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PEMBANGUNAN KONSEP MENJAJARKAN PENIMPALAN KONTAK 
BAGI TRANSISTOR KUASA TINGGI 

 
 

ABSTRAK 
 

Mengoptimasi skema proses integrasi bagi sesebuah teknolgi merupakan 

salah satu faktor penting untuk mengurangkan bilangan kecatatan dan kitaran masa 

dalam bidang fabrikasi wafer. Dalam pengajian sarjana ini, aliran proses yang 

dioptimasi bagi menjajarkan penimpalan kontak telah dikaji bagi teknologi  

Infineoen CoolMOS. Selepas mengaji 3 idea yang berlainan dengan insentif,  konsep 

yang paling berpotensi tinggi dipilih bagi pengoptimasian dan pencirian lanjutan di 

peringkat wafer dan poduk. Teknologi pada masa kini menggunakan dinding-tepi  

penjarakan, di mana ia dibentuk melalui  taburan silikon dioksida dan diikuti oleh 

pengoressan oxida bukan isotropik bagi membentuk lubang penimpalan kontak. 

Dalam konsep pertama dan kedua, oksida polisilikon dan kaca silikate tanpa dop 

(USG) masing-masing digunakan untuk menggantikan penjarakkan and 

menjalankan penimpalan kontak. Penghadan peralatan fabrikasi dan pengaruh 

terhadap percirian wafer menyebabakan konsep-konsep ini tidak dapat dilaksanakan 

sepenuhnya dalam pengeluaran. Konsep ketiga menjalankan skema pengintegrasian 

tanpa penjarakkan dinding tepi. Penimpalan kontak dijalankan selepas proses 

pengoressan kontak lubang  polisilikon. Dengan mengaplikasikan konsep ini, 

sebilangan langkah proses boleh disingkirkan. serta bilangan kecatatan dalam wafer 

dan kitaran masa untuk menfabrikasikan sesuatu transistor boleh dikurangkan. 

Pencirian insentif peringkat wafer  dan produk mendedahkan 1:1 yang cirinya 

bersesuian dengan pretasi produk konsep asal serta pertimbangan khas telah 

diberikan bagi menganalisakan parameter transistor seperti rintangan keadaan aktif, 

voltan permulaan dan pengaliran arus. Kesemua keputusan telah dibentangkan and 

dibincangkan dengan teliti bagi memaparkan potensi baik konsep baru ini.              
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DEVELOPMENT OF SPACER FREE SELF-ALIGNED CONTACT 
IMPLANTATION FOR POWER DEVICES 

 
 

ABSTRACT 
 

Optimization of the process integration scheme for a technology is one of the 

key factors within wafer fabrication in order to reduce defect density and production 

cycle time. Within this master study, an optimized process flow for the self-aligned 

contact implantation was evaluated for the Infineons CoolMOS technology. After 

intensive feasibility investigations of 3 different ideas, the most promising concept 

was further optimized and characterized on wafer level as well as in the final 

product. The current technology utilizes side-wall spacers, which are formed by 

deposition of silicon dioxide followed by an anisotropic oxide etched prior to 

contact-hole implantation. Within the first and second concept, the original spacer 

process block spacer was replaced with an alternative spacer fabricated by oxidation 

of the gate polysilicon and deposition of undoped silicate glass (USG), respectively. 

Limitations of certain fabrication tools as well as influences on the device 

characteristics did not allow these concepts to be executed in the production. The 

third and the most promising concept facilitates contact implantation after the 

polysilicon contact hole-etch process. By applying this concept, a number of process 

steps can be removed, which as a consequence greatly reduces the frontend defect 

density of the wafer as well as cycle time to fabricate the transistor. Intensive 

characterization of wafer and dies revealed a 1:1 match to the current product 

performance and special consideration has been given on the analysis of the 

transistor parameters, such as ‘on resistance’, ‘threshold voltage’ and 

‘transconductance’. The results are presented and discussed clearly showing the 

potential of the new concept. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1       Project Introduction 

Semiconductor power devices are electronic components used as rectifiers or 

switches in electronic circuits. A majority of these devices are made of silicon however 

other materials, such as silicon carbide is under development. With the development of 

power semiconductor technology, the power handling capabilities and the switching 

speed of the power devices have improved tremendously (Spulber et al., 1999). 

