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Abstract

Several advantages have been identified in using mobilésgedistributed systems. The
most frequently cited advantages include: reduction ozagk load, decrease in communi-
cation latency, dynamic adaptation, and better suppornfusile devices with intermittent

connections, among others. However, the benefits offereddhile agents have not been
sufficient to stimulate their widespread deployment. Thenmaason why mobile agents
have not been widely adopted yet, despite their technabdienefits, is their inherent
security risks. Many breakthroughs have been achieveceisehurity, reliability and effi-

ciency of mobile agents, but there are security issuegstilhining unsolved.

The core work of this thesis revolves around the protectiomabile agents against
malicious hosts. In order to provide a solution to some of dheent security issues,
first of all, an itinerary protection protocol is presentbdttsupports free-roaming agents.
Itinerary protection protocols proposed to date limit tigert’s ability to migrate at will.
Therefore, this thesis presents a protocol that allowstagerdiscover new platforms at
runtime, so that applications can take full advantage oftieefits provided by mobile

agent itineraries.

Second, a protocol is presented that protects mobile agegaigst external replay at-
tacks. External replay attacks are based on resending #re sganother platform, so as
to force the reexecution of part of its itinerary. The pragabprotocol counters this kind of

attacks without limiting the agent’s ability to visit ceirigplatforms repeatedly.

The security solutions presented in this thesis are basdbeofact that trusted plat-

forms can be found in many, if not most, mobile agent-basedaos. By incorporating

Vil



trusted platforms in the agent’s itinerary, the proposddtsms provide a balanced trade-
off between security and flexibility.

In order to promote the development of secure mobile agasedb applications, this
thesis also presents a development environment thattéesithe implementation of the

proposed agent protection protocols as well as other sg@miutions.
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Chapter 1

Introduction

A mobile agent is a software that can move autonomously fraemamputer to another
while executing [Whi94]. The migration of the whole runningpess, along with its state,
code and resources is what makes mobile agents differantdtber kinds of distributed
applications.

Several advantages have been identified in using mobilesgedistributed systems
[LO99]. The most frequently cited advantages include: o#idu of network load, by
moving agents to the data servers instead of transferrimgg lamounts of data through
the network; decrease in communication latency, by intergdocally with the resources
available at the remote servers; dynamic adaptation, fentagcan react autonomously to
the changes in their execution environment; and betterstpr mobile devices with
intermittent connections, for mobile agents can operagacsonously without requiring
a continuously open connection, among others.

Numerous applications have been developed that demanst@tbenefits of mobile
agent technology. One of the most promising applicatiomsifer mobile agents is e-
commerce [GMM98]. In these applications, mobile agents lmamxploited to compare
and gather information on prices of goods, negotiate onlbeht¢heir owners, select the

best product according to the owners’ preferences, andgiaaeed to the purchase.

Another application domain that exploits the advantagesaolbile agents is the one

1



2 CHAPTER 1. INTRODUCTION

related tosea-of-dataapplications [Rob02]. In these applications, massive arsoofrdata
are distributed among several servers, and these datatdasent across the network due
to bandwidth constraints, legal restrictions, or otheiititions. The use of mobile agents
in these applications allows data to be processed localiggudata mining techniques, ma-
chine learning algorithms, or other methods. An examplaisfkind of applications can be
found in [VMRC"06], where an agent-based information gathering systerhdalthcare
institutions is presented. In this case, mobile agents sed to search for patient medical
records that are spread across different institutions.

However, the benefits offered by mobile agents have not befficient to stimulate
their widespread deployment. The advantages of mobiletagesre initially overstated,
and some authors referred to mobile agents as a unifyingi@olthat could be used to
implement any distributed application. This initial hypmoa contrasted with the severe
security threats that researchers associated with thefuselnle agent technology. These
misunderstandings and concerns resulted in the develdpohdéew commercial mobile
agent systems and fewer standards. Consequently, mogbutistl applications are devel-
oped nowadays using other paradigms that provide fewemsalyas but also raise fewer
issues.

Despite this daunting reality, new breakthroughs in theussg reliability and effi-
ciency of this technology have been made [ARO04, ZOL04, BCGB@&sides, a constant
trickle of publications in international journals and cerénces demonstrates that the topic
has not been abandoned by the research community. Sevet@sshave shown that mo-
bile agents provide an intuitive and appealing abstradtian simplifies the design and
implementation of many distributed applications [Mil99urthermore, while most ap-
plications realised using mobile agents can be equallyamphted using traditional ap-
proaches, there is no single alternative to all of the fumetlity supported by the mobile
agent technology [HCK97]. Therefore, we believe that mohgents can still play an
important role in the future of distributed computing.

However, some of the security concerns raised by mobiletagehnology still linger,

and they represent one of the main obstacles currently hingdéhe wider acceptance of



mobile agents [Bor02]. In general, mobile agent security lmardivided into two broad
areas: host security, which implies protecting the hostfgrian from a malicious agent;
and agent security, which implies protecting the agent faomalicious platform.

With regard to host security, the problems related to thegptmn of the execution envi-
ronment have significantly been mitigated. The most swetpbdposed techniques include:
using safe code interpretation [LOW97], where the set oflalbe instructions prevents
the agent from attacking the platform; usiBgftware-based Fault IsolatiofWLAG93],
which is also known asandboxing and is based on limiting program accessibility to a
closed domain, among others.

As for agent security, agents also need to be protected sigampering by the hosts
they visit. This problem is clearly much harder than the mes one [GKCR98]. The
platform that executes the agent must have access to itsatmbleesources. Therefore, a
malicious platform can easily examine and divert the ingszhelxecution of the agent, and
any attempt to detect a wrong execution or tampering of dgatabject to diversion, too.

The techniques proposed so far to provide a complete pratemgainst malicious hosts
have proved to be impractical, for they cannot be effegtiwaplemented in real-life ap-
plications. Some of the better known approaches are the fusenper-proof hardware
[WSB98] or encrypted functions [ST98], but they have seriowswbacks. Regarding the
first approach, the problem stems from the fact that it iseemély unlikely that tamper-
proof hardware will be available on every platform in the miesure. With regard to the
second approach, the encrypted functions known to date igrbe used to implement
rational functions and polynomials, and are thus not slétdy general programming.

The mobile agent community has largely accepted that itligelg that there will ever
be a complete solution to the malicious host problem [Zac@gcause of this, recent
proposals focus on providing partial solutions aimed avgméng a subset of the attacks
that can be mounted against an agent. The most importanbgaispin this area are based
on the protection of the agent’s initial itinerary and itsrquutational results.

Regarding the protection of the agent’s computational tesshtisfactory solutions
have already been devised [MS03, ZOL04]. These are basammgsthe agent’s results
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inside an append-only data structure, in such a way that adijtions of new elements
are allowed. Any modification or deletion of an element cardétcted afterwards, and
appropriate actions can be taken against the offendintpphat

On the other hand, the solutions aimed at protecting thetagénerary are based on
allowing platforms to access only their corresponding aftthe agent’s code and data
[MBO03]. Thus, platforms cannot access or modify parts of therd's itinerary intended
for other platforms.

Although the current proposals for itinerary protectioa technically valid, their util-
isation involves an important loss of flexibility. First of,atinerary protection protocols
presented to date force programmers to defitagic itineraries, in which all platforms
must be known in advance, and thus agents are not alloweddowtir and visit new plat-
forms at runtime. Secondly, some proposals also protectaffem external replay attacks
[Yee03], in which an agent is forced to perform unintendedrations to the same plat-
form, but these proposals preclude agents from visitingreaiceplatform several times.

Thus, they limit the programmer’s ability to define itingesrthat contain round-trips.

The loss of flexibility introduced by current protocols isedio the fact that they always
assume the worst possible scenario, in which every platiorthe agent’s itinerary is

potentially malicious. This assumption, however, is hardhlistic [Rot99].

Let us examine the scenario of a shopping agent. Conside thabile agent is created
to search for a flight plan that meets a costumer’s requirégsnd&rhe costumer creates an
itinerary with several airline companies and the agentspaliched to collect offers from
all of them. After visiting all the airline companies, theeag compares the collected
results and commits to the best offer. In order to develop dpplication, two different
strategies could be implemented. The first strategy coutd bempare the collected offers
and proceed to the purchase in the last airline companyedi&iy the agent. The second
strategy could be to do so after migrating to a trusted platf@o that the costumer could

be confident that a fair comparison of offers and purchasecaagucted.

Clearly, the second strategy would be the one preferred by costumers. Relying on
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a trusted platform, such as the agent’s home platform, iaicdy much easier than allow-
ing the agent to make sensitive decisions on a potentialljcioas platform, regardless
of the itinerary protection protocol used. Consequentlis &xample application shows
that regarding all platforms as potentially malicious daes reflect the reality of many
applications.

However, the lack of flexibility of current agent protectiprotocols is not the only
concern currently impeding the wider use of secure mobilentsy The complexity of
programming applications that make use of these securititieons is also an important
issue to overcome [MYO06].

Therefore, this thesis pursues two main objectives: Firatlpto provide a solution to
the limitations of current agent protection protocols; aedond, to design new tools and
methodologies that simplify the development of secure fea@gents. These objectives are
detailed in the following section.

1.1 Obijectives

The first objective of this thesis is to provide a convenieaywo define explicit itineraries
for free-roaming agents. Defining explicit itineraries imap storing the itinerary informa-
tion in a separate data structure. By storing and maintaitiiisgdata structure outside the
main agent code, the protection of the itinerary is signifilyasimplified.

The second objective is to define an itinerary protectionqua that supports free-
roaming agents. Itinerary protection protocols presetdatiate sacrifice most of the flex-
ibility provided by mobile agent itineraries, for they litrthe mobile agent’s ability to
migrate at will. Therefore, this thesis aims to allow agdntsliscover new platforms at
runtime, so that applications can take full advantage obtreefits provided by the mobile
agent paradigm.

The third objective is to define a protocol for the protectadrmobile agents against
external replay attacks. External replay attacks are baee@sending the agent to an-

other platform so as to force the reexecution of part of iterary. The current solutions
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proposed for this problem do not allow agents to visit the esguhatform several times.
Therefore, this thesis intends to counter this kind of &gaeithout limiting the agent’s

ability to visit certain platforms repeatedly.

Finally, the last objective is to encourage the developrneésecure mobile agent ap-
plications. The implementation of the security mechanisegsiired by mobile agents can
turn out to be more time-consuming than the implementatfdghebagent tasks. Therefore,
new tools have to be created that simplify to the greatesinéxtossible the tasks carried

out by both the designer of security protocols and the deezlof new applications.

1.2 Contributions

The main contributions of this thesis are based on the fadttthisted platforms can be
found in many, if not most, mobile agent-based scenarios.nBgrporating trusted plat-
forms in the agent’s itinerary, this thesis presents, fifstllpan itinerary protection proto-
col that supports free-roaming agents, and second, a rppdégction protocol that allows
agents to loop over a certain number of platforms an und@eamumber of times. Thus,

the resulting protocols provide a balanced trade-off betwaecurity and flexibility.

In order to promote the development of secure mobile agasedb applications, this
thesis also presents a development environment thattédesithe implementation of the

proposed agent protection protocols as well as other sg@miutions.

The contributions of this thesis have given rise to someipatibns in international
journals and conferences. The main contributions madertsaae first and second ob-
jectives have been presented in [GRB08a]. The protocol peaptwsaccomplish the third
objective has been presented in [GMBB]. Besides, a patent has been filed and is currently
pending [GRBO8b]. Finally, the development environment skedtito attain the fourth ob-
jective has been submitted to the Journal of Networks and Qtangpplications. Never-

theless, this thesis provides an integrated perspectiviees® contributions.
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1.3 Thesis structure

The remaining chapters of this thesis are organised asv®llo

Chapter 2 presents a literature review of mobile agent dgassues and most relevant
techniques proposed to address these issues. The chagites gbecial emphasis on the
techniques proposed to address the malicious host prollamdescribed techniques are
classified according to their suitability for practical &ipations.

Chapter 3 provides, first of all, an overview of the relatedknam defining the agent’s
itinerary. Then, it presents a new way of defining expliagiiétaries for mobile agents.
Some considerations regarding the implementation of tiiesegaries are discussed at the
end of the chapter.

Chapter 4 describes an itinerary protection protocol foe-i@aming agents, which
is based on introducing some trusted platforms into the taginerary. The chapter also
discusses what assumptions are made with regard to trdstéatms. The implementation
of an example application that shows the viability of thegm®ed protocol is presented at
the end of the chapter.

Chapter 5 describes a protocol for the protection of mobientgagainst agent replay
attacks. A survey of the related work on agent replay attec&tso presented. After defin-
ing the proposed protocol, the chapter presents the impitien and experimentation
work conducted in order to prove the validity of the propopeatocol.

Chapter 6 outlines, first of all, the related work on mobilerdagangineering, focusing
mainly on the approaches proposed to date to simplify theldpment of mobile agents.
Then, this chapter describes a development environmeeteataiding in the development
of secure mobile agents. The key element of the proposecbamvent is the Agent Builder
and the MACPL language, which are described in detail.

Chapter 7 summarises the work of the thesis and provides sionsefifuture research
directions.

Appendix A provides a detailed description of MACPL featur@e chapter analy-

ses its types, variables, operators, special keywordHl;ibdunctions and precompilation
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directives.
Appendix B provides an example of MACPL programming, whicbvgbthe simplicity
and utility of this language.



Chapter 2

Mobile Agent Security

In this chapter, we analyse the security threats that anisse mobile agent system, and
we provide a survey of the most relevant solutions proposefdrs Security threats are
first classified into four categories, depending on the soofcthe attack and the entity
being attacked. We then focus on the types of threats thahast difficult to deal with:

the threats stemming from an agent platform attacking amtagé/e outline the better
known techniques available to address this type of attgcksenting them in two different
categories: First, those proposing methods that canndfdieely implemented in real-

life applications. Second, those providing feasible sohg that are suitable for practical

applications.

2.1 Overview

Since the beginning of mobile agent research, many sedsstyes have been identified.
In [JKOO], these issues were classified according to thecgonfrthe attack and the entity
being attacked: agents against agents, agents agairfstripiat others against platforms,
and platforms against agents.

In the first category—agents against agents—we can findkattaavhich agents mod-

ify or access another agent’s data, disguise their ideitityrder to falsify a transaction,

9



10 CHAPTER 2. MOBILE AGENT SECURITY

or repeatedly send messages to another agent in order thlawthenial of service attack,
among others. The second category—agents against platfeimeludes threats in which
agents perform some malicious action on a resource they @a@ssto (e.g., deleting a
file), consume an excessive amount of system resourcesaga@ss to a service to which
they are not entitled, and so on.

With regard to these two first categories, in which the attadk an agent, sound so-
lutions have already been proposed. Among the solutionptbaide an acceptable level
of protection, the most efficient one is call8dftware-based Fault IsolatighWLAG93].
This mechanism, also known aandboxingis based on limiting program accessibility to
a closed domain, in such a way that the program address spd@vailable resources are
confined within this domain.

Other mechanisms proposed for these kinds of attacks iecliging safe code interpre-
tation [LOW97], where the set of available instructions &g the agent from attacking
the platform; signing the code in order to authenticate genaowner, together with some
mechanism to determine the level of trust of this owner [GaSending logical demon-
strations along with the code, in order to proof that the aken of that code is secure
(Proof Carrying Code [NL96]), among others.

Regarding the third category—others against platforms-stlece of the attack can be
any external entity that is not part of the agent platformis®xternal entity can perform
attacks against the platform resources (files, commupitgiorts, etc.) or against the
platform’s communications with the outside. In these casesurity greatly depends on
the mechanisms provided by the operating system. Additigreasecure communication
channel, established using mechanisms such as Transpent Eacurity [DRO6] or IPSec
[KA98], can be used to secure the communication betweenl#tpn and other parties.

The last type of attack—platforms against agents—is the miticult to prevent. It is
obvious that if a platform is to execute an agent, it must ltraplete access to the agent
code, state and data. There is nothing to prevent the ptatflom analysing the agent
code, from corrupting its state or data, from manipulatitsgexecution environment, or

from executing it multiple times in order to, for examplengeate multiple purchases in



2.2. MALICIOUS HOST PROBLEM: UNREALISTIC APPROACHES 11

a shopping scenario. If some agent data is to be kept seorettfre platform, it must be
stored in a way that even the agent itself cannot directlgse¢encrypted with the key of
a different platform, for instance).

Several mechanisms have been proposed to address theoomlwst problem. The
next subsections discuss some of the better known appredeinst of all, we present those
that have a limited applicability because they can only llufscertain assumptions hold.
Then, we will present those approaches that can be effgctimplemented in real world

applications.

2.2 Malicious host problem: unrealistic approaches

Some of the better known solutions to the malicious host Iprobare impractical, for
they have been designed for particular scenarios that &wallcrarely found in real-life

applications. The following is a discussion of the bettenwn ones.

2.2.1 Execution tracing

Execution tracing [Vig98] is a technique that allows unautbed modifications of an agent
to be detected upon completion of the agent execution. Tétequl proposed in [Vig98] is
based on recording the agent’s behaviour on each platfoamgr to build a trace of its ex-
ecution. The trace is composed of a sequence of identifierssonding to the operations
executed by the agent. Platforms must produce and maiméed of all executed agents,
so that agent owners can request these traces after theregetgrminated its execution,
and verify that the agent code or state has not been mallgiowdified.

This approach has several drawbacks, such as the size andrtiier of logs to be
kept by platforms, or the possible lack of connection betwthe owner and the platforms
once the agent has returned to the home platform. Besidesetlieation mechanism is
too expensive to be applied systematically, and can onlydeel when the owner has a

suspicion that the agent execution has been corrupted.
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2.2.2 Cooperating agents

In [Rot99], Roth describes a protocol for detecting manipoiret of the agent execution
through co-operating agents. Roth considers applicatmhs tlesigned using two or more
mobile agents that co-operate in order to achieve theilsgddie itineraries of these agents
must have no single platform in common, and platforms catudelwith each other as
long as the collusion does not involve platforms of différagent itineraries. The itinerary
and the operations performed by every agent must be tragkéebly co-operating agents,
so that any tampering with the execution of an agent can lextet by its co-operators.
In order for this protocol to be secure, the interaction lestmthe agents must always take

place over a secure authenticated channel.

Roth’s protocol suffers from several limitations, the firsiedbeing the complexity of
defining subgroups of platforms that will not collaboratehneach other to attack the ap-
plication. The second limitation is the need to establiskk@ee authenticated channel
between the agent and its co-operators, which may not béyess provide in all scenar-
ios. Besides, this technique undermines the agent’s autgrfomit requires the agent to

interact with other agents in order to carry out its tasks.

2.2.3 Obfuscation

Code obfuscation [Hoh98] aims at generating executabletagérnch cannot be attacked
by reading or manipulating their code. This technique iHdam transforming the agent
code in such a way that it is functionally identical to thegaral one, but it is impossible
to understand it. The approach also establishes a timevahtguring which the agent and
its sensitive data are valid. After this time elapses, atgnapt to attack the agent becomes
worthless. In [HR99], a modification of this approach is preeed to prevent hosts from
repeatedly executing an agent in order to obtain differenputs and draw conclusions
about its behaviour. This modification is based on recordivagy input event on a trusted

third party.
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The major drawback of these techniques is the difficulty iakdgshing the time re-
quired by an attacker to understand an obfuscated codela8ynno mechanism is cur-
rently known for quantifying the amount of time required by agent to accomplish its
task, especially in heterogeneous environments. As atresstricting the lifetime of a

mobile agent is not feasible in practise.

2.2.4 Computing with encrypted functions

Computing with encrypted functions is a technique proposgdander and Tschudin
[ST98] to achieve code privacy and code integrity. Theihtegue is based on creating
encrypted programs that can be executed without decrygtEg. Supposing that a mo-
bile agent has to execute a certain functfpthenf is encrypted to obtairk(f), and a
program is created that implemeiidff). Platforms execut&(f) on a cleartext input value
X, without knowing what function they actually computed. Tdeecution yieldsE(f(x)),
and this value can only be decrypted by the agent owner taorothta desired resuf(x).

The main problem of this technique is that the authors havwe fmund encryption
schemes for polynomials, using homomorphic encryptionfandtion composition tech-

niques. Thus, their proposal is not suitable for generaj@mming.

2.2.5 Tamper-proof devices

The use of tamper-proof devices is based on performing pdiieoentire agent execution
on a physically sealed environment, which can be trustekécwge the agent correctly.
Tamper-proof devices can be provided by a trusted thirdygart, if necessary, they can
be inspected periodically to verify that their security inas been compromised. Tamper-
proof devices can be used to carry out cryptographic omeratvith a private key that must
be kept secret from the remote host. They can also have theipavate key, for example,
to sign partial results generated by the agent.

Approaches such as [WSB98] or [Yee99] propose performingritieeagent execution

on tamper-proof devices. The cost of these solutions is begtause each platform must
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be provided with an expensive tamper-proof device. Besithese techniques are only
suitable for closed environments, such as corporate nksxsrcomputational grids, where
a tamper-proof device has been installed in every platfolsa result, these techniques
imply a loss of agent autonomy.

In order to reduce the cost of the solution, other approabhssd on smart cards have
been proposed in [Kar00] or [FM99]. In these solutions, #mager-proof device has lim-
ited computation capabilities, and is only used to execatristy-sensitive operations.
However, the security of these approaches is limited becthes platform controls the
communication between the agent and the tamper-proofeleViws, the inputs or outputs

that are provided to or produced by the device can be easilgd¢eed with.

2.3 Malicious host problem: realistic approaches

In this section, we provide a survey of some of the most widelyepted techniques for

mobile agent protection against malicious hosts.

2.3.1 Protecting the agent computational results

Researchers have devised several mechanisms aiming attpmgtée results generated by
agents during their execution. These protocols allow owtewerify the identity of the
host in which a given result was obtained, and can also betosgteck whether the agent
has visited all the platforms initially specified in the &nary.

In [Yee99], Yee proposes a mechanism that involves sigrieglata generated by the
agent in each platform with the platform’s private key. Otioe agent returns to its origi-
nator, it can verify the integrity of the results using thélixkeys of the visited platforms.
Yee also proposes a variation of this method based on PRemllt Authentication Codes
(PRACSs). According to this method, the owner generates aflistyptographic key pairs
suitable for asymmetric encryption, and the private keys {- k,,) are given to the agent.

The agent then uses eakhto sign the results computed on platfoimBefore migrating
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to platformi + 1, the agent destroys. Again, once the agent returns to its originator, the

owner can verify the integrity of the results with the copasding public keys.

The problem of these proposals is that they do not achiee id&ggrity when the
agent chooses freely the next platform to visit at each stags itinerary. In this case, a

malicious platform could remove previously collected feswithout being detected.

