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                         PENGURAIAN QR UNTUK PENAPIS MUDAH-SUAI            

 

Abstrak 

   Tesis  ini bertujuan mengkaji masalah penapisan mudah suai (adaptive filtering) 

berdasarkan teknik penguraian QR.  Penapis mudah suai ialah suatu penapis digital yang boleh 

melaras pekalinya untuk meminimumkan fungsi ralat yang ditakrifkan.  Algoritma mudah suai 

digunakan bagi menyesuaikan pekali daripada penapis yang digunakan dalam proses tidak tetap, 

yang pekali penapis mudah suai disesuaikan untuk meminimumkan fungsi ralat. Masalah 

penapisan mudah suai merupakan suatu bentuk daripada masalah kuasa dua terkecil (least 

squares).  Kaedah kuasa dua terkecil rekursif (recursive least squares, RLS) mampu mengemas 

kini songsangan matriks autokorelasi secara rekursif melalui lema songsangan matriks untuk 

mengkomput vektor pekali dan ralat yang berkaitan.  Kami menggunakan penguraian QR 

berdasarkan putaran Givens untuk mengkaji masalah penapisan mudah suai.  Putaran Givens 

digunakan pada algoritma penapisan mudah suai kerana sifat lelarannya yang memudahkan 

pengemaskinian data matriks segitiga.  Kuasa dua terkecil rekursif melalui penguraian QR 

(QRD–RLS) menjelma matrik data kepada matriks segitiga atas dan mengemaskininya secara 

rekursif.  Penjelmaan menghasilkan persamaan normal dalam bentuk yang lebih mudah dan 

boleh diselesaikan untuk mencari pekali vektor melalui gantian ke belakang.  Sebaliknya, kuasa 

dua terkecil rekursif melalui penguraian QR songsang  (IQRD-RLS)  mengemas kini songsangan 

matriks segitiga atas, yang akhirnya membolehkan pekali  vektor dikomput secara terus, iaitu, 

tanpa   gantian ke belakang.  Kami mengkaji prestasi bandingan algoritma dengan merujuk 

kepada syarat matriks autokorelasi masalah. Purata norma ralat pemberat digunakan untuk 

menganalisis kadar penumpuan dan salah-laras.  Simulasi menunjukkan bahawa bagi nombor 

syarat yang rendah,  RLS menumpu  cepat dengan salah-laras setara dengan kaedah QR.  Walau 
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bagaimanapun, apabila nombor syarat semakin bertambah,  RLS menunjukkan pengurangan 

boleh-kesan dan menghasilkan salah-laras yang semakin tinggi. Sebaliknya teknik  penguraian 

QR menumpu perlahan tetapi apabila nombor syarat meningkat salah-aras kekal sama. Dapatan 

kajian menunjukkan bahawa walaupun   QRD-RLS dan  IQRD-RLS menumpu pada kadar yang 

perlahan, namun kedua-duanya mampu mengesan isyarat-masuk pada suatu kadar yang seragam.   
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QR DECOMPOSITION FOR ADAPTIVE FILTERING APPLICATION 

 

Abstract  

 

This thesis is designed to investigate adaptive filtering problem based on QR 

decomposition techniques. An adaptive filter is a self modifying digital filter that adjusts its 

parameters in order to minimize a defined error function. Adaptive algorithm is applied to adapt 

the coefficient of the used filter to nonstationary process in which the coefficient of the adaptive 

filter is adapted in order to minimize the error function. Adaptive filtering problem is an adaptive 

form of least squares problem. Recursive least squares (RLS) method recursively update the 

inverse of the autocorrelation matrix via matrix inversion lemma in order to compute coefficient 

vector and associated errors recursively. We apply QR decomposition based on Givens rotations 

to investigate adaptive filtering problem. Givens rotations is applied to adaptive filtering 

algorithm because of its iterative nature that allows easy update of the triangularized data matrix. 

QR decomposition of recursive least squares method (QRD-RLS) transforms data matrix to 

upper triangular matrix and recursively update matrix. The transformation results in a reduced 

form of the normal equation which can be solved for the coefficient vector via backward 

substitution. On the other hand, inverse QR decomposition of recursive least squares method 

(IQRD-RLS) updates the inverse of the upper triangular matrix and desired signal vector so that 

the coefficient vector can be computed directly, i.e., without backward substitution. We study 

the comparative performance with respect to the conditioning of the autocorrelation matrix of 

the problem. The mean weight error norm in used to analyze the rate of convergence and 

misadjustment. Simulation show that for lower condition number RLS converges fast with 

misadjustment comparable to the QR based methods. However, as the condition number 

increases RLS show evidence of reduced tractability and produce high misadjustment. On the 
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other hand, QR decomposition based techniques converges slow but as the condition number 

increases misadjustment remain unchange. These results show that although QRD-RLS and 