 Semiconductor power devices can be divided widely into three types; which are 

diodes, transistors and thyristors. A diode is a two-terminal pn-junction device and it 

serves three purposes: (1) general purpose diodes, (2) high speed (or fast recovery) 

diodes and (3) Schottky diodes. General purpose diodes are used in low-speed 

applications whereas fast-recovery diodes are essential for high-frequency switching. 

Schottky diodes have low on-state voltage and very small recovery time (Muhammad, 

2004). 

A thyristor has three terminals, which are an anode, a cathode and a gate. The 

thyristors can be divided into many types, such as line-commutated thyristors, gate-

turn-off thyristors (GTO), reverse-conducting thyristors (RCT) and others. 

Conventional thyristors are designed without gate-controlled turn-off capability, in 

which the conducting state of the thyristor can be recovered from its nonconducting 
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state when the current is brought to zero by other means. GTOs are designed to have 

both controlled turn-on and -off capability. Thyristors have lower on-state conduction 

losses and higher power handling capability compared to transistors. 

On the other hand, transistors generally have superior switching performances in 

terms of faster switching speed and lower switching losses. Some common power 

transistors are metal-oxide-semiconductor field-effect transistor (MOSFET), bipolar 

junction transistor (BJT) and insulated gate bipolar transistor (IGBT). Generally, 

transistors are built using a vertical structure; whereas lateral structure is used for small-

signal applications. BJT is a current-controlled device, in which amount of collector 

current is controlled by base current. An IGBT is inherently faster than BJT. However, 

the switching speed of IGBTs is inferior to that of MOSFETs (Appendix 1.1). 

The two basic types of MOSFET are depletion (D) and enhancement (E) 

MOSFET. The D-MOSFET operates in the depletion or enhancement mode whereas the 

E-MOSFET only operates in the enhancement mode and has no depletion mode. N-

channel MOSFET operates in depletion mode when a negative gate-to-source voltage is 

applied and when a positive gate-to-source voltage is applied, an enhancement mode is 

obtained. For an n-channel MOSFET, the channel is induced by the application of a 

gate to source voltage, VGS greater than the threshold value, VTH. Power transistors are 

designed to achieve higher current, voltage and power capability by creating shorter 

channel between drain and source. 

In this project, COOLMOS 600V have been used in the evaluations. CoolMOS 

virtually combines the low switching losses of a MOSFET with the low on-state losses 

of an IGBT (Figure 1.1) (Muhammad, 2004).  In comparison with classical MOS 
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structure, CooLMOS, incorporates two additional p- columnar layers sandwiched 

between n-type drift regions. The on-resistance could be reduced by a factor of 5 in 

comparison to the classical device due to the super-junction formation. This is achieved 

by controlling the charge between the p- and n-type layers in such a way that the n-type 

doping concentration is increased beyond the upper limit set by the breakdown voltage 

considerations of a conventional power MOSFET (Lorenz et al., 1999).  

 

    
 

                                   (a)                               (b)                            (c) 

Figure 1.1:  Cross section of conventional (a) Field-stop IGBT, (b) D-MOSFET and (c)  
CoolMOS (Deboy et al., 1998). 

 
 
 

A sufficient contact between source and drain is crucial for the functioning of 

these devices. A widely used concept to achieve this is to align the contact implantation 

on the polysilicon gate and source region through a spacer formed by 

Tetraethylorthosilicate (TEOS)-based silicon dioxide and followed by an anisotropic 

etch of the oxide. For n-type transistors this contact implantation is also referred to P++ 

implantation.  

The advantage of having a spacer is to avoid an additional photolayer which is 

required to align the contact implantation away from the channel region.  Additionally, 

the spacer is able to effectively isolate the contact implantation from the channel area 
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(Figure 1.2) and that is why the concept is also referred to self-aligned contact 

implantation. This means that they prevent dopants from diffusing under the gate during 

the implantation of the highly doped source regions and affects the device performance. 

The shallow diffused P++ surface below the source region helps to reduce the P-base 

sheet resistance and its contact resistance (Shenai,1992) a. With the spacer concept, the 

base length (Rbase) of the transistor inherent parasitic bipolar structure can be minimized 

to the outer most extent. Thus, no latch-up phenomenon within the specified safe 

operating area of the transistor will be occurred (Deboy et al., 1998). 