In [KAG98], Karjoth et al. improve Yee’s proposals in order to ensure the integrity and
confidentiality of the data generated by free-roaming agemheir approach is based on
binding each result to all previously collected results tmthe identity of the subsequent
itinerary platform. The problem of this approach is that éigent results are not bound to
the agent code, thus allowing malicious platforms to gamdeke results and append them
to the chain of previous results, as described by Roth in [RgtO1

In [KTO1], Karnik and Tripathi propose to create an appent+a@ontainer to store
agent results. According to their protocol, a cryptograptiecksum is used to bind the
current results to the previous ones. This allows agentddahaw results to the container,
while preventing malicious platforms from modifying retsupreviously generated. How-
ever, this protocol suffers from some limitations. Firstké results can be added to the
append-only container, using the attack described in [RdtOEurthermore, a collusion
of two malicious platforms can easily truncate the chainestits collected between these

two platforms.

The attacks described in [RotO1la] were overcome by Roth in [BxjtGnd [Rot02].
His protocol is based on a combination of two ideas. Firstllpptatforms only use their
private keys to decrypt agent data if they can verify thas¢hdata belong to the agent. For
this purpose, the data must be securely bound to the ageatbmidre being encrypted.
Second, the results generated by the agent execution anel bouhe agent code so that

they cannot be reused for another agent.

Finally, in [MS03], Maggi and Sisto put together the undertyideas of different pro-
posals [Yee99, KAG98, KT01, Rot01b] to define a protocol teatanfigurable according

to the protection level required by the application.
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2.3.2 Protecting the agent’s itinerary

The protection of the agent’s itinerary is one of the most iwamly used techniques for
agent protection against malicious platforms. The progasehniques aim at preventing
platforms from accessing or manipulating parts of the dgétirierary intended for other
platforms. For this purpose, the proposed protocols arallysoased on encrypting every
platform-specific information using the correspondingtfplan’s public key. As a result,
each platform is only given access to its correspondinggdatte itinerary, as well as the
address of its predecessor and successor platforms. Theetesnt proposed protocols
are discussed below.

In [BRSR99], Borrellet al. secure the agent’s itinerary by protecting the information
intended for each platform as follows:

I =leg, e, e, kLt € (1,--+ ,n) (2.1)

where

€; = Pz’<hiami7hi+1> (2-2)

I denotes the protected itinerary, which is composed of asefientries; randomly
sorted.P; is an asymmetric encryption method using the public key affpimi. h; is the
address of platformy, andm; is the information intended for platforimn

To ensure that the itinerary is traversed in the correctrp@@on-repudiation proto-
col [ZG96] is executed whenever a mobile agent is migratehfone platform to the next.
Thus, the owner can verify that the agent has followed theiiiry as expected. Obviously,
this solution assumes the existence of a Trusted Authariggurantee a secure execution
of the non-repudiation protocol. It is worth noting that Baltret al’s protocol prevents
platforms from modifying the entries of the protected itary, for these entries are ran-
domly sorted and the identity of the target platform is hidby public key encryption.
However, if the agent itinerary had only two hops, the firsttigrm could easily modify

the information intended for the second.
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In [WSUKOOQ], Westhoffet al. propose a protocol based on creating an onion-like

structure to encapsulate the agent’s route informatiool&safs:

I = e; = Py(home, hy, S,(home, hy, ho,t,e3)))

62.: Py(hy, hg, So(hy, ho, hs, t,e3))) 2.3)
en = Po(hn_1,0,So(hn_1,hn,0,t,0)))

where we follow the same notation used for equation 2d2ne denotes the agent’s home

platform address.S, is a digital signature using the owner’s private key, ansd a trip

marker used to prevent replay attacks [Yee03].

As can be seen, the protected itinerary includes the adee$she platforms that must
be visited, but not any platform-specific code or data. Hawethis protection scheme
could be easily extended to include platform-specific imfation inside the protected itin-
erary.

In [KTO1], Karnik and Tripathi propose thtargeted statemechanism, as a way to
protect parts of the agent that daegetedtowards particular platforms. This mechanism is

based on creating a vector of encrypted objects as follows:

So(Pl(ml)a 7Pn(mn)) (24)

Karnik and Tripathi’s protocol was not designed to protbet agent’s itinerary, but to
provide the agent with information that can only be revetdexsbme platforms. As a result,
this protocol suffers from some limitations. First, it doest guarantee that the itinerary
will be traversed in the correct order. A malicious platfommight forward the agent to
an incorrect platform by sending it to randomly chosen platis until finding one that
is member of the initial itinerary. Additionally, as dedmd in [Rot01a], this protocol is
vulnerable to interleaving attacks [MvOV97], which allonahtious platforms to obtain
information intended for other platforms.

In[RMABO2], Robleset al. present a secure mobile agent platform called MARISM-A.

MARISM-A provides secure migration, secure communicatietween agents, protection
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of agents’ results and itinerary protection. The itinenamgtection provided by MARISM-
A is flexible because different itinerary protection praitsccan be used depending on the
specific requirements of the application. The set of itinepaiotection protocols supported
by MARISM-A includes protocols such as [WSUKO0O] or [BRSR99], ahib tset can be
extended to adapt to new application requirements.

Finally, in [MBO03], Mir and Borrell present a protocol basedlmrilding the protected
itinerary as a chain of digital envelopes, in such a way they tan only be opened in the
correct order. First of all, a random symmetric key is geteetdor each itinerary platform
(r1---7r,). Then, for each migration from a platforito its successoy, the following

expression is computed:

tij = hj, Pj(So(hi, hy,t,75)) (2.5)

The valuet;; is calledtransitionfrom i to j. Once all transitions have been computed,

the protected itinerary is constructed as follows:

I = tOl? So(ta [617 T 7e’nD (26)

where
e; = E,,(m;, ti;) (2.7)

andE,, is a symmetric encryption method using the secretikey
The protocol presented by Mat al. supports different types of itinerary stages. Due to
the fact that itinerary stage types will be discussed latehapter 3, we have only presented

here a slightly simplified version of the protocol, which gueé/alent in terms of security.

2.3.3 Self-protected mobile agents

Protecting the agent’s itinerary prevents platforms fraroessing parts of the agent code
or data intended for other platforms. Most itinerary pratat mechanisms presented so
far only define a way to create the protected itinerary, asdrag that platforms know how

to extract information from this protected itinerary.
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The problem of these approaches, usually cgilatform-driven is that the set of plat-
forms that the agent can visit is restricted to those supmpthe specific itinerary protec-
tion scheme implemented by the agent. In addition, any ahamdghe agent’s structure
will imply changes in all itinerary platforms. Furthermomatforms are forced to support
multiple protection schemes if different types of securditeoagents need to be executed.

In order to overcome these limitations, a solution basedtrpsotected mobile agents
was proposed by Ametllezt al. in [AROO4]. According to Ametlleret al,, the agent
protection mechanisms are not managed by the platform, youlhdo agent itself. This
approach is calledgent-driven

Itinerary protection mechanisms presented so far did né&erazaclear definition of the
different components of an agent. In [AROO04], Ametkgral. define agents as a pdal,

D, whereC is the main agent code that will be executed on all platforamgl D is the
protected itinerary that contains the code and data intefateeach platform.

The protection oD usually involves encrypting each platform-specific codd data
using the public key of the target platform. The cdgihen deals with the management of
this protected itinerary, extracting the code and datanoed for each platform, executing
the local task, and migrating the agent to its next destinati

In order to decrypt the information included in D, the cddaneeds to use the plat-
forms’ private keys. However, giving agents direct accesprivate keys would involve
serious security problems. Consequently, Amegteal. require each platform to have a
cryptographic service providing a public decryption fuotto agents.

The public decryption function decrypts the agent’'s dataguthe platform’s private
key, but the decrypted data is only returned to the agent Ficlwit was encrypted. Thus,
malicious agents cannot decrypt data stolen from othertagkmorder to verify that the de-
crypted data really belongs to the requesting agent, pfadwoerify that such data includes
an integrity tokemA computed as follows:

A= H(C) (2.8)

whereH is a cryptographic hash function.
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Thus, agent developers must always bind any platform-Bpeoide or data to the agent
instance using a hash of its main cddeOtherwise, agents will not be able to decrypt their

itinerary data. Each stage of the agent’s itinerary is tmesygted as follows:

d; = Pi(m;, H(C)) (2.9)
wherem; is the part of the itinerary that can only be revealed to ptlatfi.

This mechanism prevents any tampering with the mobile ageaeC that deals with
the decryption of the itinerary data. However, an attackighirstill insert arbitrary data in
the protected itinerarf. All it would require is the inclusion of a hash 6falong with the
bogus data to be encrypted and inserteD.in

To prevent this kind of attack, Ametll@t al. propose verifying the validity of the data
extracted from the protected itinerary as follows:

1. A random pair of cryptographic keys is generatéd]; the public key, and,, the
private key.

2. The public keyP, is inserted in the agent’s main co@g(e.g. as a static data mem-
ber).

3. The private keyS, is used to sign every platform-specific code or data included

the protected itinerary. Thus, the previous equation 2r8ptaced by

d; = P;(Ss,(mi), H(C)) (2.10)
whereSs, is a digital signature using the private k8y.

4. The agent’s main cod€ is modified to verify the validity of the itinerary data as

follows:

(a) The platform’s public decryption function is called adyptP; (Ss, (m;), H(C)).
This operation can only succeed if the cdddas not been modified after the

agent creation.
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(b) The cryptographic service returfis, (m;) to the agent, and the signaturerof

Is verified using the public key, inserted in the main code.

This mechanism prevents any manipulation of the agenttepted itineraryD. The
main agent cod€ cannot be modified because its integrity is verified by théfqian’s
cryptographic service, and verifies the authenticity of the data extracted frbpwhich

must have been signed by the agent developer.

2.4 Conclusions

Research efforts in the field of mobile agent security have loggte intense over the last
decade. Regarding the protection of platforms from agenttereal attacks, several sound
solutions have been presented. The problem of malicious attacking an agent is by far
the most difficult to solve. Although achieving a completéuion is considered impos-

sible, protocols have been presented that mitigate sepesdlems. The most relevant
proposals address the protection of the agent’s itineradythe protection of the results
generated during the agent execution. These advances Bawdtpd the use of mobile

agent technology to implement multiple distributed apatiens. However, some problems
still remain unsolved and need to be addressed. In the flipahapters, we will cover the

protection of the itinerary of free roaming agents, the preon of external replay attacks,

and the simplification of the development of secure mobiknésg)
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Chapter 3

Defining the agent’s itinerary

In the previous chapter, we have seen that several protbewis been proposed for the
protection of the agent’s itinerary. These protocols atealg based on storing the itinerary
information in a separate data structure, and then on usymagraphic mechanisms to
protect this data structure. When the itinerary informatsostored and maintained outside
the main agent code, the itinerary is said toeyglicit, and its protection is significantly

simplified.

The itinerary protection protocols presented to date dosanpport the protection of
free-roaming agents. Agents are thus forced to tratagicitineraries, that is, itineraries in
which all platforms are known in advance. However, most riecdjent-based applications

are devised usindynamicitineraries, in which some platforms are discovered atinueit

One of the goals of this thesis is to provide a solution to pineolem. For this purpose,
first of all, this chapter presents a convenient way to defkpi@t itineraries for free-
roaming agents. As will be seen, using explicit itineratiesreate free-roaming agents
promotes the reuse of these itineraries and simplifies gretection. Then, in chapter 4,

we will present a protocol aimed at protecting dynamic ranes.

23
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3.1 Related work on defining agent’s itinerary

Mobile agent itineraries have been implemented in diffeveslys depending on the com-
plexity and flexibility required by the application. The fiegpproach was to merge tasks
and migration instructions into a single code, so that et@si was followed by a migra-

tion instruction to move the agent to its next destination.ewthis approach is taken, we

say that the itinerary ignplicit in the agent code.

In order to improve the readability, reusability and preaddity of code,explicit itin-
eraries were later introduced in [WPW7]. In this case, the agent code is divided into
stages, where each stage is usually executed on a diffdegfatrpn, and the information of
all itinerary stages is stored in a separate data struciire agent’s explicit itinerary may
only contain information regarding only the locations tovisted by the agent. However,
the itinerary usually includes every platform-specific e@hd data as well. From now on,
we will use the terrmodeto refer to a stage of the agent’s itinerary which is assediat

with a specific task and platform.

The data structure that contains the agent’s explicit iinecan be managed by the
platform (thus following a platform-driven approach), bcan be managed by the agent
itself, by executing a code that is common to all platformshaf itinerary (agent-driven
approach).

First explicit itineraries were sequential [WP\&7], which involves that all platforms
were visited one after the other, in the order initially sped by the programmer. For
example, a sequential itinerary could be that of an agenttioers some flowers first, then
buys a ticket for the theatre and finally reserves a table estaurant. The disadvantage
of sequential itineraries is their lack of flexibility. They not allow the programmer to
define alternative routes, or routes that can be travellathynorder, among others.

In order to overcome these limitatiomgxible explicititineraries were introduced in
[SRM98]. Flexible itineraries are composed of differentadgmf nodes. These node types
allow agents to make decisions about their travel plan aima, based on their previous

computations or on other parameters. As an example, thrée types were defined in
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[SRM98]: thesequencewhere the agent has only one possible destination afteutient
node, so no decision needs to be madealternative where the agent can choose its next
destination from a set of platforms; and gef where the agent has to visit all the platforms

of a set in any order.

However, as can be seen, no proposal presented so far altogiapmers to define
explicit itineraries for free-roaming agents, which inwes discovering the location of one
or more platforms at runtime. As mentioned earlier, the Usexplicit itineraries signif-
icantly simplifies the protection of every platform-specifode and data. Therefore, the
next section presents a new set of node types for the defirofiaclynamic itineraries. In
chapter 4, a protocol will be presented for the protectiothese itineraries.

3.2 Explicit itineraries for free-roaming agents

As stated earlier, flexible itineraries are comprised diedént types of nodes. It is worth
noting that our usage of the temodeis quite different from that found in computer net-
works terminology, where a node simply refers to a locatiorthe network. Here, an
itinerary node is a stage of the agent execution that is &gedcwith a certain task and a
certain platform. This platform, however, does not necdlgdaave to be specified at the

time of creating the agent; it can be determined by the ageonhéime.

In order to represent the itinerary of a mobile agent, we ugeaphical notation in
which each node type is depicted by a different symbol. Thefsgymbols we use will be
presented later. Figure 3.1 shows the representation afamme itinerary comprising a

(D—(2)—(2)

platform A platform B platform C

sequence of three nodes.

Figure 3.1: Example itinerary with three stages or nodes.
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As shown in the figure, each node is associated with a nunhéliatifier, which ap-
pears inside the node’s symbol. The name placed under eaeghis@an identifier of the
execution platform, which could be its hostname, for exampi this case, the agent first
visits platformA and executes the task assigned to node 1. Then, it visifepraB and
executes the task assigned to node 2; and so on.

This section presents a new set of node types devised tovadwe aims: First, en-
abling the definition of the agent’s itinerary with the sanexithility that general purpose
languages provide to control the execution flow of a progr&econd, enabling the defi-
nition of nodes associated with platforms determined aiman The resulting set of node

types is described next.

Sequence:In this type of node, the agent simply executes the local émskmigrates to
the platform associated with the next itinerary node. InrigB.1, we have seen an
example itinerary with thresequenceodes. As this figure showsequenceodes

are depicted by the symbCl

If: Theif node has a subitinerary associated with it, which is corepr#f one or more
nodes of any type. The local task of this node includes a noetat is executed to
decide whether or not the agent must traverse said sulatindfigure 3.2 shows an
example itinerary with twgequenceodes and aii node. Thef node is depicted by

the symbokl. In this example, the subitinerary associated withitheode contains

(2)
=N

platform A platform C

only one node.

Figure 3.2: Example itinerary with ah node.

As shown in the figure, the agent first visits platfodrand executes the task assigned
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to node 1, which decides whether or not to enter the subétmerssociated with node
1. If the agent decides to do so, it will execute the tasks des@® and 3 on platforms
B andC respectively. Otherwise, it will hop directly to platfor@ito execute the task
of node 3.

Switch: Theswitchnode has two or more subitineraries associated with it. dbal task
includes a method that chooses which subitinerary mustlversed next. Figure 3.3
shows an itinerary with awitchnode and two subitineraries associated with it. The
switchnode is depicted by the symbal

@ ‘z] / platform C
% — —
platform A platform B\ @

| platformD |

Figure 3.3: Example itinerary withswitchnode.

As shown in the figure, when the agent visits node 2, it musbs@avhich node
must be visited next: 3 or 4. Depending on the choice, thetagiérend its itinerary
performing the task assigned to node 3 or the one assignextitoh

Set: The setnode also has two or more subitineraries associated witlnitthis case,
however, after executing the local task assigned to thignall subitineraries are
traversed by the agent. This traversal can be done in segueme subitinerary after
the other (in any order), or it can be done in parallel, sepdirtlone of the initial
agent to each subitinerary. Whether this traversal is dompaiallel or in sequence
depends on the final implementation. Figure 3.4 shows an gbeaitmerary with a
setnode associated with two subitineraries. In this case, btleesubitineraries has
two nodes. Theetnode is depicted by the symbal

As this figure shows, the agent can either visit nodes 2 and@lzen visit node

4, or it can do the opposite: visit node 4 and then nodes 2 aeBending on the
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A -G

: 1 platform B platform C @
platform A\ @ platform A

platform D

Figure 3.4: Example itinerary withsetnode.

implementation, the agent could even clone itself in nod® that both subitineraries
were traversed in parallel. This example also shows thaagsat’s itinerary can
include platforms that are visited in more than one nodehisc¢ase, platformd is
visited in nodes 1 and 5.

Loop: Theloopnode has only one subitinerary associated with it. The dgshvisits the
loopnode, and then it traverses said subitinerary repeatedligr #ach iteration, the
agent returns to thimop node, where it executes the local task and decides whether
or not to perform a new iteration. Figure 3.5 shows an exanmtipkrary with aloop
node and a subitinerary composed of two nodes. [dbp node is depicted by the
symbolO.

/ OO |
L )

platform A platform D

Figure 3.5: Example itinerary withlaop node.

As shown in the figure, the agent first executes the task assignnode 1 and de-
cides whether or not to enter the subitinerary starting derta If it chooses not to
do so, it will migrate directly to platfornD, and such subitinerary will never be tra-

versed. Otherwise, the agent will travel to platforBiandC, and then it will return
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to A. In platformA, the agent will decide again whether or not to enter the fahg

subitinerary, thus starting the whole process again.

Discoverer: Thediscoveremode also has a subitinerary associated with it. This subiti
erary can contain nodes that do not have an assigned plaitfidratly. Thus, these
nodes are calledynamically locatechodes, and they have no associated platform at
the time of creating the itinerary. A dynamically locatedleas not a different node
type. Itis introduced into the itinerary using a specialgaxty that can be set on any
type of node: thelynamic locatiorproperty, which will be described in detail in the
next section. Theliscoveremode determines where the dynamically located nodes

will be visited.

Figure 3.6 shows an itinerary withdéscoveremode and a dynamically located node.
Thediscoveremode is depicted by the symbd) and the dynamically located node is
depicted by replacing the platform’s name by the symbol Biedynamic location

property is set on aequencaode in this example, but it could be set on any other

Gl—| () | =()

platform A # platform B

type of node.

Figure 3.6: Example itinerary with@iscoveremode
and a dynamically located node.

In the example of figure 3.6, the platform where node 2 will sted is not known
at the time of creating the itinerary. Thus, node 2 hagdyreamic locatiorproperty
set. In node 1, the agent will execute a task that will deteenwhat platform is

assigned to node 2.

The set of node types presented so far provides a flexible srigatefining the agent’s
migration flow. In order to use these node types, the progranshould not introduce

any migration from one platform to another within the locsk of a node. Thus, for the
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sake of clarity, migrations should only take place durirgttiansition from one node to the
next. In the next section, we will describe two node speadiapprties that are necessary
to introduce dynamism into the agent’s itinerary: ty@mamic locatiorproperty, which has

already been introduced, and tinechanged locatioproperty.

3.3 Node special properties

In this section, we describe thenchanged locatiomproperty and thedynamic location
property, which allow programmers to create itinerary rsoitie task of which is executed

on platforms that are determined at runtime.

3.3.1 Unchanged location property

Theunchanged locatioproperty is used to specify that the task of a node will be etest
on the previous platform visited by the agent. This impliestt after executing the local
task, the agent performs no migration and resumes its arecah the same platform
where it was being executed.

An example of the use of this property can be seen in figure Bhé unchanged lo-
cationproperty is depicted by replacing the platform’s name byftaalgow (<-), meaning
“same as previous”. In this itinerary, the agent visits nddsdter finishing any of the two
subitineraries associated with teaitchnode 1. As node 4 has theachanged location
property set, this node will be visited in platfofBhor C depending on the decision made
in node 1. Thaunchanged locatioproperty is set on aequenc@ode in this example, but
it could be set on any other type of node.

This property is especially useful when it avoids perforgnunnecessary migrations.
An example of this situation can be seen in figure 3.8. In thgecthe programmer wants to
evaluate the loop condition on platforithe first time, and then on platfor@subsequent
times. By setting theinchanged locatiomproperty onloop node 2, the programmer is

relieved of the need to introduce an additional platforno itite agent’s itinerary for the
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Figure 3.7: Example itinerary with thenchanged locatioproperty set on a node.
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Figure 3.8: Use of thenchanged locatioproperty on doop node.

evaluation of the loop condition. As a result, no migratiemeeded to reach node 2 and

decide whether a new iteration has to be started.

3.3.2 Dynamic location property

The dynamic locatiorproperty, as mentioned earlier, is used in combination disicov-
erer nodes in order to allow agents to visit platforms discoveaeduntime. Theliscov-
erers local task determines what platform is assigned to theadyoally located nodes.

Figure 3.9 shows an example itinerary in which the agent dassit two discoverer
nodes and two dynamically located nodes. In this casejyhamic locatiomproperty has
been set on aifi node and sequencaode.

The itinerary of figure 3.9 could be that of an agent sent otdintba cheap flight and
hotel for a business trip. First of all, the agent queriesnaaote search engine in order to
find an airline company offering flights to a certain desimainode 1). Once the airline
company is found, the agent migrates to this company’s@iatiand searches for a cheap
flight that fits within the budget (node 2). If such flight is fal) the agent buys the ticket
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Figure 3.9: Itinerary of a shopping agent that includes diszoverer
nodes and two dynamically located nodes

and queries the remote search engine again to find a chedprhtite destination (node
3). Once the hotel is found, the agent migrates to the hgid$orm to negotiate a good
price for the stay. After booking the hotel, the agent resumthe home platform. As can
be seen, the tasks of nodes 2 and 3 are executed on the safoepahce node 3 has the
unchanged locatioproperty set.

It is worth noting that, by placing all dynamically locateddes inside the subitinerary
of adiscoveremode, the programmer is prevented from defining faulty ranes in which
the agent would have to migrate to a dynamically located rtbde had no associated
discoveremode.

Thedynamic locatiorproperty and theliscoveremode can also be used in combination
with other node types in order to define the itinerary of a cletaty free-roaming agent.
An example of such itinerary is shown in figure 3.10. In thiseathe agent developer
only specifies the starting point of the itinerary, where digent must be sent to start its
execution. The rest of the agent execution takes place ¢foptes discovered at runtime,
and the agent can visit as many platforms as necessary intordecomplish its task.

