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SIMULASI DAN FABRIKASI PENGESAN CAHAYA LOGAM-

SEMIKONDUKTOR-LOGAM PULAU Ge DI ATAS Si 

ABSTRAK 

Dalam kajian ini, eksperimen fabrikasi dan simulasi secara teori kepulauan Ge diatas 

Si berasaskan pengesan cahaya logam-semikonduktor-logam (MSM) telah 

dijalankan. Percikan frekuensi radio digunakan untuk mendeposit filem nipis Ge 

pada substrat silikon. Ini diikuti oleh pemanasan terma pantas untuk membentuk 

kepulauan Ge. Bukan hanya bahawa pemanasan menghasilkan pulau-pulau Ge tetapi 

juga lapisan nipis. Saiz dan ketumpatan pulau-pulau yang di hasilkan sangat 

dipengaruhi oleh masa pemanasan. Pengiraan kepadatan pulau menunjukkan bahawa 

peningkatan daripada sekitar 0.36×10
9
 cm

-2
 kepada 1.0×10

9
 cm

-2
 manakala ukuran 

saiz pulau-pulau tersebut menurun daripada 0.6 μm kepada 0.1 μm apabila waktu 

pemanasan meningkat dari 30s kepada 60s pada suhu 900˚ C. Pengesan cahaya MSM 

digunakan keatas sampel yang mempunyai pulau-pulau besar dan kecil dan 

pengukuran arus gelap, arus foto dan gandaan arus dilakukan pada suhu bilik untuk 

tujuan analisa. Kehadiran pulau-pulau Ge di atas lapisan nipis Ge telah terbukti 

memberikan kesan kepada pengesan cahaya MSM dimana ia mengurangkan arus 

gelap dan seterusnya meningkatkan gandaan arus. Dalam kajian ini, simulasi 

pengesan cahaya MSM keatas pulau-pulau Ge dan lapisannya telah dilakukan untuk 

mengesahkan keputusan eksperimen menggunakan simulator peranti Silvaco 

ATLAS. Keputusan simulasi telah mengesahkan keputusan eksperimen. Kajian 

simulasi secara mendalam telah dilaksanakan termasuk pasangan arus elektron-

lohong, medan elektrik, aliran arus, transient dan sambutan spektra. Arus lohong 

telah mendominasi di dalam Ge dan kawasan tanpa lapisan Ge di antara celahan-

celahan pengesan cahaya menunjukkan kesan sambutan spektra yang lebih baik. 

Sebagai tambahan, simulasi kuantum pengesan cahaya MSM untuk kepulauan Ge 

juga telah dijalankan, menunjukkan kepekatan elektron dan arus foto yang tinggi dan 

berbanding arus foto pada pengesan cahaya MSM silicon. 
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SIMULATION AND FABRICATION OF Ge ISLANDS ON Si METAL-

SEMICONDUCTOR-METAL PHOTODETECTORS 

ABSTRACT 

In this thesis, experimental fabrication and theoretical simulation of Ge islands Si 

based metal-semiconductor-metal photodetectors have been reported. Radio 

frequency sputtering was used to deposit Ge thin films on silicon substrates. This is 

followed by rapid thermal annealing to form Ge islands. Not only that the annealing 

produces Ge islands but also wetting layer. The size and density of the islands are 

greatly influenced by the annealing time. An estimation of the island density shows 

that it increases from around 0.36×10
9
 cm

−2
 to 1.0×10

9
 cm

−2
 while the average size 

of the islands decreases from 0.6 μm to 0.1 μm when annealing time increases from 

30 s to 60 s at 900 ˚C. Using these samples, metal–semiconductor–metal (MSM) 

photodiodes were fabricated for small and large islands. The performance of MSM 

devices were evaluated in terms of dark current, photocurrent and current gain 

measurements at room temperature. The presence of Ge islands and wetting layer 

structure has been shown to provide benefits for Si based MSM photodetectors; 

reducing the dark current and enhancement of current gain. Simulations of the Ge 

islands and wetting layer in MSM photodetectors have been performed to verify the 

experimental results using device simulator ATLAS in Silvaco in this thesis. 

Simulation results confirmed experimental results. A more detailed simulation 

studies has been conducted which show that hole current dominated in the Ge layers 

and device without wetting layer between the fingers which having  the best transient 

response. In addition, the quantum simulation for Ge nanoislands MSM 

photodetector has been done, which shows high electron concentration and high 

photocurrent over typical Si MSM PD.  
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CHAPTER 1 

INTRODUCTION 

 

1.1      Overview 

For more than 40 years, silicon (Si) has been the material of microelectronics. 

However, using of germanium (Ge) for microelectronics has gained more interest. 

The growth of Ge on Si is an appealing opportunity in order to combine proven 

semiconductor technology with a material exhibiting higher mobilities of charge 

carriers. It has been extensively studied from the viewpoint of fundamental physics 

and because of its technological importance. Ge on Si has been one of the most 

intensely investigated materials systems for the exploration of quantum dot self-

assembly processes in misfit heteroepitaxial growth. In addition, this material system 

has attracted a wide interest since it can be exploited in the fabrication of new 

optoelectronic devices compatible with the well-developed Si technology [Stangl et 

al., 2004]. It is well-known that Ge thin films grown on planar Si substrates follow a 

Stranski-Krastanov (S-K) mechanism due to the 4.17% lattice mismatch between Ge 

and Si and this led to form three-dimensional (3D) Ge islands on Si [Eaglesham et al. 

