure 5.6: Algorithm for trip marker handling inloopnodes

The most relevant lines of the algorithm of figure 5.6 are described in detail below:

Line 1: The trip marker signature is verified using the current platform’s public key of

the public key of the current authorisation entity. If both verifications fail, the agent

execution is discarded.



78 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

Line 2: The authorisation node included in the trip marker is used toverify that said trip

marker has been generated in the appropriate itinerary node. This involves checking

that this authorisation node is the current node or the authorisation node extracted

from the current node. This allows the agent to use a trip marker generated in the

appropriate authorisation node, as well as one generated ina previous visit to this

same node.

Line 3 to 18: The agent’s identifier, expiry date, loop counter and node identifier are

checked performing the operations 3 to 18 of the algorithm offigure 5.5.

Line 19: Before the agent task is executed, a new trip marker is generated. This new trip

marker contains the same information as the previous one, except for the authorisa-

tion node, which is set to the current node, and the loop counter, which is incremented

by one.

Line 20: The resulting trip marker is signed with the current platform’s private key.

Line 22: If the agent is visiting the currentloopnode for the first time, the new trip marker

is added to the top of the agent’s trip marker stack.

Line 24: Otherwise, the current trip marker, which was generated in this same platform in

the previous iteration, is removed from the top of the agent’s trip marker stack and is

replaced by the newly generated one.

Line 26: The current task is executed, and the agent eventually decides whether or not a

new iteration has to be performed.

Line 28: If no more iterations are required, the agent removes the trip marker from the top

of the stack.

Thus far, the complete protocol aiming at preventing external replay attacks has been

presented, describing the creation of a protected mobile agent and the operations required

to withstand replay attacks. In the next section, the most important characteristics of the

proposed protocol are discussed.



5.2. REPLAY ATTACK PROTECTION 79

5.2.3 Discussion

The proposed protocol is based on using trip markers (authorisations) which are generated

at runtime by authorisation entities. The agent itinerary is comprised of a set of nodes,

where each one is associated with a certain authorisation entity. The task associated with

a node is only executed if the trip marker has been signed by the appropriate authorisation

entity. Every itinerary node is also associated with an authorisation node, which involves

that the task of a given node is only executed if the trip marker has been generated in the

appropriate authorisation node.

Using both an authorisation entity and node prevents the reuse of the agent trip marker

in scenarios where the same authorisation entity is assigned to different nodes of the itiner-

ary. In these cases, an attacker might try to replay an agent by reusing a trip marker signed

by the proper authorisation entity but not generated in the appropriate authorisation node.

However, this would be detected when checking if the trip marker has been generated in

the appropriate authorisation node.

Every itinerary node contains an agent identifier, which is also included in the agent

trip marker. This prevents a given trip marker from being reused in different agents, for

this would be detected when comparing the agent identifier extracted from the current node

with the one included in the trip marker.

In order to prevent replay attacks effectively, the agent’sitinerary must be cryptograph-

ically protected, so that no attacker can change the information associated with a given

node. Moreover, the itinerary protection must keep an agenttask from being executed on a

platform or itinerary stage different from that initially defined.

The proposed protocol does not involve the interaction of the agent with external en-

tities, and only assumes thatloop nodes will be associated with platforms trusted by the

programmer. Because it is not possible to prevent platforms from tampering with the agent

execution, it is legitimate to assume that the platform associated with aloopnode is trusted

by the programmer to evaluate the loop condition.

Platforms must prevent their trip marker tables from fillingup by removing entries that



80 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

have already expired. Additionally, some other policy has to be implemented in order to

enable the removal of entries when no more trip markers can beadded to the table (e.g.,

removing older entries first).

The protocol described in this chapter can be used in combination with the itinerary

protection protocol presented in chapter 4, as long as the platforms assigned to authorisa-

tion nodes are known at the time of creating the itinerary. Thus, the authorisation entities

associated with these nodes can be specified inside every itinerary node.

The proposed protocol does not support agent cloning. In general, cloning mobile

agents introduces the problem of resolving identities properly when the replicas communi-

cate with other agents or platforms. With regard to the proposed protocol, cloning a mobile

agent would imply generating a new trip marker for the replica, but this is not possible

unless the new trip marker is generated by an authorisation entity. However, authorisation

entities are designed to generate new trip markers only whennew loop iterations have to be

started. As a result, the proposed protocol does not supportagent cloning. Further research

will be conducted in the future to extend the proposed protocol in order to allow for agent

cloning.

5.3 Implementation

In order to prove the viability of the proposed protocol, a prototype implementation has

been created and experimentation has been carried out usingthe Java-based Jade platform

[BCPR03] as the agent execution environment.

Agents have been implemented following an agent-driven approach, as proposed by

[ARO04]. Figure 5.7 shows the main components of an agent resulting from this imple-

mentation. As this figure shows, the agent is made up by three components: the trip marker,

the control code and the protected itinerary. These components are bound by an agent iden-

tifier, thus preventing from dishonest reuse in other agents.

The agent identifier is constructed as a hash of the agent’s control code. As discussed



5.3. IMPLEMENTATION 81

Control Code

Protected Itinerary

Trip Marker

Hash()

AgentID

AgentID

...Signed AgentID
by Auth Entity

...

Extract current node

Check trip marker

Execute local task

Migrate to next destination
Node 1 Node n...

NodeID

Figure 5.7: Components of an agent protected against replay
attacks with an agent-driven implementation

in [ARO04], the control code is unique for each agent becauseit includes a random asym-

metric key that is also unique. Therefore, the hash of the control code is a suitable agent

identifier.

In order to create the protected itinerary, the implementation uses the protocol presented

in section 4.3.1. The following is a summary of the operations involved.

First of all, a random symmetric key is generated for each itinerary node. Then, these

symmetric keys are used to create the transitionstij from each nodei to each of its succes-

sorsj ∈ {ai · · ·Ai}. The agent identifierid included in these transitions is computed as a

hash of the agent’s control code, as mentioned earlier.

Then, every entry of the protected itinerary is created as follows:

ei = Eri
(So(nodeInfoi), [ti ai

· · · ti Ai
]) (5.1)

where we use the same notation as in chapter 4.nodeInfoi denotes all the information as-

sociated with nodei, which comprises the agent identifier, node identifier, task, node type,

authorisation entity and authorisation node. If the node type isdiscoverer, thennodeInfoi

also includes the lists[Sks
(So(H(C), rli , hi)) · · ·Sks

(So(H(C), rLi
, hi))] and[rbli · · · rBLi

]

(see equations 4.6 and 4.14).



82 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

With regard to the control code, the implementation is basedon the same algorithm

described in section 4.3.2. However, before executing the current task, the control code

verifies that the trip marker extracted from the top of the trip marker stack is valid. For this

purpose, the control code uses a call to a public trip marker verification function provided

by platforms.

The trip marker verification function takes the following parameters: the trip marker

extracted from the top of the trip marker stack, and the node identifier, node type, authori-

sation entity, authorisation node and agent identifier, which are extracted from the current

entry of the protected itinerary. With all this information, the platform undertakes the op-

erations described in the algorithms of figures 5.5 and 5.6.

As shown in these algorithms, the public trip marker verification function must verify

that the trip marker provided as a parameter really belongs to the requesting agent. For this

purpose, the platform computes a hash of the agent’s controlcode, and compares it with

the one included in the trip marker. In addition, the platform verifies the validity of the trip

marker’s signature, authorisation node, expiry date, loopcounter and node identifier, per-

forming the operations of the aforementioned algorithms. If all these verifications succeed,

this function returnstrue, as well as a new trip marker when the current node type isloop.

The control code resumes or aborts the agent execution depending on the value returned

by the trip marker verification function. In addition, if thecurrent node type isloop, the

control code modifies the top of the trip marker stack accordingly.

As can be seen, the trip marker check is triggered by the agent. Thus, the protection

against replay attacks is completely optional, and will only be performed by those agents

calling the trip marker verification function. Forcing every agent to support the replay pro-

tection protocol would unnecessarily increase the complexity of many applications where

security is not a requirement.

It is also worth noting that the implemented agent-driven approach prevents any possi-

ble modification to the agent’s control code, as discussed in[ARO04]. Thus, attackers are

not allowed to modify this control code to bypass the trip marker check.

After creating the control code and the protected itinerary, the initial trip marker of the



5.3. IMPLEMENTATION 83

agent is generated. This trip marker includes an agent identifier, an authorisation node, an

expiry date and a loop counter, as described in section 5.2.2. The resulting trip marker is

signed with the owner’s private key.

Once the control code, the protected itinerary, and the agent trip marker have been

created, the final executable mobile agent is generated.

5.3.1 Simulation and tests

In order to test the implementation of the proposed protocol, a simple mobile agent-based

application has been simulated. This application shows theneed for protection against

replay attacks, and the results of the simulation prove thatreplay attacks can be effectively

prevented, and agents can be executed in completely reasonable times.

This example application implements an automated car purchasing service. The service

allows an individual to find the best price for a car, given itsspecific make and model, and

the set of car dealers that have to be queried. The application carries out the purchase re-

motely from the user’s financial institution, and this institution serves as the trusted location

where the application decides which offer to accept.

Once the user has introduced all the required information inthe application, a mobile

agent is launched to visit every car dealer and obtain the price offered for the given model.

After visiting all car dealers, a new round is started to negotiate an improvement on the best

price previously obtained. This process is repeated until two consecutive iterations lead to

the same best price. After each iteration, the agent visits the user’s financial institution, to

decide whether or not a new iteration has to be started.

When the best price is obtained, the agent proceeds with the car purchase. The purchase

is always completed remotely from the user’s financial institution, which ensures that this

operation is performed securely in a trusted environment. Once the purchase has concluded,

the agent returns to its home platform, and presents the resulting purchase contract to the

user. The agent’s itinerary defined for the implementation of this example application is

shown in figure 5.8.



84 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

Car dealers

2
Home

platform

1
Financial
institution

3 ... n

Home
platform

n+1

Figure 5.8: Itinerary of the car purchasing service agent

This application shows a simple scenario where the use of themobile agent technology

can introduce a number of advantages, such as reducing network load—by employing local

communications—as well as automation of e-commerce processes. Considering that the

negotiation can be a rather lengthy process, mobile agent technology enhances significantly

the usability of this application in devices with intermittent, low bandwidth connections,

for it eliminates the need for permanent connections with the remote sites.

This application also demonstrates the need of an agent to dynamically determine the

number of repeatable visits required over a certain set of platforms. Unlike replay protec-

tion mechanisms previously presented, the proposed protocol allows the agent to visit the

same platform as many times as necessary, without leaving itexposed to replay attacks.

This is an essential part within the context of this application, for a malicious platform (e.g.

an ill-intentioned car dealer) could easily resend the agent to its next destination to trigger

additional car purchases.

In order to validate the proposed protocol, this application was simulated by introduc-

ing a malicious platform in the agent’s itinerary. This platform acted as a dishonest car

dealer trying to trigger more purchases every time it could provide the best offer for a car.

As expected, none of these attacks succeeded because the next platform of the itinerary

immediately detected that the trip marker of the replayed agent had already been used.