As shown in the figure, the agent assigns a new platform to Aadesach iteration of
theloop node 2. On each of these platforms, the agent executes theftasde 4 and,
in addition, the tasks of nodes 2 and 3. The task of node 2 shebkther the agent has
finished its itinerary and, if that is not the case, the taskade 3 determines where to

migrate next.



3.4. IMPLEMENTATION ISSUES 33

asoll

#

(D~

platform A <

Figure 3.10: Itinerary of a completely free-roaming agent

In addition to the functionality presented so far, thiscoveremode can also be used
to assign multiple platforms to one or more dynamically tedanodes. In the example
itinerary of figure 3.9, the agent could decide that sevevtdls have to be visited in order
to negotiate the best price for the stay. In this case, thesask would be executed in all
hotels.

Furthermore, the itinerary associated witldiacoverernode can contain several dy-
namically located nodes, as shown in the example of figurg. 31 this case, the agent

may assign two different sets of platforms to nodes 2 and 4.

RIORONO
platform A # platform B #

Figure 3.11: Example itinerary with two dynamically locdi@odes
associated with the sandéscoveremode.

3.4 Implementation issues

Thus far, we have provided a theoretical description of ad6abde types and properties
aimed at allowing programmers to define dynamic itinerariés this section, we will
present some considerations regarding the implementafidhese itineraries and their
corresponding agents.

First of all, the information of the explicit itinerary carelstored inside the agent in

multiple ways. If no security is required, the itinerary daa carried by the agent in a
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data structure such as the one represented by the followimiggsion. This expression

corresponds to the itinerary of figure 3.5.

I = | (1,my,loop,[(B,2),(D,4)]),(2,ms, seq, [(C,3)]),
(3,m3, seq, [(A, 1)), (4,my, seq, [} |

As this expression shows, the explicit itinerary is stroetuas a list, where each el-

(3.1)

ement contains the following information; the node’s numeric identifiern;, the task
associated with node type, the node type; anlocation;, j] - - - [locationy, k]|, the list of
locations and identifiers corresponding to the subsequaids) - - - k.

The data structure that contains the explicit itinerary lsbamrmanaged by the platform,
following a platform-driven approach, or it can be managgdhe agent itself, following
an agent-driven approach.

In the first case, the platform accesses the agent’s expii@tary to obtain the local
task that has to be executed and the subsequent platforne weagent has to migrate
next. In the second case, all these operations are perfdognéie agent by executing a
code that is common to all platforms. We refer to this coddnasaggent’sontrol code

In order to implement agents using the set of node types pi@es$én this chapter, the
agent-driven approach is preferable, for it allows platfsto manage all agents in the same
way, without knowing how they are internally structured.isTis especially important as
there may be different ways of storing the explicit itingrarside the agent, and there may
be multiple ways of protecting the data structure that dostauch explicit itinerary.

Whether using a platform-driven or an agent-driven approdiffierent alternatives can
be considered when implementing the behaviour associdatbgame itinerary nodes.

Regarding theetnode type, the implementation can generate several clories/erse
the different subitineraries associated with this nodetherimplementation can traverse
all the subitineraries in sequence. The sequential apprcat be used to implement fault-
tolerant mechanisms, so that if the agent encounters pnstgearting a certain subitinerary,
it can try with another and return to the problematic onerlaiée cloning approach can

be used to parallelise the execution, thus increasing ttierpgance of the application.
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Regarding theliscoveremode, it might be the case that the agent was not able to assign
a platform to a certain dynamically located node. Differgindtegies may be implemented
to deal with this situation, such as aborting the executrgkipping that node and con-

tinuing with the subsequent one, among others.

3.5 Conclusions

The dynamic locationand unchanged locatiorproperties, in combination with thee-
guenceif, switch set loop, anddiscoveremodes previously presented, comprise a com-
plete solution for the definition of flexible explicit itin@ries for free-roaming agents.

Although this set of node types and properties has beenatbwsbe a general pur-
pose one, new node types or properties can be added in thre,ffu example, to meet
the specific requirements of a certain application, andwuhilishave no real effect on the
protection protocols presented in chapters 4 and 5.

The use of flexible explicit itineraries divides the designnwbile agents into two
different levels: global, where the programmer designsnthgratory behaviour of the
agent; and local, where the programmer defines the agetis/lmir at each of the steps
of its travel. As a result, the implementation of mobile agmpplications is significantly
simplified.

Defining agents based on flexible explicit itineraries hagoadvantages as well. First
of all, the itinerary is easier to reuse, for the differersig&ts of the itinerary are clearly
separated and can be easily modified or changed for thoséef agents previously im-
plemented. Second, the data structure that stores theitigerdary can be protected using
cryptographic mechanisms. Therefore, the set of node typegroperties defined in this
chapter provide a convenient way to define itineraries feedfroaming agents. The next

chapter will be devoted to presenting a protocol for thequtibn of dynamic itineraries.
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Chapter 4
Securing dynamic itineraries

The advances in mobile agent security have provided solitio many of the problems
initially identified, such as the protection of platformsaagst malicious agents, or the
protection of the agents’ computational results, amongrsthNevertheless, as mentioned
earlier in chapter 2, some issues still must be addressestlymegarding the protection of

agents against malicious platforms [JKOO].

Several proposals have been presented to prevent platfoomstampering with the
code carried by the agent or with the results generated bgx#sution. Regarding the
protection of the agent code, the most widely accepted galp@re based on using itin-
erary protection protocols [WSUKO0O, MB03]. These protocde public key algorithms
to encrypt the information intended for each itinerary folah. Thus, the information that
becomes visible to a platform is reduced to a minimum: thenggeurrent task and the

next destination.

However, itinerary protection protocols presented to dalg support static itineraries
because the public key of each itinerary platform must bevknim advance. As a result,
current developments still cannot take full advantage etibnefits provided by the mobile
agent technology. This is compounded by the fact that mosilsnagent applications are
devised using dynamic itineraries. Examples of these egiobns can be found in many
areas: grid computing [KBD02], data mining [KLMO03], networ&uting [MV07], P2P

37
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networks [LFO06], sensor networks [WQO04], intrusion detattsystems [HNO5], ad-hoc
networks [LCT 05], among others.

In order to support free-roaming agents, this chapter ptesa protection protocol
based on introducing trusted locations into the agent'seroliraditional approaches as-
sume that all platforms are potentially malicious, but thekes the protection of dynamic
itineraries unfeasible. By introducing some trusted platf® into the itinerary, the pro-
posed protocol secures the information associated withmyeally located nodes. Before
presenting such protocol, the following section discusdest assumptions are made when

the programmer incorporates a trusted platform into thetsgginerary.

4.1 Assumptions made with regard to trusted platforms

When the programmer introduces a trusted platform into tlea@gitinerary, he believes
that the agent’s task will be executed on that platform agetqal. The protocol presented
in this chapter assumes that, if the programmer trusts aingatatform, then this platform
will execute the agent’s task honestly. For example, if ttagpammer decides to execute
the task of doop node on a trusted platform, then it is assumed that suchoptatévill
execute the loop condition included in this task honestlyafesult, the agent will perform
the expected number of loop iterations.

Moreover, itis assumed that the agent platform and the ctenfiuuns on are protected
with appropriate mechanisms so as to prevent attacks franoh plarties that might alter
the agent execution. In this case, security greatly dependte mechanisms provided
by the operating system and the good design of associatéocpte. The study of what
mechanisms are required to guarantee the secure exectitioe agent platform is out of
the scope of this thesis.

The proposed protocol also assumes the existence of atyantrastructure that allows
agent developers and users to determine whether a platfotnustworthy or not. An
example of such infrastructure can be found in [TMO1]. Irstork, the authors describe

a security framework for a mobile agent system which incoafes a simple trust model.
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Such model is based on establishing trust relationshipsmarner similar to that used in
public key infrastructures to handle distributed autheation.

The identification of trustworthy platforms can also be grded on simpler mecha-
nisms, such as relying on real-world trust relationships. éxample, the platform associ-
ated with a bank where the user has an account, or the platformwhich the agent was

first launched, can be safely introduced into the agentisiifiry as trusted platforms.

4.2 Notation

Before presenting the proposed protocol, we will descritst fire notation used.

n denotes the total number of itinerary nodes.

e p, denotes the platform assigned to nade

e m; denotes the agent’s code and data to be executed ininode

e h; denotes the address of platfogpm

e P, denotes an asymmetric encryption function using the puielycof platformp;.
e S; denotes a digital signature function using the private Keylatform p;.

e F, denotes a symmetric encryption function using the secret ke

e H denotes a cryptographic hash function.

e a;--- A; denotes the set of direct successors.ofor example, ifi is a setnode
associated with three subitineraries, thdras three direct successors, and thus the
seta; - - - A; has three elements.

e b, --- B; denotes the set of direct predecessors of

e If 7is adiscoveremode, then
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— ;- -- L; denotes the set of all nodgsuch that:, is discovered in node

— bl; - - - BL; denotes the set of all direct predecessors of ngdesL;.
e If 7 is a dynamically located node, then

— d; denotes theliscoveremode wheré; is discovered.

— hg, denotes the address of the platform assigned to rdpde
e If 7is not a dynamically located node, then

— d; denotes the agent owner.

— hg, denotes the address or identifier associated with the owner.

e odenotes the agent owner. Note that the owner can be referesd br d;. However,
d; denotes the owner only whens not a dynamically located node. Otherwise, it
denotes thealiscoverernode whereh; is discovered. On the other handalways

denotes the agent owner.

4.3 The protocol

This section presents a protocol aimed at protecting flex@gplicit itineraries constructed
with the set of node types described in chapter 3. This pobfmersues three main objec-

tives:

Integrity: Platforms must not be able to modify the agent’s itinerargatactably.

Confidentiality: Platforms must not be able to access itinerary informatanesponding

to other platforms.

Authenticity: Platforms must be able to verify the identity of the agent ewn
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The proposed protocol is based on the protocol presentedisnd Borrell in [MBO03].
The main difference between their approach and the propmseds the support fodis-
coverernodes, thelynamic locatiorproperty and theinchanged locatioproperty, which
enable the definition of free-roaming agents.

The general idea behind the proposed protocol is to consrebain of digital en-
velopes, each of which containing two elements: the datd tla@ encrypted key that al-
lows decrypting the following envelope. A representatibthes scheme is shown in figure
4.1.

1 2 3 4
keyl Data E key2 Data key3 Data key4 Data
Pa(key2) — P3(key3d) — P4(keyd) null

Figure 4.1: Representation of a chain of digital envelopes.

The envelopes shown in this figure represent the entrieggrbtected itinerary. Every
envelope is encrypted using a random symmetric key, andsgimsnetric key is in turn
encrypted using the public key of the platform entitled t@phe envelope. Thus, each
envelope can only be decrypted by the intended platform.

Additionally, the envelopes can only be opened in the coweder, for the symmetric
key used to decrypt an envelope is protected inside thequsénvelope.

The problem of protecting dynamic itineraries is that nbpablic keys are known in
advance. This makes it impossible to build a chain of digtalelopes as the one previ-
ously described. More specifically, the platforms assigiwedynamically located nodes
are discovered by the agent at runtime, in the correspordistgveremodes. Therefore,
the public keys of the platforms assigned to dynamicallyated nodes are not available
when the protected itinerary is initially created.

In order to solve this problem, the protocol proposed in thiapter is based on pro-
tecting the information of dynamically located nodes udimg public keys of their corre-
spondingdiscoveremodes. Then, when the agent visitdiscoveremode, the public keys

of the newly discovered platforms are used to rebuild thégoted itinerary. This scheme
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involves changing the chain of digital envelopes, as showigure 4.2.

1 2 3 4
Data
E ¥ key? Data key3 Data S reya Data
keyl Pa(key2) 4 P5(key3) - blank .-/ null
key3 — | / Z
key4 .
. Dynamically
Discoverer located node
node

Figure 4.2: Modified chain of digital envelopes to suppomayic itineraries.

As this figure shows, the envelope associated withdiseoverernode contains two
additional symmetric keys: First, the one used to encryptdymamically located node
(keyd; and, second, the one used to encrypt the predecessor di/tlaenically located
node key3. When the agent visits thdiscoveremode 1, it determines where to visit node
4, and it uses the public key of the newly discovered platfasrancryptkey4 Thus, the
agent generateB,(key4). Then, it usekey3to rebuild the envelope 3, in order to replace
theblankwith Py(key4).

As a result, the protocol presented in this chapter allowg@mmers to create pro-
tected itineraries with dynamically located nodes. Thigsrapch, however, requires agents
to execute the tasks discoveremodes on trusted platforms, and also requires these trusted
platforms to be known in advance.

The construction of the protected itinerary, and then theragmons required to handle
such itinerary are presented in the following sections. ddrabined actions comprise the
itinerary protection protocol which supports free-roagnagents.

4.3.1 Building the protected itinerary

Regarding the construction of the protected itinerary, 6fsll, a random symmetric key

is created for every itinerary node. Thus, the followingafdteys is obtained:

T’l...’r‘n
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Next, for each possible migration from a nade any of its successoygse {a; - - - A;},
the transitionfrom i to j (¢;;) is generated. The value of this transition depends on which
property, if any, has been set on node

If neither theunchanged locatiomor thedynamic locatiorproperty has been set on

nodey, then the transition;; is computed as follows:
tij = j, hj, Pj(So(id, 7"]', hdj>7 de (Zd, h])) (41)

As shown in the above equation, the transition froto j contains the random sym-
metric keyr; associated with nodg This random symmetric key will be used to encrypt
the entry (or envelope) of the protected itinerary assediatith nodej. In order to ensure
that only platformp, has access tg;, this symmetric key is encrypted using the public key
of platformp; (see figure 4.1).

Additionally, t;; includes other information that is used to prevent malisiowanipula-

tions of this transition:

e First, it includesh,,, which is the owner’s address or identifier becagise not a

dynamically located node.

e Second, itincludesy;, (id, h;), whered; is the owner becausgis not a dynamically
located node. By introducinky; into the transition, platfornp; will be able to verify

that nodej was certainly assigned to platform.

e Finally, t;; includes a unique agent identifief that is used to prevent replay attacks.
The prevention of replay attacks will be covered in detaitiapter 5. As can be
seen, this trip marker is included twice, so as to bind togrefy(id, r;, hy,) and

Sq,(id, h;), and prevent their reuse in other agents.

As can be seerid, r; andh,, are signed by the owne6(), so that platformp; will be
able to verify the identity of the agent owner and the intggof this information.
The expression shown in equation 4.1 is used to build th@sesitionst,; in which

node; has neither thenchanged locationor thedynamic locatiorproperty set. If nodeg
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has thedynamic locatiorproperty set, then the transitiey) is computed as follows:

As can be seen, the expressignP;(S,(id, r;, ha,), Sq, (id, h;)) is replaced by the spe-
cial value blank’. This is due to the fact that; is not known at the time of creating the
itinerary, and the public key needed to compi}eS,(id, rj, hq; ), Sq, (id, h;)) is not avail-
able either (see envelope 3 of figure 4.2). As explained imthe section, this transition
will be rebuilt at runtime in theliscoveremoded; associated withj.

If node j has theunchanged locatiomproperty set, then the value of depends on
which property, if any, has been set on naddf neither theunchanged locatiomor the
dynamic locatiorproperty has been set on nogehen the transition,; is computed as
follows:

tij = J,hi, Pi(S,(id, 75, ha,), Sq; (id, h;)) (4.3)

As shown in the above equation, the transitigns equivalent to that shown in equation
4.1. The only difference is thdt; is replaced withh; because the agent will visit noge
in the same platform assigned to nadd-or this same reason, this transition is encrypted
using the public key of platform,;.
If both nodesj andi have theunchanged locatioproperty set, then equation 4.3 must
be replaced with
tij = J,he,, Po,(So(id, 75, ha,), Sq, (id, hy,)) (4.4)

The equivalent change should be made in the above expragsiode b; had theun-
changed locatiomproperty set as well.

Finally, if nodei has thedynamic locatiorproperty set, and nodghas theunchanged
location property set, then the transitiaf} is computed as shown in equation 4.2. Note
that, in this case, nodgis treated as a dynamically located node because its tabkevil
executed on the platform assigned to nodéruntime.

Once all transitions;; have been created, the protected itinerary is construstéol-a
lows:

I = to1,[e1-- e (4.5)
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platform C #
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platform A < platform D

Figure 4.3: Example itinerary withlaop, adiscovererand a dynamically located node.

wherety; = 1, hy, Pi(S,(id, 1, hay ), Sa, (id, hy)) is the transition needed by the agent to
decrypte; in the first platform of the itinerary. The value of each entrglepends on the
type of node. If i is not adiscoveremode, there; is computed as follows:

€ = Em(So(ida iv my, typez)v [tl a; " tZAz]) (46)

As this equation shows, every entrycontains a unique agent identifiéd), a node identi-
fier (i), atask {n;), a node typetfype;), and a list of transitions from nodeo its successors
a; - A ([tiai e tiAi])-

If 7 is adiscoveremode, therg; is computed as follows:

e, = L, < So( 1d, i, my, discoverer,

4.7)
[SO(idv Tl hl) e SO(id7 TLis hZ)]v [Tbli o 'TBLi] )v [ti ai] )

As this equation shows, contains only one transitiofy,, because is adiscoveremode
and has only one direct successor. In additignncludes two lists:[S,(id, r,, h;) - - -
So(id, rr,, h;)] and[ry, - - - rg1,]. If we draw an analogy between the contents,aind the
first envelope shown in figure 4.2, then the first list is edenatokey4 and the second list
is equivalent tckey3 As will be seen in the next section, the first list contairesgsgimmet-
ric keys needed to rebuild the transitions to the dynanydattated nodesi{- - - L;), and
the second list contains the symmetric keys needed to dettrg@ntries of the protected
itineraryey;, - - - epr,, Where the newly generated transitions will be included.

In order to exemplify the creation of a protected itinerdigure 4.3 shows an example

itinerary comprised of six nodes, one of which i¥ap, another one is discoverey and
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the remaining ones aequenceodes. Applying the proposed protocol to this itinerary
would yield the following protected itinerary.

id) 17 my, SBQ), [tlQD> Erg (So(ida 2a ma, lOOp)a [t237 t26])7

id7 37 ms, diSCOUeTeTy [So(ida s, B)7 So(ida T2, B)]7 [T47 715})7 [t34])7

id) 47 my, SBQ), [t45D7 ET5 (So(idu 5a msg, Se(])a [tSQ])a

&3

/N N N /N
003

/N N N /N

1d, 6, mg, 36(])7 H)
(4.8)

where

ton = 1, A, Pi(S,(id,r1,0),S,(id, A)) , t1o = 2, A, Py(S,(id, r2,0),S,(id, A)) ,

tos = 3, B, P3(S,(id,r3,0),S,(id, B)) , tsg = 4,C, Py(S,(id,r4,0),5,(id,C)) ,

tys = 5,blank , tso = 2,blank , tog = 6, D, Ps(S,(id, r6,0), S,(id, D))

As these expressions show, the proposed protection of fieiextinerary attains the
objectives initially established.

With regard to authenticity, the symmetric keys - - r,,, which are used to encrypt the
entries of the protected itinerary, are digitally signedty agent owner. Additionally,
m;, andtype; are also signed to prevent their modification in dynamicklbated nodes.
Thus, the authenticity of every itinerary entry can be vedfi

The authenticity of the itinerary entries ensures that&#es can neither generate their
own entries nor modify existing ones. Entries cannot be radeither because remov-
ing an entrye; implies removing the key,, that allows to decrypt the subsequent entry
eq;- Furthermore, the unique agent identifiérprevents the reuse of entries previously
generated by the same owner. Therefore, the integrity optheected itinerary is also
guaranteed.

As for the confidentiality of the itinerary information, édasymmetric keyr; is en-
crypted in such a way that it can only be decrypted by platfpymThus, platformp; is
only allowed to decrypt;, and all other itinerary entries remain hidden. The contidéty
of itinerary entries is thus guaranteed as well.

Additionally, every transition to a given nodencludes the addregs of the platform

assigned ta. Thus, platforms can verify that they were certainly pathefinitial itinerary.



4.3. THE PROTOCOL a7

Regarding the dynamically located nodes, their informatsomitially accessible to
their correspondingliscoveremodes, and remains hidden to the remaining nodes. There-
fore, provided that the platforms assigneditscoveremodes are trustworthy, the authen-
ticity, integrity and confidentiality of dynamically locad nodes are achieved.

It is also worth noting that the platforms assignedliecoveremodes must be known
initially, for their addresses must be signed by the owneriatroduced into the protected
itinerary (see equation 4.7).

In order to understand how the protected itinerary is hahdhe next section describes
the operations required to (1) verify that the itinerary nas been tampered with; (2)
extract and execute the local task; and (3) rebuild the ptedeitinerary at runtime to

enable the execution of the tasks assigned to dynamicaigtdd nodes.

4.3.2 Management of the protected itinerary

The steps required to manage the protected itinerary dtmartepend on the type of node
that the agent is visiting. The following is the set of oprenas that must be performed

when the agent is not visitingdiscoveremode.

1. Leti be the current node, and kgt {b; - - - B;} be one of the predecessors oThen
the transitiont,; placed at the beginning of the protected itinerary is delegpising
the platform’s private key. Thus,(id, ;, ha,), S, (id, h;) is obtained. For example,
in the first platform of the itineraryty, is decrypted and,(id, 1, 0), S,(id, hy) is
obtained.

2. The signature of,(id, r;, hy,) is verified, and if this verification does not succeed,

the agent execution is discarded.

3. The signature ofy;, (id, h;) is verified, and if this verification does not succeed, the
agent execution is discarded. Note that, ig not a dynamically located node, then

d; 1s the owner. Otherwisel; is thediscoveremode associated with
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The agent identifieid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is ditechr

. h; is compared with the current platform’s address, in ordeetdy that the current

platform is certainly part of the initial itinerary. Withothis verification, the follow-
ing attack would be possible: Lgt be a malicious platform assigned to nodep,
decrypts the transitiot)_ , placed at the beginning of the itinerary. Therencrypts
ty. . @gain using the public key of platform, and sends the agentpa Platformp;
decryptst,. ., and ends up executing the task assigned to ndukrause it does not

realise that,_ . is actually intended for platform.,.

. ¢; is decrypted using;, thus obtainind S, (id, i, m;, type;), [tia, - - - t; 4,]) (S€€ €qUa-
tion 4.6).
. The signature of,(id, 7, m;, type;) is verified, and if this verification fails, the agent

execution is discarded.

. The agent identifieid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is ditechr

. The agent executes the current tagk If 7 is not asequenc@ode, the agent chooses

which of the following nodes must be visited next. Let us assthat the following

node to be visited by the agentdis

t;q; IS placed at the beginning of the protected itinerary, tleydacing the transition
tq: previously obtained in step 1.

The agent is migrated to platforpy,, where the execution of these steps is started

again.