1990, Mo et al. 1990, Jain et al. 2003]. There have been extensive studies on the 

size, morphology, structure, and chemistry of Ge islands grown on Si(100) and 

Si(001) substrates because of the great potential of Ge/Si self-assembled quantum 

dots for possible device applications [Kamins et al. 2007, Medeiros-Ribeiro et al. 

1998, Chaparro et al. 2000]. Formation of these islands is characterized by their size, 

shape and density and these are necessary prerequisite for the use of self-assembled 

islands in future devices. To improve the performance of electronic devices, a 

considerable effort has to be devoted to control size uniformity, density and 
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positioning of the self-assembled nanostructures, as well as to shrink their 

dimensions [Goryll et al., 2003]. There have been several studies focused on the 

growth kinetics, electrical and optical characteristics of Ge islands on Si substrates 

under various growth conditions [Mota et al., 2002; Ratto et al., 2004; Chaparro et 

al., 2000; Mo et al., 1990]. 

Some studies have been done on the use of Ge nanoscaled lateral 

silicon/silicon–germanium layers, three-dimensional germanium quantum dots and 

Ge islands in semiconductor devices. Usually 3D islands are named quantum dots 

(QD) if their dimension is less than the exciton Bohr radius, (~ 24.3 nm in Ge). The 

heteroepitaxial self assembling of 3-D islands is one of the most promising paths 

towards the fabrication of QD devoted to nanoelectronics and nanophotonic 

applications. Ge quantum dots may find application in the field of quantum 

computation where they could be used to localize carriers forming quantum memory 

units (qbits) or perhaps used as single-photon emitters. Das et al. (2004) and Ray et 

al. (2005) reported a trilayer flash memory device structure using Ge nanocrystals 

embedded in a SiO2 matrix deposited by radio frequency (RF) sputtering. In their 

studies, the appearance of strong and broad visible photoluminescence at room 

temperature is attributed to the quantum confinement of charge carriers in Ge 

nanocrystals having a wide distribution of crystallite sizes, making it attractive for 

future nanocrystals memory devices. Meanwhile, self-assembled Ge islands have 

been successfully incorporated into Si-based interband tunneling diodes and record 

peak-to-valley ratio Si-based tunnel diodes were achieved [Dashiell et al. 2002, Eberl 

et al., 2000]. More recently, potential application is proposed, consisting in the 

incorporation of Ge islands into Si-based solar cells for more efficient light 

absorption [Alguno et al. 2003, Usami et al. 2004]. There is a limited literature on 
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using of Ge islands in metal-semiconductor-metal (MSM) photodetectors. A study 

has been done on MSM photodetector for Ge thin film showing that a SiO2 

passivation layer is required to reduce the high level of dark current [Buca et al. 

2002]. In recent decades, MSM photodetectors have been studied due to their 

suitability for optical fiber communication application. The MSM structure plays an 

important role because of their high sensitivity-bandwidth product, fast response, 

simplicity, ease of fabrication, low dark currents, small capacitance, large active area 

for photodetection, low noise and the suitability for the monolithic integration of an 

optical receiver. 

 

1.2    Literature Review 

1.2.1       Ge islands 

  Formation of self-assembled Ge islands of various shapes like hut, pyramid 

and dome and their shape transitions have been fascinating [Mo et al. 1990, 

Medeiros-Ribeiro et al. 1998]. A technique to fabricate Ge islands is epitaxial 

growth, when lattice mismatch between Si and Ge (4.17%) and the overgrowth layer 

allows the formation of self-assembled quantum dots (QD) through the Stranski-

Krastanov mechanism (SK). From the microscopic point of view, lattice mismatch is 

one of the most relevant factors which determines the growth mode. The growth of 

Ge/Si heterostructures has been intensely investigated due to the fact that Ge/Si 

lattice mismatch serves as a model system for the study of lattice-mismatched 

heteroepitaxy.  

         For better device performance, it is important to obtain islands of the same size, 

shape, and to find a mechanism for self-organized ordering. Despite the intensive 

research in the last few years, careful cataloging of the shape and size evolution of 
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the islands as a function of growth conditions has not yet been performed (Radić et 

al., 2005). There are many growth parameters such as temperature, deposition rates, 

or growth interruptions, which affect the morphology and, hence, the electronic and 

optical properties of the islands.  

Hartmann et al. (2005) has demonstrated the effects of the temperature and 

the amount of Ge on the morphology of Ge islands. In their work, the formation 

mechanisms and the structural features of Ge islands grown by Reduced Pressure–

Chemical Vapor Deposition (CVD) onto Si(001) substrates have been studied. The 

size, the shape, and the density of Ge islands change drastically when altering 

parameters such as the growth temperature or the Ge coverage. For temperatures 

either equal to 600˚C or 650˚C, pyramids with {105} facets are nucleated first. They 

then gradually change into larger size domes as the amount of deposited Ge 

increases. Most probably because of longer Ge atoms diffusion lengths, the islands 

are less numerous (by a factor of 5) and larger (25% increase in diameter and height) 

at 650˚C than at 600˚C. At 550˚C, Ge hut clusters are nucleated first; then, small 

domes appear as the number of Ge monolayers increases. Those islands, although 

much denser, are rather smaller than the counterparts at higher temperatures. This 

study is the first time that such a systematic study of the structural and optical 

properties of Ge islands is carried out on an industrial Reduced Pressure CVD tool.  