The experiments performed also compared the execution times of the replay-safe agent

with the unprotected agent, in order to determine the overhead of the proposed protection



5.3. IMPLEMENTATION 85

Num. of iterations: 3 6 9 21

Unprotected Exec time: 11365 22094 32837 75789
agent Time/node: 757 818 841 871

Protected Exec time: 16641 31682 46715 106848
agent Time/node: 1109 1173 1197 1228

Increase: 46.4% 43.4% 42.3% 40.9%

Table 5.1: Execution times (ms) for agents protected and
unprotected against replay attacks

protocol. The agent created for the tests was given an itinerary with three car dealers. The

number of iterations required to reach the best price was varied in order to identify the

overhead in terms of the agent’s execution time. It is important to note that no dynamically

located nodes were introduced in the itinerary, so that the resulting execution times were

not affected by the itinerary reconstruction process described in section 4.3.2.

The evaluation setup used to make the tests was made up by 6 computers with 2 GHz

Intel Pentium(R) IV processors and 256 MB RAM memory each. These computers were

connected in a laboratory to a 100 Mbps Ethernet LAN. Table 5.1 shows the resulting

execution times.

According to table 5.1, the execution time of a replay-safe agent is 43% higher than

the execution of an unprotected agent on average. This increase, however, depends greatly

on the specifics of the application’s requirements. In the context of this scenario, the agent

negotiations with the car dealers took only a relatively short time. As a result, the time

spent handling protection mechanisms significantly impacted the overall agent’s execution

time. In contrast, applications with high processing requirements may require the agent to

execute time-consuming tasks, and thus, in that context, the time spent handling protection

mechanisms would be negligible.

In order to evaluate the performance of the replay protection protocol in combination

with the protocol presented in chapter 4, experiments were also carried out using a modifi-

cation of the agent’s itinerary. The modified itinerary, which is shown in figure 5.9, includes

a discoverernode, where the agent discovers three new car dealers at eachloop iteration.



86 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

Car dealers
2

Home
platform

1
Financial
institution

Home
platform

3 4
#

5
#

6
#

7

Figure 5.9: Itinerary of the car purchasing service agent
with dynamically located car dealers

In this case, only one round of negotiation is conducted witheach car dealer. This modi-

fied itinerary was used to determine the impact on the execution time due to the itinerary

reconstruction performed in node 3. The execution times areshown in table 5.2.

Num. of iterations: 3 6 9 21

Unprotected Exec time: 11365 22094 32837 75789
agent Time/node: 757 818 841 871

Protected Exec time: 18017 34517 50972 116462
agent Time/node: 1201 1278 1306 1338

Increase: 58.5% 56.2% 55.2% 53.6%

Table 5.2: Execution times (ms) for agents protected and unprotected
against replay attacks with dynamically located nodes

As shown in table 5.2, the execution time of a protected agentis 55% higher than that

of an unprotected one on average. This increase in the agents’ execution times is read-

ily reasonable, taken into account the complexity of the proposed protocol, and the added

complexity of the itinerary protection protocol presentedin chapter 4. The overhead intro-

duced by the execution of these protocols (around 465ms in absolute terms) is completely

acceptable for this application. However, this may vary from one application to another. To

conclude, it can be said that the implementation of the proposed protocols is advisable for

any real-world application where security is an issue, and it is also perfectly feasible.



5.4. CONCLUSIONS 87

5.4 Conclusions

This chapter has presented a protocol aiming to protect mobile agents against external

replay attacks. Previous published work on this area was mainly based on storing a trip

marker, or some other kind of agent identification, inside agent platforms. This identifier

was fixed for the whole agent execution, and, as a result, it was not possible to define

itineraries where the same platform was visited more than once.

The proposed protocol protects agents against replay attacks, and allows agents to tra-

verse itineraries that contain loops. The nodes that are part of a loop can be traversed re-

peatedly, an undetermined number of times. This allows programmers to define itineraries

which take full advantage of the inherent flexibility of the mobile agent paradigm.

In order to make this possible, the proposed protocol is based on associating every node

with an authorisation entity and node. The agent execution is only allowed if the agent trip

marker has been generated and signed in the appropriate authorisation node, and by the

corresponding authorisation entity.

The agent’s itinerary is cryptographically protected, in such a way that the authorisation

entity assigned to a given node cannot be changed. Additionally, the trip marker contains

a unique agent identifier that is also included inside every itinerary node. Thus, the trip

marker of an agent cannot be dishonestly reused in differentagents.

The replay attack protection protocol presented in this chapter does not support agent

cloning, for it cannot distinguish between a replayed agentand a legally replicated one.

Further research will be conducted in order to support the generation of new trip markers

for replicated agents.

In order to prove the validity of the proposed protocol, implementation and experimen-

tation work has been carried out using the Jade agent platform and the itinerary protection

protocol presented in chapter 4. The application simulatedan automated, agent-based, car

purchasing service with price negotiation and car purchasefeatures. The simulation results

prove that replay attacks can be effectively prevented, andreplay-safe mobile agents can

be executed in reasonable times.



88 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION

The implementation of secure mobile agents, as can be seen, requires developing a

number of protocols to prevent replay attacks, illegal modifications of the agent’s itinerary

or computational results, etc. The development of these mechanisms requires considerable

work and expertise. In the following chapter, we will present a development environment

that simplifies the implementation of these mechanisms and promotes the development of

secure mobile agent applications.



Chapter 6

Promoting the development of secure

mobile agents

The interest in mobile agent technology has recently increased after the progress made in

some critical security aspects, such as the protection of the agent’s computational results

[ZOL04] or the agent’s itinerary [MB03]. However, in order toachieve widespread de-

ployment of this technology, providing security breakthroughs is not enough; development

of secure mobile agent applications should be encouraged aswell. New tools for the de-

sign and development stages have to be created [MY06], simplifying to the greatest extent

possible the tasks carried out by both the designer of new cryptographic protocols and the

developer of new applications.

There is very little literature about these specific aspects, primarily because the main

work done on mobile agents has been focused on developing newagent protection mecha-

nisms. More basic usability issues concerning the human developer have been left aside. As

a result, the implementation of these mechanisms can turn out to be more time-consuming

than the implementation of the agent tasks.

In this chapter, we present a development environment that simplifies the implementa-

tion of mobile agent protection protocols. This environment facilitates the implementation

of protocols such as those presented in chapters 4 and 5, and allows programmers to reuse

89



90 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

these implementations in different applications. Thus, weaim to promote the use of mobile

agent technology for the development of secure distributedapplications.

6.1 Related work on mobile agent software engineering

In this section, we outline the relevant work done in mobile agent software engineering.

First, we focus on mobile agent platforms and, then, we analyse some of the approaches

that simplify mobile agent development, placing special emphasis on new programming

languages created for this purpose.

6.1.1 Mobile agent platforms

Firstly, it must be noted that literally tens of mobile agentplatforms have emerged since

the appearance of this new paradigm (see [AGK+01] for a survey of agent platforms).

Among these, we can highlight Telescript, ARA, D’Agents, Aglets, Concordia, Grasshop-

per, Ajanta, SeMoA, AgentScape and JaDE. Most agent platforms presented so far are

prototypes that have only been used for research purposes. Few of them have users outside

the academic or research centre where they were created. Theplatform that has more users

at this present time is undoubtedly JaDE [BCPR03].

All these mobile agent systems have a similar purpose: to provide an execution envi-

ronment to agents which allows them to use, search and provide services, such as sending

messages to each other or moving to other platforms. Most of these systems, such as JaDE,

are implemented in Java due to its reflection capabilities and the availability of a dynamic

class loader. Much of the research conducted on mobile agents has been centred on defining

new mobile agent platforms, usually leaving aside usability aspects.

6.1.2 Simplifying agent development

Research carried out on mobile agents has also given rise to multiple proposals to simplify

the development of this kind of applications. These proposals can be divided into two main



6.1. RELATED WORK ON MOBILE AGENT SOFTWARE ENGINEERING 91

groups: on the one hand, proposals based on using new agent programming languages that

simplify the implementation of the agent’s tasks; and, on the other hand, proposals aimed

at aiding in the design of mobile agent-based applications.

Regarding the first group, most proposals suggest the use of new declarative languages,

for their inherent high level of abstraction simplifies the implementation and readability

of programs. Among these declarative languages, some proposals are based on logic lan-

guages and others on functional languages.

The number of proposed logic languages is quite large. Some allow using directly

Prolog to express the agent reasonings or inferences [ZCM02]. Others enable program-

mers to define classes of objects in order to merge logic with object oriented program-

ming [DELM00]. Other languages are based on formal systems like pi-calculus [MPW92],

which allow expressing the mobility and the interactions among different agents [CG98].

Finally, some languages are appropriate to express the agent cognitive capabilities explic-

itly (reasoning, planning, decision making . . . ) [SF05]. With regard to the work based

on functional languages, fewer proposals have been presented ([Kna95, KT04]). Among

these, it is worth pointing out that [KT04] makes it possibleto define object classes.

In general, all these languages have one feature in common: they provide a mechanism

to allow the agent to move from one platform to another.

Regarding the proposals intended to aid in the design of mobile agent-based applica-

tions, most of them are based on the use of design patterns [MLH05, LMSF04, TOH99,

TOH01]. Design patterns are proven solutions to recurring problems that arise within some

contexts, thus enabling an easy reuse of good software design.

In conclusion, numerous proposals have been presented to simplify the implementation

of agent tasks. However, these proposals ignore the specificproblems related to the im-

plementation of the security mechanisms required by most mobile agent applications. In

order to solve this problem, the next section presents a development environment aimed at

simplifying the implementation of secure mobile agent-based applications.



92 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

6.2 Development environment

This section presents a development environment aimed at aiding agent programmers in the

development of secure mobile agents following an agent-driven approach. As discussed in

chapter 4, this approach has a number of advantages. First, the control code can handle the

protection of the explicit itinerary, the computational results, or any other agent manage-

ment mechanism, for example, related to fault tolerance. Second, this control code can be

easily reused because it does not depend on the tasks carriedout by the agent. Therefore,

agents with similar characteristics will usually execute the same control code. Finally, this

approach relieves platforms of the need to deal with different protection protocols, which is

especially important because different agents usually have different security requirements,

and therefore, different protection mechanisms.

However, the agent-driven approach also entails a considerably more complex agent

implementation. It can require, for example, obtaining platform certificates or perform-

ing cryptographic operations to encrypt and decrypt some parts of the agent’s itinerary.

Thus, the implementation can imply the use of a public key infrastructure, symmetric and

asymmetric keys, cryptographic hashes and, in general, an extensive knowledge on cryp-

tographic application programming. As mentioned earlier,none of the previous proposals

on mobile agent security has addressed the difficulties faced by programmers when imple-

menting these security mechanisms.

In order to relieve programmers of this burden, this sectionpresents a development

environment that simplifies the implementation of secure mobile agents. This environment

is comprised of three main tools: the Itinerary Designing Tool, the Agent Builder and the

Agent Launcher.

The Itinerary Designing Tool (IDT) is a graphical tool that can be used to design the

agent’s itinerary. This tool provides a graphical itinerary editor where the programmer can

define the set of nodes that comprise the itinerary. Then, a task and an execution platform

can be assigned to each node. This tool also provides a task editor, where new tasks can

be created and compiled. With all the information provided by the programmer, this tool



6.2. DEVELOPMENT ENVIRONMENT 93

produces an XML specification of the initial itinerary. Moredetails about this tool will be

given in section 6.4.