IQRD-RLS converge at a slower rate, they are able to track incoming signal at a steady rate.  
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Chapter 1 

Introduction 

 

Filtering is a signal processing operations with diverse objectives. From mathematical 

point of view, filtering is a function approximation technique. Adaptive filter may be understood 

as self modifying digital filter that adjust its coefficients in order to minimize a predefined error 

function. The error function is the difference between the desired signal ( )d k  and the adaptive 

filter output ( ).y k  Adaptive filters are time varying since their parameters are continually 

changing in order to meet performance specification. Adaptive algorithm minimizes error 

function which includes data matrix, desired signal and adaptive filter output signal.  There are 

three techniques identified to derive recursive algorithms for adaptive filter operations. These 

can be realize via Wiener filter theory, Kalman filter theory and the method of least squares. 

Adaptive filtering algorithm   derived based on Wiener filter theory and Kalman filter theory  

have their origin in a statistical formulation of the problem  (Farhang - Boroujeny  B. 1999). 

Adaptive least squares is derived from conventional least squares problem. The method of least 

squares is based on deterministic formulation. Adaptive algorithm is applied to adapt the 

coefficients of the used filter to nonstationary process; the coefficient of the filter is adapted in a 

process that the error signal is minimized.  Adaptive filtering is applied  to process and analyze 

electrocardiogram (ECG) and other biomedical signals  (Md. Zia Ur Rahman 2009). Adaptive 

filtering find application in satellite communications, voice communications with control system 

and speech and singing voice signals  (de Pavia R. C. D. 2007). It is also applied to noise 

cancellation and arrhythmia detection  (Thakor Vv. 1991). 
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1.1   Problem and Methodology 

We investigate the stability of QR decomposition based algorithms for adaptive filtering 

in comparison with the conventional recursive least squares (RLS) algorithm. To investigate this 

problem, the following algorithms are applied; RLS, QRD-RLS and inverse QRD-RLS. The 

RLS algorithm use matrix inversion lemma to update the inverse of the autocorrelation matrix 

and subsequently compute the associated errors. The QRD-RLS algorithm decompose the data 

matrix into orthogonal and upper triangular matrix, the coefficient vector is computed using 

backward substitution. Inverse QRD-RLS update the inverse of the upper triangular matrix using 

generalized matrix inversion lemma. The coefficient vector is computed directly without using 

backward substitution. The associated errors for the QRD techniques are computed using 

transformed desired signal vector. The application of QR decomposition to recursive least 

squares allows QR decomposition recursive least squares to be numerically stable and robust. 

Simulation is designed using mean weight error norm to compare the comparative performance 

of these algorithms in terms of convergence, stability and misadjustment.  

 

1.1.1 Description of Methodology 

In this thesis, recursive algorithm for adaptive filtering is applied to least squares 

method.  The method of least squares may be realized via block estimation or recursive 

estimation. The approach based on block estimation updates the input signal on a block by block 

basis while recursive estimation updates the input signal on a sample by sample basis.  This 

thesis discusses the method of least squares with particular interest on recursive estimation. 

Recursive estimation approach includes recursive least squares and QR decomposition 

techniques.   
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Many problems in signal processing can be formulated as least squares problem 

 

2min || || ,
w

Xw d       (1.1.1)  

the data matrix X  is an ,k n  d  is an 1k  vector and w is 1n unknown vector to be 

estimated and ||.|| is the Euclidean norm. Least squares solution minimizes the sum of squared 

residual, if the rank of the data matrix is less than n  then the solution to least squares is not 

unique (Bjorck  A. 1996). The basic computational tool to solve least squares problem 

introduced by Gauss was to form and solve normal equation. 

 

,T TX Xw X d        (1.1.2)  

  

this was solved by symmetric Gaussian elimination technique. Research on how to obtain 

reliable and simple way of solving normal equation continues not until after 1924 when 

Cholesky factorization was introduced. Least squares problem can be solved by normal equation. 

Forming normal equation and solving it is not recommended in general (Na Li 2006) because it 

suffers various degree of numerical difficulties. Forming normal equation may require squaring 

the condition number of the original problem (Golub G. H. 1989). Least squares method 

approaches the problem of filter optimization from deterministic point of view in which the cost 

function is the sum of weighted error squared for the given data. Least squares method is used to 

approximately solve an over determine system of equation in which there are more equations 

than unknown.  