           Stacked Ge islands which separated by Si spacers have been used in some 

structures. Stacking of Ge islands could increase the total volume of Ge in the 

structure without the introduction of misfit dislocations [Peng et al., 1998].  Alguno 

et al. (2006) has investigated the influence of stacked Ge islands in the solar cell by 

the dark current–voltage (J–V) characteristics and the conversion efficiency of the 

solar cells with embedded stacked Ge islands in the intrinsic layer. These islands 
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were grown by molecular beam epitaxy on Si substrates. Results showed that the 

minority carrier diffusion and the recombination current components increase as a 

function of the stacked Ge island layers. This increase of the minority carrier 

diffusion current was due to an increase of the intrinsic carrier density as a function 

of the number of stacked layers. Similarly, the increase in the recombination current 

components was due to the enormous recombination of carriers in the intrinsic region 

as the number of stacked layer increases. This phenomenon could lead to a decrease 

of the open circuit voltage, Voc. The decrease of Voc should be overcompensated by 

the increase of photocurrent, due to the presence of stacked Ge islands with higher 

absorption coefficient, in order to attain an optimum value of the conversion 

efficiency.  

Alguno et al. (2003) reported the performance of solar cells with stacked self-

assembled Ge dots in the intrinsic region of Si-based p-i-n diode. These dots were 

epitaxially grown on p-type Si(100) substrate via the Stranski-Krastanov growth 

mode by gas-source molecular beam epitaxy. Enhanced external quantum efficiency 

(EQE) in the infrared region up to 1.45 μm was observed for the solar cells with 

stacked self-assembled Ge dots compared with that without Ge dots. Furthermore, 

the EQE was found to increase with increasing number of stacking. These results 

show that electron-hole pairs generated in Ge dots can be efficiently separated by the 

internal electric field, and can contribute to the photocurrent without considerable 

recombination in Ge dots or at Ge/Si interfaces. 

Usami et al. (2004) fabricated Si-based solar cell with stacked Ge islands 

grown via the Stranski–Krastanov growth mode in the intrinsic layer of p-i-n diodes. 

The onset of the external quantum efficiency in the near infrared regime was 

extended up to approximately 1.4 µm for the solar cells with stacked Ge islands. The 
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quantum efficiency was found to increase with increasing number of stacking, 

showing that a part of electron–hole pairs generated within Ge islands was separated 

by the internal electric field and contributed to the photocurrent. These results 

manifest that the Ge islands did play a role to increase the quantum efficiency.  

Ge/Si heterojunction has been investigated and fabricated in some studies. 

 Luana et al. (2001) demonstrated Ge/Si heterojunction photodetectors based on high 

quality epitaxial germanium grown on silicon. Germanium deposited by ultra-high-

vacuum chemical vapor deposition (UHV-CVD) undergoes thermal annealing. It was 

demonstrated the effectiveness of post-growth thermal annealing and shown that the 

photodetectors exhibit record responsivity of 0.55 A/W and a sub-ns photoresponse 

at 1.3 µm in Ge/p-Si photodiode.  

In other studies led by Ismail et al. (2006), the structural and photovoltaic 

(PV) characteristics of heteroepitaxial Ge film on monocrystalline Si (111) has been 

reported. The influence of Ge thickness and two types of annealing conditions on 

Ge/Si heterostructure and PV parameters have been investigated. The results of 

spectral responsivity at near IR region suggest that these heterojunctions are 

candidate to be used as detector for laser of λ = 1.3 μm.   

       Konle et al. (2003) fabricated silicon solar cells with embedded germanium 

layers to form three-dimensional islands in the Stranski–Krastanov growth mode. 

There are additional Ge-layers to increase the infrared absorption in the base of the 

cell to achieve higher overall photocurrent and overcome the loss in open circuit 

voltage of the heterostructure. Photocurrent measurements exhibit a higher response 

of the fabricated solar cells in the infrared regime compared to standard Si-cells. 

In other study led by Konle et al. (2001) showed the influence of nanoscaled 

lateral silicon/silicon–germanium layers and three-dimensional germanium quantum 
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dots on the performance of silicon based infrared detectors in the wavelength range 

between 2 and 10 μm and solar cells for space applications. In addition, the growth 

of Ge islands on Si layers in the Stranski-Krastanov mode was performed to increase 

absorption and quantum efficiency in Si-solar cells. 

There are few studies on the formation of Ge islands from Ge layer on Si 

substrate by post-growth annealing. Kovačević et al. (2007) studied a thick Ge layer 

deposited on Si(100) held at 200˚C by thermal evaporation under high vacuum 

conditions. Upon subsequent thermal annealing in vacuum, self-assembled growth of 

nanostructural Ge islands on the Ge layer occurred by a Ge mass transport from the 

layer to the islands. 