Once the XML itinerary specification has been produced by theIDT, the Agent Builder

can be used to generate the final agent. In order to use the Agent Builder, programmers must

define what protection mechanisms are required by their application. These mechanisms

must be specified using the Mobile Agent Cryptographic Protection Language (MACPL),

which is a new specification language specifically designed to simplify the implementation

of agent protection protocols.

By using MACPL, the proposed development environment is not constrained to a spe-

cific set of protection protocols. This is essential becausethe use of one protocol or another

depends on the specific requirements of the given application. Thus, the proposed environ-

ment simplifies the development of current protocols as wellas others that may appear in

the future.

MACPL is a high level language designed to facilitate the implementation of agent

protection protocols. These protocols can address any security-related mobile agent con-

cern, such as the protection of the agent’s itinerary or its computational results. By using

MACPL, implementations become more reusable and extensible, and thus programmers

can often generate different mobile agents using the same pre-existing MACPL code, and

they are relieved of any need to implement an agent protection protocol. In section 6.3, the

main features of MACPL will be described in detail.

The Agent Builder is comprised of three main modules: the Agent Setup Module, the

Control Code Module and the Agent Creator Module. These modules, together with their

inputs and outputs, are represented in figure 6.1. As this figure shows, the Agent Builder

has two main inputs: the MACPL specification and the XML itinerary specification. The

XML itinerary specification is the document generated by theItinerary Designing Tool.

With regard to the MACPL specification, it is created by the agent developer or a security

expert, and it is divided into two parts:

• The specification of the agent setup operations, where the data structures used by the



94 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

XML itinerary

Key
Generator

Control
Code

Module

Agent
Setup

Module

Agent
Creator

Public
Key

Private
Key

Agent runnable
instance

MACPL spec

Agent Setup spec

Control Code spec

Hash(ControlCode)

Agent
Builder

Agent
tasks

Figure 6.1: Components of the Agent Builder with its main inputs and outputs

agent during its execution are initialised (e.g. protecteditinerary, trip marker, or any

other).

• The specification of the operations performed by the controlcode.

Using the MACPL specification and the XML itinerary specification, the Agent Builder

performs the following operations to generate a secure mobile agent.

First of all, it generates a random pair of asymmetric keys—apublic key and a pri-

vate key. This keypair is used to implement the mechanisms required by the agent-driven

approach, as described in [ARO04].

Then, using the second part of the MACPL specification, the Control Code Module

runs a MACPL compiler to generate the agent control code. Thispart of the MACPL spec-

ification must define how the control code manages the explicit itinerary, the trip marker,

or any other agent component. The random public key previously generated is included in



6.2. DEVELOPMENT ENVIRONMENT 95

the resulting control code as a compile-time constant.

Next, the Agent Setup Module runs a MACPL interpreter to execute the first part of the

MACPL specification. This part of the MACPL specification must define how to initialise

the data structures required by the agent. The protected itinerary is one of the data structures

that must be always created during the agent setup. For this purpose, this module uses the

XML itinerary specification provided to the Agent Builder andthe agent tasks. This module

also uses the random private key previously generated in order to sign every platform-

specific code and data included in the protected itinerary.

Finally, the Agent Creator Module combines the outputs of thetwo previous modules

to create the executable mobile agent.

Once the agent is obtained, the Agent Launcher (AL) is used toput the agent into

execution on the first platform of the itinerary. More details about the Agent Launcher will

be given in section 6.4.

At this point, it is worth noting that the agent’s tasks are implemented by the pro-

grammer in the programming language supported by the execution environment, which

can be Java, C++, or any other. Other protocols have been presented to simplify the im-

plementation of the agent’s tasks, usually providing new agent programming languages

[ZCM02, KT04]. However, these protocols do not allow developers to implement any

agent protection mechanisms. Because of this, the proposed development environment is

focused on aiding the programmer in the implementation of the security protocols required

by secure mobile agent applications. If necessary, the proposed environment can be com-

bined with other proposals to simplify the implementation of the agent tasks, too.

Figure 6.2 shows a representation of all the components thatcomprise the proposed

development environment. As this figure shows, different roles are involved in the devel-

opment process. First, the agent programmer, who designs the explicit itinerary and gen-

erates the XML specification using the IDT. Second, the security expert, who implements

the agent protection protocols using MACPL. Finally, the enduser, who executes the agent

and obtains its results without any knowledge about security or programming at all. The

separation of these three roles shows the flexibility and ease of reuse that the proposed



96 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

Itinerary

MACPL
specification

Itinerary
Designing

Tool

Agent
Builder

Agent
Launcher

Programmer

Itinerary
specification

Executable
Agent

Agent platforms

Security
Expert

End
User

Figure 6.2: Overview of the mobile agent development environment

development environment brings to implementations. Thus,the development of a whole

system is divided into independent components—XML and MACPLspecifications—and

independent tools that can be used by completely different people.

Thus far, the components of the proposed development environment have been pre-

sented. It is worth noting that this environment is not designed for any specific execution

platform. It can be implemented to simplify the developmentof secure mobile agents re-

gardless of their execution environment or programming language. The next section will

be devoted to describe the main features of MACPL, and the simplification achieved as a

result of its utilisation.

6.3 MACPL

MACPL is a domain-specific programming language intended to ease the development of

agent protection protocols. The design of this language haspursued two main objectives:

• Simplifying the traversal of the initial itinerary, and itsprotection using cryptography.

• Simplifying the implementation of the control code, which handles the protected



6.3. MACPL 97

itinerary and other agent security mechanisms.

The language resulting from these requirements is explained thoroughly in appendix

A, where a detailed description of MACPL features can be found. Besides, appendix B

contains an example of its use to implement an itinerary protection protocol.

MACPL code is divided into two clearly different parts: the part that defines how to

create the explicit itinerary and any other data structuresrequired by the agent, and the

part that defines how the control code is generated. These twoparts are separated by the

#control_code_begin precompilation directive. The code placed above this directive

is the agentsetup code, and the code placed below is the agentcontrol code.

MACPL provides four types of instructions: type declarations, assignment statements,

function calls and function definitions. MACPL code is executed by evaluating all type

declarations, assignment statements and function calls inorder.

Functions are defined using thefundef keyword, and can take arguments which are

always passed by value. In addition, MACPL functions always return a value, and the

return keyword is used for this purpose. As will be seen, MACPL provides a broad set

of built-in functions, which are intended to make it a powerful and easy-to-use language.

The following code shows an example of a function definition.

fundef Task getTask(GraphNode node) {

// function body

return task;

}

In this case, this code defines thegetTask function, which takes a GraphNode argu-

ment and returns a Task object. The different data types provided by MACPL, such as the

GraphNode and the Task, will be described in the next section.

Type declarations are statements that specify the type of a variable. All variables must

be declared before being used. The following is an example ofa type declaration. In this

case, a variable of typeGraph is declared.

Graph initialItinerary;

Assignment statements assign a value to a variable using the’=’ operator. A type decla-

ration and an assignment statement can be combined in the same instruction. The following



98 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

example code shows a type declaration, an assignment statement, and a combination of the

two.

String name;

name = "foo";

Integer id = 0;

6.3.1 MACPL types

The set of types provided by MACPL is quite small—only eight different data types. This

is motivated by the fact that, first, MACPL is not a general purpose language and, second,

MACPL is devised to be as simple as possible.

MACPL is statically typed since types are determined at compile time, not at runtime.

In addition, MACPL is strongly typed because the language prevents the execution of code

that uses types in an invalid way.

An important MACPL type is the List, for it allows programmersto create compound

objects that can be protected using cryptographic mechanisms. Part of the MACPL syntax

is conceived to facilitate the use of List objects. For example, lists are created by writing

the elements in order, separated by ’:’ and surrounded by ’[’and ’]’. The ’< >’ operator

allows to refer to individual elements of a list. Thus,list<n> refers to thenth element of

list. The following is an example of the creation of a list.

List it = [getnexttrans(node,5,nhost):finalIt<5>];

In this case, a list of two elements is created and assigned totheit variable. The first

element is the value returned by thegetnexttrans function, and the second element is

the fifth element of thefinalIt list.

MACPL allows programmers to access the last element of a list using thelast key-

word. This keyword is often used in expressions like the one represented next.

[ExpressionWithIndex | IndexVariable,FirstIndex,LastIndex]

These expressions are used to evaluateExpressionWithIndex from

IndexVariable=FirstIndex to IndexVariable=LastIndex, and store the

result in a list. For example, iflist is a List object containing three elements, then the

following code.



6.3. MACPL 99

[fun(list<j>)|j,1,last]

is equivalent to this one

[fun(list<1>):fun(list<2>):fun(list<3>)]

MACPL provides two data types to facilitate the handling of the agent’s itinerary:

the Graph and GraphNode data types. ThegetInitialItinerary built-in func-

tion reads the XML itinerary specification provided to the Agent Builder, and returns a

Graph representation of it (see section 6.3.3). This Graph object is composed of one or

more GraphNode objects, which can be traversed and manipulated by the programmer us-

ing several built-in functions:getNode, successors, predecessors, addNode,

graph2List, among others. The following code shows an example of graph manipula-

tion using the Graph object returned by thegetInitialItinerary function.

1: Graph initItin = getInitialItinerary();

2: List initItinList = graph2List(initItin);

3: export List protectedItin = [protectNode(initItinList<i>)|i,1,last];

4: fundef List protectNode(GraphNode node) {

5: String platform = nodeData(node)<3><2>;

6: String nextplatform = nodeData(successors(node)<1>)<3><2>;

7: return [aencrypt(platform,graphNode2String(node)):nextplatform];

8: }

The first line of the above code initialisesinitItin to the Graph object returned by

getInitialItinerary. Line 2 introduces all the GraphNode objects ofinitItin

into a list, using thegraph2List built-in function. The resulting list is stored in the

initItinList variable. Line 3 applies theprotectNode function to every element

of initItinList. As a result, a list of protected itinerary nodes is obtainedand stored in

theprotectedItin variable. Finally, lines 4 to 8 define theprotectNode function,

which takes a GraphNode parameter (node) and returns a List object.

TheprotectNode function uses thenodeData built-in function to extract infor-

mation fromnode and from the successor ofnode (more details about this function will



100 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

be given in section 6.3.3). The platform associated withnode is stored in theplatform

variable, and the subsequent platform of the itinerary is stored in thenextplatform

variable. Then, thegraphNode2String built-in function is used convertnode into a

String object, and the result is encrypted using the public key ofplatform. The encrypted

node andnextplatform are finally returned using thereturn keyword.

This short example shows that the protection of the initial itinerary can be significantly

simplified. In this case, only eight lines of code are needed to traverse the agent’s initial

itinerary, encrypt each one of its nodes, and then introducethe result in a list.

Another important MACPL type is the RuntimeDefined. This type is used to deal with

the data types provided by the agent programming language, which is the language sup-

ported by the agent execution environment. The data types ofthe agent programming

language are not directly supported by MACPL, which means that type errors related with

RuntimeDefined objects are detected at runtime, not at compile time.

An example of a built-in function that uses RuntimeDefined objects is thesencrypt

function. This built-in function encrypts data using a symmetric key algorithm, and takes

a secret key parameter which is a RuntimeDefined object. However, if the secret key pro-

vided tosencrypt is a RuntimeDefined object that does not encapsulate a proper secret

key, then MACPL will issue an error at runtime, not at compile time. In general, most

cryptographic functions provided by MACPL use RuntimeDefinedobjects.