4 

 

Adaptive filtering problem is an adaptive form of least squares problem. The parameters 

of adaptive least squares changes as new input samples are received. The cost function of 

adaptive least squares unlike conventional least squares is adaptable to new input samples. The 

formulation of least squares problem as adaptive least squares problem is to ensure adaptability 

of the least squares solution when new input vectors are received such that it corresponds to 

adaptive filtering process. Adaptive filtering is one special aspect that adaptive least squares 

problem can be applied. The techniques used to compute adaptive least squares problem is 

similar to those applied to compute conventional least squares problem. Adaptive filter employ 

recursive least squares technique to minimize error function. In this thesis, recursive formulation 

of least squares problem that updates adaptive filter tap weight coefficient vector after the arrival 

of every sample input vector is considered. 

Methods for computing adaptive least squares problem may be classified as direct or 

iterative. One special technique is the direct  method based on QR decomposition (QRD)  which 

adapt the recursive structure of QR decomposition to produce orthogonal factorization of 

adaptive least squares problem.  

Direct methods are very robust and requires predictable amount of resources in terms of 

time and storage (Benzi M. 2002). Unfortunately, direct methods scale poorly with large 

problem size and memory requirements. Direct techniques include the following: Gaussian 

elimination, Cholesky factorization, LU decomposition and QR decomposition; of these 

techniques we apply QR decomposition.  

Iterative methods require little storage and often require few operations than direct 

methods. However iterative methods don’t have the reliability enjoyed by direct methods. In 

some applications, iterative methods often fail and preconditioning is necessary and do not 
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suggest to attain convergence within a stipulated time. Iterative methods includes but to mention 

a few; Steepest Descent (SD), Conjugate Gradient (CG) and Least Mean Square (LMS). 

Recursive least squares (RLS) is a modified version of conventional least squares 

problem. When solutions to least squares problem are computed and updated each time new 

input samples arrive the solution to the system becomes recursive.  RLS updates the estimate of 

least squares minimization problem. The computational procedure of RLS begins with unknown 

data value or initial condition and applies the new data sample to update the previous data value.  

RLS is often described as time varying process since its parameters are recursively updated 

when new sample arrives.  RLS recursively update solution to linear least squares filter in which 

the inverse of the autocorrelation matrix is recursively updated via matrix inversion lemma. The 

recursiveness of recursive least squares corresponds to adaptive filtering application. RLS solve 

adaptive filtering problem in order to compute coefficient vector and associated errors 

recursively. RLS depend heavily on input signal vector. RLS has excellent performance when 

working in time varying environment than stationary environment. The acceptance of the RLS 

algorithm has been  impeded by unacceptable numerical performance in limited precision 

environment (Alexander S.T. 1993).  The parameters used in deriving recursive least squares 

(RLS) are autocorrelation matrix ( )kU  and cross correlation vector ( ).kp   These parameters 

are obtained based on normal equation for linear least squares filter ( ( ) ( ) ( )).k k kU w p   To 

compute and update the coefficient vector recursively we apply matrix inversion lemma to 

recursively update the inverse of the autocorrelation matrix
1( )kU   based on solution to linear 

least squares filter. RLS is a special form of Kalman filter which is a particular type of least 

squares estimation. Recursive  approach to compute solution to least squares problem was 

proposed by Gentleman and Kung (Regalia  P. 2009). RLS algorithm was introduced in 1950 by 
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Placket (1950), following Placket (1950) work closely Godard (1974) used the application of 

Kalman filter theory to obtain RLS.  However,  Sayed and Kailath (1994) further expatiated on 

the relationship between RLS and Kalman filter theory for solving linear adaptive filtering 

problem. For RLS algorithm to operate in time varying environment the forgetting factor   

should be less than one, this allows the RLS algorithm to utilize finite memory. In this regard, 

RLS has the capability to track signal variation slowly. When the forgetting factor is less than 

unity, the adaptive filter coefficient is inconsistent (Haykin S. 1991). This process causes noise 

in the coefficient of the adaptive filter, with result that they become misadjusted from their 

optimum setting. The above discussion occurs if the forgetting factor is less than unity.  The 

conditioning of the autocorrelation matrix of the problem determines the rate of convergence of 

the algorithm (see Figure 7.2).  Recursive least squares (RLS) converges fast for low condition 

number. However as the condition number increases RLS show evidence of reduced tractability 

and produce high misadjustment, see Figure 7.2 for detail. Simulation shows that RLS is 

numerically unstable (Figure 7.2).  In order to resolve the numerical instability associated with 