Pivac et al., (2006) studied a structural analysis of Ge islands on Si(100) 

substrates using grazing incidence small angle X-ray scattering (GISAXS). GISAXS 

is a nondestructive and powerful technique for structural characterization of islands 

fabricated on a substrate. In his work, the samples were prepared with high-vacuum 

evaporation of a 10 nm thick Ge layer on Si(100) substrate heated at 200˚C. The 

samples were annealed at 500–700˚C for 1 h in vacuum, yielding to island formation.  

In similar study led by Pivac et al. (2006), a study of Ge islands formation on 

Si(100) substrates was presented using GISAXS and atomic force microscopy 

(AFM). Samples were prepared by magnetron sputtering of a 5 nm thick Ge layer in 

a very high vacuum on Si(100) substrate held at different temperatures. The optimum 

temperature for the islands formation was 650˚C. At this temperature, islands grow 

in conical shape with very similar dimensions; however, inter-island distances varied 

significantly. 

Pervious discussions so far suggested one of the most important applications 

of Ge islands is in the incorporation of Ge islands into Si-based solar cells for more 
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efficient light absorption. The growth of Ge islands on Si in the Stranski-Krastanov 

mode was performed to increase absorption and quantum efficiency in Si-solar cells.  

Ge islands have been grown by a number of methods such as molecular beam 

epitaxy (MBE) [Dvurechenskii et al., 2005; Krasil et al., 2002; Volodin et al., 2004], 

ultra-high vacuum chemical vapor deposition (UHV-CVD) [Li et al., 2004], low-

pressure chemical vapor deposition (LPCVD) [Osipov et al., 2005] and magnetron 

sputtering [Radic et al., 2006]. The most common substrate to grow Ge 

nanostructures are Si(100) and Si(111).  

Most of the reported quantum structures were prepared on Si(100) or Si(111) 

substrates using expensive tools such as molecular beam epitaxy (MBE) or high 

vacuum chemical vapor deposition (CVD) that are incompatible with high 

throughput solar cells fabrication. Some investigations reported the use of thermal 

evaporation [Das et al., 2000]. 

A few studies use Ge islands in metal-semiconductor-metal (MSM) 

photodetector. In study led by Baharin [Baharin et al., 2007], it has been shown that 

the presence of submicron and nano Ge islands grown using conventional method 

beneath the metal contact on Si substrate has double functions; suppressing the dark 

current and increasing the photocurrent. In many studies, one of the main reasons for 

using Ge is its high absorption. It was reported that layer of Ge have excellent 

potential for high-speed applications [Kawanaka et al., 1996]. In another study, the 

hole transport across GaAs-Ge-GaAs heterovalent-interface via Ge islands was 

reported [Inada et al., 1998]. Also in [Ahn et al., 2007], it has been demonstrated 

high-speed and high efficiency Ge p-i-n photodetectors monolithically integrated 

with top coupled waveguides. 
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1.2.2      Ge wetting layer 

            A wetting layer is an initial layer of atoms that is epitaxially grown on a 

surface upon which self-assembled quantum dots or thin films are created.                    

Although Ge/Si self-assembled islands are grown on top of the wetting layer (WL), 

some theoretical and experimental studies omit the WL from their simulations or 

investigations without much justification (Moutanabbir et al., 2007). Others included 

the WL only briefly to discuss its influence on the properties of 3D islands. The 

wetting layer was taken into account in the earlier studies; however, the development 

of the wetting layer as well as the effects of the development on the island formation 

have been largely overlooked. The use of a wetting layer before dots formation has 

been demonstrated to be an important way of coherent growth of uniform and small 

dots (~10 nm) with a relatively high density (~10
8
 to 10

10
/cm

2
) [Miura et al., 2000].  

         However, mass transport on the surface of WL underlies most of the other 

detailed mechanisms of islands nucleation and growth. Hence, a quantitative 

determination of WL–3D interdiffusion is of particular significance, both for 

improving our understanding of the microscopic mechanisms of self-organization, 

and also as a primary input for epitaxial growth models and calculations. 

  Rosei et al. (2000) studied formation of the wetting layer in Ge/Si(111) by 

scanning tunneling microscopy (STM) and X-ray absorption fine structure (XAFS). 

The evolution of the wetting layer has been followed up to its completion, both after 

and during deposition. The islands are flat and have a triangular shape with a lateral 

size which increases progressively with deposition. The growth law of the average 

dimensions of the islands and of the average number of islands per unit surface as a 

function of coverage has been studied. 
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Shi et al. (2005) reported the influence of boron on the formation of Ge 

quantum dots. The investigated structure consists of a Ge wetting layer, on which a 

sub-monolayer boron is deposited and subsequently a Ge top layer. For sufficiently 

thin Ge top layers, the strain field induced by boron on Ge wetting layer destabilizes 

the Ge top layer and causes the formation of small Ge quantum dots. In this study, 

the effect of boron on the Ge wetting layer was investigated. 