MACPL also provides a data type associated with the tasks executed by the agent: the

Task data type. In order to execute tasks, MACPL provides theexec built-in function,

which takes a Task object and a String object as parameters. The String object specifies the

name of the method that has to be executed, which must be implemented within the task.

The type returned by this function is a String. The generation of Task objects in a format

suitable for MACPL is performed using the Itinerary Designing Tool.

The String is also an important MACPL type. Apart from representing a sequence of

characters (e.g. “foo”), the String type is used to encapsulate objects of other types. For

example, thesdecrypt built-in function decrypts data using a certain secret key,and

returns a String object encapsulating the decrypted data. In order to convert the resulting



6.3. MACPL 101

String object into another data type, MACPL provides severalconversion functions, such

asstring2Task, string2List, etc. The inverse operations can also be performed

using the corresponding conversion functions (task2String, list2String . . . ).

In addition to the aforementioned data types, MACPL has also two more types: the

Boolean and the Integer. The purpose of these types is equivalent to that of many other

programming languages. They are used to evaluate conditional expressions, index elements

of graphs and lists, etc.

6.3.2 Scope of variables

MACPL variables have two different types of scope:

Global: Variables with global scope can be accessed from anywhere within the entire

MACPL code. They must be declared outside any function definition.

Function: Variables with function scope are only visible within the function in which they

are declared.

Global variables may be referred to anywhere in the program,but they lose their value

once the agent migrates from one platform to another. An example of this situation is

shown in the following code.

Graph initItin = getInitialItinerary();

List protectedItin = protectItinerary(initItin);

List accumulatedResults =

[signok(list2String(["Home":null:"Platform1"]))];

...

#control_code_begin

GraphNode currentNode = getCurrentNode(protectedItin);

List accumulatedResults =

executeCurrentTask(currentNode,accumulatedResults);

...

The above code definesprotectedItin andaccumulatedResults as global

variables. They are first initialised during the agent setup, and then they are used by the



102 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

control code in every platform of the itinerary. The problemof this example code is that

the value assigned to these variables during the agent setupwill never be available to the

control code. Likewise, the value assigned toaccumulatedResults in the control

code will be lost when the agent migrates from its current platform to the next.

In order to allow the values of variables to be recovered after migrating from one plat-

form to another, theexport keyword must be used. This keyword must be placed at the

beginning of the type declaration, as shown in the followingexample.

Graph initItin = getInitialItinerary();

export List protectedItin = protectItinerary(initItin);

export List accumulatedResults =

[signok(list2String(["Home":null:"Platform1"]))];

...

#control_code_begin

GraphNode currentNode = getCurrentNode(protectedItin);

accumulatedResults =

executeCurrentTask(currentNode,accumulatedResults);

...

The above code shows thatprotectedItin andaccumulatedResults are now

declared asexportablevariables, and therefore their value is never lost during migrations.

It is worth noting that theexport keyword can only be used to declare global variables.

6.3.3 Built-in functions

MACPL provides a comprehensive set of built-in functions forthe implementation of agent

protection protocols. This section provides a brief description of the most important ones.

As mentioned earlier, MACPL built-in functions are covered in detail in appendix A.

A subset of MACPL built-in functions is used to handle Graph objects. This subset

includes:successors andpredecessors, which return the successors and predeces-

sors of a given GraphNode, respectively;graph2List, which returns a list containing all

the GraphNode objects of a graph;joinGraphs, which returns the graph resulting from

the union of two graphs, among others.



6.3. MACPL 103

MACPL also provides functions for list management:length, to determine the size

of a list;remove, to remove an element from a list;join, to concatenate two lists, among

others.

In order to extract the information included in the XML itinerary specification, MACPL

provides thegetInitialItinerary built-in function. This function introduces all the

information found in the XML document into a Graph object. Inorder to make this possi-

ble, the XML document must provide at least the following information for each itinerary

node: task, type and platform. The following DTD document shows the structure of a valid

XML itinerary especification.

<!ELEMENT ITINERARY (NODE+)>

<!ELEMENT NODE (TYPE,TASK,PLATFORM,(ATTRIBUTE*),(ITINERARY*))>

<!ELEMENT TYPE (#PCDATA)>

<!ELEMENT TASK (#PCDATA)>

<!ELEMENT PLATFORM (#PCDATA)>

<!ELEMENT ATTRIBUTE (NAME,VALUE)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT VALUE (#PCDATA)>

The following XML document shows a valid specification of an example itinerary that

is comprised of a single node.

<ITINERARY>

<NODE>

<TYPE>Sequence</TYPE>

<TASK>Task1.jar</TASK>

<PLATFORM>ccd-pr2</PLATFORM>

</NODE>

</ITINERARY>

ThegetInitialItinerary function introduces every itinerary node into a Graph-

Node object. In order to read the contents of a GraphNode object, MACPL provides the

nodeData built-in function. This function returns a list of element-value pairs. Both the

element names and the values are represented as String objects. As an example, the node

defined in the above XML document would be returned by thenodeData function as

follows.



104 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

[ ["TYPE":"Sequence"] : ["TASK":"Task1.jar"] : ["PLATFORM":"ccd-pr2"] ]

Apart from a task, type and platform, the XML itinerary can also specify other informa-

tion for each itinerary node. This additional information can be specified using one or more

ATTRIBUTE elements, each of which containing aNAME element and aVALUE element.

For example, an XML itinerary could specify an authorisation entity and an authorisation

node for every itinerary node.

MACPL also provides thereadFile built-in function to read the contents of a file and

introduce them into a String. A common use of this function isto read files that contain

agent tasks. For example,readFile can be used to read theTask1.jar file specified

in the previous XML itinerary example. The String object returned byreadFile can be

then converted into a Task object using thestring2Task built-in function, and then this

task can be executed using theexec built-in function.

MACPL also provides other built-in functions for the implementation of the control

code:move, which allows agents to migrate from one platform to the next; clone, which

allows agents to send a clone of themselves to other platforms; andsendResults, which

allows agents to send their partial or final results to the owner.

One of MACPL’s primary goals is to simplify the implementation of cryptographic

protocols. For this purpose, it provides several cryptographic functions:aencrypt and

adecrypt, to perform asymmetric encryption and decryption;sign andverify, to

perform digital signatures and verifications;skeygen andkeypairgen, to generate

symmetric and asymmetric keys, among others. It is worth noting that theadecrypt

function, which allows agents to decrypt data using the current platform’s private key, is

implemented as described in [ARO04], so that agents can never access platforms’ private

keys directly.

A common feature of all cryptographic functions is that theyallow programmers to

specify what they want to do, without specifying how they want to do it. For this purpose,

the parameters taken by these functions never depend on any specific algorithm or imple-

mentation. This feature makes MACPL code more portable and easier to use. For example,

when theskeygen function is used to generate a secret key for a symmetric algorithm,



6.3. MACPL 105

the programmer does not specify if the key is intended for AESor 3DES encryption and

decryption. The following section describes how the programmer can compile the agent

selecting a specific set of algorithms or implementations, and how built-in functions are

grouped into libraries.

6.3.4 Function libraries

MACPL built-in functions are designed to be independent of any algorithm or implementa-

tion. This makes MACPL code more generic and reusable. In addition, the Agent Builder

supports different implementations of the built-in functions. Thus, programmers can com-

pile the same MACPL code using different versions of these functions, depending on the

requirements of the application.

Built-in functions are grouped into libraries. For example,all built-in functions related

to list management are grouped into the same library. Each library implements an interface,

so that different versions of the same set of built-in functions can be provided. For exam-

ple, all built-in functions related to cryptography are defined in one interface. The Agent

Builder may provide two different libraries implementing this interface, one based on PGP

and another one based on X.509v3 certificates.

The set of interfaces and libraries provided by MACPL can be extended. Thus, pro-

grammers can develop new libraries by creating their own implementations of MACPL

interfaces. Additionally, programmers can also create their own interfaces, and then pro-

vide one or more implementations of those interfaces. A new interface could be created,

for example, to provide MACPL with networking capabilities.It is worth noting that li-

braries are implemented in the programming language supported by the agent execution

environment, which essentially means that programmers canimplement new libraries in a

general purpose programming language.

Because each interface can be implemented by many different libraries, the Agent

Builder provides command line parameters to select what specific libraries have to be used

to compile the agent. In addition, if the MACPL code uses a certain interface provided by



106 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

the programmer, then the name of this interface must be specified inside the MACPL code,

using the#require precompilation directive for this purpose. The programmercan then

use command line parameters to select the library that implements his interface.

6.4 Auxiliary Tools

In the previous sections, we have described the Agent Builderand the MACPL language. In

this section, we will present other auxiliary tools of the proposed development environment,

which help programmers to generate the XML itinerary specification and allow them to

launch the agent to the first platform of the itinerary.

6.4.1 Itinerary Designing Tool

The Itinerary Designing Tool (IDT) is used to aid the programmer in the generation of the

XML itinerary specification. This tool provides a graphicalinterface that is organised in

tabs, which allow the programmer to define the itinerary nodes, implement their tasks and

see the messages generated by the agent compilation.

The itinerary definition tabis very similar to a drawing application. The left side of the

window contains a node palette where the programmer can choose which type of node is

included in the itinerary. Once a node has been placed in the drawing area, a task and a

platform can be assigned to it. Figure 6.3 shows a screenshotof an example itinerary that

is being edited in the IDT.

The task assigned to a node can be provided in precompiled form or it can be im-

plemented and compiled in theimplementation tab. When the programmer starts editing a

new task in this tab, the IDT generates a skeleton of the methods that must be implemented.

For example, if the programmer is editing the task assigned to a loop node, the skeleton

includes thejumpCondition method, which decides whether or not the agent has to

perform a new iteration.

Once the nodes and their corresponding tasks have been introduced in the itinerary



6.4. AUXILIARY TOOLS 107

Figure 6.3: Itinerary Designing Tool

definition tab, the XML itinerary specification can be generated.

In addition to generating the XML itinerary specification, the IDT can also be used

to create the executable mobile agent. For this purpose, programmers can choose which

MACPL specification implements the protection mechanisms required by their application.

Then, they can run the Agent Builder program from the IDT and obtain the executable

agent. Thus, the IDT is designed as a development environment in which all the stages of

the development process are integrated in the same tool.

6.4.2 Agent Launcher

The agents generated by the Agent Builder can be put into execution using the Agent

Launcher (AL). The AL is a lightweight client application that allows agents to be launched

to both local and remote platforms. This application shouldbe able to run on any device,

either a desktop computer or a handheld device, such as a PDA.



108 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA

In order to start agents on remote platforms, the AL uses the immigration module of

platforms’ migration service [ARB03]. The communication with this migration service

is performed using an Agent Communication Channel. The AL introduces the agent into

an ACL message, and this message is sent to the remote platform. Then, the platform’s

immigration module extracts the agent from the ACL message, and puts the agent into

execution.

6.5 Conclusions

In this chapter we have presented a development environmentthat simplifies the implemen-

tation of secure mobile agents. Most applications using mobile agent technology require the

use of security mechanisms. These mechanisms, when possible, should be implemented

following an agent-driven approach, thus allowing agents to manage their own security

mechanisms.

Implementing agents that manage their own protection mechanisms has many advan-

tages, but it also entails a quite more complex implementation. So far, no proposal has

been presented to simplify the development of secure mobileagents. In this chapter, a

development environment has been presented that simplifiesthe implementation of agent

protection protocols, and promotes the reuse of these protocols for future developments.