RLS an orthogonal technique (QR decomposition) is applied directly to transform the data 

matrix to orthogonal matrix Q  and upper triangular matrix .R  

  QR algorithm was proposed by Francis J. G. F. (1961) to modify LR algorithm (LR 

algorithm transform data matrix to lower and upper triangular matrix) proposed by Rutisauser  

and Schwarz (1958)  (Francis J. G. F. 1961). Due to numerical instability associated with 

recursive least squares, QR decomposition was proposed (Alexander  S.T. 1993). In adaptive 

filtering, QR decomposition apply time recursive in order to accept input data and desired signal 

at time instant  .k  Conventional  QR decomposition transform data matrix to orthogonal and 

upper triangular matrix and also transform desired signal vector. Conventional QR 

decomposition can be described as follow 
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1. Transform data matrix X into orthogonal matrix Q and upper triangular matrix ,R the 

data matrix is an ,k n k n is a full rank. Where Q  is ,k k R  is k n  upper 

triangular matrix, 

 

1
,T  

   
 

R
Q X R

0
 

 

the matrix 1R  is an n n  upper triangular matrix (full rank since the data matrix is full 

rank), 0  is  k n n   null matrix. 

2. Transform  desired signal vector d   

 

1

2

,T  
  
 

c
Q d

c
 

 

               the vector  1c  is 1n  and 2c  is ( ) 1k n   vector. 

3. Apply backward substitution to compute coefficient vector.  

 Recursive QR decomposition (QRD) decomposes data matrix into orthogonal matrix ( )kQ  and 

upper triangular matrix ( )kR with respect to time, where k  is the time index.  Recursive QR 

decomposition can be described as follow 
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1. Suppose that ( )kQ and ( )kR  are the QR factor of the data matrix ( ),kX  the data 

matrix is ,k n ,k n ( )kQ  is k k orthogonal matrix, ( )kR is k n  upper triangular 

matrix such that  

 

1( )
( ) ( ) ( ) .T

k
k k k

 
   

 

R
Q X R

0
 

 

2. If additional data is received the data matrix becomes ( 1)k X  with dimension 

( 1) ,k n   this approach is accompanied by introducing additional row ( 1)T k x  such 

that the QR  factor of the data matrix ( 1)k X  can be expressed as 

 

( )
( 1) ,

( 1)T

k
k

k

 
   

 

X
X

x
 

 

1( )
( )

( ) ( 1) .
( 1)

( 1)

T

T

T

k
k

k k
k

k

 
   

         

R
R

Q X 0
x

x

 

 

3. Transform the desired signal vector recursively. 

4. Apply backward substitution to recursively compute coefficient vector. 
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Orthogonal techniques include the following; Givens rotations, Householder transformation and 

Gram Schmdit  orthogonalization.  In this thesis, we apply QR decomposition (QRD) based on 

Givens rotations. Givens rotations technique is used to rotate individual vector via fixed angle 

which is denoted as matrix with parameters [ , ]c s (Lodha  N. 2009). Givens rotations zeros out 

element step by step (one at a time) unlike Householder transformation that zero multiple 

element per reflection  (Diniz  P. S. R. 2002; Apolinario J. A. 2009; Dimpesh  P. 2009). Givens 

rotations is a vital technique in adaptive filtering algorithm because its iterative in nature as it 

corresponds to recursive least squares (RLS) in order to update and triangularize the data matrix 

recursively and perform rank one update. The blend of these recursiveness makes this system 

different from conventional least squares problem as such solutions obtained are recursive in 

order to correspond to adaptive filtering application.  QR decomposition (QRD) using Givens 

rotations can easily be mapped into systolic array structure for parallel implementation (Tjoa S. 

2005; Diniz  P. S. R. 2008). Gentleman proposed QR decomposition to solve RLS  (de Campos 

M. L. R. 2009; Gentleman  W. M. 1981 ).  He  applied triangular array to avoid matrix inversion 

and employ pipeline sequence via Givens rotations to perform backward substitution (Apolinario 

(Jr.) J. A. 2009). QR decomposition recursive least squares was proposed by McWhiter to 

analyze systolic   via Givens rotations by performing QR decomposition on the input data matrix 

to compute residual error without backward substitution  (Apolinario (Jr.) J. A. 2009). The idea 

about QRD-RLS via Givens rotations is that after the data matrix has been transformed to upper 

triangular matrix we apply sequence of Givens rotations to update the upper triangular matrix 

and the desired signal vector. Backward substitution is used to compute the coefficient vector. 