When the agent has to visitdiscoveremode, the handling of the protected itinerary

requires several additional operations. Lié thediscoveremode. Then, first of all, a plat-

form must be assigned to each dynamically located hode L; associated with. Second,
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the transitions to nodés: - - L; must be rebuilt using the li§6, (id, r;,, h;) - - - S, (id, rp., h;)]
included ine;. Finally, the symmetric keys included in the lig;, - - - r5.,] must be used
to modify the corresponding entrieg, - - - ez.,. Thus, the old transitions initialised using
the special valueblank’ must be replaced with the newly generated transitions.

The following is a detailed description of all the operatonvolved.

1. The transition placed at the beginning of the protectie@rnary is decrypted using
the platform’s private key, thus obtainirtfy(id, ;, ha,), S, (id, h;).

2. The signature of,(id, r;, hy,) is verified, and if this verification does not succeed,

the agent execution is discarded.

3. The signature of,, (id, h;) is verified, and if this verification does not succeed, the

agent execution is discarded.

4. The agent identifieid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is ditechr

5. h; is compared with the current platform’s address, in orderetdy that the current

platform is really the one assigned to nade
6. ¢; is decrypted using;, thus obtaining the following information (see equation)4.

<So( id, i, m;, discoverer, [S,(id,ry,, hi) -+ So(id,rr,, b)), [To, - - - 7BL,] ), tia,] )

7. The signature of
So(id, i, my, discoverer, [Sy(id, 1y, h;) - - - So(id, 1, b)), [re, -+ - 7BL) )
is verified, and if this verification fails, the agent exeoutis discarded.

8. The agent identifieid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is ditechr
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9. The agent executes the current task As i is adiscoveremode, the agent deter-
mines what platforms are assigned to the dynamically lacateles. The agent is

thus discovering the platforms, - - - pz,.

10. Using the symmetric keys included in the lig}, - - - r51,], the entriesy,, - - - epy,

are decrypted and modified in order to replace the transittorthe dynamically

located nodes - - - L;. For this purpose, the following operations are performed:

(a) Letr. be one of the symmetric keys includedig, - - - r,]. Thenr, is used to
decrypte.. Thus,(S,(id, ¢, m., type.), [teca, - - - tca.]) IS Obtained (see equation
4.6).

(b) For each transitioh., € {t.,, --- t.a.} suchthay € {l;--- L;}, t., is rebuilt
as follows:
tey = Y, hy, Py(So(id, ry, hy), Si(id, hy)) (4.9)

whereS, (id, r,, h;) is included in the lis{S, (id, r;,, h;) - - - So(id, 1, h;)] that
was obtained in step @, is the address of platform, € {p,, - - - p, }, which
was discovered in step 9. Note that, in this case thediscoveremode asso-
ciated with nodey and, therefores;(id, h,) is signed using the private key of
Di-

(c) The new transitions.,, - - - t. 1, are substituted for the previous ones inside

11. The transitior, ,, obtained in step 6 is placed at beginning of the protectadriiry,

thus replacing the one previously obtained in step 1.

12. The agent is migrated to platfonm..

The steps described above show how the transitions to dgadlyniocated nodes are
rebuilt when the agent is visiting their correspondthgcoveremode. Thus, the agent can
visit these dynamically located nodes performing the sape¥aiions carried out in any

other node.
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The lists[S,(id, ri,, h;) - - - So(id,rr,, hi)] @and[ry, - - - 75L,], Which are required to re-
build the protected itinerary, are only available to tfiscoverernode. Therefore, the
information of dynamically located nodes is kept confidaindit all times. However, the
discoverernode must be associated with a trusted platform, in ordensure that the
information available to this platform is not maliciouslgad. Otherwise, a dishonest plat-
form could easily alter the code and data assigned to dyradigniocated nodes and their
direct predecessors.

In order to exemplify the management of a protected itingthe following steps show

how the protected itinerary of equation 4.8 is handled dytire agent execution.

1. The agent is migrated to platforf The transitiort,; is decrypted using\'s private
key, andS,(id, ry,0), S,(id, A) is obtained.

2. The signature of,(id, 1, 0) is verified.
3. The signature af,(id, A) is verified.

4. The agent identifieid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is dischr

5. Ais compared with the current platform’s address, in ordesetdfy that the current

platform is really the one assigned to nade
6. e is decrypted using;, andsS,(id, 1, m4, seq), [t12] IS Obtained.
7. The signature af,(id, 1, m,, seq) is verified.

8. The agent identifieid obtained in the previous step is compared with that obtained
in step 2. If they are not equal, the agent execution is dikschr

9. The agent executes; .

10. The transition,s = 2, A, P;(S,(id, 2, 0), S,(id, A)) is placed at the beginning of the
protected itinerary. Thus, the protected itinerary showequation 4.8 is replaced
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by:
I =t Er("'),"',Em("')] (4.10)

11. Node 2 has thanchanged locatioproperty set. As a result, the next platform of
the itinerary, which can be obtained fram, is A again. Therefore, no migration is

performed because the agent is alreadsx.in

These steps are now repeated to execute the task assigneda®n In this case,

however, step 9 requires an additional operation because 21 aoop:

9. The agent executes,. As the current node type isop, m, includes a method that

evaluates the loop condition and chooses which node mussibed/next: 3 or 6.

Let us assume that the agent decides to visit node 3, thusrentieeloop subitinerary.
When the agent is migrated to platform B, the following stesparformed:

1. The transitiony; is decrypted usind’s private key, andS,(id, rs,0), S,(id, B) is

obtained.
2. The signature af,(id, 3, 0) is verified.
3. The signature of,(id, B) is verified.

4. The agent identifieid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is dikschr

5. B is compared with the current platform’s address in orderetafy that the current

platform is really the one assigned to natle
6. ez is decrypted usings, and the following information is obtained:

(So(ida 37 mas, diSCOU@T’@T, [So(ida s, B)a So(ida T2, B)]a [7“4’ 7'5})7 [t34])

7. The signature of,(id, 3, ms, discoverer, [S,(id, s, B), S,(id, r9, B)], [r4,5]) IS ver-
ified.
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8. The agent identifieid obtained in the previous step is compared with that obtained

in step 2. If they are not equal, the agent execution is ditechr

9. The agent executes taslg. As the current node type discoverey ms includes a
method that determines where the tasks of nodes 5 and 2 wakéeuted. Let us

assume that the agent assigns nodes 5 and 2 to plaorm

10. Using the symmetric keys included in the [ist, 5], the entries,, e5 are decrypted
and modified in order to replace the transitions to the dynalyi located nodes 5

and 2. For this purpose, the following operations are paréar.

(a) e4 is decrypted using,, and(.S,(id, 4, my, seq), [t45]) iS obtained.

(b) t45 is rebuilt as follows:
t45 = 5,E, P5(So(id, T5,B),Sg(id, E)) (411)

Note thatS,(id, 5, B) has been obtained in step 63 is a digital signature
usingB’s private key, andP; is an asymmetric encryption function using the
public key of platformE.

(c) The entrye, is re-encrypted, replacing the previayswith the newly generated

in the previous step.

These same steps are now repeated usjritg decryptes;, and the previouss, is
replaced byts, = 2, E, Po(S,(id, r2, B), S3(id, E)).

11. The transitiors, is placed at the beginning of the protected itinerary.

12. The agent is migrated to platfoi@

The protected itinerary is managed in platfo@rby performing the same steps previ-
ously explained for node 1. Note that, once the transittgnandts, have been rebuilt in
node 3, the agent can visit nodes 5 and 2 as if they were nonhudgaHy located nodes.

The agent will eventually exit the loop (node 2) and will fimits execution on platforrD.
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As can be seen, the information associated with nodes 5 aiwia®saremains confi-
dential and immutable:z5 ande, are always protected with their corresponding symmetric
keys—5 andro,—which are protected insids.

Only platform B has access t8,(id, 5, B) and S,(id, r2, B), which are needed to
rebuild the transitions,; andts;. Moreover, only platfornB has access to the symmetric
keysr, andr; that enable the modification ef, ande;. Consequently, only platforrB
is allowed to determine where the tasks of nodes 5 and 2 wiéXeeuted, and to rebuild
the itinerary accordingly. Obviously, platfor® must be trusted by the owner, and the
proposed protocol assumes that this platform will not mothe contents oé,, e5 or e,.

It is worth noting that the contents ef ande, are signed by the agent owner. Con-
sequently, the platforms dynamically assigned to nodesi®?aare not allowed to modify
these entries of the protected itinerary. Otherwise, tHeviing attack would be possible:
Let us assume that nodes 5 and 2 were associated with plafforra given loop iteration,
and then they were associated with platfdenm the next loop iteration. As both platforms
Z andE are accessing the same entries of the protected itinerarghrde,—, platformzZ
could easily modify the tasks; andm, executed later on platfori. However, this attack
is not possible because these tasks are signed by the agsert ow

The operations previously described to construct the predeitinerary, together with
the steps described above to manage this protected itynemanprise the complete proto-

col aiming at protecting flexible explicit itineraries faek-roaming agents.

4.3.3 Discussion

The protocol presented in this chapter ensures the ingegrithenticity and confidential-
ity of dynamic itineraries. In order to achieve these olest, the protocol is based on
introducing trusted platforms into the agent’s itinerary.

The platforms assigned wiscoveremnodes are allowed to access the information as-
sociated with dynamically located nodes, as well as thermé&bion of their direct prede-

cessors. Therefore, the programmer must be confident st fhlatforms are not going to
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alter the code or data associated with these nodes.

The agent itinerary, however, can be defined in such a waathdgnamically located
nodes are placed immediately after their correspondiagoveremode. This allowslis-
coverernodes to rebuild the transitions to dynamically locatedesodithout needing to
decrypt the entries of their predecessors.

Including trusted platforms in the itinerary might be difficfor some specific applica-
tions in which each host of the agent’s itinerary was suppdséde potentially malicious.
However, this is not the case of most applications. More@ereral strategies can be used
to reduce the number of trusted platforms that must be ioted in the itinerary. First of
all, all discoveremodes can be associated with the same trusted platformtfeggent
home platform). Secondly, the agent itinerary can be defineich a way that the dis-
covery of new platforms and the reconstruction of the itamgrare conducted in different
platforms. Thus, the agent always migrates to the samesttysiaitform to rebuild the
itinerary, regardless of where the new platforms are discsl.

The proposed protocol does not support assigning multilaliégoms to the same dy-
namically located node. This would involve using the sammmagtric key to encrypt
several itinerary entries. As a result, this would allowtfolans to decrypt and modify the
entries corresponding to other platforms discovered dimen Additionally, rebuilding
the transition to a node of any type other tlsaguencevould involve replicating the sub-
itinerary associated with this node. As a result, this migigly replicating most of the
entries of the protected itinerary, and changing the ssoresssociated with some nodes.

As an example, this problem could arise in itineraries sictha one shown in figure
3.9, where thalynamic locatiomproperty is set on aif node. In this case, assigning two
different platforms to node 2 would involve rebuilding thgeat’s itinerary as shown in
figure 4.4.

As this figure shows, the reconstruction performed in node@levinvolve duplicating
four entries of the protected itinerary, and changing treesssor associated with node 4.
For all these reasons, assigning multiple platforms to simeesdynamically located node is

not supported by the proposed protocol.
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Figure 4.4: Reconstruction of the itinerary of figure 3.9 when
two platforms are discovered for node 2

4.4 Implementation

The proposed protocol has been implemented and experitieenteork has been carried
out in order to prove its viability. The Java-based Jaddqiat [BCPRO03] has been used
as the agent execution environment.

Agents have been implemented following an agent-drivenragmh, as proposed by
Ametller et al. in [AROO4]. This involves providing mobile agents with a eothat is
executed as soon as the agent is initiated on all platforntsydnich deals with the man-
agement of the protected itinerary. We refer to this codéasdntrol code As mentioned
earlier in previous chapters, the agent-driven approashsksaeral advantages over the
platform-driven one. First of all, platforms can handle é&cution of any agent in the
same way, regardless of how the agent is internally stradtand protected. Moreover,
the agent control code can be easily reused in differenicgijgns, and it can implement
complex itinerary management algorithms that involvejfigstance, rebuilding the agent’s
itinerary at runtime.

According to [AROO04], agents can decrypt their itineraryadasing platforms’ pri-
vate keys without having direct access to these private. KEyis decryption is performed
using a call to a public decryption function provided by faats. This public decryp-
tion function verifies that the decrypted data really bebtaythe requesting agent. Thus,
agents are not allowed to decrypt itinerary informatioresidrom other agents. A detailed

description of Ametlleet al.s protocol is provided in section 2.

The agent-driven implementation of the proposed protoasldeen carried out through
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the following steps: First, generation of a random pair gptographic keysk,, k). Sec-
ond, generation of the agent’s control code, which contidiegpublic keyk, as a compile-
time constant that will never change during the lifetimehs aigent. Third, generation of
the protected itinerary.

With regard to the generation of the agent’s control codejrtiplementation performs
the steps described in section 4.3.2, so that the agentest@lphanage its own itinerary
and protection mechanisms. Some steps, however, have e slightly in order to
adapt the implementation to the requirements of the ageverdapproach. The following

are the changes performed:

e In step 1, the transition placed at the beginning of the ptetkitinerary must be
decrypted using the platform’s private key. In order to dptee control code calls
the platform’s public decryption function. Additionallhe control code verifies the
signature of the data returned by this function, using thaipkey %, as described
in [AROO4]. If this verification fails, the control code alt®the agent execution.

e When the agent is visiting discoverernode, the transition to every dynamically
located node must be rebuilt (see equation 4.9). The cooiae rebuilds this tran-

sition as follows:
tey = Y, hy, Py(Sk, (So(H(C), 1y, hi), Si(H(C), hy)), H(C)) (4.12)

whereH (C') is a cryptographic hash of the agent’s control code. As caseba, the
agent identifierid is computed as a hash of the agent’s control code. Addifignal
this hash value is appended to the data that is then encrigptegl

With regard to the generation of the agent’s protected riing the implementation
undertakes the operations described in section 4.3.1. tHawhe following modifications
are required to allow the control code to use the platforrablig decryption function.

First of all, all public key encryptions are performed in Bucway that the data to be

encrypted are previously signed usihg Additionally, a hash of the agent’s control code
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H(C) is appended to the result of this signature. As an exampdetréimsition shown in

equation 4.1 is computed as follows:
tij = J, hj? PJ(Sks (SO(idv Tj, hdj)’ de (Zd, hj))v H(C)) (413)

Attaching a hash of the agent’s control code to the encrygéta allows platforms to verify
that the control code remains unaltered. Signing the dabe encrypted wittk,; prevents
attackers from reusing transitions of previously execaigehts. Performing this signature
is not essential for the security of the proposed protocchbse the unique agent identifier
H(C) is already included for this purpose. However, it has begriémented for the sake
of consistency with the protocol proposed in [AROO4].

The second modification to the protocol described in seeti8ri involves constructing

the entries:; associated witldiscoveremodes as follows:
e, = E,, ( So( H(C),i,my, discoverer, [Sy, (So(H(C), 11, hi)) - -
St (SolH(C), s k), [ -+ rs] ), ] )

As can be seen, every element df5y, (S,(H(C), 7y, hi)) -+ - Sk, (So(H(C), 7L, hi))]
is signed using:;. These signatures, together with the hash of the contra,catbw the

(4.14)

agent to rebuild the transitions to the dynamically locatedes, as shown in equation 4.12.
All these modifications to the way the protected itinerargasstructed and managed
allow the agent to handle its own protection mechanisms. &stimned earlier, protecting
agents using an agent-driven approach is preferable tg aspiatform-driven one, for it
enables developers to customise the set of implementedityeciechanisms depending
on the specific requirements of their applications. In addjtplatforms are not forced to

support all existing security protocols, thus facilitgtimaintenance as well.

4.4.1 Simulation and tests

In order to prove the viability of the proposed protocol, estments have been performed
simulating a simple mobile agent-based application. Thieation implements a hotel

search and reservation system.



4.4. IMPLEMENTATION 59

The system allows an individual to find the cheapest hotelgiven destination, taking
into account the user preferences with regard to room fi@slland guest services. The
application provides a graphical user interface where ¢aech criteria are defined. After
defining the search criteria, a mobile agent is started finsit of all, queries a remote hotel
search engine to obtain a list of the five cheapest hotelsindstination. The agent then
visits each one of these hotels and checks their room ai#idbr the desired dates, their
room facilities, services, etc. In addition, the agent dao aegotiate a special discount for
long stays.

Once all hotels have been visited, the agent returns togteme platform, and decides
whether there is any offer that fits the user’'s needs and ludfgbere is none, the agent
performs another query in order to find the next five cheap®si$) and the whole process
is started again. Otherwise, if the agent finds an acceptsfde it proceeds with the
reservation process. The agent’s itinerary defined forrimamentation of this example
application is shown in figure 4.5.

GHO-@-0-0-0] |
b/

Home Home

platform platform

Figure 4.5: Itinerary of an agent implementing a hotel resgon system

By implementing this application using mobile agent tecbgyg) the search and ne-
gotiation process is automated, and the application carnsbd in devices with slow or
intermittent connections, such as mobile phones, PDAs, etc

Protecting the explicit itinerary using the protocol preteel in this chapter keeps po-
tentially malicious hotels from modifying the code execlitn other hotels. Preventing
modifications to the code intended for other hotels is of wihmmportance in this appli-

cation. Otherwise, it would be possible for a hotel to modifg agent’'s code in such a
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way that the agent itself increased the offers obtained fotimer hotels. The following

expression shows the initial protected itinerary:

I =tn, | E. (So(H(C),1,mq,loop), [ti2, t1s]), Ery(
[Sk, (So(H(C), 13, HP)), Sk, (So(H(C), ra, HP)), S, (So(H(C), 15, HP)),
Sks(So(H(C), 16, HP)), Sy, (So(H(C),r7, HP))], [r2, 73,74, 75, 7)), [23]),
So(H(C),3,mg, seq), [tsa]), Er,(So(H(C), 4, my, seq), [tss]),
So(H(C),5,ms, seq), [tse]), Erg (So(H(C),6,mg, seq), [ter]),
So(H(C),7,mq, seq), [tn]), Ery(So(H(C),8,ms, seq), [])

whereH P denotes the agent’s home platform, and

So(H(C),2,ms,discoverer,

S

7’3

(S
(
rs(
Ep(

to = 1, HP, P(Sy,(So(H(C),11,0), S.(H(C), HP)), H(C)) ,
tie = 2, HP, P(S),(So(H(C),72,0), S,(H(C), HP)), H(C)) ,
tog = 3,blank , t34 = 4,blank , tys = 5,blank , ts¢ = 6,blank , tgy = 7,blank ,
tn = 1, HP, Py(Sy,(So(H(C),71,0), S,(H(C), HP)), H(C)) .
tis = 8, HP, Ps(Sk,(S.(H(C),7s,0), So(H(C), HP)), H(C))

It is worth noting that, in order to guarantee the confiddityiand integrity of previ-
ously collected offers, the proposed protocol must be usedmbination with some other
mechanism aimed at protecting the agent’'s computatiosaltee(such as [MS03]).

This example application shows an environment where platoare discovered dy-
namically and might be interested in modifying the code atett by the agent for their
own benefit. In order to validate the proposed protocol, épiplication has been simu-
lated by introducing several malicious platforms into tgert’s itinerary. These malicious
platforms acted as dishonest hotels trying to access orfynttd agent’s code intended
for other platforms. As expected, none of the attacks sutsmEbecause every platform-
specific code and data was encrypted using a symmetric kew#saonly available to the
intended platform.

The experiments performed also compared the executiorstoh@ protected agent
with an unprotected one, in order to determine if the progg@setection protocol increased

the execution times to overly high values. The agent wasgaveitinerary with different
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number of hotels to visit, and a number of tests were conduotdetermine whether or not
the protection resulted in an exponential increase of tleewon times. The evaluation
setup used to make the tests was made up by 7 computers withe2r&H Pentium(R)
IV processors and 256 MB RAM memory each. These computers @@reected in a
laboratory to a 100 Mbps Ethernet LAN. Table 4.1 shows theltieg execution times.

Num. of iterations: 2 4 6 16
Unprotected Exec time: 12416 24500 36644 96986
agent Time/node: 776 816 832 850
Protected Exec time: 19096 37166 54956 144836
agent Time/node: 1193 1238 1249 1270
Increase: 53.8% 51.7% 49.9% 49.3%

Table 4.1: Execution times (ms) for agents with protectetiuaprotected itineraries

As table 4.1 shows, the execution time increases lineardl thie number of hotels
visited. The execution time of a protected agent is appratety 50% higher than that of
an unprotected agent. However, this increase dependsylangehe specific application
implemented. In our simulation, the time spent by the agendhng protection mecha-
nisms significantly impacted the overall execution timehétapplications could require
the agent to execute a lot more time-consuming tasks, anthteespent handling protec-

tion mechanisms would be negligible.

The increase in the execution time is readily understamdéble take into account the
complexity of the cryptographic protection protocol preeel in this chapter. The overhead
introduced by the execution of this protocol is completetgeptable for the simulated
application. However, this might not be the case for othgliegtions, and the trade-off

between computational cost and security level should bglveei.
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4.5 Conclusions

Previous protocols aimed at protecting the agent’s itiyeoaly allowed agents to travel
to platforms known beforehand. As a result, these apprealainged the mobile agent’s
ability to migrate at will. Unfortunately, most mobile ageapplications are devised using
dynamic itineraries. Therefore, this limitation was ases impediment to the deployment
of mobile agent technology, for most of the flexibility prdeid by this technology had to
be sacrificed.

In this chapter, a novel protocol has been presented for rihiegiion of both static
and dynamic itineraries. The protocol is based on addirgiecduplatforms to the agent’s
itinerary. This is not a limitation as it could seem at firgfigibecause trusted platforms are
usually found in real applications. By using the public kef/these trusted platforms, the
information associated with dynamically located nodeseisticonfidential. The protocol
protects dynamic itineraries from tampering, impersamaand disclosure attacks, thus
providing a balanced trade-off between security and flégbi

An example application has also been presented, showinghmwroposed protocol
can be used to implement a hotel reservation system. In pipikcation, agents are used
to find the best offer for a hotel room. Hotels are discovenguadically, and the itinerary
is always rebuilt on a trusted platform: the agent’s homéaquian. Experiments have been
conducted using this implementation, and these expersnieaie proved that dynamic
itineraries are effectively protected, and agents arewggedn reasonable times.

The protocol presented in this chapter attains the obgsinitially established, but it
does not protect agents against replay attacks. In themekaftthe agent is captured in a
platform and it is repeatedly sent to its next destinatidms Eauses the agent to re-execute
part of its itinerary. The next chapter is devoted to preseptotocol to withstand these

attacks.



Chapter 5
External replay attack protection

This chapter presents a protocol for the protection of neoagents against agent replay

attacks. Agent replay attacks can be classified into twedifit categories [Yee03]:

Internal replay attacks: These occur when the agent is forced to execute repeatedly on
a single platform using different inputs, aiming to obtaiffedtent responses and

analyse its behaviour.