The key element of the proposed development environment is the Agent Builder, which

allows programmers or security experts to define protectionprotocols using the Mobile

Agent Cryptographic Protection Language (MACPL). MACPL is a domain-specific lan-

guage that is easy to learn and use. The main advantages of MACPL are:

• Availability of high level cryptographic functions that make it possible to quickly

create security protocols. A subset of these functions allows agents to encrypt and

decrypt itinerary data using platforms’ private keys, as described in [ARO04].

• Integration of the agent control code, which manages the agent execution, and the

agent setup code, where the protected itinerary, or any other initial data structure



6.5. CONCLUSIONS 109

required by the agent, is created.

• Easy code reuse, for MACPL built-in functions are generic anddo not depend on any

specific algorithm or implementation. Moreover, implementations are also indepen-

dent of the agent’s itinerary, the tasks executed on each platform, and the execution

environment where agents run.

In addition to simplifying the implementation of agent protection protocols, our pro-

posal also includes other tools intended for the end user, such as the Itinerary Design-

ing Tool, which addresses the creation of the XML itinerary specification, and the Agent

Launcher, for the introduction of new agents in remote platforms.

A proof-of-concept of the proposed development environment has been implemented

using the Java language and the Jade agent platform [BCPR03]. The Agent Setup Module

and the Control Code Module have been implemented using a MACPL to Java transla-

tor, which generates Java code that is then compiled to generate an executable bytecode.

Nevertheless, further work is still required to complete this proof-of-concept, so that the

protocols presented in chapters 4 and 5 can be implemented, and tests can be carried out to

evaluate the performance of the resulting agents.



110 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA



Chapter 7

Conclusions

Soon after mobile agents were first introduced in 1994 by White[Whi94], researchers

envisaged that this technology would revolutionise the development of distributed appli-

cations. However, mobile agents have not met the expectations they raised in terms of

widespread deployment and use.

The main reason why mobile agents have not been widely adopted yet, despite their

technological benefits, is their inherent security risks. Many breakthroughs have been

achieved in the security, reliability and efficiency of mobile agents, but there are security

issues still remaining unsolved. Additionally, the complexity of developing the security

solutions proposed to date has significantly hampered the deployment of this technology.

In order to provide a solution to these problems, this thesishas pursued two main ob-

jectives: First, to overcome some of the limitations of current agent protection protocols;

and second, to simplify the implementation and use of security protocols for mobile agent-

based applications.

More specifically, the first objective of this thesis has beento define an itinerary pro-

tection protocol that supports free-roaming agents. Protocols presented to date only allow

agents to travel to platforms known beforehand. As a result,these approaches limit the

mobile agent’s ability to discover new platforms at runtime.

In order to achieve this goal, first of all, chapter 3 has presented a convenient way to

111



112 CHAPTER 7. CONCLUSIONS

define explicit itineraries for free-roaming agents. Usingexplicit itineraries to create free-

roaming agents promotes the reuse of these itineraries, foritineraries are defined in different

stages that can be easily modified or changed for those of other agents. Besides, these

itineraries are stored in separate data structures that areeasier to protect using cryptographic

mechanisms.

Next, chapter 4 has been devoted to present a novel protocol for the protection of dy-

namic itineraries. The proposed protocol is based on associating discoverernodes with

trusted platforms. The inclusion of trusted platforms in agent itineraries is a key character-

istic of the contributions presented in this thesis. The public keys ofdiscoverernodes are

used to protect the agent’s code and data associated with dynamically located nodes. Thus,

the information of dynamically located nodes remains protected during the whole agent

execution.

The second objective of this thesis has been to define a protocol for the protection of

mobile agents against external replay attacks. These attacks are performed by resending

the agent to the same platform several times, so that the agent is forced to reexecute part of

its itinerary. This can lead to, for example, unintended purchases in a shopping scenario.

Solutions presented so far against replay attacks do not allow the agent to visit the same

platformn times, especially ifn is determined at runtime.

Chapter 5 has presented a protocol aimed at providing a satisfactory solution to external

replay attacks. The proposed protocol is based on storing anagent trip marker inside plat-

forms, which allows them to identify repeated attempts to execute the same agent. Unlike

previous protocols previously presented, the trip marker is associated with an authorisation

entity, which is trusted by the owner. The agent execution isonly allowed if the agent trip

marker has been generated and signed by the appropriate authorisation entity in the proper

itinerary node.

In order to prove the validity of the proposed protocols, implementation and experimen-

tation work has been conducted using the Jade agent platform[BCPR03]. Agents have been

implemented following an agent-driven approach, which allows agents to manage their own

itinerary and protection mechanisms. As a result, agents become more autonomous, and



7.1. FUTURE WORK 113

platforms can easily support the execution of agents with different protection algorithms.

The results of the simulations have shown that the overhead introduced by the proposed

protocols is around 55% of the execution time. This increasewas completely acceptable

for the simulated applications, but this may vary from one application to another.

The implementation of the proposed protocols has also demonstrated the complexity

of providing security to mobile agent-based applications.As usual, there is a compromise

between cost, security level and ease of use. For this reason, chapter 6 has presented a

development environment aimed at simplifying the development of secure mobile agents.

The key element of the proposed environment is the Agent Builder, which allows pro-

grammers to implement agent protection protocols using theMobile Agent Cryptographic

Protection Language (MACPL). MACPL has been designed to simplify the implementa-

tion of agent protection protocols, as well as to promote thereuse of these protocols in

different applications.

In addition to the Agent Builder, other tools have been implemented to aid the program-

mer in the definition of the agent’s itinerary, and in the introduction of new agents in their

first itinerary platform.

The solutions proposed in this thesis represent a valuable contribution to the develop-

ment of secure mobile agents. However, there are still problems remaining unsolved. In

the next section, we outline some possible future research directions that could be explored

to extend the results of this thesis.

7.1 Future work

The core work of this thesis revolves around the protection of mobile agents against mali-

cious hosts. However, the opposite problem—the protectionof platforms from malicious

agents—is also an important issue that has hampered the adoption of this technology. Even

though good solutions are already available to counter thisproblem, people are still reluc-

tant to allow someone else’s code to execute on their computers. Therefore, additional work

needs to be undertaken to develop secure mobile agent frameworks in which the protection



114 CHAPTER 7. CONCLUSIONS

from malicious hosts and from malicious agents are seamlessly integrated.

The itinerary protection protocol presented in chapter 4 fulfils the requirements initially

established, but it does not support the protection of completely free-roaming agents. This

is due to the fact that trusted platforms must be included in the itinerary, and they must be

known by the owner in advance. Thus, investigating how the proposed protocol could be

modified so as to support completely free-roaming agents is apossible avenue for future

research.

Chapter 3 has presented a set of node types and properties which allow the definition

of explicit itineraries for free roaming agents. One of these node types is theset, which is

associated with two or more subitineraries that can be traversed in any order. One of the

appealing uses of thesetnode type is to generate several clones of the agent to traverse the

different subitineraries. Thus, programmers can parallelise the execution of different tasks

and increase the performance of their applications.

However, mobile agent cloning introduces several problems, such as resolving identi-

ties properly when the replicas communicate with other agents or platforms. Regarding

the replay protection protocol presented in chapter 5, cloning a mobile agent would imply

generating a new trip marker for the replica. Otherwise, theagent and its replica would

travel with the same trip marker, and this could lead to falsereplay attack detections. Nev-

ertheless, new trip markers can only be generated by authorisation entities when new loop

iterations have to be started. Therefore, the proposed protocol cannot be used if agents

must be allowed to clone themselves.

A similar problem arises when the protocols presented in chapters 4 and 5 are imple-

mented using an agent-driven approach. The agent has a unique agent identifier, which is

used to bind together the control code and the protected itinerary. As the agent identifier is

signed by the owner, new identifiers cannot be generated at runtime. Therefore, the agent

and its replica cannot coexist in the same platform at the same time because they are using

the same identifier.

Because agent cloning could be a desirable feature in some applications, further re-

search should be conducted to explore how new agent identifiers and trip markers could be



7.1. FUTURE WORK 115

generated at runtime when an agent is cloned.

Thediscoverernode presented in chapter 3 allows agents to discover multiple platforms

for the execution of a single dynamically located node. Thisfunctionality, however, is not

supported by the itinerary protection protocol presented in chapter 4. Assigning various

platforms to the same node would involve using the same symmetric key to encrypt several

itinerary entries. As a result, platforms would be able to use their symmetric keys to access

or modify parts of the itinerary associated with other platforms. Consequently, further work

could be conducted to improve the proposed protocol in this regard.

Finally, the development environment presented in chapter6 facilitates the implementa-

tion and reuse of security protocols. However, only a proof-of-concept of this environment

is currently available. Experiments have to be carried out in order to test the performance

of the resulting agents, and more security techniques should be implemented in order to

address other mobile agent security aspects, such as agent authentication or protection of

computational results, among others. Thus, the development environment should provide

a comprehensive set of security techniques that enabled thedevelopment of any kind of

secure mobile agent-based application. Additionally, it would be interesting to provide a

mechanism for selecting the appropriate technique or combination of techniques to use,

depending on the execution environment and targeted application. Thus, this environment

should be helpful for developers to better understand the design choices involved in the

development of their secure mobile agent-based applications.



116 CHAPTER 7. CONCLUSIONS



Appendix A

MACPL language specification

The Mobile Agent Cryptographic Protection Language (MACPL) is a domain-specific pro-

gramming language used for the rapid development of mobile agent protection protocols.

In the following sections, we will analyse its types, variables, operators, special keywords,

functions and precompilation directives.

A.1 Data Types

MACPL is a language with strong, static typing, which means that type errors are found

reliably at compile time. The following are the data types offered by MACPL:

Graph Graphs are created by surrounding GraphNode objects by ’([’and ’])’. GraphNode

objects within a Graph are separated by commas. Graph objects are basically used

to process the initial itinerary. The XML itinerary specification is translated into a

Graph object using thegetInitialItinerary function.

GraphNode GraphNode objects are created by surrounding its elements by parentheses.

Each GraphNode contains the following information separated by commas: a node

identifier, which is an Integer; the node data, which is an object of type List; and a

list of node identifiers associated with the successor nodes.

117



118 APPENDIX A. MACPL LANGUAGE SPECIFICATION

List Lists objects are used to create compound structures of data, e.g. the protected explicit

itinerary or the structure where agent results are stored. Lists are created by writing

its elements in order, separated by ’:’ and surrounded by ’[’and ’]’. A List object

can contain objects of any type.

Task Task objects encapsulate the tasks that are executed by the agent. MACPL provides

no constructor to create new Task objects, for tasks are always read from files or from

the XML itinerary specification directly. Theexec built-in function is provided to

execute a Task object.

Boolean Boolean objects have two possible values:trueor false. These values are reserved

keywords of the language.

String String objects contain a sequence of characters. Strings are created by surrounding

the characters by double quotes. The String is an important MACPL type because it

can encapsulate objects of other types. In order to convert aString object into another

data type, MACPL provides several conversion functions, such asstring2Task,

string2List, etc. The inverse operations can also be performed using thecorre-

sponding conversion functions (task2String, list2String, ...).

Integer Integer objects are signed integers in the range of−231 to +231 − 1. Integers are

basically used for indexing the elements of graphs and lists.