The associated errors (a priori and a posteriori errors) can be computed based on Givens cosine 

term and transformed desired signal vector. The QR decomposition for recursive least squares is 

numerically stable and produce stable misadjustment (Figure 7.3). 
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Inverse QR decomposition recursive least squares (IQRD-RLS) algorithm was proposed 

to compute the coefficient vector directly (Alexander  S.T. 1993). In this regard, instead of 

recursively updating the upper triangular matrix ( )kR  as in QR decomposition recursive least 

squares, this technique recursively update the inverse of the upper triangular matrix 
1( )kR  via 

sequence of Givens rotations. The foundation to develop this technique (IQRD-RLS) is based on 

the solution to triangular system of equation, 

 

1( ) ( ) ( ),k k kw R q  

 

the vector  ( )kq  is the transformed desired signal vector. The  uniqueness  of  these  techniques  

is  that both  algorithms irrespective  of  conditioning  of  the  autocorrelation matrix converges 

with low misadjustment  and capable of tracking incoming signals at a steady rate. This 

technique like direct QRD-RLS is numerically stable. 

Orthogonal transform are preferred primarily because of their norm preserving property. 

Suppose for the 2- norm we have 

 

   
2 2

2 2
,

T T T T   Qv Qv Qv v Q Qv v v v  
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assuming that round off error is introduce in ,v  then the error after an orthogonal transformation 

Q is  

 

   
2 2

2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

T T T T   Qv Qv Qv v Q Qv v v v  

 

Hence, no additional error is introduced by the orthogonal transformation. QR technique 

provides means of transforming data matrix into a simpler form while providing stable method 

for computation. 

Based on discussions in section 3.4 we analyze the following. If small changes in the 

autocorrelation matrix cause little changes in the output data then the solution is well condition 

and stable. However, if small changes in the autocorrelation matrix cause large changes in the 

output data then the solution is ill-conditioned and unstable. We illustrate the above analysis 

using equation (1.1.1). If the autocorrelation matrix in (1.1.1) is ill-conditioned, the computed 

solution will not be exact. Otherwise if the autocorrelation matrix is well conditioned and the 

right pivoting technique is applied, one can compute exact solution.  Suppose that the entries of 

the autocorrelation matrix are represented as floating point numbers, small roundoff errors may 

often occur during the reduction process which may affect the computed solution. The exact 

solution depends on the conditioning of the autocorrelation matrix. Suppose that we can measure 

the conditioning of the autocorrelation matrix, this process will be used to obtain a bound for the 

relative error in the computed solution. If the condition number is near to one, then the relative 

error and the relative residual error will be close, otherwise if the condition number is greater 

than one this mean that the relative error may be many times larger than the relative residual 
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error (Leon  S. J. 2006). Stability and instability are related to the algorithm and conditioning is a 

feature of the problem under consideration. A well conditioned system is stable whereas an ill-

conditioned system is unstable. The condition number of the autocorrelation matrix of the 

problem play vital role in the convergence of these algorithms. The conditioning of the 

autocorrelation matrix determines the convergence behavior of these algorithms. The correlation 

parameter   is used to measure the conditioning of the autocorrelation matrix for the algorithms 

presented. From our experiment, as the correlation parameter varies the convergence of the RLS 

varies and variation in QR techniques is insignificant compared to RLS. This shows that the 

variation of the correlation parameter does not totally affect the convergence behavior of the QR 

techniques (Figures 7.3-7.4). However, variations in the correlation parameters drastically affect 

the convergence of RLS algorithm (Figure 7.2).    These algorithms are evaluated based on rate 

of convergence and misadjustment. The system we identified is the finite duration impulse 

response transversal filter coefficient.  The simulation is performed using the mean weight error 

norm to study the comparative performance of these algorithms. This approach provides better 

means of analyzing the rate of convergence, tracking and misadjustment. For low value of 

correlation parameter RLS converges fast but as the correlation parameter increases RLS show 

evidence of reduced tractability and produces high misadjustment (Figure 7.2). On the other 

hand, QRD-RLS and IQRD-RLS converge slow but as the correlation parameter increases 

misadjustment remain stable. The slow rate of convergence is because they are able to track 

incoming signal at a steady rate (Figure 7.3 and Figure 7.4). This thesis analyze the comparative 

performance and stability of the QR decomposition based algorithms for recursive least squares 

and recursive least squares algorithm for adaptive filtering applications.  
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1.2 Objectives of study 

1) This thesis is designed to study recursive least squares (RLS), QR decomposition 

recursive least squares (QRD-RLS) and inverse QR decomposition recursive least 

squares (IQRD-RLS) algorithms based on Givens rotations.  

2) To study and analyze the comparative performance of the recursive least squares (RLS), 

QR decomposition recursive least squares (QRD-RLS) and inverse QR decomposition 

recursive least squares algorithms using mean weight error norm (MWEN) to evaluate 

the convergence rate and misadjustment. 