External replay attacks: These are performed by malicious platforms by resending the
agent to another platform, thus making the agent reexeeutefits itinerary.

Internal replay attacks are impossible to avoid becauspl&t®rm has complete con-
trol over the execution, and can always reset the agent &oritsal state. On the contrary,
external replay attacks can be avoided if platforms keepardeof previously executed
agents.

The problem of current solutions [Yee03, WSUKO00, WSB98, LSL®0e03, MB03,
CLSY06, CAOR 05] against external replay attacks is that they do not allowgent to be
executech times on the same platform, especiallyifs determined at runtime. However,
the agent’s itinerary often contains roundtrips that regjthe same platform to be visited
several times. Thus, current solutions force programneesacrifice some of the inherent

flexibility in mobile agent itineraries.

63
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In order to enhance security and flexibility, this chaptersgints a solution based on
authorisation entities The advantage is that these entities are entitled to genaeav
identifiers for the agent, thus allowing the repeatable atign of the agent to the same
platform. Therefore, the proposed solution allows progrers to develop secure mobile

agent applications and still maintaining the agents’ msig flexibility.

5.1 Related work on agent replay attacks

Replay attacks [Syv94] have traditionally been considered &orm of network attack.
They are based on capturing some of the messages exchartgextibéwo entities and
sending them again at a later time. These attacks are ugpaaftyrmed during authorisation
or key agreement protocols, in order to perform, for examplesquerade attacks.

Traditional mechanisms to prevent replay attacks are baseasing nonces, times-
tamps, session tokens, or any other information that allemiies to bind their messages
to the current protocol run [Aur97]. For example, an HTTPhaxtge between a browser
and a server may include a session token that uniquely faEnthe current interaction
session. The token is usually sent as an HTTP cookie, andaglaeed as a hash of the
session data, user preferences, and so on.

Mobile agent systems are also exposed to traditional regitagks. Any communica-
tion between two agents, or two platforms, or an agent an@toph is exposed to this
kind of attacks. Mechanisms like the ones previously meetib(based on nonces and
session tokens) can be used to withstand these attacks.

In addition to traditional replay attacks, mobile agentsegss are also exposedagent
replay attacks. Agent replay attacks are not based on lieglaymessage sent across the
network, but on reexecuting an agent that has already bessutd on a platform. In
addition, these attacks are usually performed by platfoniigh are part of the agent’s
itinerary, and they are harder to prevent in this case. Whentagplay attacks are per-
formed by external platforms, they can easily be detect@tyurechanisms designed to

prevent traditional replay attacks. Agent replay attacks lbe divided into two classes:
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internal and external replay attacks.

Internal replay attacks occur when a dishonest platforreatgully runs an agent with
the same or different set of inputs each time. A platform megecute an agent multiple
times in order to understand its behaviour, or until ther@elsbutput is obtained. This type
of attack is also known alslackbox testingHoh98], and is usually performed when the
agent’s code has been protected using some obfuscatiandeeh

This kind of attacks is performed inside a single platformgd @annot be externally
observed by any other entity. Even if the agent tried to medlrits actions on an exter-
nal monitoring service, the execution environment coultliterfere with these external
communications, and route the messages to an incorrepigrtior alter the contents of
the messages, and so on. Moreover, agent attempts to séirestéte information in a
secure external entity could be easily bypassed by maBgnbatforms altering the agent
execution. In practise, internal replay attacks are imiptes$o prevent or detect [Yee03].

External agent replay attacks occur when a dishonest phatfwopagates an agent to
a remote host, without this migration being defined in thenéigétinerary. This kind of
attack is especially difficult to deal with, for it is diffiduto distinguish between a legal
migration of the agent to its next destination and a replapegtation that the agent did
not intend to do. For example, supposing that the agentisrdiry includes a migration
from platformA to B, then platformA is authorised to send the agent to platfddmand
the agent is also authorised to be executed on plat®ris a result, no authentication
mechanism can be used to prevent platfégknfrom maliciously resending the agent to
platformB multiple times. This kind of attack can be carried out agaanshopping agent,
for example, in order to generate unintended purchases.

In order to provide a solution to this problem, [Yee03] swgjgeconsidering a replay
attack as an illegal state transition. Every platform witthie itinerary implements a state
transition inconsistency detection (STID) algorithm, @rhis able to determine when a mi-
gration from one platform to another is an illegal transitid@ he problem of this approach
is that platforms must be aware of all possible illegal stedasitions for every agent ex-

ecution. In addition, illegal state transitions may be akshly identified if the agent is
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performing a loop in which the same platform is visited repdby.

In [Vig98], a protocol is presented that allows replay &ttt be detected upon com-
pletion of an agent execution. The protocol is based on déegrthe agent execution on
each platform. Platforms must keep a log of the operation®peed by every agent, so
that agent owners can detect any malicious manipulatiohefigents’ itineraries. This
technique suffers from some drawbacks, such as the size ¢ddis that have to be main-
tained. In general, detecting replay attacks after they lmen performed is useless in
many occasions. For example, if the agent is buying a prodietecting a replay attack
that leads to buying the product more than once is usuallyprapriate, especially if the
price of the product is too low to justify future legal actson

Other work [WSUKO00, WSB98, LSL00, Sue03, MB03, CLSY06] on mobderat pro-
tection against malicious platforms suggests the use phtarkers for preventing replay
attacks. A trip marker is an agent identifier that must beestdoy platforms, which can
be used to detect and prevent future attempts of reexeciitengame agent. Again, the
problem of these solutions is that they do not take into actthe case where the agent’s
itinerary includes one or more platforms that must be wisitere than once. As a result,
a legal reexecution of the agent on the same platform can bmtaripreted as a replay
attack.

These issues were identified by [CAOB5], who proposed a solution based on includ-
ing counters inside the agent’s trip marker. Every platfisrassigned a different counter,
which indicates the maximum number of times that an agenbeaxecuted on a platform.
Platforms keep a record of which agents have been executeédha number of times they
have done so. Before starting the execution of an agentoptagfcheck that the number of
times that the agent has been previously executed does cetexhe number of allowed
executions stored in the agent’s trip marker.

The problem of this approach, however, is that the numbeémafd that a given platform
can be visited must be known in advance, specifically wheageat’s itinerary is created,
so that this information can be introduced inside the agenpg marker. Consequently, this

approach does not allow the agent to dynamically decide emtimber of times a given
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platform will be visited.

Preventing the agent from being executed more than oncelé@adaen referred in
the literature as ensuring tlexactly-once execution propef$RM98]. This property is
usually considered when designing fault-tolerant med@msaifor mobile agents. Ensuring
the exactly-once execution property implies that, wherathent is launched to do a certain
task: first, the task will be eventually executed, regaitg$rost or communication failures
that may occur; and second, the task will not be performeckrti@n once.

Solutions presented to ensure the exactly-once executmpmefy are based on us-
ing external entities that monitor the execution of the ag&hen a failure prevents the
agent from continuing its itinerary, another agent is ldwgtcto resume the execution at
the point the original agent left it. The problem of thesautiohs is that the communica-
tions between the agent and the monitoring system lead tsidenable traffic overheads.
In addition, these protocols severely reduce the agent@amy because the agent has
to constantly interact with the monitoring entity. Thuseyhsacrifice one of the major
advantages associated with the use of mobile agent teajnolo

To summarise, no solution presented so far against replagkatallows an agent to
dynamically determine the number of repeated executiotiseodame task on one or more
platforms along its itinerary. Considering that one of theagest appeals of mobile agents
is their dynamism and flexibility, hard-coding the numbepogsible migrations to a plat-
form in advance can be a serious impediment to the implertientef real-life applica-

tions. The next section describes the proposed protocasgulves this problem.

5.2 Replay attack protection

Protecting mobile agents against all kinds of replay agdEcomes a serious and complex
problem to solve. The simplest case is where the itinerags dmt contain any loops in
its itinerary, that is, the agent does not need to repeatdigute the same task on one or
more platforms. In a loop-free scenario, if the agent hasitgrate to a certain platform

several times, it will do so in different nodes of its itingrawhich means that it will be
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executing different tasks. Replay attacks are easy to préwehis case. Platforms can
store an identifier of the node visited by the agent, togethtr the agent’s trip marker.
Figure 5.1 shows an example of this kind of itinerary. In tase, platfornB is visited in

two different nodes of the itinerary: nodes 2 and 4.

@ @ @ @ e
platform A platform B platform C platform B

Figure 5.1: Simple itinerary where the same platform istetsiwice

The most difficult case is where the agent has to visit the saode several times,
especially if this number of times is determined at runtifagure 5.2 shows an example
of this kind of itinerary.

&— -

platform C platform D

O oz )

platform A platform B platform E

Figure 5.2: Itinerary containing a loop with three platferthat are visited repeatedly

As shown in the figure, the itinerary containdo@p node, which is associated with
platformB. The detection of replay attacks is especially difficult, é@ample, when plat-
form C resends the agent to platfoitlh How can platfornD determine whether the new

reexecution is a replay attack or a new iteration of the loop?

Before presenting the proposal for external replay attaekeation, the next section

describes the requirements that any valid solution shauil f
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5.2.1 Requirements of the solution

First of all, different agents must have different ident8i®r trip markers, even if they
perform exactly the same tasks. This also implies that amyinstance of the same agent
must carry a different trip marker.

Secondly, a valid solution to replay attacks has to focuseir prevention, rather than
just on their after-the-fact detection.

Thirdly, platforms must store the trip markers of the ageméviously executed, along
with an identifier of the node visited by the agent, to alloverig to revisit the same
platform in different nodes of its itinerary.

Finally, a valid solution to replay attacks should not irmethe interaction of the agent
with external entities. This allows the agent to run autoaosty, without depending on

the control or interaction with any monitoring service.

5.2.2 The protocol

The proposed protocol for the protection against replacit is based on using trip mark-
ers and authorisation entities. A trip marker isauthorisationthat allows the agent to
visit a certain set of nodes. Each node has an authorisatitly essociated with it, and
this entity is the only one entitled to generate the trip mesl{authorisations) required to
visit that node. Platforms must store the trip markers ofipiesly executed agents, so that
no trip marker can be used more than once to visit the same node

The steps required to create a replay-safe mobile agentihandthe operations car-
ried out to detect and prevent replay attacks are presentdusi section. The combined
actions comprise the protection protocol which tacklesaepttacks in mobile agent envi-
ronments.

In order to create a replay-safe mobile agent, the progranmmust define the set of
nodes that comprise the agent’s itinerary, assigning theximg information to each one

of them:

e a node identifier
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a task

a node type

an authorisation entity

an authorisation node

a set of next destinations

Although different node types can be used to create theaijtinerary, for the pur-
poses of the proposed protocol only two types are considénedequenceand theloop.
Other node types can be introduced into the agent’s itigelaut they are treated in the
same way asequenc@odes. Therefore, they will not be taken into account in tfkend
tion of the proposed protocol.

The programmer must assign an authorisation entity andtho@sation node to every
node. The authorisation node is the node where the ageipt’snarker must be gener-
ated. This implies that the agent’s trip marker is only vdlid has been generated in the
appropriate authorisation node. The authorisation erditiie corresponding platform or
individual that must generate and sign the trip marker. megases, as explained next, a
node can have no authorisation node associated with it: Wieenode is visited using an
authorisation generated by the agent owner.

The authorisation node that is assigned to each node dependtether or not the
node is located inside a loop. If a node is located in the mdvdry of aloop node, then
its authorisation node is theop node itself. The corresponding authorisation entity is
the platform assigned to tHeop node. In all other cases, the node has no associated
authorisation node, and the corresponding authorisatitity@s the agent owner. As an
example, figure 5.3 shows which authorisation entity andere@ associated with each
node of a complex itinerary. This itinerary contains twodepone nested inside the other.

The itinerary shown in figure 5.3 has an outer loop startingl@formA. In this plat-

form, the agent decides how many iterations of the outer luaye to be performed. If
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4

AE: Platform C
AN: 3

2 3

AE: Platform A AE: Platform A platform D )
/ AN: 1 AN: 1
~ platform B platform C
1 5

AE: Owner
AN: —

AE: Owner
AN: —

platform A platform E

Figure 5.3: Authorisation entities (AE) and authorisatmues
(AN) assigned to the nodes of a complex itinerary

the agent decides to enter this loop, it will visit platfoBrand then platfornC, which is
the starting point of the inner loop. The inner loop contgirst one node, associated with
platform D. When the agent exits the inner and the outer loop, it migrtatgsatformE,
where it reaches the end of its itinerary.

The itinerary shown in figure 5.3 has three different auaiion entities: the agent
owner, platformA and platformC. PlatformA is the starting point of the outer loop, and
thus it is the authorisation entity of nodes 2 and 3. On therotfand, platfornC is the
authorisation entity of node 4 because this node belondsetanner loop. The remaining
nodes have no associated authorisation node, and thereatfion entity is the agent

owner.

The proposed protocol requires authorisation entitiesettrissted by the owner. Oth-
erwise, no protection mechanism could be used to preventieious platform from cor-
rupting the agent execution, so the number of loop iteratamuld be easily altered as well.
It is important to note that this protocol makes the samemapsions with regard to trusted
platforms as the protocol presented in chapter 4. This mibang the programmer trusts a

certain platform, then it is assumed that such platform moll subvert the agent execution.
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In the example of figure 5.3, platfor&and platformC must be trusted by the programmer,
and thus the protocol assumes that these platforms willudeehbe tasks of nodes 1 and 3
correctly.

Once the aforementioned information has been assignecety eede, the program-
mer must secure the itinerary using a protection protocais Pprotocol must satisfy the

following properties:

e It must not allow platforms to access or modify any part of itiveerary which is

intended for other platforms.

It must not be possible to introduce new nodes in the itiryerar

It must not be possible to traverse the itinerary nodes inrdardifferent from the

order initially defined.

Every itinerary node must be uniquely bound to the agentldrigs to. As a result,

it must not be possible to reuse any part of the agent’s dnyan a different agent.

It must support flexible itineraries, which allow the agenirtake decisions about its

travel plan at runtime.

In order to define the proposed protocol, it will be assumed ahunique agent identi-
fier is used to bind the itinerary nodes with the agent. Thenaglentifier can be simply a
timestamp attached to a big random number, or any othemid@ton that uniquely iden-
tifies each agent instance. An example of a protocol thatagiees all the properties
mentioned above is the one presented in chapter 4.

After defining all itinerary nodes and securing them usingtiaerary protection pro-
tocol, the programmer must generate a trip marker for thataggent trip markers must

always contain the following information:

Agent identifier: This is the same identifier included in the protected itingrahich en-

sures that any given agent instance can be uniquely idehtifie
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Authorisation node: This is the identifier of the node where the trip marker is getesl.

Expiry date: This is the date after which the trip marker can no longer kedudt al-
lows platforms to remove expired trip markers from theirléab which is usually

convenient but has no real effect on the protocol.

Loop counter: This counter is incremented by one unit every time the agasitd start a

new loop iteration.

In the trip marker initially created by the programmer, thharisation node is not set
because the programmer has no associated itinerary noweis Tonsistent with what has
been specified in the itinerary nodes. When the authorisatiity of a node is the agent
programmer, then the node has no associated authorisaiiten n

The trip marker initially created must be signed by the ageogrammer or owner.
This trip marker must then be placed at the top of the agemt'srtarker stack. As will be
seen later, the trip marker stack stores trip markers puslyaised by the agent during its
execution. The top of this stack always contains the tripkevacurrently used. The trip
marker used in the first itinerary platform must always ba&s@yby the owner, for this is
the authorisation entity assigned to the first itineraryenod

Thus far, the steps required to create a replay-safe mofpdatdhave been described.
Figure 5.4 shows a representation of the components of ant aggulting from this pro-
tection. Next, the operations conducted by platforms tegarea mobile agent from being
replayed are presented.

In order to start the execution of an agent, the informatibthe current node must
be extracted from the protected itinerary. The operati@msgex out to do this extraction
depend on the itinerary protection protocol used. In mosesathis implies using the
platform’s private key, which ensures that no other platf@an access the contents of the
current node. By extracting the current node from the pretedinerary, the following
information is obtained: current node identifier, agennider, task, type, next platforms,

authorisation entity and authorisation node.
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Figure 5.4: Components of an agent protected against refilagka

In addition, the agent’s trip marker must be retrieved frém top of the agent’s trip
marker stack. The trip marker contains the agent identdighorisation node, expiry date
and loop counter.

Platforms must maintain a table with the trip markers of mesly executed agents.
Along with the trip markers, these tables must contain thaeridentifiers associated with
the tasks executed by the agents. To effectively prevemdyegitacks, platforms should
only remove entries from their tables once they have expired

In order to ensure that the agent is not being replayed, teetagrip marker must be
used to carry out some verifications, which depend on whetiecurrent node type is
sequencer loop. In case that the node typesequencethe set of checks to perform is
summarised in the algorithm of figure 5.5. The most releviaesl of this algorithm are

described in detail below:

Line 1. The public key of the current authorisation entity is obégirfrom a public key
server. With this public key, the trip marker signature isfied.

Line 2: The authorisation node extracted from the current nodeed ts verify that the
trip marker has been generated in the appropriate itine@ag. This involves check-
ing that the authorisation node included in the trip markezqual to that extracted

from the current node.
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1: verify trip marker (TM) signature

2: check current auth. node = TM auth. node
3: check agent’s identifier

4: check current date: expiry date

5: check platform’s TM table

6: if agent was not executed befdhen

7:  save TMin platform’s table

8: else
9

if node ident. is differerthen
10: save TM in platform’s table
11:  else
12: if loop counter> previous onghen
13: replace previous TM from platform’s table
14: else
15: discard agent execution
16: end if
17:  endif
18: end if

19: run agent

Figure 5.5: Algorithm for checking trip markers sgquenc@odes

Line 3: The agent identifier extracted from the current node is useeitify that the trip
marker belongs to this very agent. Thus, the agent identifiduded in the trip
marker must be equal to the one obtained from the current ridds prevents a trip
marker from being reused in a different agent, even if it waisegated by the same

owner.

Line 4. The trip marker expiry date is checked. If the trip marker &qgired, the agent
execution is discarded.

Line 5: The agent identifier is used to look for a previous trip madéghe same agent in
the platform’s trip marker table.

Line 7: If there is no trip marker with the same agent identifier, the trip marker, along
with the current node identifier, is stored in the platfortnis marker table.

Line 9: Otherwise, this means that the same agent was executee lmefahis platform.
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In this case, the agent’s current node identifier is compaiddthe node identifier

of the previous execution.

Line 10: If the new node identifier is different, it means that the dggewisiting a different
itinerary node. The new trip marker, along with the curresd@identifier, is stored

in the platform’s trip marker table.

Line 12: Otherwise, this means that the same itinerary node wagdibiéfore. The cur-
rent loop counter is then compared with the one includeddengine previous trip

marker obtained from the trip marker table.

Line 13: Ifthe current loop counter is greater than the previous ibnggans that the agent
is performing a new iteration of a loop. In this case, the jnes trip marker from

the trip marker table is replaced by the current one.

Line 15: Otherwise, this means that the current trip marker hasdrbaen used, and the

agent execution is discarded.

Line 19: If the agent execution has not been discarded in any of theque steps of the

algorithm, the current node’s task is executed.

The above algorithm is necessary in order to verify that tfenais not being replayed
when its current node type sggquenceWhen the current node typelmop, basically the
same checks are performed, but two additional operatieneeguired.

Firstly, a new trip marker for the agent must be generatedsageed. This new trip
marker authorises the agent to visit all the nodes includstlé the loop. The new trip
marker is added to the top of the agent’s trip marker stacls Keeping the previous trip
marker in the second position of this stack. This allows tpenato recover the trip marker
used before entering the loop, which is essential becaesgithmarker generated by the
current platform will no longer be valid when the agent etiis loop.

Secondly, if the signature verification performedlime 1 of the previous algorithm

fails, the trip marker signature must be verified using theenu platform’s public key. This
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allows the agent to be executed on thep node’s platform using a trip marker generated
by this very platform in a previous iteration.

As an example, in the itinerary of figure 5.3, platfoArns the authorisation entity of
nodes 2 and 3. For each iteration of these two nodes, pla##ommist generate and sign a
new trip marker for the agent. In addition, it must verify sgignature of the current trip
marker with either its own public key or the owner’s. Once #gent exits the loop, the
trip marker signed by platforrA must be removed from the top of the agent’s trip marker
stack, so that the original trip marker signed by the ownarnimused again to continue the
agent execution on platforia

The algorithm shown in figure 5.6 summarises the operatiansed out when the
current node type iLop.

1: verify TM signature with the pubkey of either the
current platform or the current authorisation entity

2: check TM auth. node = current node or current
auth. node.

3to 18: the same operations as algorithm of fig. 5.5

19: generate new TM by incrementing loop counter
20: sign new TM with current platform’s private key
21: if this is the first iteratiorthen

22: add new TM to agent’s TM stack

23: else

24:  replace previous TM from agent’s TM stack
25: end if

26: run agent

27: if agent exits loophen

28: Remove TM from the top of stack

29: end if

Figure 5.6: Algorithm for trip marker handling inop nodes

The most relevant lines of the algorithm of figure 5.6 are dbed in detail below:

Line 1. The trip marker signature is verified using the current plat’s public key of
the public key of the current authorisation entity. If bo#rifications fail, the agent

execution is discarded.
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Line 2. The authorisation node included in the trip marker is use¢etify that said trip
marker has been generated in the appropriate itinerary. Aidde involves checking
that this authorisation node is the current node or the aisticon node extracted
from the current node. This allows the agent to use a trip eragknerated in the
appropriate authorisation node, as well as one generatadrevious visit to this

same node.

Line 3to 18: The agent’s identifier, expiry date, loop counter and nodmtifier are
checked performing the operations 3 to 18 of the algorithifigoire 5.5.

Line 19: Before the agent task is executed, a new trip marker is geterahis new trip
marker contains the same information as the previous omepefor the authorisa-
tion node, which is set to the current node, and the loop eswwhich is incremented

by one.
Line 20: The resulting trip marker is signed with the current platitr private key.

Line 22: If the agent is visiting the currefdop node for the first time, the new trip marker

is added to the top of the agent’s trip marker stack.

Line 24: Otherwise, the current trip marker, which was generatedigigame platform in
the previous iteration, is removed from the top of the agemp marker stack and is

replaced by the newly generated one.

Line 26: The current task is executed, and the agent eventually eegwiether or not a

new iteration has to be performed.

Line 28: If no more iterations are required, the agent removes thertarker from the top

of the stack.

Thus far, the complete protocol aiming at preventing exteraplay attacks has been
presented, describing the creation of a protected mobéeataand the operations required
to withstand replay attacks. In the next section, the mopbitant characteristics of the

proposed protocol are discussed.
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5.2.3 Discussion

The proposed protocol is based on using trip markers (aiset@ns) which are generated
at runtime by authorisation entities. The agent itinerargomprised of a set of nodes,
where each one is associated with a certain authorisatitty.efihe task associated with
a node is only executed if the trip marker has been signedéwgppropriate authorisation
entity. Every itinerary node is also associated with an auglhtion node, which involves
that the task of a given node is only executed if the trip mahkees been generated in the

appropriate authorisation node.