RuntimeDefined This type is used to deal with the data types provided by the agent pro-

gramming language, which is the language supported by the agent execution environ-

ment. The data types of the agent programming language are not directly supported

by MACPL, which means that type errors related with RuntimeDefined objects are

detected at runtime, not at compile time.



A.2. VARIABLES 119

A.2 Variables

The type of MACPL variables must be declared before using them. The type declaration

can be made at the same time the first value is assigned to a variable. The assignment oper-

ator is the equal sign (’=’). Variable identifiers can contain any sequence of alphanumeric

characters and underscores. MACPL variables have 2 different types of scope:

Global scope Variables with a global scope can be accessed from anywhere within the

entire MACPL code. They must be defined outside any function definition.

Function scope Variables with a function scope are only accessible within the function in

which they are defined.

Global variables lose their value after an agent migration.However, theexport key-

word can be placed at the beginning of the type declaration soas to prevent this from

happening.

A.3 Operators

The following is the list of operators used to perform integer arithmetic:

+ Addition of integers

– Subtraction of integers

* Multiplication of integers

/ Multiplication of integers

% Modulus, returning the integer remainder.

The following is the list of operators used for list handling:

[ ] List creator. It creates a new list and introduces the elements between ’[’ and ’]’ in the

list. List elements can be of any type, and are separated by ’:’.



120 APPENDIX A. MACPL LANGUAGE SPECIFICATION

< > List index operator. It allows expressions of the formvarlist<i> to access theith

element of Listvarlist.

[ | ] Sublist generator. It allows expressions of the form:

[ExpressionWithIndex | IndexVariable,FirstIndex,LastIndex]

to evaluateExpressionWithIndex fromIndexVariable=FirstIndex to

IndexVariable=LastIndex, and store the result in a list.

The following is the list of operators used for Graph creation:

([ ]) Graph creator. It creates a new Graph object and introduces the GraphNode objects

between ’([’ and ’])’ in the graph. GraphNode objects must beseparated by commas.

( ) GraphNode creator. Three elements separated by commas mustbe included inside this

operator: the node identifier (Integer), the data (List), and the list of next node iden-

tifiers (List).

A.4 Functions

MACPL functions are defined using thefundef keyword. They can take a comma-

separated list of parameters in parentheses, and return a value. The function code is sur-

rounded by ’{’ and ’}’. Function names must start with an alphabetic character. The rest

of the identifier may include any sequence of alphanumeric characters and underscores.

Function parameters are passed by value. Any variable defined within a function is only

visible within that function.

A.5 Built-in functions

The following are the functions used for list handling:



A.5. BUILT-IN FUNCTIONS 121

• length (List list) : Integer Returns the number of elements inlist.

• join (List l1, List l2) : List Returns a list that is the concatenation ofl1 andl2.

• remove(Integer pos, List list) : List Removes the element at positionposfrom list.

• reverse(List list) : List Returns the list resulting from reversinglist.

The following are the functions used for graph handling:

• firstNode (Graph graph) : GraphNodeReturns the first node ofgraph.

• addNode(GraphNode n, Graph g) : Graph Adds GraphNoden to Graphg.

• removeNode(Integer id, Graph g) : Graph Removes the GraphNode referenced by

id from Graphg.

• getNode(Integer id, Graph g) : GraphNode Returns the GraphNode fromg refer-

enced byid.

• graph2List (Graph graph) : List Returns all the GraphNode objects ofgraph in a

list.

• joinGraphs (Graph g1, Graph g2) : Graph Returns the graph resulting from the

union of graphsg1 andg2. If any node identifier is repeated in both graphs, this

function raises an error.

• nodeId (GraphNode n) : Integer Returns the identifier of noden.

• nodeData(GraphNode n) : Object Returns the data contained in noden.

• successors(GraphNode n) : List Returns the list of node identifiers associated with

the successors of noden.

• predecessors(GraphNode n) : List Returns the list of node identifiers associated

with the predecessors of noden.



122 APPENDIX A. MACPL LANGUAGE SPECIFICATION

The following are the functions used to perform cryptographic operations:

• aencrypt (String platform, String data) : String Encryptsdatausing the public key

of platform. This function implements the mechanism proposed in [ARO04], so that

the agent will be able to decrypt the resulting encrypted data using the platform’s

private key.

• adecrypt (String data) : String Decryptsdata using the current platform’s private

key. This decryption is performed by a call to the platform’spublic decryption func-

tion. In order for this call to succeed,data must have been encrypted using the

mechanism proposed in [ARO04].

• aencryptpk (RuntimeDefined publicKey, String data) : String Encryptsdatausing

an asymmetric key algorithm and the public keypublicKey.

• adecryptpk (RuntimeDefined privateKey, String data) : String Decryptsdatausing

an asymmetric key algorithm and the private keyprivateKey.

• sign (String data) : String Signsdatausing the current platform’s private key.

• signok (String data) : String Signsdatausing the agent owner’s private key.

• signpk (RuntimeDefined privateKey, String data) : String Signsdatausing the pri-

vate keyprivateKey.

• verify (RuntimeDefined publicKey, String data, String signedData) : Boolean Veri-

fies the signature ofsignedDatausing the public keypublicKey.

• verifyok (String data, String signedData) : BooleanVerifies the signature ofsigned-

Datausing the owner’s public key.

• sencrypt (RuntimeDefined secretKey, String data) : String Encryptsdata using a

symmetric key algorithm and the secret keysecretKey.



A.5. BUILT-IN FUNCTIONS 123

• sdecrypt (RuntimeDefined secretKey, String data) : String Decryptsdata using a

symmetric key algorithm and the secret keysecretKey.

• skeygen() : RuntimeDefinedGenerates a secret key for symmetric encryption and

decryption.

• keypairgen () : List Generates a pair of a public and a private key. These keys are

returned in a list with two elements: the first element is the public key, and the second

is the private key.

• getPublicKey (String platformAddress) : RuntimeDefinedObtains the public key

referenced byplatformAddress.

• hash (String data) : String Returns a digest ofdata using a cryptographic hash

function.

The following are the functions provided to perform conversions from and to String

objects:

• string2Graph (String str) : Graph Convertsstr into a Graph object.

• string2GraphNode (String str) : GraphNodeConvertsstr into a GraphNode object.

• string2List (String str) : List Convertsstr into a List object.

• string2Task (String str) : Task Convertsstr into a Task object.

• string2Boolean(String str) : Boolean Convertsstr into a Boolean object.

• string2Integer (String str) : Integer Convertsstr into an Integer object.

• string2RuntimeDefined (String str) : RuntimeDefinedConvertsstr into a Run-

timeDefined object.

• graph2String (Graph graph) : String Convertsgraph into a String object.



124 APPENDIX A. MACPL LANGUAGE SPECIFICATION

• graphNode2String (GraphNode graphNode) : String ConvertsgraphNodeinto a

String object.

• list2String (List list) : String Convertslist into a String object.

• task2String (Task task) : String Convertstaskinto a String object.

• boolean2String(Boolean boolean) : String Convertsbooleaninto a String object.

• integer2String (Integer int) : String Convertsint into a String object.

• runtimeDefined2String (RuntimeDefined rd) : String Convertsrd into a String

object.

In order to allow programs to perform different actions depending on a condition,

MACPL provides theif-else statement. This statement can be used in two forms:

if (Boolean condition) {

statements

}

or

if (Boolean condition) {

statements

}

else {

statements

}

The following are the functions used to evaluate conditions:

• or (Boolean b1, Boolean b2) : Boolean Returns true ifb1or b2are true.

• and (Boolean b1, Boolean b2) : Boolean Returns true ifb1andb2are true.

• not (Boolean b) : Boolean Returns true ifb is false; otherwise it returns false.



A.5. BUILT-IN FUNCTIONS 125

The following are the functions used to test the equality of two objects:

• eq (o1, o2) : Boolean Returns true ifo1 ando2 are equal. MACPL provides eight

different versions of this function, one for each MACPL type.

• ne (o1, o2) : Boolean Returns true ifo1 ando2 are not equal. MACPL provides

eight different versions of this function, one for each MACPLtype.

The following are the functions used for integer comparison:

• gt (Integer int1, Integer int2) : Boolean Returns true ifint1 is greater thanint2.

• ge (Integer int1, Integer int2) : Boolean Returns true ifint1 is greater or equal to

int2.

• lt (Integer int1, Integer int2) : Boolean Returns true ifint1 is lower thanint2.

• le (Integer int1, Integer int2) : Boolean Returns true ifint1 is lower or equal toint2.

The following function is provided to allow MACPL code to terminate the execution in

case of an unrecoverable error.

• error (String message) : null Causes the execution to be terminated, printingmes-

sageto standard output.

The following are the functions provided to enable the implementation of the agent

setup code. These functions can only be used in the first part of the MACPL specification,

before the#control_code_begin precompilation directive.

• getInitialItinerary () : Graph Reads the explicit itinerary from the XML itinerary

specification and returns a graph representation of it.

• getControlCodeHash() : String Returns a hash of the agent’s control code, which

is usually used as the unique agent identifier.



126 APPENDIX A. MACPL LANGUAGE SPECIFICATION

The following are the functions provided to enable the implementation of the control

code of a mobile agent. These functions can only be used in thesecond part of the MACPL

specification, after the#control_code_begin precompilation directive.

• exec(Task t, String m) : String Executes the methodmof the taskt.

• move (String p) : null Causes the agent to migrate to platformp. The migration is

performed once the execution of the control code is finished.

• clone(String p) : null Sends a clone of the agent to platformp. The clone is sent to

p once the execution of the control code is finished.

• sendResults(String results) : null Sendsresultsto the agent owner.

The following are the functions provided to perform file input/output operations:

• readFile (String path) : String Reads the contents of filepath.

• writeFile (String path, String obj) Writesobj to file path.

A.6 Keywords

nil Used to represent the empty list, the same as[ ].

null Used to indicate that a given object has no assigned value.

true Used to represent one of the two legal values for a Boolean object.

false Used to represent one of the two legal values for a Boolean object.

last Used to address the last element of a list.

fundef Used to start a function definition.

return Used to return a value from a function.

export Used to declare a variable as exportable, so that it does not lose its value during

migrations.



A.7. PRECOMPILATION DIRECTIVES 127

A.7 Precompilation directives

• #control_code_begin Separates the agent setup code from the agent control

code.

• #include filename Enables the inclusion of filefilenameas a part of the

MACPL specification.

• #require interface Extends the set of built-in functions available with those

defined ininterface.

A.8 Comments

Lines starting with ’//’ are ignored. End-of-line commentsare not supported; comments

must be on a line of their own.



128 APPENDIX A. MACPL LANGUAGE SPECIFICATION



Appendix B

MACPL implementation example

In order to demonstrate the simplicity and utility of MACPL, this chapter presents an exam-

ple implementation of the itinerary protection protocol presented in [MB03], as described

in section 2.3.2.