3)  The stability of these algorithms are investigated based on simulation setup using 

system identification application. Simulation results show that QR decomposition based 

algorithms using Givens rotation is numerically stable than the recursive least squares 

using matrix inversion lemma. 

 

1.3 Organization of the Thesis 

The rest of this thesis is organized as follows. Literature review is presented in chapter two. 

The following are discussed to enhance our understanding of the concept under discussion: 

Introduction to adaptive filtering, adaptive filter structure, mathematical formulation of adaptive 

filtering problem and classification of adaptive filters are presented in chapter three. Recursive 

least squares and its derivation are described in chapter four and in chapter five, we prescribe 

step by step approach required to triangularized data matrix to upper triangular matrix via 

sequence of Givens rotations and updating of desired signal vector. This chapter includes the 

following concepts: QR technique for solving least squares problem, modification of QR 
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technique for adaptive filtering problem, Givens rotations, Givens rotations recursive least 

squares for adaptive filtering, QR decomposition recursive least squares and its implementation 

is presented. Chapter six is a direct consequence of chapter five in the sense that the 

transformation   process    performed   is extended   to this chapter. This chapter includes the 

following: application of IQRD-RLS for adaptive filtering and updating parameters for 

computing coefficient vector of IQRD-RLS. In chapter seven, we perform simulation to evaluate 

the comparative performance of these techniques (RLS, QRD-RLS and IQRD-RLS), these 

algorithms are evaluated based on the mean weight error norm to analyze the rate of 

convergence and misadjustment. Conclusions and future work are presented in chapter eight. 
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Chapter 2 

Literature Review 

 

Recursive least squares is known to converge fast with high computational complexity  

and is proved to be numerically unstable (Alexander S.T. 1993) due to loss of positive 

definiteness, in order  to resolve this problems researchers resorted to develop various techniques 

to improve numerical stability and reduce computational cost.  

Orthogonal transformation (QR decomposition) using Givens rotations method was 

applied to triangularized data matrix into a set of simultaneous linear equation (Alexander S.T. 

1993) which enable the coefficient vector to be computed via backward substitution. It was 

noted that this approach using QR decomposition is computationally expensive. To resolve this 

problem, researchers began to develop other techniques to resolve this impediment that is 

associated with this approach hence inverse QR decomposition was proposed and this approach 

does not require backward substitution to compute the coefficient vector (Alexander  S.T. 1993; 

Diniz  P. S. R. 2002; Apolinario (Jr.) J. A. 2009). 

 It was presented that it is very possible for RLS to become numerically unstable, 

(McWhiter J. G. 1994)  applied QR decomposition to compute solutions to least squares 

problem and proved that it can be implemented efficiently in systolic array. In their presentation, 

they further suggest using Cholesky factor R% instead of data autocorrelation matrix that inverse 

update techniques can be realize which utilizes orthogonal transformation in contrast to the 

former approach and explained further that inverse update can be applied to compute coefficient 

vector.  McWhiter   J. G. (1983) and  Ward C. R.,  Hargrave  P. J. and  McWhiter  J. G. (1986)  
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proposed adaptive filtering application for recursive least squares, this process was performed 

via Givens rotations to triangularize data matrix and implement it using systolic array. Their 

choice to  apply  it to systolic array was to avoid solving triangular system of equation in order 

to compute coefficient vector (de Campos M. L. R. 2009). 

   RLS based on Givens rotations using look ahead technique was applied to improve 

accuracy of redial basis function model (RBF). In computing  RBF model coefficient using least 

squares technique numerical instability is often envisaged due to matrix inversion as such QR 

decomposition was introduced to eliminate numerical instability problems in the system  (Shing 

T. 2002). 

 Order recursiveness using geometric interpretation of QR and inverse QR decomposition 

in least squares sense was investigated by (Apley W. D. 1995). They further suggest that order 

recursiveness is in track with the coefficient vector, error vector and residual error are in 

complete order of least squares projection as well as lower order least squares projection. They 

also    investigated the geometric interpretation of orthogonal matrix and inverse Cholesky 

factor. QR decomposition based on recursive least squares using Givens rotations was applied to 

estimate memoryless complex polynomial coefficient which characterized high power amplifier. 

It was also used to investigate inverse polynomial model to achieve high power linearization, 

using QRD-RLS was aimed at achieving good numerical properties (Muruganathan S. D. 2006) 

General linearly constrained recursive least squares problem using inverse QRD was 

proposed (Shiunn-Jang C. 2001) and applied to minimum variance filtering problems using 

Givens rotations to evaluate adaptation gain, the outcome of this process was to compute 

coefficient vector without backward substitution.  
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It was mentioned in (Wang S. 2008) that QRD-RLS converges  faster than stochastic 

gradient descent approach. They investigated techniques to adjust coefficient vector to minimize 

constant modulus algorithm cost function (CMA), since the cost function is exponentially 

weighted sum their desire was to compute coefficient vector iteratively. They simply applied 

QRD-RLS techniques so that the system could be numerically robust, stable and  easily 

implemented on pipeline structure based on the above mention they (Wang S. 2008) were able to 

develop QRD-RLS-CMA.. 