Bernardi et al. (2006) studied the epitaxial growth of self-assembled Ge 

quantum dots when a sub-monolayer of carbon is deposited on a Ge wetting layer 

(WL) prior to the growth of the dots. Seta et al. (2009) investigated the island and 

wetting-layer intermixing in the Ge/Si(001) system upon capping. It was 

demonstrated that the island shape evolves at constant volume with silicon atom 

incorporation occurring in the absence of lateral diffusion of Ge and Si atoms from 

the wetting layer to the islands themselves. Portavoce et al. (2006), investigated the 

fundamental mechanism by which self-assembled Ge islands can be nucleated at 

specific sites on Si(001) using ultra-low-dose focused ion beam (FIB) pre-patterning. 

It was shown that the Ge wetting layer thickness depends on the density of template 

sites, and that it is lower than the value for an unmodified surface.  

In some studies, particularly in the simulation, the wetting layer has been 

considered. Chiu et al. (2007) investigated the nanostructure formation of the 

Stranski-Krastanov (SK) systems by simulating the surface undulation of the systems 

driven by the surface diffusion mechanism. The particular interest is how the surface 

undulation leads to the development of faceted nanostructures and wetting layers. 

This study was carried out in three-dimensional simulation for the process. In this 

work, it has been presented a model for simulation of heteroepitaxial growth which is 

capable of reproducing various important phenomena observed in strained 
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heteroepitaxial growth. It was demonstrated that the appearance of a kinetic critical 

wetting-layer thickness can be explained on the basis of very few assumptions within 

the model. Liu et al. (2008) performed UHV-CVD experiments and theoretical 

calculations to investigate the mechanism of formation of the initial Ge wetting layer 

on Si(100)-2×1 reacted with the molecular hydride GeH4. A precise Arrhenius 

temperature dependence was observed at the onset of growth of the Ge wetting layer 

and calculated the activation energy to be 30.7 kcal/mol for a 0.2-ML Ge coverage at 

temperatures ranging from 698 to 823 K.  

 

 

1.2.3       Photodetectors  

              Photodetectors (PDs) are used in many applications of everyday life, from 

the bar code scanner at the grocery store to the receiver for a remote control, as well 

as the photoreceiver at the end of a fiber optic cable in an optical communication 

system. Photodetectors have been extensively studied both at the academia and 

industry levels. Most of the research has been focused and done on the optical to 

electrical conversion process. The photodetector is a key component in optical 

communication systems. Responsivity, quantum efficiency, rise time and bandwidth 

are the basic parameters which are used to characterize a photodetector and there is a 

need to improve these parameters.  

The two major trends in PD development are aimed at developing a large 

bandwidth efficiency product and a high saturation current. Kato et al. (1999) first 

mentioned these trends and their limiting factors.  Then several PD technologies 

based on the waveguide photodiode (WGPD) for these two trends were discussed. 
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Finally, they present a recently developed WGPD-based 50 Gb/s receiver 

optoelectronic integrated circuit (OEIC) technology. 

DeCorby et al. (1999) discussed about the design of photodetectors with a 

balance of bandwidth, efficiency, and power handling capabilities which used in 

telecommunications and optoelectronics. Caria et al. (2004) has done responsivity 

measurements on commercial silicon photodetectors in the UV range, 200–400 nm. 

In his work, microstrip and pixel detectors have been used; also, they have performed 

measurements in back illumination geometry which is of particular interest in most 

industrial applications. Liu et al. (1994) has proposed a metal-semiconductor-metal 

(MSM) photodetector with 100-nm finger spacing and width on a silicon-on-

insulator substrate that has a scaled active layer, which were fabricated and 

characterized using electro-optic sampling. Buried oxide layer is important feature in 

speed enhancement of photodetectors which limits the active Si thickness. A 

bandwidth of 140 GHz at a wavelength of 780nm was achieved by using this model. 

Good metal-semiconductor Schottky contact and low detector dark current are the 

results for this condition. 

One of the most important factors in photodetectors is quantum efficiency 

which related to light absorption in photodetectors. Collin et al. (2004) proposed a 

new technique for efficient light absorption in MSM photodetectors. In his work, it is 

shown that the strong confinement of light in sub-wavelength metal-semiconductor 

gratings can be achieved by Fabry-Perot resonances involving vertical transverse 

magnetic and transverse electric guided waves, thereby increasing the quantum 

efficiency in device. 

In the past few years, there has been a growing interest increased interest in 

MSM photodetectors has developed due to its low capacitance and high speed. Using 
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these detectors for optical communication receiver has been fabricated with 

integrated circuits. Liu et al. (1993) demonstrated a novel monolithic integrated 

optoelectronic mixing receiver with low conversion loss. This configuration of 

optoelectronic mixer can be applied for a wideband sub-carrier multiplexed (SCM) 

distribution system in GHz range with a suitable laser diode and photodetector. 

Recently, an MSM detector has been utilized as an optoelectronics mixer in a 

frequency modulated continuous-wave laser detection and ranging (LADAR) system 

[Shen et al., 2000].  