Using both an authorisation entity and node prevents theerefithe agent trip marker
in scenarios where the same authorisation entity is assigndifferent nodes of the itiner-
ary. In these cases, an attacker might try to replay an agemeiising a trip marker signed
by the proper authorisation entity but not generated in gh@priate authorisation node.
However, this would be detected when checking if the tripkeahas been generated in

the appropriate authorisation node.

Every itinerary node contains an agent identifier, whichl$® ancluded in the agent
trip marker. This prevents a given trip marker from beingsesliin different agents, for
this would be detected when comparing the agent identifteaeted from the current node

with the one included in the trip marker.

In order to prevent replay attacks effectively, the agdtitierary must be cryptograph-
ically protected, so that no attacker can change the infobomassociated with a given
node. Moreover, the itinerary protection must keep an agshktfrom being executed on a
platform or itinerary stage different from that initiallytined.

The proposed protocol does not involve the interaction efafent with external en-
tities, and only assumes thiaiop nodes will be associated with platforms trusted by the
programmer. Because it is not possible to prevent platforoma fampering with the agent
execution, it is legitimate to assume that the platform eissed with doop node is trusted

by the programmer to evaluate the loop condition.

Platforms must prevent their trip marker tables from fillungby removing entries that
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have already expired. Additionally, some other policy labe implemented in order to
enable the removal of entries when no more trip markers caadbded to the table (e.g.,

removing older entries first).

The protocol described in this chapter can be used in cortibmaith the itinerary
protection protocol presented in chapter 4, as long as Hitéopins assigned to authorisa-
tion nodes are known at the time of creating the itineraryusTthe authorisation entities

associated with these nodes can be specified inside evesyaity node.

The proposed protocol does not support agent cloning. lergéncloning mobile
agents introduces the problem of resolving identities erigpvhen the replicas communi-
cate with other agents or platforms. With regard to the pseggrotocol, cloning a mobile
agent would imply generating a new trip marker for the repliout this is not possible
unless the new trip marker is generated by an authorisatibty.eHowever, authorisation
entities are designed to generate new trip markers only wherloop iterations have to be
started. As a result, the proposed protocol does not supgerit cloning. Further research
will be conducted in the future to extend the proposed patwcorder to allow for agent

cloning.

5.3 Implementation

In order to prove the viability of the proposed protocol, atptype implementation has
been created and experimentation has been carried outthsidgva-based Jade platform
[BCPRO3] as the agent execution environment.

Agents have been implemented following an agent-driverraggh, as proposed by
[AROO4]. Figure 5.7 shows the main components of an agenttheg from this imple-
mentation. As this figure shows, the agent is made up by tlmeg@aonents: the trip marker,
the control code and the protected itinerary. These comyemee bound by an agent iden-

tifier, thus preventing from dishonest reuse in other agents

The agent identifier is constructed as a hash of the agenttsad@ode. As discussed
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Figure 5.7: Components of an agent protected against replay
attacks with an agent-driven implementation

in [AROO4], the control code is unique for each agent bec#tseludes a random asym-
metric key that is also unique. Therefore, the hash of théraboode is a suitable agent
identifier.

In order to create the protected itinerary, the implemémtaises the protocol presented
in section 4.3.1. The following is a summary of the operatimvolved.

First of all, a random symmetric key is generated for eacterary node. Then, these
symmetric keys are used to create the transitiprfsom each node to each of its succes-
sorsj € {a;---A;}. The agent identifieid included in these transitions is computed as a
hash of the agent’s control code, as mentioned earlier.

Then, every entry of the protected itinerary is created Hovis:
e; = E. (So(nodeInfo;),[tia; - tia,)) (5.1)

where we use the same notation as in chaptewdeln fo; denotes all the information as-
sociated with node, which comprises the agent identifier, node identifier, taskle type,
authorisation entity and authorisation node. If the noge figdiscovereythennodeln fo;
also includes the listsSy, (S,(H(C),ry,, ki) - - - Sk, (So(H(C), rr,, hi))] and[ry, - - - 5L,
(see equations 4.6 and 4.14).
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With regard to the control code, the implementation is basedhe same algorithm
described in section 4.3.2. However, before executing thieent task, the control code
verifies that the trip marker extracted from the top of the mniarker stack is valid. For this
purpose, the control code uses a call to a public trip mar&gfigation function provided
by platforms.

The trip marker verification function takes the followingrameters: the trip marker
extracted from the top of the trip marker stack, and the nddatifier, node type, authori-
sation entity, authorisation node and agent identifierctviaire extracted from the current
entry of the protected itinerary. With all this informatiathe platform undertakes the op-
erations described in the algorithms of figures 5.5 and 5.6.

As shown in these algorithms, the public trip marker vertfarafunction must verify
that the trip marker provided as a parameter really belomgset requesting agent. For this
purpose, the platform computes a hash of the agent’s cordd#, and compares it with
the one included in the trip marker. In addition, the platiorerifies the validity of the trip
marker’s signature, authorisation node, expiry date, lomynter and node identifier, per-
forming the operations of the aforementioned algorithrhall these verifications succeed,
this function returngrue, as well as a new trip marker when the current node ty @i

The control code resumes or aborts the agent execution dieygeon the value returned
by the trip marker verification function. In addition, if tleairrent node type iop, the
control code modifies the top of the trip marker stack accwylgt

As can be seen, the trip marker check is triggered by the adénis, the protection
against replay attacks is completely optional, and willydoeé performed by those agents
calling the trip marker verification function. Forcing eyexgent to support the replay pro-
tection protocol would unnecessarily increase the conityi@t many applications where
security is not a requirement.

It is also worth noting that the implemented agent-driveprapch prevents any possi-
ble modification to the agent’s control code, as discuss¢dRO04]. Thus, attackers are
not allowed to modify this control code to bypass the trip keacheck.

After creating the control code and the protected itinerdmy initial trip marker of the
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agent is generated. This trip marker includes an agentifanain authorisation node, an
expiry date and a loop counter, as described in section.5The resulting trip marker is
signed with the owner’s private key.

Once the control code, the protected itinerary, and the taggnmarker have been

created, the final executable mobile agent is generated.

5.3.1 Simulation and tests

In order to test the implementation of the proposed protasimple mobile agent-based
application has been simulated. This application showshte for protection against
replay attacks, and the results of the simulation provergpaay attacks can be effectively
prevented, and agents can be executed in completely rddsdimaes.

This example application implements an automated car psioh service. The service
allows an individual to find the best price for a car, giverspgcific make and model, and
the set of car dealers that have to be queried. The applicatioies out the purchase re-
motely from the user’s financial institution, and this ifigion serves as the trusted location
where the application decides which offer to accept.

Once the user has introduced all the required informaticghenapplication, a mobile
agent is launched to visit every car dealer and obtain ttee @ifered for the given model.
After visiting all car dealers, a new round is started to riege an improvement on the best
price previously obtained. This process is repeated wmtildonsecutive iterations lead to
the same best price. After each iteration, the agent visgsiser’s financial institution, to
decide whether or not a new iteration has to be started.

When the best price is obtained, the agent proceeds with theioghase. The purchase
is always completed remotely from the user’s financial tastn, which ensures that this
operation is performed securely in a trusted environmente@he purchase has concluded,
the agent returns to its home platform, and presents thétirgspurchase contract to the
user. The agent’s itinerary defined for the implementatibthis example application is

shown in figure 5.8.
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Figure 5.8: Itinerary of the car purchasing service agent

This application shows a simple scenario where the use ghtiele agent technology
can introduce a number of advantages, such as reducingnkdb@o—by employing local
communications—as well as automation of e-commerce psesesConsidering that the
negotiation can be a rather lengthy process, mobile agemitééogy enhances significantly
the usability of this application in devices with interreitit, low bandwidth connections,

for it eliminates the need for permanent connections wighrémote sites.

This application also demonstrates the need of an agentrtandigally determine the
number of repeatable visits required over a certain setaifggims. Unlike replay protec-
tion mechanisms previously presented, the proposed mioatiows the agent to visit the
same platform as many times as necessary, without leaviexpitsed to replay attacks.
This is an essential part within the context of this appiaatfor a malicious platform (e.g.
an ill-intentioned car dealer) could easily resend the atgeits next destination to trigger

additional car purchases.

In order to validate the proposed protocol, this applicati@s simulated by introduc-
ing a malicious platform in the agent’s itinerary. This pdatn acted as a dishonest car
dealer trying to trigger more purchases every time it coutiviole the best offer for a car.
As expected, none of these attacks succeeded because thadatem of the itinerary

immediately detected that the trip marker of the replayexhaibad already been used.

The experiments performed also compared the executiors tifrthe replay-safe agent

with the unprotected agent, in order to determine the oaettod the proposed protection
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Num. of iterations: 3 6 9 21
Unprotected Exec time: 11365 22094 32837 75789
agent Time/node: 757 818 841 871
Protected Exec time: 16641 31682 46715 106848
agent Time/node: 1109 1173 1197 1228
Increase: 46.4% 43.4% 42.3% 40.9%

Table 5.1: Execution times (ms) for agents protected and
unprotected against replay attacks

protocol. The agent created for the tests was given an @gevith three car dealers. The
number of iterations required to reach the best price wagdan order to identify the
overhead in terms of the agent’s execution time. It is imgoarto note that no dynamically
located nodes were introduced in the itinerary, so thatésalting execution times were
not affected by the itinerary reconstruction process desdrin section 4.3.2.

The evaluation setup used to make the tests was made up bygutaswith 2 GHz
Intel Pentium(R) IV processors and 256 MB RAM memory each. &leesnputers were
connected in a laboratory to a 100 Mbps Ethernet LAN. Tableshows the resulting
execution times.

According to table 5.1, the execution time of a replay-safer is 43% higher than
the execution of an unprotected agent on average. Thisaseréowever, depends greatly
on the specifics of the application’s requirements. In thaext of this scenario, the agent
negotiations with the car dealers took only a relativelyrstime. As a result, the time
spent handling protection mechanisms significantly imgébe overall agent’s execution
time. In contrast, applications with high processing regmients may require the agent to
execute time-consuming tasks, and thus, in that contextjrtie spent handling protection
mechanisms would be negligible.

In order to evaluate the performance of the replay protegtimtocol in combination
with the protocol presented in chapter 4, experiments wieecarried out using a modifi-
cation of the agent’s itinerary. The modified itinerary, ahis shown in figure 5.9, includes

adiscoveremode, where the agent discovers three new car dealers atosgcheration.



86 CHAPTER 5. EXTERNAL REPLAY ATTACK PROTECTION
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Figure 5.9: Itinerary of the car purchasing service agent
with dynamically located car dealers

In this case, only one round of negotiation is conducted wé&bh car dealer. This modi-
fied itinerary was used to determine the impact on the exattitne due to the itinerary

reconstruction performed in node 3. The execution timeslaog/n in table 5.2.

Num. of iterations: 3 6 9 21
Unprotected Exec time: 11365 22094 32837 75789
agent Time/node: 757 818 841 871
Protected Exec time: 18017 34517 50972 116462
agent Time/node: 1201 1278 1306 1338
Increase: 58.5% 56.2% 55.2% 53.6%

Table 5.2: Execution times (ms) for agents protected andateqted
against replay attacks with dynamically located nodes

As shown in table 5.2, the execution time of a protected aigesh% higher than that
of an unprotected one on average. This increase in the agmetsution times is read-
ily reasonable, taken into account the complexity of theppsed protocol, and the added
complexity of the itinerary protection protocol presentedhapter 4. The overhead intro-
duced by the execution of these protocols (around 465mssolate terms) is completely
acceptable for this application. However, this may varyrfrane application to another. To
conclude, it can be said that the implementation of the ppeggrotocols is advisable for

any real-world application where security is an issue, arsldlso perfectly feasible.
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5.4 Conclusions

This chapter has presented a protocol aiming to protect Im@igients against external
replay attacks. Previous published work on this area waslynbased on storing a trip
marker, or some other kind of agent identification, insideragplatforms. This identifier
was fixed for the whole agent execution, and, as a result, $t mea possible to define

itineraries where the same platform was visited more thae on

The proposed protocol protects agents against replaykaftand allows agents to tra-
verse itineraries that contain loops. The nodes that ateoparloop can be traversed re-
peatedly, an undetermined number of times. This allowsnaragners to define itineraries

which take full advantage of the inherent flexibility of th@hile agent paradigm.

In order to make this possible, the proposed protocol ishbas@associating every node
with an authorisation entity and node. The agent execusi@mly allowed if the agent trip
marker has been generated and signed in the appropriaterigation node, and by the
corresponding authorisation entity.

The agent’s itinerary is cryptographically protected,uslsa way that the authorisation
entity assigned to a given node cannot be changed. Addilyptize trip marker contains
a unique agent identifier that is also included inside evengriary node. Thus, the trip

marker of an agent cannot be dishonestly reused in diffegents.

The replay attack protection protocol presented in thigptdradoes not support agent
cloning, for it cannot distinguish between a replayed agent a legally replicated one.
Further research will be conducted in order to support teeggion of new trip markers

for replicated agents.

In order to prove the validity of the proposed protocol, ieypentation and experimen-
tation work has been carried out using the Jade agent platiod the itinerary protection
protocol presented in chapter 4. The application simulatedutomated, agent-based, car
purchasing service with price negotiation and car purcfest@res. The simulation results
prove that replay attacks can be effectively prevented,rapthy-safe mobile agents can
be executed in reasonable times.
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The implementation of secure mobile agents, as can be seguires developing a
number of protocols to prevent replay attacks, illegal rficadiions of the agent’s itinerary
or computational results, etc. The development of thesdnaresms requires considerable
work and expertise. In the following chapter, we will preiserdevelopment environment
that simplifies the implementation of these mechanisms aowh@tes the development of

secure mobile agent applications.



Chapter 6

Promoting the development of secure

mobile agents

The interest in mobile agent technology has recently irsgdafter the progress made in
some critical security aspects, such as the protectioneoagient’s computational results
[ZOLO04] or the agent’s itinerary [MB0O3]. However, in order &chieve widespread de-
ployment of this technology, providing security breaktigbs is not enough; development
of secure mobile agent applications should be encouragectihsNew tools for the de-

sign and development stages have to be created [MYO06], syimgl to the greatest extent

possible the tasks carried out by both the designer of nept@gyaphic protocols and the

developer of new applications.

There is very little literature about these specific aspgmimarily because the main
work done on mobile agents has been focused on developinggemt protection mecha-
nisms. More basic usability issues concerning the humaeldper have been left aside. As
a result, the implementation of these mechanisms can tunodie more time-consuming

than the implementation of the agent tasks.

In this chapter, we present a development environment imgdi§ies the implementa-
tion of mobile agent protection protocols. This environtfacilitates the implementation

of protocols such as those presented in chapters 4 and 5|lawd programmers to reuse

89
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these implementations in different applications. Thusawmeto promote the use of mobile

agent technology for the development of secure distribapgdications.

6.1 Related work on mobile agent software engineering

In this section, we outline the relevant work done in mobierst software engineering.
First, we focus on mobile agent platforms and, then, we @eadpme of the approaches
that simplify mobile agent development, placing speciapkasis on new programming

languages created for this purpose.

6.1.1 Mobile agent platforms

Firstly, it must be noted that literally tens of mobile agetdtforms have emerged since
the appearance of this new paradigm (see [AGK] for a survey of agent platforms).
Among these, we can highlight Telescript, ARA, D’Agents, étgl Concordia, Grasshop-
per, Ajanta, SeMoA, AgentScape and JaDE. Most agent prafqresented so far are
prototypes that have only been used for research purposesofifhem have users outside
the academic or research centre where they were createglatf@@m that has more users
at this present time is undoubtedly JaDE [BCPRO3].

All these mobile agent systems have a similar purpose: teigigcan execution envi-
ronment to agents which allows them to use, search and m®édices, such as sending
messages to each other or moving to other platforms. Mokesktsystems, such as JaDE,
are implemented in Java due to its reflection capabilitiestha availability of a dynamic
class loader. Much of the research conducted on mobile sipastbeen centred on defining

new mobile agent platforms, usually leaving aside usglalipects.

6.1.2 Simplifying agent development

Research carried out on mobile agents has also given riseltiplaproposals to simplify

the development of this kind of applications. These prolsasan be divided into two main
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groups: on the one hand, proposals based on using new aggnamming languages that
simplify the implementation of the agent’s tasks; and, andther hand, proposals aimed

at aiding in the design of mobile agent-based applications.

Regarding the first group, most proposals suggest the usevddedarative languages,
for their inherent high level of abstraction simplifies tmepiementation and readability
of programs. Among these declarative languages, some gaitspare based on logic lan-

guages and others on functional languages.

The number of proposed logic languages is quite large. Sdiow asing directly
Prolog to express the agent reasonings or inferences [ZCMOD#jers enable program-
mers to define classes of objects in order to merge logic wifrab oriented program-
ming [DELMOQ]. Other languages are based on formal systé&apl-calculus [MPW92],
which allow expressing the mobility and the interactionsoamdifferent agents [CG98].
Finally, some languages are appropriate to express the eggnitive capabilities explic-
itly (reasoning, planning, decision making ...) [SFO05]. tNiegard to the work based
on functional languages, fewer proposals have been pexbéitnad5, KT04]). Among
these, it is worth pointing out that [KT04] makes it possitialefine object classes.

In general, all these languages have one feature in comieyprovide a mechanism

to allow the agent to move from one platform to another.

Regarding the proposals intended to aid in the design of magént-based applica-
tions, most of them are based on the use of design patternsiidLLMSF04, TOH99,
TOHO1]. Design patterns are proven solutions to recurriodplems that arise within some

contexts, thus enabling an easy reuse of good softwarerdesig

In conclusion, numerous proposals have been presentedplifyithe implementation
of agent tasks. However, these proposals ignore the sppoifilems related to the im-
plementation of the security mechanisms required by mogiilmagent applications. In
order to solve this problem, the next section presents da@vent environment aimed at

simplifying the implementation of secure mobile agentdabapplications.
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6.2 Development environment

This section presents a development environment aimediagagent programmers in the
development of secure mobile agents following an agentedrapproach. As discussed in
chapter 4, this approach has a number of advantages. Restonhtrol code can handle the
protection of the explicit itinerary, the computationasuéts, or any other agent manage-
ment mechanism, for example, related to fault toleranceoi®# this control code can be
easily reused because it does not depend on the tasks cautibgl the agent. Therefore,
agents with similar characteristics will usually execute same control code. Finally, this
approach relieves platforms of the need to deal with diffepeotection protocols, which is
especially important because different agents usuallg ki#ferent security requirements,
and therefore, different protection mechanisms.

However, the agent-driven approach also entails a coraitiemore complex agent
implementation. It can require, for example, obtainingtfplan certificates or perform-
ing cryptographic operations to encrypt and decrypt somis [gd the agent’s itinerary.
Thus, the implementation can imply the use of a public kesastfucture, symmetric and
asymmetric keys, cryptographic hashes and, in generalxtansve knowledge on cryp-
tographic application programming. As mentioned earhene of the previous proposals
on mobile agent security has addressed the difficultiesifaggorogrammers when imple-

menting these security mechanisms.

In order to relieve programmers of this burden, this secfimgsents a development
environment that simplifies the implementation of securditeagents. This environment
is comprised of three main tools: the Itinerary DesigninglTthe Agent Builder and the
Agent Launcher.

The Itinerary Designing Tool (IDT) is a graphical tool thancbe used to design the
agent’s itinerary. This tool provides a graphical itingraditor where the programmer can
define the set of nodes that comprise the itinerary. Therskaalad an execution platform
can be assigned to each node. This tool also provides a tésk, etchere new tasks can

be created and compiled. With all the information providgdhe programmer, this tool
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produces an XML specification of the initial itinerary. Madetails about this tool will be
given in section 6.4.

Once the XML itinerary specification has been produced by@fiethe Agent Builder
can be used to generate the final agent. In order to use the Bgeaer, programmers must
define what protection mechanisms are required by theircgin. These mechanisms
must be specified using the Mobile Agent Cryptographic Ptmted.anguage (MACPL),
which is a new specification language specifically desigoeihnplify the implementation
of agent protection protocols.

By using MACPL, the proposed development environment is nosttained to a spe-
cific set of protection protocols. This is essential becaliseise of one protocol or another
depends on the specific requirements of the given applicalibus, the proposed environ-
ment simplifies the development of current protocols as aglbthers that may appear in
the future.

MACPL is a high level language designed to facilitate the enpéntation of agent
protection protocols. These protocols can address anyigeceiated mobile agent con-
cern, such as the protection of the agent’s itinerary orateutational results. By using
MACPL, implementations become more reusable and extenahblk thus programmers
can often generate different mobile agents using the saeaexpsting MACPL code, and
they are relieved of any need to implement an agent proteptiotocol. In section 6.3, the
main features of MACPL will be described in detalil.

The Agent Builder is comprised of three main modules: the AGstup Module, the
Control Code Module and the Agent Creator Module. These mogdidgsther with their
inputs and outputs, are represented in figure 6.1. As thisdfigows, the Agent Builder
has two main inputs: the MACPL specification and the XML itargrspecification. The
XML itinerary specification is the document generated by Itiveerary Designing Tool.
With regard to the MACPL specification, it is created by therdgkeveloper or a security
expert, and it is divided into two parts:

e The specification of the agent setup operations, where tiaestfaictures used by the
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Figure 6.1: Components of the Agent Builder with its main irgpand outputs

agent during its execution are initialised (e.g. protedieérary, trip marker, or any
other).

e The specification of the operations performed by the coctrde.

Using the MACPL specification and the XML itinerary specifioat the Agent Builder
performs the following operations to generate a secure lmagent.

First of all, it generates a random pair of asymmetric keyspthlic key and a pri-
vate key. This keypair is used to implement the mechanisiopgned by the agent-driven
approach, as described in [AROO04].

Then, using the second part of the MACPL specification, the ©bode Module
runs a MACPL compiler to generate the agent control code. Jdnisof the MACPL spec-
ification must define how the control code manages the exjtiicerary, the trip marker,

or any other agent component. The random public key preli@enerated is included in
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the resulting control code as a compile-time constant.

Next, the Agent Setup Module runs a MACPL interpreter to eteethe first part of the
MACPL specification. This part of the MACPL specification mustide how to initialise
the data structures required by the agent. The protectedtatiy is one of the data structures
that must be always created during the agent setup. Foruhp®ge, this module uses the
XML itinerary specification provided to the Agent Builder athe agent tasks. This module
also uses the random private key previously generated ier dadsign every platform-
specific code and data included in the protected itinerary.

Finally, the Agent Creator Module combines the outputs oftée previous modules
to create the executable mobile agent.

Once the agent is obtained, the Agent Launcher (AL) is useoutahe agent into
execution on the first platform of the itinerary. More detaibout the Agent Launcher will
be given in section 6.4.