   Adaptive algorithm based on recursive QR decomposition for the data matrix was 

proposed by  (Athanasios A. R. 1996). They described that Givens rotations and modified Gram-

Schmidt technique can provide modeling error directly without computing the coefficient vector. 

They however noted that these techniques are computationally complex if coefficient vector is 

required which means that backward substitution is required to compute coefficient vector. They 

applied Householder transformation which updates a square factor instead of triangular system 

and compute coefficient vector without backward substitution. 

In this thesis, among various orthogonal techniques we apply Givens rotations due to its 

iterative nature since we aim at developing cost function that will be recursively updated.  QR 

decomposition via Givens rotations is a notable adaptive filtering algorithm. We investigate the 

idea behind triangularization of the data matrix via QR decomposition using Givens rotations 

and different techniques applied to compute coefficient vector and associated errors (a posteriori 

and a priori errors). We apply recursive approach to recursively compute coefficient vector and 

associated errors in order to correspond to adaptive filtering application. 
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Chapter 3 

Fundamentals of Adaptive Filtering and Adaptive Least Squares Problem 

  
This chapter is the building block to understand and explain adaptive filtering and 

adaptive least squares problem. In doing this, we give detail analysis of adaptive filtering 

describing it via its applications, structures, algorithms and classifications. The problem we 

examine in this chapter is to formulate the cost function required for adaptive filtering which is 

minimized by adaptive algorithm in order to compute the coefficient vector ( ).kw  The cost 

function ( )k  consist of input signal ( ),x k  desired signal ( )d k  and  adaptive filter output ( ),y k  

the cost function is formed via error signal.  We further formulate least squares problem as an 

adaptive and exponentially weighted least squares problem. 

 

3.1 Introduction to Adaptive Filter 

 Adaptive filters are self designing system which can adjust themselves to different 

environments. Filtering is a process of noise removal from a measured process in order to reveal 

or enhance information about some quantity of interest. Desired signal is generated from the FIR 

system (Diniz P.S.R. 2002). The desired signal may have introduce some noise during thermal or 

other physical effects related to signal generation system or it may introduce noise due to 

measuring system or a digital data sampling process. The type of application is defined by the 

choice of the signals acquired from the environment to be the input, desired and output signals. 

The following are some adaptive signal processing applications 

1. System  Identification 
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2. Adaptive Equalizer 

3. Speech Coding 

4. Adaptive  Spectrum Analysis 

5. Adaptive Noise Cancellation 

6. Adaptive Beamforming 

7. Echo Cancellation  

8. Signal Enhancement 

The common features of these applications that categorize them in this unique family is that they 

all involve a process of filtering some input signal to correspond to the desired response. 

Adaptive filter structure is shown in Figure 3.1; the parameters of adaptive filter can easily be 

obtain in Figure 3.1. The filter parameters are updated by making a set of measurements of the 

underlying  signals  and  applying  that  set  of  signals  to  the  adaptive  filtering  algorithm. 

 

                                                   ( )x k                                                                

         

                                                                                             ( )y k          ( )d k  

                                                                                                                   

                                                       ( )e k                                                                                                

Figure 3.1 Adaptive filter configuration. 

 

  ( )g k  

+ 

Adaptive 

algorithm

( )kw  
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k :  is the time index,  

( )x k : denote the input signal,  

( )y k  : denote adaptive filter output,  

( )d k  : denote desired signal,  

( )kw : is adaptive tap weight coefficient vector, 

 ( ) ( ) ( )e k d k y k  :  is the error signal and  

( )g k : is the transfer function or plant. 

Error signal is applied to adaptation algorithm to update the adaptive filter coefficient vector. 

The adaptation process aimed at minimizing some metric of the error signal by comparing the 

filter output to approximate the desired signal vector in a statistical sense (Sergio N. L. 2009). 

The signals applied to adaptation algorithm are the input signal and desired signal and error 

signal. If the signals are not well define the designed procedure is to model the signals and 

consequently design the filter. This procedure could be very expensive and difficult to 

implement online (Farhang - Boroujeny  B. 1999). The solution to this problem is to employ an 

adaptive filter that performs online updating of its parameters through a rather simple algorithm 

using information available in the environment. In other word, adaptive filter performs data 

driven approximation procedure. 
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3.1.1 Adaptive Filter Structure 

Adaptive filter structure can be implemented in different realizations. The choice of the filter 

structure can be influenced by computational complexity of the process and also the necessary 

number of iterations to achieve a desired performance level. There are two types of adaptive 

filter structures distinguished by the form of impulse response: 

1. Finite Duration Impulse Response Filter: The most structure is the transversal filter 

Figure 3.2, which implements all zero transfer function with a direct form realization 

without feedback. 