The response speed of an MSM photodetector is largely limited by the transit 

time of the photogenerated carriers, and thus, the inter-electrode spacing should be 

small. Reducing the finger spacing and finger width of an MSM PD can greatly 

increase its speed and sensitivity. Liu et al. (1992) fabricated MSM PD’s with finger 

spacing and width as small as 25 nm on bulk GaAs, low-temperature-grown-GaAs, 

and bulk Si, using a custom-built electron-beam lithography. In his work, it has been 

demonstrated an MSM photodetector with finger spacing smaller than the 

wavelength of the light. Seo et al.  (2004) demonstrated an Inverted metal–

semiconductor–metal (I-MSM) photodetectors, which are thin-film MSMs with the 

growth substrate removed and fingers on the bottom of the device (to eliminate 

finger shadowing to enhance responsivity) for high-speed high-efficiency large-area 

photodetectors. Lee et al. (1995) have proposed a novel high-speed silicon 

photodetector that operates at a wavelength of 830 nm which consists of a Metal-

Semiconductor-Metal (MSM) detector that is fabricated on a 5-µm thick silicon 

membrane.  

A resonant cavity enhanced photodetector (RCE) provides wavelength 

selectivity in detection. The principle of resonant-cavity enhanced photodetectors is 
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that a fast photodetector was put into a Fabry-Perot (FP) cavity to enhance the signal 

magnitude.  These detectors can function as channel discriminators in wavelength 

division multiplexing systems [Kishino et al., 1996]. This is achieved by utilizing 

reflectors around the active region. The photons make multiple passes across the 

active region, improving the probability of absorption, thereby increasing the 

quantum efficiency. A general expression for efficiency of RCE photodetectors was 

derived while taking the external layer losses into account for the first time.  

Some attempts have been aimed at improving the Si MSM detector quantum 

efficiency at visible and near IR wavelengths by fabricating vertical and U-shaped 

trench electrodes using reactive ion etching and wet chemical etching methods [Ho et 

al., 1996; Liah et al., 1998].  For an MSM photodetector, the amount of energy 

reaching the interface of the detector should be a maximum and this depends on the 

geometric and optical parameters of the structures as well as on the properties of the 

incident radiation (wavelength, polarization, angle of incidence, and the like). In the 

work by Kuta et al. (1994) photocurrent and transmission studies of metal-

semiconductor-metal (MSM) photodetectors on semi-insulating GaAs substrates 

demonstrate a polarization and wavelength dependence of the coupling of light into 

the metal electrodes. 

Optoelectronic integrated circuits are very promising for use in optical 

communication systems because of their high performance characteristics and small 

size. Circuit simulations of electronic circuits and photodetectors must be conducted 

for enhancing their performance. Sano (1990) proposed an analytical model based on 

the behavior of photo-generated carriers and electric fields. This model was 

implemented on a SPICE (Simulation Program with Integrated Circuit Emphasis) 

like circuit simulator and was found to be useful for designing high performance 
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optoelectronic receivers. More simulation models have to be developed in order to 

improve the optical transmission characteristics.  

Poisson’s equation, current-continuity equations, and a rate equation for 

charged traps are numerically solved in two dimensions, to explain the behavior of 

photo-generated carriers and electric fields in metal-semiconductor-metal 

photodetectors (MSM PDs). Sano (1990) proposed an analytical model on the basis 

of these solutions and implemented in a SPICE-like circuit simulator.  

             Finally, there is a need to study Ge on Si photodetectors due to the excellent 

optoelectronic properties.  

 

1.3      Research Objectives 

The main objectives of this thesis are the following:  

1) To grow Ge islands with different sizes using sputtering techniques, 

2) To fabricate MSM photodetector based on Ge islands, 

3) To investigate the effects of Ge islands in MSM PD using both experimental and 

simulation procedure, 

4) To investigate the effect of Ge wetting layer in Si MSM PD using device 

simulator.  

5) To simulate the Ge Nanoislands MSM Photodetector with quantum model. 

 

1.4      Organization of Thesis 

 The reminder of this thesis is organized in the following manner which are 

shortly described below.  
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The next chapter serves as some theories about the work. Ge optical and 

electrical properties and Ge islands were explained. The end of the chapter some 

theoretical description of MSM photodetectors were given. 

The third chapter focuses on experimental procedure of the related work. 

Here the film deposition methods are described. This included the physical 

deposition methods; thermal evaporation and radio frequency (RF) sputtering. The 

next part of this chapter explains used instruments through the work. In addition, the 

end of the chapter, the simulator software (Silvaco) and simulation procedure were 

described, which have used in this work.  

The fourth chapter of this thesis is the results and discussion of the study of 

Ge islands on Si MSM PDs performance. 

The fifth chapter of this thesis is the results and discussion of the simulation 

of the role of Ge wetting layer in Si MSM photodetector. 

The sixth chapter of this thesis is the results and discussion of the simulation 

of Ge islands MSM PD without Ge wetting layer by quantum model.  