Graph initItin = getInitialItinerary();

List symmetricKeys = genKeys(1,[]);

String tripmarker = getControlCodeHash();

List initItinList = graph2List(initItin);

List protectedItin =

[tripmarker:[protectNode(initItinList<i>)|i,1,last]];

String protItinString = list2String(protectedItin);

export List finalItin =

[transition(0,1):protectedItin:signok(protItinString)];

fundef List genKeys (Integer nid,List list) {

if (ne(getNode(nid,itinItin),null)) {

genKeys(nid+1,join(list,[skeygen()]));

} else {

return list;

}

}

fundef String protectNode(GraphNode node) {

129



130 APPENDIX B. MACPL IMPLEMENTATION EXAMPLE

Integer i = nodeId(node);

String data = list2String([getTask(node):transition(i,i+1)]);

return sencrypt(symmetricKeys<i>,data);

}

fundef Task getTask(GraphNode node) {

List taskPair = nodeData(node)<2>;

String taskString readFile(taskPair<2>);

return string2Task(taskString);

}

fundef List transition(Integer nid1, Integer nid2) {

String platform1;

if (ne(getNode(nid1,itinItin),null)) {

platform1 = nodeData(getNode(nid1,itinItin))<3><2>;

}

else {

platform1 = null;

}

if (ne(getNode(nid2,itinItin),null)) {

String platform2 = nodeData(getNode(nid2,itinItin))<3><2>;

List tr = [platform1:platform2:tripmarker:symmetricKeys<nid2>];

String data = list2String([tr:signok(list2String(tr))]);

return [platform2:aencrypt(platform2,data)];

}

else {

return null;

}

}

//-----------------

#control_code_begin

//-----------------

String protItinString = list2String(finalItin<2>);

if (not(verifyok(protItinString,finalItin<3>))) {

error("Wrong owner signature");



131

}

List currentTransition = finalItin<1>;

List transitionList = string2List(adecrypt(currentTransition<2>));

List tr = transitionList<1>;

if (not(verifyok(list2String(tr),transitionList<2>))) {

error("Wrong owner signature");

}

RuntimeDefined symmetricKey = tr<4>;

List protectedNodes = finalItin<2><2>;

List currentNode = getcurrentnode(1);

Task currentTask = currentNode<1>;

List nextTransition = currentNode<2>;

exec(currentTask,"main");

if (ne(nextTransition,null)) {

finalItin = [nextTransition:finalItin<2>:finalItin<3>];

move(nextTransition<1>);

}

fundef List getcurrentnode(Integer pos) {

String decryptNodeString = sdecrypt(symmetricKey,protectedNodes<pos>);

if (ne(decryptNodeString,null)) {

return string2List(decryptNodeString);

}

else {

getcurrentnode(pos+1);

}

}

As shown in the above example implementation, the MACPL code is divided into two

parts: the agent setup, where the protected itinerary is created; and the control code, where

the management of this protected itinerary is carried out. These two parts are separated by

the#control_code_begin precompilation directive.



132 APPENDIX B. MACPL IMPLEMENTATION EXAMPLE

Regarding the protection of the initial itinerary, first of all, the XML itinerary specifica-

tion is translated into a Graph object using thegetInitialItinerary built-in func-

tion, and the resulting object is stored in theinitItin variable. Then, thegenKeys

function generates a random symmetric key for each itinerary node, and the resulting list

of keys is stored in thesymmetricKeys variable.

Next, a unique agent identifier is generated and stored in thetripmarker variable.

This identifier is constructed as a hash of the agent’s control code, which is obtained from

a call to thegetControlCodeHash built-in function.

Then, using thegraph2List built-in function,initItin is converted into a list,

and theprotectNode function is applied to every element of this list.protectNode

takes a GraphNode object as a parameter, and generates its corresponding entry of the

protected itinerary. This entry contains the current task,which is extracted using the

getTask function, and the transition to the subsequent node, which is generated by the

transition function. Each itinerary entry is encrypted using the corresponding sym-

metric key (symmetricKeys variable), and the resulting protected itinerary is storedin

thefinalItin variable.

As can be seen, thefinalItin variable is declared as exportable using theexport

keyword. This makesfinalItin available to the control code after migrating to the first

itinerary platform.

The operations carried out by the control code are defined in the second part of the

MACPL specification, which is started by thecontrol_code_begin precompilation

directive.

First of all, the protected itinerary is obtained from thefinalItin variable, and its

signature is verified using theverifyok built-in function. Then, theadecrypt built-in

function is used to decrypt the transition placed at the beginning of finalItin. The

signature of the decrypted transition is verified as well, and the symmetric key associated

with the current node is obtained.

Next, thegetcurrentnode function is called to obtain and decrypt the current entry



133

of the protected itinerary. Thus, the current node is storedin the currentNode vari-

able. The current task and the transition to the next itinerary node are extracted from

currentNode. The current task is executed using theexec built-in function, and the

agent is migrated to its next destination.

This MACPL specification shows that not many lines of code are needed to implement

an itinerary protection protocol. Even though the protocolimplemented in this example

only supports sequential itineraries, because it is a reduced version of the one proposed

in [MB03], the code shows that MACPL can significantly simplifythe implementation of

security protocols.



134 APPENDIX B. MACPL IMPLEMENTATION EXAMPLE



Bibliography

[AGK+01] J. Altmann, F. Gruber, L. Klug, W Stockner, and E. Weippl.Using Mobile

Agents in Real World: A Survey and Evaluation of Agent Platforms. In

Proceedings of the 2nd Int. Workshop on Infraestructure forAgents, MAS,

and Scalable MAS, Montreal, Canada, 2001.

[ARB03] J. Ametller, S. Robles, and J. Borrell. Agent Migration over FIPA ACL Mes-

sages. InMobile Agents for Telecommunication Applications (MATA), vol-

ume 2881 ofLecture Notes in Computer Science, pages 210–219. Springer

Verlag, 2003.

[ARO04] J. Ametller, S. Robles, and J. A. Ortega. Self-Protected Mobile Agents.

In Proceedings of the 3rd International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS ’04), pages 362–367. IEEE Com-

puter Society, 2004.

[Aur97] T. Aura. Strategies against Replay Attacks. InProceedings of the Com-

puter Security Foundations Workshop, pages 59–68. IEEE Computer Soci-

ety, 1997.

[BCG07] F. L. Bellifemine, G. Caire, and D. Greenwood.Developing Multi-Agent

Systems with JADE. John Wiley & Sons, 2007.

[BCPR03] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE - AWhite Paper.

Technical report, Telecom Italia Lab, 2003. Available at http://jade.cselt.it.

135



136 BIBLIOGRAPHY

[Bor02] N. Borselius. Mobile agent security.Electronics & Communication Engi-

neering Journal, 14(5):211–218, 2002.

[BRSR99] J. Borrell, S. Robles, J. Serra, and A. Riera. Securing theItinerary of Mobile

Agents through a Non-repudiation Protocol. InProceedings of the IEEE Int.

Carnahan Conf. on Security Technology, pages 461–464. IEEE Computer

Society, 1999.

[CAOR+05] J. Cucurull, J. Ametller, J. A. Ortega-Ruiz, S. Robles, and J. Borrell. Protect-

ing Mobile Agent Loops. InMobility Aware Technologies and Applications,

volume 3744 ofLecture Notes in Computer Science, pages 74–83. Springer-

Verlag, 2005.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. InProceedings

of the First International Conference on Foundations of Software Science

and Computation Structure FoSSaCS ’98, volume 1378 ofLecture Notes in

Computer Science, pages 140–155. Springer-Verlag, 1998.

[CLSY06] H. Che, D. Li, J. Sun, and H. Yu. A Novel Solution of Mobile Agent Secu-

rity: Task-Description-Based Mobile Agent.IJCSNS International Journal

of Computer Science and Network Security, 6(2B):121–125, 2006.

[DELM00] F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude.

In Agent Systems, Mobile Agents, and Applications: Proceedings of ASA/MA

2000, volume 1882 ofLecture Notes in Computer Science, pages 73–85.

Springer-Verlag, 2000.

[DR06] T. Dierks and E. Rescorla. The Transport Layer Security(TLS) Protocol

Version 1.1. InRFC 4346. IETF, 2006.

[FM99] S. F̈unfrocken and F. Mattern. Mobile Agents as an ArchitecturalConcept

for Internet-based Distributed Applications-The WASP Project Approach. In



BIBLIOGRAPHY 137

Proceedings of Kommunikation in Verteilten Systemen (KiVS ’99), pages 32–

43. Springer-Verlag, 1999.

[GKCR98] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Security in a

Multiple-Language, Mobile-Agent System. InMobile Agents and Secu-

rity, volume 1419 ofLecture Notes in Computer Science, pages 154–187.

Springer Verlag, 1998.

[GMB+08] C. Garrigues, N. Migas, W. Buchanan, S. Robles, and J. Borrell. Protecting

mobile agents from external replay attacks.Journal of Systems and Software,

2008. doi:10.1016/j.jss.2008.05.018.

[GMM98] R. H. Guttman, A. G. Moukas, and P. Maes. Agents as Meditors in Electronic

commerce.International Journal of Electronic Markets, 8(1):22–27, 1998.

[Gra95] R. S. Gray. Agent Tcl: A Transportable Agent System. In Proceedings of

CIKM’95 Workshop on Intelligent Information Agents, 1995.

[GRB08a] C. Garrigues, S. Robles, and J. Borrell. Securing dynamic itineraries for

mobile agent applications.Journal of Network and Computer Applications,

2008. doi:10.1016/j.jnca.2007.12.002.

[GRB08b] C. Garrigues, S. Robles, and J. Borrell. Método para la protección de

plataformas de computación frente a ataques externos de repetición de

agentes ḿoviles y sistema de plataformas de computación protegidas. Span-

ish Patent Pending P200801492, filed 2008.

[HCK97] C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile agents: Are

they a good idea? InMobile Object Systems: Towards the Programmable

Internet, volume 1222 ofLecture Notes in Computer Science, pages 25–45.

Springer Verlag, 1997.



138 BIBLIOGRAPHY

[HN05] A. Hijazi and N. Nasser. Using Mobile Agents for Intrusion Detection in

Wireless Ad Hoc Networks. InProceedings of the 2nd IFIP Int. Conf. on

Wireless and Optical Communications Networks (WOCN ’05), pages 362–

366. IEEE Computer Society, 2005.

[Hoh98] F. Hohl. Time Limited Blackbox Security: ProtectingMobile Agents From

Malicious Hosts. InMobile Agents and Security, volume 1419 ofLecture

Notes in Computer Science, pages 92–113. Springer Verlag, 1998.

[HR99] F. Hohl and K. Rothermel. A Protocol Preventing BlackboxTests of Mobile

Agents. InProceedings of Kommunikation in Verteilten Systemen (KiVS ’99),

pages 170–181. Springer-Verlag, 1999.

[JK00] W. Jansen and T. Karygiannis. NIST Special Publication 800-19 - Mobile

Agent Security, 2000.

[KA98] S. Kent and R. Atkinson. Security Architecture for theInternet Protocol. In

RFC 2401. IETF, 1998.

[KAG98] G. Karjoth, N. Asokan, and C. G̈ulcü. Protecting the computation results of

free-roaming agents. InProceedings of the 2nd International Workshop on

Mobile Agents, volume 1477 ofLecture Notes in Computer Science, pages

195–207. Springer Verlag, 1998.

[Kar00] G. Karjoth. Secure Mobile Agent-Based Merchant Brokering in Distributed

Marketplaces. InProceedings of the 2nd Int. Symp. on Agent Systems and

Applications and 4th Int. Symp. on Mobile Agents (ASA/MA ’00), volume

1882 ofLecture Notes in Computer Science, pages 44–56. Springer Verlag,

2000.