 

 

Gate oxide 

Figure 1.2: Cross section of power transistor device (Trobin W, 2005) 
 
 

 

1.2       Problem Statement 

Structure of power devices are often modified to make them operate at higher 

current density and lower on resistance. In this thesis, electrical and dynamic results of 

power transistors fabricated without using sidewall spacers have been reported. Side 
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wall spacers are formed by TEOS based silicon dioxide and followed by anisotropic 

etch of the oxide. The advantage of this concept without spacer is that no additional 

photolayer for the alignment is needed. However, relatively thick spacer oxide, which is 

formed by TEOS based oxide deposition may increase defect density of the product and 

rather extensive maintenance of the tool is required.  

In the past, DMOSFET cells with shallow p+ diffusion have been demonstrated 

using a polysilicon mask (Nakagawa et al., 1986) and Phosphosilitcate Glass (PSG) 

spacers (Mori et al., 1988) to block boron implant. However, these approaches lead to 

degradation of cell packing density, complex processing, and poor wafer yield. To 

reduce the gate resistance and to improve the source contact resistance, refractory 

metal/silicide technologies have been used (Shenai et al. 1989 a ,Shenai et al. 1989 b 

,Shenai et al. 1989 c). Spacers are made by dry etching, which happens much faster in 

the vertical direction (depth) than in the lateral directions. Since the TEOS-based silicon 

dioxide layer is thicker next to the gate electrodes, it will take much longer time to etch 

it. If the etching is stopped once the silicon wafer is reached, TEOS-based silicon 

dioxide will still be left next to the gate electrodes. These are the oxide spacers. 

The built of spacers involves many processes, such as TEOS-based silicon 

dioxide deposition, anisotropic etch of TEOS-based silicon dioxide, furnace anneal and 

various cleaning steps. These processes eventually increase the possibility of defect 

density during the production run. Besides, the quality of the deposited oxide is not that 

good; a densification is required. Starting with the 250 nm technology node, the oxide 

spacers become unsuitable for three reasons, which are field oxide loss, high thermal 

budget and oxide spacers are vulnerable. The part of the field oxides is also lost during 
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the dry etch step. The dopants, implanted in the source extensions module, will diffuse 

deeper into the silicon wafer as a consequence of heating (densification, re-oxidation 

etc.)  This is unacceptable in small technology nodes, whereby very small source 

extensions are required. When a process step or module involves a lot of heating it is 

said to have a high thermal budget. Moreover, oxide spacers are vulnerable to HF dips. 

Unfortunately such HF dips are necessary during consecutive process steps. Each HF 

dip reduces the spacer further.  The spacer block removal eliminates spacer subsequent 

process steps such as anisotropic plasma etch, furnace anneal, various cleans from the 

production process. The spacer removal enables implantation combination in a single 

process. This eventually achieves self-aligned contact implantation, optimize costs and 

defect density at Infineon’s production site in Kulim. 

Therefore, three concepts have been developed in order to replace this spacer 

process and eliminate its subsequent process steps from the production process. The 

elimination of these processes eventually optimizes the production costs of wafers. 

After a string of pre-evaluations for these three concepts, the most promising concept is 

chosen to perform the self-aligned contact implantation. The novel concept describes 

the new behaviour of the electrical, dynamic characterization and avalanche ruggedness. 

Special consideration has been given on the analysis of the transistor parameters, such 

as ‘on resistance’, ‘threshold voltage’ and ‘transconductance’ The concept undergoes 

well planned production runs, simulations and extensive characterization in order to 

achieve self-aligned contact implantation, optimize costs and defect density at 

Infineon’s production site in Kulim. 
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1.3 Objectives 

 

The main objective is to introduce a new concept of self-aligned contact 

implantation for Infineon power devices. The goal of this project is to eliminate side 

wall spacers by process modification and utilization of existing layer in the fabrication 

process. The concepts are formulated to create a kind of spacer from part of gate silicon.  

 

The designs of experiments have been carried out to accomplish the following proposed 

objectives: 

• To eliminate TEOS-based silicon dioxide side wall spacers, which are formed 

by Low Pressure Chemical Vapour Deposition (LPCVD) and followed by 

anisotropic etch.  

 

• By removing spacer block, other subsequent process steps which form spacer 

are taken away from the production process. The subsequent process are 

anisotropic plasma etch, furnace anneal, and various cleans.  