We will conclude this thesis and discuss future work in chapter 7. Conclusion 

presented in this chapter, gives a brief overview of the research and the achieved 

results also the future works suggests a perspective of the future researches that can 

be implemented based on the outcomes of this thesis.  
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CHAPTER 2 

THEORY 

 

2.1      Introduction  

         The solids known as semiconductors have been the subject of very extensive 

research over recent decades. Semiconductors are a group of materials having 

electrical conductivities (in the range of 10
4
 to 10

-10
 (Ω cm)

-1
) between metals and 

insulators (s=10
-10

 to 10
3 
(Ω cm)

-1
). The conductivity of these materials can be varied 

over orders of magnitude by changes in temperature, optical excitation, and impurity 

content. This variability of electrical properties makes the semiconductors as a 

natural choice for electronic device. The column IV semiconductors, silicon and 

germanium are called elemental semiconductors because they are composed of single 

species of atoms. Every solid has its own characteristic energy band structure. This 

variation in band structure is responsible for the wide range of electrical 

characteristics observed in various materials. Semiconductor materials at 0 K have 

basically the same structure as insulators. In metals, the bands either overlap or are 

only partially filled. Thus in metals, high electrical conductivity is due to the fact that 

electrons and empty energy states are intermixed within bands so that electrons can 

move freely under the influence of an electric field [Streetman et al., 2006].  

 

 

2.2       Electrical and Optical Properties of Ge 

Germanium is an elemental semiconductor that was used to fabricate the first 

transistors and solid state devices. The common solid phase of Ge is crystalline with   
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 Figure 2.1: Crystalline structure of Ge showing the tetrahedral arrangement of the 

bonds.   

 

 

 

 

 

 

 

 

a covalently bonded diamond structure, i.e. each atom has a coordination number of 

four (nearest neighbors) and a tetrahedral binding angle of 109.28º as schematically 

drawn in fig. 2.1. Energetically, this structure has the lowest free energy and is 

therefore the most stable one since the perfect lattice does not give rise to strain 

energy. The extension of the symmetry of this structure defines the quality of the 

crystal which is called polycrystalline when composed of different crystalline regions 

(grains). 

Table 2.1 lists the most important electrical properties of bulk crystalline Ge. 

Notice that some properties are very different when film form. The properties of the 

liquid or the amorphous phase are also different. Ge is an excellent candidate to 

replace Si photodetectors [higher mobility and high absorption]. The band gap of Ge, 

like that of Si is also indirect. Alloys of Si and Ge are thus also indirect band gap 

materials. Ge has the direct transition at 0.805 eV, corresponding to 1550 nm and 

indirect transition at 0.66 eV. At 850 nm the absorption coefficient of Ge is mid-tens 

of thousands/cm as in fig. 2.2. Thus, Ge has the absorption coefficient more than two 

orders of magnitude larger than Si. Furthermore, table 2.1 shows comparison of 

electronics properties of Ge and Si [Sze, 2002]. Mobility of Ge is much higher than 

that of Si, especially hole mobility. 
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Table 2.1: Band structure parameters for the indirect gap element Germanium.    
      

is indirect band gap;    
     direct band gap at the г  point. [Streetman et al., 2006, 

Pavesi et al., 2006]. 

Property Germanium Silicon  

  
    (ev) (300 k) 0.66 1.1 

  
    (ev) (300 k) 0.805 3.4 

Electron mobility (cm
2
V

-1
s

-1
) 3900 1500 

Hole mobility (cm
2
V

-1
s

-1
) 1900 600 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The band gap represents the minimum energy difference between the top of 

the valence band and the bottom of the conduction band, however, the top of the 

valence band and the bottom of the conduction band are not generally at the same 

value of the electron momentum. In a direct band gap semiconductor, the top of the 

valence band and the bottom of the conduction band occur at the same value of 

 

Figure 2.2: Absorption coefficients of Si and Ge [Pavesi et al., 2006]. 
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momentum, as shown in fig 2.3(a). In an indirect band gap semiconductor, the 

maximum energy of the valence band occurs at a different value of momentum to the 

minimum in the conduction band energy, as shown schematically in fig. 2.3 (b). 

Transitions at the band edge must therefore involve a large change in the electron 

wave vector. Optical frequency photons only have a very small k vector, and it is not 

possible to make this transition by absorption of a photon alone: the transition must 

involve a phonon to conserve momentum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indirect absorption has been thoroughly studied in materials like germanium. 

The band structure of germanium is shown in fig. 2.4. The lowest conduction band 

minimum of germanium occurs at the L point, where k = 
 

 
 (1, 1, 1), and not at k = 0. 

This makes germanium an indirect gap semiconductor. The value of the indirect gap 

is 0.66 eV, which corresponds to the band gap determined by electrical 

measurements. This is 0.14 eV smaller than the direct gap at k = 0. 

 

Figure 2.3: Inter-band transitions in solids: (a) direct band gap, (b) indirect band gap. 

The vertical arrow represents the photon absorption process, while the 

wiggly arrow in part (b) represents the absorption or emission of a phonon 

[Fox, 2001].    
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Figure 2.5 shows the results of absorption measurements on germanium at 

room temperature.    is plotted against ħω in the spectral region close to the band 

gap at 0.66 eV. The data fits well to a straight line, which confirms the prediction in 

the following equation: 

 

                                                            (2.1) 

 

This shows that we expect the absorption to have a threshold close to Eg, but 

not exactly at Eg. The difference is    , depending on whether the phonon is 

absorbed or emitted. The data extrapolates back to 0.65 eV, which indicates from  

eq. (2.1) that a phonon of energy ~ 0.01 eV has been absorbed. The wave vector q of 

the phonon must be equal to that of an electron at the L-point of the Brillouin zone. 