At this point, it is worth noting that the agent’s tasks areplemented by the pro-
grammer in the programming language supported by the epacabvironment, which
can be Java, C++, or any other. Other protocols have beennpeds® simplify the im-
plementation of the agent’s tasks, usually providing neenagrogramming languages
[ZCMO02, KT04]. However, these protocols do not allow develgpto implement any
agent protection mechanisms. Because of this, the prop@eatopment environment is
focused on aiding the programmer in the implementation@g#turity protocols required
by secure mobile agent applications. If necessary, thegsexbenvironment can be com-
bined with other proposals to simplify the implementatidthe agent tasks, too.

Figure 6.2 shows a representation of all the componentsctiraprise the proposed
development environment. As this figure shows, differefgs@re involved in the devel-
opment process. First, the agent programmer, who designsxiblicit itinerary and gen-
erates the XML specification using the IDT. Second, the sgcexpert, who implements
the agent protection protocols using MACPL. Finally, the asdr, who executes the agent
and obtains its results without any knowledge about sgcariprogramming at all. The

separation of these three roles shows the flexibility an@ efseuse that the proposed
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Figure 6.2: Overview of the mobile agent development emvitent

development environment brings to implementations. Tthesdevelopment of a whole
system is divided into independent components—XML and MAGPE&cifications—and
independent tools that can be used by completely differeopie.

Thus far, the components of the proposed development emagat have been pre-
sented. It is worth noting that this environment is not desayfor any specific execution
platform. It can be implemented to simplify the developmeinsecure mobile agents re-
gardless of their execution environment or programminguage. The next section will
be devoted to describe the main features of MACPL, and thelsicagion achieved as a

result of its utilisation.

6.3 MACPL

MACPL is a domain-specific programming language intendedate ¢he development of

agent protection protocols. The design of this languagehesied two main objectives:

o Simplifying the traversal of the initial itinerary, and igotection using cryptography.

e Simplifying the implementation of the control code, whichnidles the protected
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itinerary and other agent security mechanisms.

The language resulting from these requirements is exmaineroughly in appendix
A, where a detailed description of MACPL features can be fouBdsides, appendix B
contains an example of its use to implement an itinerarygetain protocol.

MACPL code is divided into two clearly different parts: theripthat defines how to
create the explicit itinerary and any other data structuegsiired by the agent, and the
part that defines how the control code is generated. Thesgavie are separated by the
#cont r ol _code_begi n precompilation directive. The code placed above this tirec
is the agensetup codeand the code placed below is the agewrtrol code

MACPL provides four types of instructions: type declarasipassignment statements,
function calls and function definitions. MACPL code is exetlby evaluating all type

declarations, assignment statements and function cadislir.

Functions are defined using thendef keyword, and can take arguments which are
always passed by value. In addition, MACPL functions alwagtsim a value, and the
r et ur n keyword is used for this purpose. As will be seen, MACPL presid broad set
of built-in functions, which are intended to make it a powédnd easy-to-use language.
The following code shows an example of a function definition.

fundef Task get Task( G aphNode node) {
/1 function body
return task;

In this case, this code defines tfpet Task function, which takes a GraphNode argu-
ment and returns a Task object. The different data typesgedwy MACPL, such as the

GraphNode and the Task, will be described in the next section

Type declarations are statements that specify the type afiabte. All variables must
be declared before being used. The following is an exampéetgpe declaration. In this
case, a variable of typ@& aph is declared.

Gaph initialltinerary,;

Assignment statements assign a value to a variable usirig'tbgerator. A type decla-
ration and an assignment statement can be combined in treeisatmuction. The following
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example code shows a type declaration, an assignment statteand a combination of the
two.

String nane;
nanme = "foo";

Integer id = O;

6.3.1 MACPL types

The set of types provided by MACPL is quite small—only eighitedent data types. This
is motivated by the fact that, first, MACPL is not a general ms$glanguage and, second,
MACPL is devised to be as simple as possible.

MACPL is statically typed since types are determined at ctertpne, not at runtime.
In addition, MACPL is strongly typed because the languagegmts the execution of code

that uses types in an invalid way.

An important MACPL type is the List, for it allows programmeoscreate compound
objects that can be protected using cryptographic mecmaniBart of the MACPL syntax
is conceived to facilitate the use of List objects. For ex@nlists are created by writing
the elements in order, separated by " and surrounded gn'{l ']'. The '< >’ operator
allows to refer to individual elements of a list. Thuig,st <n> refers to thenth element of
| i st. The following is an example of the creation of a list.

List it = [getnexttrans(node, 5, nhost):finallt<5>];

In this case, a list of two elements is created and assigndéebia variable. The first
element is the value returned by thet next t r ans function, and the second element is

the fifth element of théi nal I t list.
MACPL allows programmers to access the last element of adisiguthel ast key-
word. This keyword is often used in expressions like the epeasented next.

[ Expressi onWthl ndex | | ndexVari abl e, Firstlndex, Last| ndex]

These expressions are used to evalu&epressi onWthlndex from
| ndexVari abl e=Fi rst1 ndex to |ndexVari abl e=Last| ndex, and store the
result in a list. For example, Ifi st is a List object containing three elements, then the
following code.
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[fun(list<j>)]|j,1,last]
is equivalent to this one

[fun(list<l>):fun(list<2>):fun(list<3>)]

MACPL provides two data types to facilitate the handling o tgent's itinerary:
the Graph and GraphNode data types. Det I nitial ltinerary built-in func-
tion reads the XML itinerary specification provided to theei Builder, and returns a
Graph representation of it (see section 6.3.3). This Grdgpbcois composed of one or
more GraphNode objects, which can be traversed and matepug the programmer us-
ing several built-in functionsget Node, successor s, predecessor s, addNode,
gr aph2Li st , among others. The following code shows an example of graguhipula-

tion using the Graph object returned by et | ni ti al | ti ner ary function.

Gaph initltin = getlnitialltinerary();
List initltinList = graph2List(initltin);
export List protectedltin = [protectNode(initltinList<i>)|i,1,last];
fundef List protectNode(G aphNode node) ({
String platform = nodeDat a( hode) <3><2>;
String nextplatform = nodeDat a(successor s(node) <1>) <3><2>;
return [aencrypt (pl atform graphNode2Stri ng(node)): nextplatforny;

N gk wh R

The first line of the above code initialisesi t | ti n to the Graph object returned by
getlnitialltinerary. Line 2 introduces all the GraphNode objects ofi t 1 ti n
into a list, using thegr aph2Li st built-in function. The resulting list is stored in the
initltinList variable. Line 3 applies thpr ot ect Node function to every element
ofinitltinList.Asaresult, alistof protected itinerary nodes is obtaged stored in
thepr ot ect edl t i n variable. Finally, lines 4 to 8 define thpr ot ect Node function,
which takes a GraphNode parameteo(e) and returns a List object.

The pr ot ect Node function uses th@odeDat a built-in function to extract infor-

mation fromnode and from the successor nbde (more details about this function will
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be given in section 6.3.3). The platform associated witkle is stored in thepl at f or m
variable, and the subsequent platform of the itinerary asest in thenext pl at f orm
variable. Then, thgr aphNode2St r i ng built-in function is used converiode into a
String object, and the result is encrypted using the puleyodépl at f or m The encrypted
node anchext pl at f or mare finally returned using theet ur n keyword.

This short example shows that the protection of the initinérary can be significantly
simplified. In this case, only eight lines of code are needetaverse the agent’s initial
itinerary, encrypt each one of its nodes, and then introthueeesult in a list.

Another important MACPL type is the RuntimeDefined. This typesed to deal with
the data types provided by the agent programming languagehvis the language sup-
ported by the agent execution environment. The data typekeohgent programming
language are not directly supported by MACPL, which meantstytpe errors related with
RuntimeDefined objects are detected at runtime, not at certipike.

An example of a built-in function that uses RuntimeDefineckoty is thesencr ypt
function. This built-in function encrypts data using a syetrit key algorithm, and takes
a secret key parameter which is a RuntimeDefined object. Hemvé\the secret key pro-
vided tosencr ypt is a RuntimeDefined object that does not encapsulate a prepeats
key, then MACPL will issue an error at runtime, not at compited. In general, most
cryptographic functions provided by MACPL use RuntimeDefinbgcts.

MACPL also provides a data type associated with the taskaee@dy the agent: the
Task data type. In order to execute tasks, MACPL providesthec built-in function,
which takes a Task object and a String object as parameteesSiFing object specifies the
name of the method that has to be executed, which must benmepled within the task.
The type returned by this function is a String. The genenatibTask objects in a format
suitable for MACPL is performed using the Itinerary Designifool.

The String is also an important MACPL type. Apart from represg a sequence of
characters (e.g. “foo”), the String type is used to encatsudbjects of other types. For
example, thesdecr ypt built-in function decrypts data using a certain secret ke

returns a String object encapsulating the decrypted datarder to convert the resulting
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String object into another data type, MACPL provides seveoalersion functions, such
asstring2Task, string2Li st, etc. The inverse operations can also be performed
using the corresponding conversion functionagk2Stri ng,l i st 2String...).

In addition to the aforementioned data types, MACPL has algorhore types: the
Boolean and the Integer. The purpose of these types is eqoivia that of many other
programming languages. They are used to evaluate conaligapressions, index elements

of graphs and lists, etc.

6.3.2 Scope of variables
MACPL variables have two different types of scope:

Global: Variables with global scope can be accessed from anywhdienwthe entire

MACPL code. They must be declared outside any function defmit

Function: Variables with function scope are only visible within theétion in which they

are declared.

Global variables may be referred to anywhere in the proghatthey lose their value
once the agent migrates from one platform to another. An gl@mwf this situation is
shown in the following code.

Graph initltin = getlnitialltinerary();

List protectedltin = protectltinerary(initltin);

Li st accunul atedResults =
[signok(list2String(["Home":null:"Platforml"]))];

#control _code_begin
GraphNode current Node = get Current Node(protectedltin);
Li st accumul at edResults =

execut eCurrent Task( current Node, accunul at edResul ts) ;

The above code defings ot ect edl ti n andaccunul at edResul t s as global

variables. They are first initialised during the agent setup then they are used by the
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control code in every platform of the itinerary. The problefrthis example code is that
the value assigned to these variables during the agent sa@tupever be available to the
control code. Likewise, the value assignedaimcunul at edResul t s in the control

code will be lost when the agent migrates from its currentf@ten to the next.

In order to allow the values of variables to be recovered afigrating from one plat-
form to another, thexport keyword must be used. This keyword must be placed at the
beginning of the type declaration, as shown in the follonexgmple.

Graph initltin = getlnitialltinerary();

export List protectedltin = protectltinerary(initltin);

export List accunul atedResults =
[signok(list2String(["Home":null:"Platforml"]))];

#control _code_begin
GraphNode current Node = get Current Node(protectedltin);
accurul at edResul ts =

execut eCurrent Task(current Node, accunul at edResul ts) ;

The above code shows thatot ect edl t i n andaccumnul at edResul t s are now
declared agxportablevariables, and therefore their value is never lost duringrations.

It is worth noting that the@xport keyword can only be used to declare global variables.

6.3.3 Built-in functions

MACPL provides a comprehensive set of built-in functionstfe implementation of agent
protection protocols. This section provides a brief dgdimm of the most important ones.
As mentioned earlier, MACPL built-in functions are coveradletail in appendix A.

A subset of MACPL built-in functions is used to handle Grapleots. This subset
includes:successor s andpr edecessor s, which return the successors and predeces-
sors of a given GraphNode, respectivady;aph2Li st , which returns a list containing all
the GraphNode objects of a graghgi nGr aphs, which returns the graph resulting from

the union of two graphs, among others.
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MACPL also provides functions for list managemehengt h, to determine the size
of alist;r enove, to remove an element from a litpi n, to concatenate two lists, among

others.

In order to extract the information included in the XML itnaey specification, MACPL
provides theget | ni ti al | ti ner ary built-in function. This function introduces all the
information found in the XML document into a Graph object.olaler to make this possi-
ble, the XML document must provide at least the followingoimmhation for each itinerary
node: task, type and platform. The following DTD documervg$ithe structure of a valid
XML itinerary especification.

<! ELEMENT | TI NERARY ( NODE+) >
<! ELEMENT NODE ( TYPE, TASK, PLATFORM ( ATTRI BUTE*), (| TI NERARYx) ) >
<! ELEMENT TYPE (#PCDATA) >

<! ELEMENT TASK (#PCDATA) >

<! ELEMENT PLATFORM ( #PCDATA) >

<! ELEMENT ATTRI BUTE ( NAME, VALUE) >

<! ELEMENT NAME (#PCDATA) >

<! ELEMENT VALUE (#PCDATA) >

The following XML document shows a valid specification of ample itinerary that
is comprised of a single node.

<l TI NERARY>
<NCDE>
<TYPE>Sequence</ TYPE>
<TASK>Taskl. j ar </ TASK>
<PLATFORM>ccd- pr 2</ PLATFORW>
</ NODE>
</ | TI NERARY>

Theget I ni tial I tinerary function introduces every itinerary node into a Graph-
Node object. In order to read the contents of a GraphNodechypACPL provides the
nodeDat a built-in function. This function returns a list of elemevdatue pairs. Both the
element names and the values are represented as Stringsolfjean example, the node
defined in the above XML document would be returned bynbeeDat a function as
follows.
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[ ["TYPE':"Sequence"] : ["TASK':"Taskl.jar"] : ["PLATFORM:"ccd-pr2"] ]

Apart from a task, type and platform, the XML itinerary casaspecify other informa-
tion for each itinerary node. This additional informatiandoe specified using one or more
ATTRI BUTE elements, each of which containindNAME element and & ALUE element.
For example, an XML itinerary could specify an authorisatemtity and an authorisation
node for every itinerary node.

MACPL also provides theeadFi | e built-in function to read the contents of a file and
introduce them into a String. A common use of this functiotoisead files that contain
agent tasks. For exampleeadFi | e can be used to read tAHaskl. | ar file specified
in the previous XML itinerary example. The String objecureed byr eadFi | e can be
then converted into a Task object using fitea i ng2Task built-in function, and then this
task can be executed using teec built-in function.

MACPL also provides other built-in functions for the implemt&tion of the control
code:nove, which allows agents to migrate from one platform to the pnekbne, which
allows agents to send a clone of themselves to other plasfandsendResul t s, which
allows agents to send their partial or final results to theeswn

One of MACPL's primary goals is to simplify the implementatiof cryptographic
protocols. For this purpose, it provides several cryptphi@functions:aencr ypt and
adecrypt, to perform asymmetric encryption and decryptiem;gn andverify, to
perform digital signatures and verificationskeygen andkeypai r gen, to generate
symmetric and asymmetric keys, among others. It is wortingahat theadecr ypt
function, which allows agents to decrypt data using theenirplatform’s private key, is
implemented as described in [AROO04], so that agents carr @eeess platforms’ private
keys directly.

A common feature of all cryptographic functions is that ttapw programmers to
specify what they want to do, without specifying how they wando it. For this purpose,
the parameters taken by these functions never depend orpaayis algorithm or imple-
mentation. This feature makes MACPL code more portable asidiet® use. For example,

when theskeygen function is used to generate a secret key for a symmetriaidigo
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the programmer does not specify if the key is intended for MESDES encryption and

decryption. The following section describes how the progrer can compile the agent
selecting a specific set of algorithms or implementationsl laow built-in functions are

grouped into libraries.

6.3.4 Function libraries

MACPL built-in functions are designed to be independent gfalgorithm or implementa-
tion. This makes MACPL code more generic and reusable. Irtiaddihe Agent Builder
supports different implementations of the built-in fuocts. Thus, programmers can com-
pile the same MACPL code using different versions of thesetfans, depending on the
requirements of the application.

Built-in functions are grouped into libraries. For examgik puilt-in functions related
to list management are grouped into the same library. Ebddrli implements an interface,
so that different versions of the same set of built-in fumes$i can be provided. For exam-
ple, all built-in functions related to cryptography are defi in one interface. The Agent
Builder may provide two different libraries implementingsimterface, one based on PGP
and another one based on X.509v3 certificates.

The set of interfaces and libraries provided by MACPL can kereded. Thus, pro-
grammers can develop new libraries by creating their ownempgntations of MACPL
interfaces. Additionally, programmers can also creaté then interfaces, and then pro-
vide one or more implementations of those interfaces. A m#arfiace could be created,
for example, to provide MACPL with networking capabilitiek.is worth noting that li-
braries are implemented in the programming language stgipbly the agent execution
environment, which essentially means that programmersneplement new libraries in a
general purpose programming language.

Because each interface can be implemented by many diffeteatiés, the Agent
Builder provides command line parameters to select whaifepkiraries have to be used

to compile the agent. In addition, if the MACPL code uses aatelinterface provided by
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the programmer, then the name of this interface must befggxkaiside the MACPL code,
using thettr equi r e precompilation directive for this purpose. The programuoger then

use command line parameters to select the library that imgaiés his interface.

6.4 Auxiliary Tools

In the previous sections, we have described the Agent Bualdeéthe MACPL language. In
this section, we will present other auxiliary tools of theposed development environment,
which help programmers to generate the XML itinerary spegifon and allow them to

launch the agent to the first platform of the itinerary.

6.4.1 lItinerary Designing Tool

The Itinerary Designing Tool (IDT) is used to aid the prograen in the generation of the
XML itinerary specification. This tool provides a graphigaderface that is organised in
tabs, which allow the programmer to define the itinerary spdaplement their tasks and
see the messages generated by the agent compilation.

Theitinerary definition talis very similar to a drawing application. The left side of the
window contains a node palette where the programmer carsehwshich type of node is
included in the itinerary. Once a node has been placed inrd&idg area, a task and a
platform can be assigned to it. Figure 6.3 shows a screens$laot example itinerary that
is being edited in the IDT.

The task assigned to a node can be provided in precompiled éorit can be im-
plemented and compiled in tl@plementation tabWhen the programmer starts editing a
new task in this tab, the IDT generates a skeleton of the mlstti@at must be implemented.
For example, if the programmer is editing the task assignesldop node, the skeleton
includes thg unpCondi t i on method, which decides whether or not the agent has to
perform a new iteration.

Once the nodes and their corresponding tasks have beedun&d in the itinerary
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Figure 6.3: Itinerary Designing Tool

definition tab, the XML itinerary specification can be geneda

In addition to generating the XML itinerary specificationhetIDT can also be used
to create the executable mobile agent. For this purposgrgmmers can choose which
MACPL specification implements the protection mechanismgaired by their application.
Then, they can run the Agent Builder program from the IDT anthiobthe executable
agent. Thus, the IDT is designed as a development environmevhich all the stages of

the development process are integrated in the same tool.

6.4.2 Agent Launcher

The agents generated by the Agent Builder can be put into 8gacusing the Agent
Launcher (AL). The AL is a lightweight client applicatiorettallows agents to be launched
to both local and remote platforms. This application shdagdable to run on any device,

either a desktop computer or a handheld device, such as a PDA.
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In order to start agents on remote platforms, the AL usesrtimigration module of
platforms’ migration service [ARB03]. The communication hvihis migration service
is performed using an Agent Communication Channel. The Alothices the agent into
an ACL message, and this message is sent to the remote platiidren, the platform’s
immigration module extracts the agent from the ACL messagd, pts the agent into

execution.

6.5 Conclusions

In this chapter we have presented a development envirortimergimplifies the implemen-
tation of secure mobile agents. Most applications usingilmalgent technology require the
use of security mechanisms. These mechanisms, when pgssiifoluld be implemented
following an agent-driven approach, thus allowing ageatsnanage their own security
mechanisms.

Implementing agents that manage their own protection mmesims has many advan-
tages, but it also entails a quite more complex implemenmatiSo far, no proposal has
been presented to simplify the development of secure malgiénts. In this chapter, a
development environment has been presented that simghieisnplementation of agent
protection protocols, and promotes the reuse of thesegoistéor future developments.

The key element of the proposed development environmem¢idgent Builder, which
allows programmers or security experts to define protegtiatocols using the Mobile
Agent Cryptographic Protection Language (MACPL). MACPL is andin-specific lan-

guage that is easy to learn and use. The main advantages of M&€P

e Availability of high level cryptographic functions that k& it possible to quickly
create security protocols. A subset of these functionsvallagents to encrypt and

decrypt itinerary data using platforms’ private keys, ascdiged in [AROO04].

e Integration of the agent control code, which manages thetagecution, and the

agent setup code, where the protected itinerary, or any atit@al data structure
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required by the agent, is created.

e Easy code reuse, for MACPL built-in functions are generic@émdot depend on any
specific algorithm or implementation. Moreover, implenatians are also indepen-

dent of the agent’s itinerary, the tasks executed on eadfopig and the execution
environment where agents run.

In addition to simplifying the implementation of agent gction protocols, our pro-
posal also includes other tools intended for the end useh as the Itinerary Design-
ing Tool, which addresses the creation of the XML itinergpgafication, and the Agent
Launcher, for the introduction of new agents in remote platfs.

A proof-of-concept of the proposed development environnhas been implemented
using the Java language and the Jade agent platform [BCPRGOSAJédnt Setup Module
and the Control Code Module have been implemented using a MAGRIa\a transla-
tor, which generates Java code that is then compiled to genan executable bytecode.
Nevertheless, further work is still required to completis {proof-of-concept, so that the
protocols presented in chapters 4 and 5 can be implememeédests can be carried out to
evaluate the performance of the resulting agents.



110 CHAPTER 6. PROMOTING THE DEVELOPMENT OF SECURE MA



Chapter 7

Conclusions

Soon after mobile agents were first introduced in 1994 by WW&i94], researchers
envisaged that this technology would revolutionise thesttgyment of distributed appli-
cations. However, mobile agents have not met the expeotatitey raised in terms of
widespread deployment and use.

The main reason why mobile agents have not been widely adyete despite their
technological benefits, is their inherent security risksanyl breakthroughs have been
achieved in the security, reliability and efficiency of mlelagents, but there are security
issues still remaining unsolved. Additionally, the conxtie of developing the security
solutions proposed to date has significantly hampered thleylment of this technology.

In order to provide a solution to these problems, this thieagspursued two main ob-
jectives: First, to overcome some of the limitations of eatragent protection protocols;
and second, to simplify the implementation and use of sgcprotocols for mobile agent-
based applications.

More specifically, the first objective of this thesis has baedefine an itinerary pro-
tection protocol that supports free-roaming agents. adsgoresented to date only allow
agents to travel to platforms known beforehand. As a rethdise approaches limit the
mobile agent’s ability to discover new platforms at runtime

In order to achieve this goal, first of all, chapter 3 has preska convenient way to

111



112 CHAPTER 7. CONCLUSIONS

define explicit itineraries for free-roaming agents. Usaxglicit itineraries to create free-

roaming agents promotes the reuse of these itinerariesinieraries are defined in different

stages that can be easily modified or changed for those of atfents. Besides, these
itineraries are stored in separate data structures thaaarer to protect using cryptographic
mechanisms.

Next, chapter 4 has been devoted to present a novel protactid protection of dy-
namic itineraries. The proposed protocol is based on assogidiscoverernodes with
trusted platforms. The inclusion of trusted platforms iemigtineraries is a key character-
istic of the contributions presented in this thesis. Theliplteys ofdiscoveremodes are
used to protect the agent’s code and data associated widmdgally located nodes. Thus,
the information of dynamically located nodes remains priete during the whole agent
execution.