 

• To combine Source 1 and Source 2 implantation in a single process and attain a 

matching device performance with respect to standard device performance. 
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1.4 Scope of the Project 

 

The scope of the project is to fabricate power transistors with the elimination of 

TEOS-based silicon dioxide sidewall called spacers. The project examines three 

different concepts used to replace spacer and its subsequence process steps from the 

production process. The first concept replaces side wall spacers by polysilicon oxide, 

whereas the second concept describes the usage of self-aligned Undoped Silicate Glass 

(USG) as self-aligned spacers and finally the third concept comprises contact 

implantation into contact hole structure that has been built during the device fabrication. 

The barriers of the concepts into realization and the most promising concept will be 

discussed in the results and discussion section. 

Some important considerations are taken into account as the concepts above are 

performed. The designs of experiments are constructed based on these considerations. 

The first concept is to grow oxide on the polysilicon layer by polysilicon oxidization. 

This oxide growth functions as self aligned spacers and even as a dielectric layer, which 

could eventually remove USG deposition layer. The topology of oxide growth on top of 

polysilicon is examined.  The experiment investigates the drawbacks of this concept as 

high thermal budget and duration is required in order to grow oxide layer on the 

polysilicon. The other considerations, such as influence of high thermal on other 

properties, especially arsenic diffusion on source region are analyzed via simulation 

tool.  

The second concept, whereby USG deposition on polysilicon which functions as 

dielectric layer are used as self-aligned spacers despite of TEOS-based silicon dioxide 
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spacers. The implantation energy required for P++ contact (Boron) penetration into 

USG layer and source region is analyzed with a professional simulation tool. Various 

implantation energy have been used accordance to USG depth. The influence of contact 

implantation with varied USG side wall width are investigated as it would eventually 

increases the effective boron concentration on the channel and affects the electrical 

parameters of the device. 

In the third concept, the contact implantation is facilitated into the contact hole. 

The design of experiments are carried out to implant P++ on different process, which 

are after contact hole with resist and contact hole without resist. The suitable process for 

P++ implantation is determined. Contact implantation together with the adaptation of 

the source implantation and diffusion conditions are required to attain a matching 

device performance with standard device. Other considerations such influence on 

contact hole trench etch specification and misalignment of contact hole overlay are 

taken into account.  

By removal of TEOS-based silicon dioxide deposition process, other 

subsequence processes such as etch, annealing and cleaning processes can also be taken 

away from the current flow. Besides, the TEOS-based silicon dioxide spacer 

elimination enables the merge of Source 1 and Source 2 in a single process. Several 

wafer level simulations and tests such as ICECREM simulation, Process Control 

Monitoring (PCM), Functional Test (FT), cross sections, reliability and avalanche test 

are conducted in Kulim Infineon. In PCM test, the parameters given consideration are 

P++ contact resistance, sheet resistance and polysilicon sheet resistance. On the other 

hand, parameters on the threshold voltage, on resistance and transconduction are given 
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priority in FT test. Devices performance and reliability for the most promising concept 

is evaluated based on the electrical characterization and avalanche capability. Chip level 

assembly is done Malacca Infineon and full characterization is carried out in Munich, 

Germany. 

 

1.5    Outline of the thesis 

 

This thesis is divided into 5 main chapters, whereby Chapter 2 details the 

relevant literature review of the project and Chapter 3 briefs on the methodology of the 

project. Chapter 4 comprises the front end electrical results, cross sections and 

simulation results which are obtained from the performed design of experiments. In 

addition and chip level full electrical characterization has also been included. In this 

chapter, the results are displayed and discussed. Finally, Chapter 5 presents the 

conclusion and recommendations to further improvise the research work. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 
 
 
 
2.1 Introduction 
 
 

Chapter 2 describes the power transistor CoolMOS basics, spacer fabrication 

and function, polysilicon oxidation, dielectric layer deposition, ion implantation and 

diffusion on the source region. In the CoolMOS basics section, structure principles of 

operation, static characteristics, dynamic characteristics, device ruggedness and 

applications are discussed. The subtopics such as spacer and polysilicon oxidation 

elaborate the spacer and polysilicon oxidation fabrication process. In addition, the 

dielectric layers deposition method especially Undoped Silicate Glass (USG) and 

Borophosphosilicate Glass (BPSG) layers are also been detailed. The related journals 

on the P++ implantation and arsenic implantation on the source region are included in 

the chapter as well. Generally this chapter reviews the related journals, articles and 

literature on the project work.  