 

Figure 2.4: Band structure of Germanium (Energy vs. wave vector) [Fox, 2001].  
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The energies of the four different phonon modes with the required wave vector are 

listed in table 2.3, from where we see that it must be TA phonons that are involved. 

The experimental data also shows a tail extending down to about 0.60 eV. This is 

caused by absorption of the higher frequency phonons and also multiphonon 

absorption [Fox, 2001].  

 

 
 

Figure  2.5: Experimental data for the absorption coefficient of  germanium at room 

temperature [Fox, 2001]. 

 

 

 

 

 

 

 

 

 

 

Mode ħΩ 

Longitudinal acoustic (LA)  0.027 

Transverse acoustic (TA)  0.008 

Longitudinal optic (LO)  0.030 

Transverse optic (TO)  0.035 

 

 

 

 

Table 2.2: Phonon energies for germanium at the L point where q = 
 

 
 (1,1,1),  

a being the unit cell size. 



23 

 

2.3      Growth Modes 

2.3.1      Film growth mode 

               A technology closely related to crystal growth involves the growth of 

single-crystal semiconductor layers on a single-crystal semiconductor substrate. This 

is called epitaxy, from the Greek words epi (meaning "on") and taxis (meaning 

"arrangement"). The epitaxial layer and the substrate materials may be the same, 

giving rise to homoepitaxial. Epitaxy or epitaxial growth is the process of depositing 

a thin layer (0.5 to 20 microns) of single crystal material over a single crystal 

substrate. In semiconductors, the deposited film is often the same material as the 

substrate, and the process is known as homoepitaxy, or simply, epi [Sze, 2002].  

The details of the growth modes for the simplest case of homoepitaxy, the 

growth of a film on a single-crystalline surface of the same material, is indicated in 

fig. 2.6.  

                    (a)                                        (b)                                                  (c) 

Figure 2.6: Growth modes of homo-epitaxy:  (a) step-propagation, (b) 2d-islands 

growth, and (c) multi layer growth [Waster, 2005]. 

 

Step-propagation dominates at high temperatures (fig. 2.6(a)) and two-

dimensional islands growth will predominate if immobile clusters are formed by the 

encounters of mobile adatoms (fig 2.6(b)). Also, if the jump across the step is 

kinetically hindered multilayer growth will be observed (fig. 2.6(c)).      



24 

 

If we want to grow an epitaxial film on a different substrate (so-called 

heteroepitaxy), two material parameters have to be considered in addition: the 

surface energy,  , and the lattice parameter or lattice match of the two materials. For 

the case of good lattice match the difference in surface energy leads to two different 

growth modes as indicated in fig. 2.7. It is well known that there are three types of 

growth modes for heterogeneous epitaxial growth (which including the Ge/Si 

system): the Frank-Van der Merwe [Frank et al., 1949], Stranski-Krastanov 

[Stranski, 1939], and Volmer-Weber [Volmer, 1926] modes, which are named after 

the original researchers.  

 

 

 

 

Figure 2.7: Growth modes of hetero-epitaxy: (a) Frank-van der Merwe (FM) (b) 

Vollmer-Weber (VM) (c) Stranski-Krastanov (SK) [Waster, 2005].  

 

The typical layer-by-layer growth is referred to as Frank-Van der Merwe 

(FM) growth, which is required to fabricate high-quality large films for practical 

applications. In this mode a low surface energy adsorbate wets the substrate with a 

continuous film and higher layers do not start growing until the topmost one is nearly 

complete.  

 

                                                                (2.2) 

 

Eq (2.2) shows the perfect wetting and pure layer by layer or frank-van-Merve 

growth.  

 
                     (a)                                        (b)                                       (c) 



25 

 

For some heterogeneous epitaxial growth conditions, where there is, for 

example, a substantial lattice mismatch, layer-by-layer growth is impossible and only 

3D islands are formed. This growth is referred to as Volmer-Weber (VW) growth.  

 

                                                              (2.3) 

 

For this consideration the surface energies of the crystallographic orientations 

of actual interest must be applied, which are often not available in data reference 

tables.  

If there is a lattice mismatch between substrate and film, an additional growth 

mode may be observed as indicated in fig. 2.7(c) Stranski-Krastanov growth which is 

an intermediate mode where growth starts in a layer-to-layer mode during the first 

few atomic layers, and then form 3D islands beyond a certain thickness, which is 

usually referred to as critical thickness. A first layer may grow matched to the 

substrate, which yields additional strain energy. With growing thickness this strain 

energy increases in proportion to the strained volume and an island formation may 

become more favorable in spite of the larger surface area. In Stranski-Krastanov 

(SK) mode, the first adsorbate layer reduces the substrate surface energy enough to 

stop the wetting behavior, and the growth continues as 3D islands. Based on 

thermodynamic analysis, the growth mode in a given system is determined from the 

surface/interface energy and the lattice mismatch which mentioned above. 

Two of these three equilibrium growth modes (SK and VW) can produce 

self-assembled nanodots, Ge pyramids on Si surfaces being, perhaps, the most 

famous example. Self-organization in such systems is typically limited to nearest-

neighbor interactions, but can become significant in multilayer systems. 
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