The second objective of this thesis has been to define a pidtrcthe protection of
mobile agents against external replay attacks. Thesekatte performed by resending
the agent to the same platform several times, so that the¢ esgjenced to reexecute part of
its itinerary. This can lead to, for example, unintendedchases in a shopping scenario.
Solutions presented so far against replay attacks do raw élle agent to visit the same
platformn times, especially if is determined at runtime.

Chapter 5 has presented a protocol aimed at providing aasatsy solution to external
replay attacks. The proposed protocol is based on storiragant trip marker inside plat-
forms, which allows them to identify repeated attempts tecerxe the same agent. Unlike
previous protocols previously presented, the trip markassociated with an authorisation
entity, which is trusted by the owner. The agent executiamiyg allowed if the agent trip
marker has been generated and signed by the appropriateiaation entity in the proper
itinerary node.

In order to prove the validity of the proposed protocols, lenpentation and experimen-
tation work has been conducted using the Jade agent plgtBCR03]. Agents have been
implemented following an agent-driven approach, whicbvedl agents to manage their own

itinerary and protection mechanisms. As a result, agerterbhe more autonomous, and
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platforms can easily support the execution of agents witeréint protection algorithms.

The results of the simulations have shown that the overheeztiuced by the proposed
protocols is around 55% of the execution time. This increeas completely acceptable
for the simulated applications, but this may vary from ongliggtion to another.

The implementation of the proposed protocols has also dstraiad the complexity
of providing security to mobile agent-based applicatiohs.usual, there is a compromise
between cost, security level and ease of use. For this reabapter 6 has presented a
development environment aimed at simplifying the develeptof secure mobile agents.
The key element of the proposed environment is the Agent Byilhich allows pro-
grammers to implement agent protection protocols usind/bleile Agent Cryptographic
Protection Language (MACPL). MACPL has been designed to dynible implementa-
tion of agent protection protocols, as well as to promoterthese of these protocols in
different applications.

In addition to the Agent Builder, other tools have been immatad to aid the program-
mer in the definition of the agent’s itinerary, and in theadiinction of new agents in their
first itinerary platform.

The solutions proposed in this thesis represent a valualsiggilbution to the develop-
ment of secure mobile agents. However, there are still prablremaining unsolved. In
the next section, we outline some possible future researettibns that could be explored

to extend the results of this thesis.

7.1 Future work

The core work of this thesis revolves around the protectiomabile agents against mali-
cious hosts. However, the opposite problem—the proteafgsiatforms from malicious

agents—is also an important issue that has hampered thé@dopthis technology. Even
though good solutions are already available to counterpitiblem, people are still reluc-
tant to allow someone else’s code to execute on their comgpulberefore, additional work

needs to be undertaken to develop secure mobile agent frarkewm which the protection
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from malicious hosts and from malicious agents are seaipledegrated.

The itinerary protection protocol presented in chaptedfl$uhe requirements initially
established, but it does not support the protection of cetepy free-roaming agents. This
is due to the fact that trusted platforms must be includeténtinerary, and they must be
known by the owner in advance. Thus, investigating how tlopgsed protocol could be
modified so as to support completely free-roaming agentspissaible avenue for future
research.

Chapter 3 has presented a set of node types and propertigs allow the definition
of explicit itineraries for free roaming agents. One of thesde types is theet which is
associated with two or more subitineraries that can be itsadein any order. One of the
appealing uses of treetnode type is to generate several clones of the agent to seties
different subitineraries. Thus, programmers can parsdiehe execution of different tasks
and increase the performance of their applications.

However, mobile agent cloning introduces several probjesush as resolving identi-
ties properly when the replicas communicate with other tggen platforms. Regarding
the replay protection protocol presented in chapter 5,ictpa mobile agent would imply
generating a new trip marker for the replica. Otherwise,agent and its replica would
travel with the same trip marker, and this could lead to fedgtay attack detections. Nev-
ertheless, new trip markers can only be generated by as#timom entities when new loop
iterations have to be started. Therefore, the propose@qobtannot be used if agents
must be allowed to clone themselves.

A similar problem arises when the protocols presented iptena 4 and 5 are imple-
mented using an agent-driven approach. The agent has aeusggunt identifier, which is
used to bind together the control code and the protectest@ig. As the agent identifier is
signed by the owner, new identifiers cannot be generatechéibre. Therefore, the agent
and its replica cannot coexist in the same platform at theedame because they are using
the same identifier.

Because agent cloning could be a desirable feature in sonmieamms, further re-

search should be conducted to explore how new agent idesitiinel trip markers could be
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generated at runtime when an agent is cloned.

Thediscoveremode presented in chapter 3 allows agents to discover rneyttiptforms
for the execution of a single dynamically located node. Tirtionality, however, is not
supported by the itinerary protection protocol presentedhapter 4. Assigning various
platforms to the same node would involve using the same synuokey to encrypt several
itinerary entries. As a result, platforms would be able te teir symmetric keys to access
or modify parts of the itinerary associated with other gatis. Consequently, further work
could be conducted to improve the proposed protocol in ggand.

Finally, the development environment presented in ch&otaeilitates the implementa-
tion and reuse of security protocols. However, only a prafedoncept of this environment
is currently available. Experiments have to be carried owrder to test the performance
of the resulting agents, and more security techniques dhmeilimplemented in order to
address other mobile agent security aspects, such as ageanhfication or protection of
computational results, among others. Thus, the developereironment should provide
a comprehensive set of security techniques that enabledetedopment of any kind of
secure mobile agent-based application. Additionally,auid be interesting to provide a
mechanism for selecting the appropriate technique or coation of techniques to use,
depending on the execution environment and targeted apiplic Thus, this environment
should be helpful for developers to better understand tisggdechoices involved in the

development of their secure mobile agent-based applicatio
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Appendix A

MACPL language specification

The Mobile Agent Cryptographic Protection Language (MACRL3 domain-specific pro-
gramming language used for the rapid development of mohiaiaprotection protocols.
In the following sections, we will analyse its types, vates) operators, special keywords,
functions and precompilation directives.

A.1 Data Types

MACPL is a language with strong, static typing, which mears tiipe errors are found
reliably at compile time. The following are the data typefedd by MACPL.:

Graph Graphs are created by surrounding GraphNode objects gri"])’. GraphNode
objects within a Graph are separated by commas. Graph slgeetbasically used
to process the initial itinerary. The XML itinerary spec#tmn is translated into a

Graph object using thget I ni ti al I ti nerary function.

GraphNode GraphNode objects are created by surrounding its elemgntsutentheses.
Each GraphNode contains the following information seatdty commas: a node
identifier, which is an Integer; the node data, which is arectopf type List; and a

list of node identifiers associated with the successor nodes

117
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List Lists objects are used to create compound structures qfaelgtahe protected explicit
itinerary or the structure where agent results are storexds are created by writing
its elements in order, separated by *’ and surrounded bgrifd ']". A List object
can contain objects of any type.

Task Task objects encapsulate the tasks that are executed bgehe MACPL provides
no constructor to create new Task objects, for tasks areyalvead from files or from
the XML itinerary specification directly. Thexec built-in function is provided to
execute a Task object.

Boolean Boolean objects have two possible valuiese or false These values are reserved
keywords of the language.

String String objects contain a sequence of characters. Striegsr@ated by surrounding
the characters by double quotes. The String is an import&@RAL type because it
can encapsulate objects of other types. In order to con&drirag object into another
data type, MACPL provides several conversion functionshasst ri ng2Task,
string2Li st, etc. The inverse operations can also be performed usingptine-
sponding conversion functionsgdsk2Stri ng,li st 2Stri ng, ...).

Integer Integer objects are signed integers in the range df to +-23! — 1. Integers are
basically used for indexing the elements of graphs and lists

RuntimeDefined This type is used to deal with the data types provided by tleaiagro-
gramming language, which is the language supported by et @agecution environ-
ment. The data types of the agent programming language adiraotly supported
by MACPL, which means that type errors related with Runtimef@fiobjects are
detected at runtime, not at compile time.
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A.2 Variables

The type of MACPL variables must be declared before using thEne type declaration
can be made at the same time the first value is assigned taadhari he assignment oper-
ator is the equal sign ('="). Variable identifiers can contany sequence of alphanumeric
characters and underscores. MACPL variables have 2 ditfgrpes of scope:

Global scope Variables with a global scope can be accessed from anywhignenwhe
entire MACPL code. They must be defined outside any functidimitien.

Function scope Variables with a function scope are only accessible witheftnction in

which they are defined.

Global variables lose their value after an agent migratiéowever, theexport key-
word can be placed at the beginning of the type declaratioassto prevent this from
happening.

A.3 Operators

The following is the list of operators used to perform integethmetic:
+ Addition of integers
— Subtraction of integers
* Multiplication of integers
/ Multiplication of integers
% Modulus, returning the integer remainder.
The following is the list of operators used for list handling

[] List creator. It creates a new list and introduces the elésrggtween [ and ']’ in the

list. List elements can be of any type, and are separated.by '
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< > Listindex operator. It allows expressions of the forar | i st <i >to access thih

element of Listvar | i st .

[ |] Sublist generator. It allows expressions of the form:

[ Expressi onWthl ndex | | ndexVari abl e, Firstlndex, Last| ndex]

to evaluateexpr essi onW t hl ndex from | ndexVar i abl e=Fi r st | ndex to

| ndexVari abl e=Last | ndex, and store the result in a list.
The following is the list of operators used for Graph creatio

([ Graph creator. It creates a new Graph object and introdiee&taphNode objects
between ([ and’])’ in the graph. GraphNode objects mussbparated by commas.

() GraphNode creator. Three elements separated by commapemnsiuded inside this
operator: the node identifier (Integer), the data (Listyl #re list of next node iden-
tifiers (List).

A.4 Functions

MACPL functions are defined using tfeundef keyword. They can take a comma-
separated list of parameters in parentheses, and returni@ vehe function code is sur-
rounded by {" and '}’. Function names must start with an alphabetic charactee rést
of the identifier may include any sequence of alphanumerarattiers and underscores.
Function parameters are passed by value. Any variable defwtgin a function is only

visible within that function.

A.5 Built-in functions

The following are the functions used for list handling:



A.5.

BUILT-IN FUNCTIONS 121

length (List list) : Integer Returns the number of elementdlist.
join (List 11, List 12) : List Returns a list that is the concatenatiorilband|2.
remove (Integer posList list) : List Removes the element at positipasfrom list.

reverse(List list) : List Returns the list resulting from reversifigt.

The following are the functions used for graph handling:

firstNode (Graph graph) : GraphNodeReturns the first node gfraph
addNode(GraphNode nGraph g : Graph Adds GraphNoda to Graphg.

removeNode(Integer id Graph g : Graph Removes the GraphNode referenced by
id from Graphg.

getNode(Integer id Graph g : GraphNode Returns the GraphNode frogrefer-
enced byd.

graph2List (Graph graph) : List Returns all the GraphNode objectsgfphin a
list.

joinGraphs (Graph g1 Graph g2 : Graph Returns the graph resulting from the
union of graphgyl andg2. If any node identifier is repeated in both graphs, this

function raises an error.
nodeld (GraphNode i: Integer Returns the identifier of node
nodeData(GraphNode ih: Object Returns the data contained in nade

successorgGraphNode h: List Returns the list of node identifiers associated with
the successors of note

predecessorgGraphNode h: List Returns the list of node identifiers associated

with the predecessors of node
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The following are the functions used to perform cryptogragperations:

e aencrypt (String platform String datg : String Encryptsdatausing the public key
of platform This function implements the mechanism proposed in [ARC&Bthat
the agent will be able to decrypt the resulting encrypte@ dsing the platform’s

private key.

e adecrypt (String datg : String Decryptsdatausing the current platform’s private
key. This decryption is performed by a call to the platforpislic decryption func-
tion. In order for this call to succeediata must have been encrypted using the
mechanism proposed in [ARO04].

¢ aencryptpk (RuntimeDefined publicKeptring datg : String Encryptsdatausing
an asymmetric key algorithm and the public kmyblicKey

e adecryptpk (RuntimeDefined privateKe$tring datg : String Decryptsdatausing
an asymmetric key algorithm and the private keiwateKey

e sign (String datg : String Signsdatausing the current platform’s private key.
e signok (String datg : String Signsdatausing the agent owner’s private key.

¢ signpk (RuntimeDefined privateKe$tring datg : String Signsdatausing the pri-
vate keyprivateKey

o verify (RuntimeDefined publicKegtring data String signedDath: Boolean Veri-
fies the signature adfignedDatausing the public keypublicKey

o verifyok (String data String signedDatp: Boolean Verifies the signature afigned-
Data using the owner’s public key.

e sencrypt (RuntimeDefined secretKe$tring datg : String Encryptsdata using a

symmetric key algorithm and the secret lsgcretKey
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sdecrypt (RuntimeDefined secretKe$tring datg : String Decryptsdata using a

symmetric key algorithm and the secret lsgcretKey

skeygen() : RuntimeDefinedGenerates a secret key for symmetric encryption and
decryption.

keypairgen () : List Generates a pair of a public and a private key. These keys are
returned in a list with two elements: the first element is thielic key, and the second

is the private key.

getPublicKey (String platformAddregs: RuntimeDefinedObtains the public key
referenced bylatformAddress

hash (String datg : String Returns a digest oflata using a cryptographic hash
function.

The following are the functions provided to perform coni@ns from and to String

objects:

string2Graph (String st : Graph Convertsstr into a Graph object.
string2GraphNode (String sti) : GraphNodeConvertsstr into a GraphNode object.
string2List (String st : List Convertsstr into a List object.

string2Task (String st : Task Convertsstr into a Task object.
string2Boolean(String str) : Boolean Convertsstr into a Boolean object.
string2integer (String sti) : Integer Convertsstr into an Integer object.

string2RuntimeDefined (String st : RuntimeDefined Convertsstr into a Run-

timeDefined object.

graph2String (Graph graph) : String Convertsgraphinto a String object.
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e graphNode2String (GraphNode graphNode String ConvertsgraphNodeinto a
String object.

e list2String (List list) : String Convertdist into a String object.

e task2String (Task task: String Convertgtaskinto a String object.

e boolean2String(Boolean boolean: String Convertsbooleaninto a String object.
e integer2String (Integer in) : String Convertsnt into a String object.

e runtimeDefined2String (RuntimeDefined nd: String Convertsrd into a String
object.

In order to allow programs to perform different actions degieg on a condition,

MACPL provides the f - el se statement. This statement can be used in two forms:

or

i f (Bool ean condition) {
statenents

i f (Bool ean condition) {
statenents

}

el se {
statements

}

The following are the functions used to evaluate conditions

e or (Boolean b1Boolean b2 : Boolean Returns true ibl or b2 are true.

e and (Boolean b1Boolean b2 : Boolean Returns true ib1l andb2 are true.

e not (Boolean i) : Boolean Returns true ib is false; otherwise it returns false.
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The following are the functions used to test the equalitynaf bbjects:

e eq (01, 02) : Boolean Returns true ibl ando2 are equal. MACPL provides eight

different versions of this function, one for each MACPL type.

e ne (01, 02) : Boolean Returns true ifol ando2 are not equal. MACPL provides
eight different versions of this function, one for each MACtype.

The following are the functions used for integer comparison

e gt (Integer intl, Integer int? : Boolean Returns true ifntl is greater thamt2.

e ge (Integer intl, Integer int? : Boolean Returns true ifintl is greater or equal to
int2.

e |t (Integer int], Integer intd : Boolean Returns true ifntl is lower thanint2.

¢ le (Integer int] Integer intd : Boolean Returns true iintl is lower or equal tont2.

The following function is provided to allow MACPL code to teirmte the execution in

case of an unrecoverable error.

e error (String message null Causes the execution to be terminated, printimes-

sageto standard output.

The following are the functions provided to enable the immatation of the agent
setup code. These functions can only be used in the first ptré MACPL specification,

before the#cont r ol _code_begi n precompilation directive.

e getlnitialltinerary () : Graph Reads the explicit itinerary from the XML itinerary

specification and returns a graph representation of it.

e getControlCodeHash() : String Returns a hash of the agent’s control code, which

is usually used as the unique agent identifier.
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The following are the functions provided to enable the imp@atation of the control
code of a mobile agent. These functions can only be used seitend part of the MACPL
specification, after th#cont r ol _code_begi n precompilation directive.

e exec(Task t, String n: String Executes the methad of the task.

e move (String p : null Causes the agent to migrate to platfgpmThe migration is

performed once the execution of the control code is finished.

e clone(String p : null Sends a clone of the agent to platfopmThe clone is sent to

p once the execution of the control code is finished.

e sendResultgString resulty: null Sendgesultsto the agent owner.
The following are the functions provided to perform file ibjowtput operations:

e readFile (String path) : String Reads the contents of fifath

e writeFile (String path String ob) Writesobj to file path

A.6 Keywords

nil Used to represent the empty list, the samg aks.

null Used to indicate that a given object has no assigned value.

true Used to represent one of the two legal values for a Booleartbbje
false Used to represent one of the two legal values for a Booleartbbje
last Used to address the last element of a list.

fundef Used to start a function definition.

return Used to return a value from a function.

export Used to declare a variable as exportable, so that it doessetils value during

migrations.
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A.7 Precompilation directives

e #control _code_begi n Separates the agent setup code from the agent control
code.

e #include fil enane Enables the inclusion of fililenameas a part of the
MACPL specification.

e #require interface Extendsthe setof built-in functions available with those
defined ininterface
A.8 Comments

Lines starting with ’//’ are ignored. End-of-line commermtiee not supported; comments
must be on a line of their own.
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Appendix B
MACPL implementation example

In order to demonstrate the simplicity and utility of MACPhig chapter presents an exam-
ple implementation of the itinerary protection protocotgented in [MB03], as described

in section 2.3.2.

Gaph initltin = getlnitialltinerary();
Li st symetricKeys = genKeys(1,[]);
String tripmarker = get Control CodeHash();
List initltinList = graph2List(initltin);
List protectedltin =
[tripmarker:[protectNode(initltinList<i>)|i,1,last]];
String protltinString = list2String(protectedlitin);
export List finalltin =
[transition(0,1): protectedltin:signok(protltinString)];

fundef List genKeys (Integer nid,List list) {
if (ne(getNode(nid,itinltin),null)) {
genKeys(ni d+1,join(list,[skeygen()]));
} else {
return |ist;

}
fundef String protectNode(G aphNode node) {

129
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I nteger i = nodel d(node);
String data = list2String([getTask(node):transition(i,i+1)]);
return sencrypt (symetri cKeys<i >, data);
}
fundef Task get Task(G aphNode node) {
Li st taskPair = nodeDat a(node) <2>;
String taskString readFil e(taskPair<2>);
return string2Task(taskString);
}
fundef List transition(lnteger nidl, Integer nid2) {
String platfornt;
if (ne(getNode(nidl,itinltin),null)) {

pl atforml = nodeDat a(get Node(nidl,itinltin))<3><2>;
}
el se {

platforml = null;
}

if (ne(getNode(nid2,itinltin),null)) {
String platfornm? = nodeDat a(get Node(ni d2,itinltin))<3><2>;
List tr = [platfornl: platfornR:triprmarker: synmetri cKeys<ni d2>];

String data = list2String([tr:signok(list2String(tr))]);
return [platfornR:aencrypt(platfornR, data)];
}
el se {
return null;
}
}
N LR
#control _code_begin
N e T T
String protltinString = list2String(finalltin<2>);

if (not(verifyok(protltinString,finalltin<3>))) {
error("Wong owner signature");
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}

List currentTransition = finalltin<l>

Li st transitionList = string2List(adecrypt(currentTransition<2>));

List tr = transitionList<1>;

if (not(verifyok(list2String(tr),transitionList<2>))) {
error("Wong owner signature");

}

Runt i meDefi ned symretricKey = tr<4>;

Li st protectedNodes = finalltin<2><2>

Li st current Node = getcurrentnode(l);

Task current Task = current Node<1>;

Li st nextTransition = current Node<2>

exec(current Task, "mai n");

if (ne(nextTransition,null)) {
finalltin = [nextTransition:finalltin<2>:finalltin<3>];

nmove( next Transi ti on<l>);

fundef List getcurrentnode(lnteger pos) {
String decrypt NodeString = sdecrypt (synmmetri cKey, prot ect edNodes<pos>);
if (ne(decryptNodeString, null)) {
return string2Li st (decrypt NodeString);

}

el se {
get current node( pos+1);

As shown in the above example implementation, the MACPL cedivided into two
parts: the agent setup, where the protected itinerary &edeand the control code, where
the management of this protected itinerary is carried ohes€ two parts are separated by

the#cont r ol _code_begi n precompilation directive.
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Regarding the protection of the initial itinerary, first of, &ihe XML itinerary specifica-
tion is translated into a Graph object using et I ni ti al I ti ner ary built-in func-
tion, and the resulting object is stored in thei t |1 ti n variable. Then, thgenKeys
function generates a random symmetric key for each itigemade, and the resulting list

of keys is stored in theynmet r i cKeys variable.

Next, a unique agent identifier is generated and stored in thgmar ker variable.
This identifier is constructed as a hash of the agent’s cbotae, which is obtained from
a call to theget Cont r ol CodeHash built-in function.

Then, using thegr aph2Li st built-in function,i ni t I ti n is converted into a list,
and thepr ot ect Node function is applied to every element of this ligtr ot ect Node
takes a GraphNode object as a parameter, and generatesréspamding entry of the
protected itinerary. This entry contains the current tashich is extracted using the
get Task function, and the transition to the subsequent node, wisigfenerated by the
t ransi ti on function. Each itinerary entry is encrypted using the cgpomding sym-
metric key 6ymret ri cKeys variable), and the resulting protected itinerary is stared

thef i nal I ti n variable.

As can be seen, tifd nal | t i n variable is declared as exportable usingek@or t
keyword. This makegi nal | t i n available to the control code after migrating to the first

itinerary platform.

The operations carried out by the control code are definedarseécond part of the
MACPL specification, which is started by tle®nt r ol _code_begi n precompilation

directive.

First of all, the protected itinerary is obtained from fhienal 1 t i n variable, and its
signature is verified using theer i f yok built-in function. Then, thedecr ypt built-in
function is used to decrypt the transition placed at therbegg offi nal Itin. The
signature of the decrypted transition is verified as weltl Hre symmetric key associated

with the current node is obtained.

Next, theget cur r ent node function is called to obtain and decrypt the current entry
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of the protected itinerary. Thus, the current node is stametthe cur r ent Node vari-
able. The current task and the transition to the next itnyereode are extracted from
current Node. The current task is executed using #eec built-in function, and the
agent is migrated to its next destination.

This MACPL specification shows that not many lines of code aeded to implement
an itinerary protection protocol. Even though the protaogblemented in this example
only supports sequential itineraries, because it is a etlversion of the one proposed
in [MBO03], the code shows that MACPL can significantly simplifie implementation of

security protocols.
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