 

2.2  CoolMOS Basics 

2.2.1     Structure 

The super junction (SJ) device concept is gaining interests for high voltage 

power devices applications (Chen et al.,1991; Tihanyi et al.,1995; Coe, 1998; 

Fujihira,1997).  The conceptual structure was realized later on, and it was called the 
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CoolMOS or super junction MOSFET (Lorenz et al., 1999; Deboy et al., 1998). The SJ-

MOSFET or CoolMOS broke the limitation in reducing conduction resistance and has 

5- 100 times lower specific on-resistance than conventional high voltage MOSFETs 

(Lorenz et al., 1999). Moreover, the majority carrier current conduction causes the 

switching performance of the CoolMOS is like that of a conventional MOSFET. Unlike 

the IGBT, CoolMOS exhibits no tail current at turn-off. The CoolMOS virtually 

combines the low switching losses of a MOSFET with the on-state losses of an IGBT. 

Many studies on the static breakdown voltage of the CoolMOS have been published 

(Spulber et al., 1999; Lorenz et al., 1999; Deboy et al.,1998). 

In the CoolMOS device, the drift region of the conventional power MOSFET is 

replaced by a “superjunction,” or known as a combination of n and p strips in parallel 

(Lorenz et al., 1999; Deboy et al.,1998) as shown in Figures 2.1 and Figure 2.2. The 

device concept is generated based on charge compensation in the drift region of the 

transistor (Deboy et al.,1998). The doping of the vertical drift region is roughly 

increased by one order of magnitude and this counterbalances additional charge by the 

implementation of fine structured columns of the opposite doping type. However, the 

blocking voltage of the transistor remains unchanged. The charge compensating 

columns do not add to the current conduction during the turn-on state. Nevertheless the 

radically increased doping of the drift region allows the above mentioned reduction of 

the on-resistance. 
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 Figure 2.1:  State of the art 600 V-
MOSFET with series 
of resistance (Deboy et 
al.,1998) 

Figure 2.2:  Cross Section of a     
600V- CoolMOS with 
p-n columns (Deboy et 
al.,1998) 

 
 

2.2.2 Principles of Operation 
 
2.2.2.1  On state  

 
During on state, electrons flow from the source, under the gate electrode 

(through the CoolMOS channel), through the drift region (the n part of the 

superjunction), to the drain terminal (Figure 2.3). Therefore the device is considered to 

be made up of an “intrinsic” MOSFET and a drift region. It requires a gate voltage more 

positive than VTH to create an electron channel. At the threshold voltage of the 

“intrinsic” MOSFET, the device turns on and the current rises with initially in addition 

saturates when the resistance of the drift region starts dominating. As drain-to-source 

voltage (VDS) increases, the inversion-layer charge density at the drain end of the 

channel is reduced and therefore drain current (ID) does not increase linearly with VDS. 

When VDS reaches VGS−VTH, the channel is “pinched off” at the drain end, and ID 
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saturates (it does not increase with further increases in VDS) (Figure 2.4) 

(Barkhordarian , 2009). 

 

Figure 2.3:  Electrons flow from the source of the CoolMOS high voltage power 
MOSFET (Lorenz et al., 1999) 

 

 

During turn-on the space charge layer is removed in both devices by the injection of 

electrons through the channel region. The CoolMOS requires additionally the diffusion 

of holes from the p-well into the p-column. A good ohmic contact is therefore required 

(Lorenz et al., 1999). 

 
Figure 2.4: Output characteristics of the CoolMOS transistor (Daniel et al., 2002) 
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2.2.2.2 Off state 
 
 

 
Figure 2.5: Current flow during turn-off in a CoolMOS device (Lorenz et al., 1999) 

 
 
 

Without a gate-to-source voltage applied, no current can flow between the 

source and drain regions. The CoolMOS depletes completely at very low voltages 

without current flow through high field regions (Figure 2.5) (Lorenz et al., 1999). 

 

2.2.3 Static Characteristics 

2.2.3.1   On-resistance 

The resistance of the voltage sustaining in drift zone rules the on-resistance of a 

conventional high voltage power MOSFET. The thickness and doping level on the epi 

layer determines the blocking capability of this drift region. The layer thickness must be 

increased and the doping level must be simultaneously reduced in order to increase the 

blocking voltage. The resistance of the transistor therefore increases disproportionately 

strongly as a function of its blocking capability (Figure 2.6) (Lorenz et al., 1999). 

Accordingly the drift zone causes over 95 % of the total on resistance for example in a 
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600-V transistor. The main emphasis in improving the transistors performance must 

therefore be directed towards reducing this drift region resistance (Lorenz et al., 1999). 