                 ( )x k                ( 1)x k                    ...                     ( 1)x k n   

 

                 1( )w k                 2 ( )w k                                                   ( )Kw k  

 

 

                                             

                                                                                                                  ( )y k  

                                                                                         ( )e k                   ( )d k  

Figure 3.2 Transversal filter (FIR). 

 

1z  
1z  

1z  
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The output signal  

1 2

1

( ) ( ) ( ) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( ),

K

n
T

i

i

y k w k x k w k x k w k x k n

w k x k i k k


      

    w x

K

  (3.1.1.1) 

 

 ( ) ( ) ( 1) ,
T

k x k x k n  x K  

 

is the instantaneous input signal vector. 

 

 1( ) ( ) ( ) ,
T

nk w k w kw K  

 

is the approximate value for the weight vector after the kth  system update, n  is the filter order. 

We have different FIR structure designed to obtain improved structure compared to transversal 

filter structure in terms of computational complexity, speed of convergence and finite word 

length. Transversal filter has single input ( ),x k  filter output ( ),y k  and desired signal ( ).d k  

Adaptive filter output is generated as a linear combination of the delayed sample of the input 

sample and the weight vector.  The vector ( )kw  is the adaptive weight coefficient and ( )x k i  

is the samples referred as filter tap input, the weight is controlled by the adaptation algorithm. 
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2) Infinite duration Impulse Response (IIR) filter: The most widely used realization of the 

adaptive IIR filter is the direct form realization due to simple implementation and analysis. 

There are inherent problems associated with this technique to recursive adaptive filters which are 

structure dependent for example pole stability monitoring requirement and slow speed of 

convergence. To circumvent these problems different realization were proposed to overcome the 

demerits mentioned above. An infinite duration impulse response (IIR) filter is governed by the 

recursive equation 

 

1 1

0 1

ˆ ˆ( ) ( ) ( ) ( ) ( ),
K N

i i

i i

y k a k x k i b k y k i
 

 

      

 

where ( )ia k  and ( )ib k  are the forward and feedback tap weights. This structure can easily 

become unstable since their poles may get shifted out of the unit circle by the adaptation process 

(Farhang - Boroujeny  B. 1999).  The cost function for the infinite duration impulse response 

filter has many local minimum points unlike FIR filter that has single global minimum point. 

 

3.2 Mathematical Formulation of Adaptive Filtering Problem 

In this section, we formulate the cost function applied in the rest of this thesis; the cost 

function is formulated based on finite impulse response (FIR) filter Figure 3.2. We have earlier 

defined  adaptive  filter  output  signal  as  a linear  combination  of  the  coefficient  vector   and  
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the input vector which consist of the instantaneous input signal vector ( )kx  and approximate 

value of the weight vector. The idea is to formulate the cost function by defining the error vector 

which is minimized to obtain the coefficient vector. The cost function consist of desired signal 

( )d k and adaptive filter output signal ( ).y k  Define  k n  data matrix  ( )kX  as 

 

 

 

(1) 0 0

(2) (1) 0 0
(1)

(2)
( ) .( ) ( 1) (1)

( 1) ( ) (2)
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x x

k x k x k x

x k x k x
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x k x k x k n
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 
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  
 
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x
X

x

K K

K

M M M

O M
M
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  (3.2.1) 

 

As new data is received into the system the data matrix becomes ( 1)k X  with   dimension 

( 1) ,k n    additional row ( 1)T k x  is appended to the data matrix which can be expressed as 

 

( )

( 1) .

( 1)T

k

k

k

 
 

 
 
  

X

X

x

L L L  
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The error signal is define as the difference between the desired signal  ( )d k  and adaptive filter 

output ( ).y k  The error signal ( )e k  for the transversal FIR filter Figure 3.2 generated at the 

kth  system update is define as 

 

       ( ) ( ) .Te k d k y k d k k k   w x     (3.2.2) 

 

The error signal vector computed after k  system updates is   

 

       .Tk k k k e d X w      (3.2.3) 

 

The vectors ( )ke  and ( )kd  are given respectively as 

 

   (1) (2) ( )
T

k e e e ke L  

 

and 

 

   ( ) (1) (2) ( ) .
T

k d d d kd L
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