[KBD02] H. Kuang, L. F. Bic, and M. B. Dillencourt. Iterative Grid-Based Computing

Using Mobile Agents. InProceedings of the Int. Conf. on Parallel Processing

(ICPP ’02), pages 109–117. IEEE Computer Society, 2002.



BIBLIOGRAPHY 139

[KLM03] M. Klusch, S. Lodi, and G. Moro. Agent-Based Distributed Data Mining:

The KDEC Scheme. InIntelligent Information Agents: The AgentLink Per-

spective, volume 2586 ofLecture Notes in Computer Science, pages 104–

122, 2003.

[Kna95] Frederick C. Knabe.Language Support for Mobile Agents. PhD thesis,

School of Computer Science, Carnegie Mellon University, 1995.

[KT01] Neeran M. Karnik and Anand R. Tripathi. Security in theAjanta mobile

agent system.Software Practice and Experience, 31(4):301–329, 2001.

[KT04] Y. Kambayashi and M. Takimoto. A Functional Languagefor Mobile Agents

with Dynamic Extension. InProceedings of the 8th International Confer-

ence on Knowledge-Based Intelligent Information and Engineering Systems

KES’04, volume 3214 ofLecture Notes in Computer Science, pages 1010–

1017. Springer-Verlag, 2004.

[LCT+05] R. Levy, P. S. Carlos, A. Teittinen, L. S. Haynes, and C. J. Graff. Mobile

agents routing - A survivable ad-hoc routing protocol. InProceedings of

the IEEE Military Communications Conference (MILCOM ’05), volume 5,

pages 2903–2909. IEEE Computer Society, 2005.

[LF06] T. Lu and M. Fu. Using Mobile Agents for Object Sharingin P2P Networks.

In Proceedings of the 1st Int. Conf. on Innovative Computing, Information

and Control (ICICIC ’06), volume 1, pages 741–744. IEEE Computer Soci-

ety, 2006.

[LMSF04] Emerson F. A. Lima, Patrı́cia D. L. Machado, Fĺavio R. Sampaio, and Jorge

C. A. Figueiredo. An Approach to Modelling and Applying Mobile Agent

Design Patterns. InSIGSOFT Software Engineering Notes, volume 29, pages

1–8. ACM Press, 2004.



140 BIBLIOGRAPHY

[LO99] D. B. Lange and M. Oshima. Seven good reasons for mobileagents.Com-

munications of the ACM, 42(3):88–89, 1999.

[LOW97] Jacob Y. Levy, John K. Ousterhout, and Brent B. Welch. The Safe-Tcl Secu-

rity Model. Technical report, Sun Microsystems, Inc., 1997.

[LSL00] T. Li, C. Y. Seng, and K. Y. Lam. A Secure Route Structurefor Information

Gathering Agent. InProceedings of the 3rd Pacific Rim Int. Workshop on

Multi-Agents: Design and Applications of Intelligent Agents, volume 1881

of Lecture Notes in Artificial Intelligence, pages 101–114. Springer-Verlag,

2000.

[MB03] J. Mir and J. Borrell. Protecting Mobile Agent Itineraries. InMobile Agents

for Telecommunication Applications (MATA), volume 2881 ofLecture Notes

in Computer Science, pages 275–285. Springer Verlag, 2003.

[Mil99] Deja Milojicic. Mobile Agent Applications.IEEE Concurrency, 07(3):80–

90, 1999.

[MLH05] Vishal D. Modak, David D. Langan, and Thomas F. Hain.A pattern-based

development tool for mobile agents. InProceedings of the 36th SIGCSE

Technical Symposium on Computer Science Education, pages 72–75. ACM

Press, 2005.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.Infor-

mation and Computation, 100(1):1–77, 1992.

[MS03] P. Maggi and R. Sisto. A configurable mobile agent data protection protocol.

In Proceedings of the Second International Joint Conference onAutonomous

Agents and Multiagent Systems (AAMAS ’03), pages 851–858. ACM Press,

2003.

[MV07] S. S. Manvi and P. Venkataram. Mobile agent based approach for QoS rout-

ing. IET Communications, 1(3):430–439, 2007.



BIBLIOGRAPHY 141

[MvOV97] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Handbook of Applied

Cryptography. CRC Press, 1997.

[MY06] Qusay H. Mahmoud and Leslie Yu. Making Software Agents User-Friendly.

Computer, 39(7):94–96, 2006.

[NL96] G. Necula and P. Lee. Proof-Carrying Code. Technical report, School of

Computer Science, Carnegie Mellon University, September 1996.

[RMAB02] S. Robles, J. Mir, J. Ametller, and J. Borrell. Implementation of Secure

Architectures for Mobile Agents in MARISM-A. InMobile Agents for

Telecommunication Applications (MATA), volume 2521 ofLecture Notes in

Computer Science, pages 182–191. Springer-Verlag, 2002.

[Rob02] S. Robles.Mobile Agent Systems and Trust, a Combined View toward Secure

Sea-of-Data Applications. PhD thesis, Universitat Autònoma de Barcelona,

2002.

[Rot99] V. Roth. Mutual protection of co-operating agents. InSecure internet pro-

gramming: Security issues for mobile and distributed objects, volume 1603

of Lecture Notes in Computer Science, pages 275–285, 1999.

[Rot01a] V. Roth. On the robustness of some cryptographic protocols for mobile agent

protection. InProceedings of the 5th Int. Conf. on Mobile Agents (MA ’01),

volume 2240 ofLecture Notes in Computer Science, pages 1–14. Springer

Verlag, 2001.

[Rot01b] V. Roth. Programming Satan’s agents. InProceedings of the 1st Work-

shop on Security of Mobile Multiagent Systems (SEMAS ’01), volume 63 of

Electronic Notes in Theoretical Computer Science, pages 124–139. Elsevier,

2001.



142 BIBLIOGRAPHY

[Rot02] V. Roth. Empowering Mobile Software Agents. InProc. 6th IEEE Mo-

bile Agents Conference, volume 2535 ofLecture Notes in Computer Science,

pages 47–63. Springer Verlag, 2002.

[SF05] A. Suna and A. E. Fallah-Seghrouchni. A mobile agentsplatform: architec-

ture, mobility and security elements. InProgramming Multi-Agent Systems

(ProMAS 2004), volume 3346 ofLecture Notes in Computer Science, pages

126–146. Springer-Verlag, 2005.

[SRM98] M. Straßer, K. Rothermel, and C. Maiöfer. Providing Reliable Agents for

Electronic Commerce. InProceedings of the International IFIP/GI Working

Conference, volume 1402 ofLecture Notes in Computer Science, pages 241–

253. Springer-Verlag, 1998.

[ST98] T. Sander and C. F. Tschudin. Protecting Mobile AgentsAgainst Malicious

Hosts. InMobile Agents and Security, volume 1419 ofLecture Notes in

Computer Science, page 44. Springer-Verlag, 1998.

[Sue03] A. Suen.Mobile Agent Protection With Data Encapsulation And Execution

Tracing. PhD thesis, The Florida State University, 2003.

[Syv94] P. Syverson. A Taxonomy of Replay Attacks. InProceedings of the Com-

puter Security Foundations Workshop, pages 131–136. IEEE Computer So-

ciety, 1994.

[TM01] H. K. Tan and L. Moreau. Trust Relationships in a MobileAgent System. In

Mobile Agents, volume 2240 ofLecture Notes in Computer Science, pages

15–30. Springer-Verlag, 2001.

[TOH99] Y. Tahara, A. Ohsuga, and S. Honiden. Agent System Development Method

Based on Agent Patterns. InProceedings of the The Fourth International

Symposium on Autonomous Decentralized Systems ISADS ’99. IEEE Com-

puter Society, 1999.



BIBLIOGRAPHY 143

[TOH01] Y. Tahara, A. Ohsuga, and S. Honiden. Mobile agent security with the IPEdi-

tor development tool and the mobile UNITY language. InProceedings of the

Fifth International Conference on Autonomous Agents AGENTS ’01, pages

656–662. ACM Press, 2001.

[Vig98] G. Vigna. Cryptographic Traces for Mobile Agents. InMobile Agents and

Security, volume 1419 ofLecture Notes in Computer Science, pages 137–

153. 1998.

[VMRC+06] P. Vieira-Marques, S. Robles, J. Cucurull, R. Cruz-Correia, G. Navarro, and

R. Mart́ı. Secure Integration of Distributed Medical Data using Mobile

Agents.IEEE Intelligent Systems, 21(6):47–54, 2006.

[Whi94] J. E. White. Telescript technology: the foundation for the electronic market-

place. Technical report, General Magic, Inc., 1994.

[WLAG93] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient Software-

Based Fault Isolation. InProceedings of the 14th ACM Symposium on Oper-

ating Systems Principles (SOSP ’93), pages 203–216. ACM Press, 1993.

[WPW+97] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet. Concor-

dia: An Infrastructure for Collaborating Mobile Agents. InMobile Agents:

First International Workshop, volume 1219 ofLecture Notes in Computer

Science, pages 86–97. Springer-Verlag, 1997.

[WQ04] X. Wang and H. Qi. Mobile agent based progressive multiple target detection

in sensor networks. InProceedings of the IEEE Int. Conf. on Acoustics,

Speech, and Signal Processing (ICASSP ’04), volume 2, pages 285–288.

IEEE Computer Society, 2004.

[WSB98] U. G. Wilhelm, S. Staamann, and L. Buttyan. On the problem of trust in

mobile agent systems. InProceedings of the Symposium on Network and

Distributed System Security. Internet Society, 1998.



144 BIBLIOGRAPHY

[WSUK00] D. Westhoff, M. Schneider, C. Unger, and F. Kaderali.Protecting a Mo-

bile Agent’s Route against Collusions. InProceedings of the 6th Annual

Int. Workshop Selected Areas in Cryptography (SAC ’99), volume 1758 of

Lecture Notes in Computer Science, pages 215–225. Springer-Verlag, 2000.

[Yee99] B. Yee. A sanctuary for mobile agents. InSecure Internet Programming, vol-

ume 1603 ofLecture Notes in Computer Science, pages 261–273. Springer

Verlag, 1999.

[Yee03] B. Yee. Monotonicity and partial results protectionfor mobile agents. In

Proceedings of the 23rd Int. Conf. on Distributed Computing Systems, pages

582–591. IEEE Computer Society, 2003.

[Zac03] J. Zachary. Protecting Mobile Code in the Wild.Internet Computing, IEEE,

7(2):78–82, 2003.

[ZCM02] A. Zunino, M. Campo, and C. Mateos. Simplifying Mobile Agent Develop-

ment through Reactive Mobility by Failure. InAdvances in Artificial Intelli-

gence: SBIA’02, volume 2507 ofLecture Notes in Computer Science, pages

163–174. Springer-Verlag, 2002.

[ZG96] J. Zhou and D. Gollmann. Observations on non-repudiation. In Advances in

Cryptology (ASIACRYPT ’96), volume 1163 ofLecture Notes in Computer

Science, pages 133–144. Springer-Verlag, 1996.

[ZOL04] J. Zhou, J. A. Onieva, and J. Lopez. Analysis of a freeroaming agent result-

truncation defense scheme. InProceedings of the IEEE Int. Conf. on e-

Commerce Technology (CEC ’04), pages 221–226. IEEE Computer Society,

2004.



Carles Garrigues Olivella

Bellaterra, June 2008

145