 

 
Figure 2.6: Components of the overall RDS(on) in conventional power MOSFETs for 

low and high voltage devices (Lorenz et al., 1999) 
 

 

The on-state resistance of a power MOSFET is made up of several components as 
shown in Figure 6: 
 

RDS(on)=Rs+Rn + Rch + Ra + Repi + Rsub + Rwcml    (1) 
 
where: 
 
Rs = Source contact resistance 
Rn= Source diffusion resistance 
Rch = Channel resistance 
Ra = Accumulation resistance 
Repi = "JFET" component-resistance of the region between the two body regions, drift 

region resistance 
Rsub = Substrate resistance 
Rwcml  =   Sum of bond wire resistance, the contact resistance between the source and    

drain metallization and the silicon, metallization and leadframe contributions. 
These are normally negligible in high voltage devices but can become 
significant in low voltage devices. 
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Figure 2.7 shows the relative importance of each of the components to RDS(on) 

over the voltage spectrum. The figure shows the epi resistance and JFET component 

dominates the RDS(on)  at high voltages. This element is higher in high voltage devices 

due to the higher resistivity or lower background carrier concentration in the epi. The 

RDS (on) is dominated by the channel resistance and the contributions from the metal to 

semiconductor contact, metallization, bond wires and leadframe at lower voltages. At 

lower breakdown voltage devices, the substrate contribution becomes more significant 

(Barkhordarian , 2009). 

 

 

Figure 2.7: Relative contributions to RDS(on) with different voltage ratings  
(Barkhordarian, 2009) 
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2.2.3.2  Breakdown voltage 

 

BBVDSS , is the voltage at which the reverse-biased body-drift diode breaks down 

and significant current starts to flow between the source and drain by the avalanche 

multiplication process, while the gate and source are shorted together (Barkhordarian, 

2009). The drain voltage is entirely supported by the reverse-biased body-drift p-n 

junction and no channel is formed under the gate at the surface for drain voltages below 

BVDSSB  and with no bias on the gate. Poorly designed and processed devices cause two 

phenomena: punch-through and reach-through. Punch through is observed as the 

depletion region on the source side of the body-drift p-n junction reaches the source 

region at drain voltages below the rated avalanche voltage of the device. This 

contributes soft breakdown characteristics which provide a current path between source 

and drain. The leakage current flowing between source and drain is denoted by IDSS. 

Therefore, a tradeoffs to be made between RDS (on) that requires shorter channel lengths 

and punch-through avoidance that requires longer channel lengths. On the other hand, 

as the depletion region on the drift side of the body-drift p-n junction reaches the 

epilayer-substrate interface before avalanching takes place in the epi, the reach-through 

phenomenon occurs. Once the depletion edge enters the high carrier concentration 

substrate, a further increase in drain voltage will cause the electric field to quickly reach 

the critical value where avalanching begins (Barkhordarian, 2009). 

The doping of the current conducting n-regions can be enhanced inverse 

proportional to their width (Deboy et al., 1998). The electric field inside the structure is 

fixed by the net charge of the two opposite doped columns and thus a nearly horizontal 

field distribution can be achieved if both counterbalance each other perfectly. For 
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higher blocking voltages only the depth of the columns has to be increased without the 

necessity to alter the doping. This leads to a linear re1ationship between blocking 

voltage and on-resistance (Figure 2.8). By using this technique, 1000 V CoolMOS will 

offer a RDS (on) reduction in the range of one order of magnitude versus conventional 

technologies. 

 

 
Figure 2.8:  COOLMOS technology offers a linear relationship between blocking       

voltage and on-resistance (Deboy et al., 1998) 
  

 

2.2.3.3 Transconduction 

Transconductance is a measure of the sensitivity of drain current to changes in 

gate-source bias. This parameter is normally quoted for a VGS that gives a drain current 

equal to about one half of the maximum current rating value and for a VDS that ensures 

operation in the constant current region.  The gate width influences transconductance, 

which increases in proportion to the active area as cell density increases. The 

photolithography process control and resolution is the limiting factor for even higher 

cell densities that allows contacts to be made to the source metallization in the center of 
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the cells. Channel length also affects transconductance. Reduced channel length is 

beneficial to both gfs and on-resistance, with punch-through as a tradeoff. Finally, the 

lower the gate oxide thickness, the higher is the transconduction (Barkhordarian , 2009). 

 

2.2.3.4 Threshold voltage 

Threshold voltage, VTH, is defined as the minimum gate electrode bias required 

to strongly invert the surface under the poly and form a conducting channel between the 

source and the drain regions. VTH is usually measured at a drain-source current. 

Common values are 2-4V for high voltage devices with thicker gate oxides, and 1-2V 

for lower voltage, logic-compatible devices with thinner gate oxides. The trend is 

toward lower values of RDS(on) and VTH are useable in portable electronics and wireless 

communications where battery power is at a premium (Barkhordarian, 2009). 

 
 
2.2.3.4 Dynamic characteristics 

As the CoolMOS is used as a switch, its basic function is to control the drain 

current by the gate voltage. The time required to establish voltage changes across 

capacitances determines the switching performance of a device. Typical values of input 

(Ciss), output (Coss) and reverse transfer (Crss) capacitances given in the data sheets 

are used by circuit designers as a starting point in determining circuit component values 

(Figure 2.9). The datasheet capacitances are defined in terms of the equivalent circuit 

capacitances as: 

Ciss = CGS + CGD, CDS shorted                      (2) 
Crss = CGD                                                  (3) 
Coss = CDS + CGD                                                                                                                            (4) 
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Gate-to-drain capacitance, CGD, is a nonlinear function of voltage and it provides 

a feedback loop between the output and the input of the circuit. CGD is also known as 

the Miller capacitance because it causes the total dynamic input capacitance to become  

greater than the sum of the static capacitances. Figure 2.10 shows a typical switching 

time test with the components of the rise and fall times with reference to the VGS and 

VDS waveforms. The time taken to charge the input capacitance of the device before 

drain current conduction can start is referred as turn-on delay, td (on). Similarly, turn-

off delay, td (off), is the time taken to discharge the capacitance after it is switched off 

(Barkhordarian, 2009). 

 

 

 
Figure 2.9: Power MOSFET Parasitic Components (Barkhordarian, 2009). 
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Figure 2.10: Switching Time Test VGS and VDS Waveforms (Barkhordarian , 2009). 
 

 

2.2.3.5  Switching behavior 

Input capacitance values normally do not provide precise results when 

comparing the switching performances of two devices from different manufacturers. A 

more helpful parameter from the circuit design point of view is the gate charge rather 

than capacitance. VGS starts to increase until it reaches VTH, the drain current starts to 

flow and the CGS starts to charge. During the period t1 to t2 (Figure 2.11), CGS continues 

to charge, the gate voltage continues to rise and drain current rises proportionally. At 

time t2, CGS is completely charged and the drain current reaches the preset current ID 

and stays constant while the drain voltage starts to drop. Figure 2.11 shows the 

reference to the equivalent circuit model of the MOSFET and it explains that with CGS 

fully charged at t2, VGS becomes constant and the drive current starts to charge the 

Miller capacitance, CGD. This goes on until time t3. 
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 The Miller capacitance charge time is larger than that for the gate to source 

capacitance CGS due to the rapidly changing drain voltage between t2 and t3 (current = 

Cdv/dt). As soon as both of the capacitances CGS and CGD are fully charged, gate 

voltage (VGS) starts increasing again until it attains the supply voltage at time t4. Time t3 

is corresponding to the gate charge (QGS + QGD) which is bare minimum charge 

required to switch the device on. The use of a higher gate voltage than the bare 

minimum required for switching is recommended in a good circuit design practice and 

therefore the gate charge used in the calculations is QG corresponding to t4. The benefit 

of using gate charge is that the designer without difficulty calculate the amount of 

current required from the drive circuit to switch the device on in a desired length of time 

because Q = CV and I = C dv/dt, the Q = Time x current. For example, a device with a 

gate charge of 20 nC can be turned on in 20 μs if 1ma is supplied to the gate or it can 

turn on in 20 ns if the gate current is increased to 1 A. These simple calculations would 

not have been probable with input capacitance values (Barkhordarian, 2009). 

 
 

 
 

Figure 2.11:  Gate Charge Test, (b) Resulting Gate and Drain Waveforms 
                                  (Barkhordarian, 2009). 
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The characteristic output capacitance displays the nonlinear spread of the space 

charge layer as a function of voltage. Its main contribution is the drain/source 

capacitance (Figure 2.12). The significantly increased internal surface of the pn-junction 

cause the capacitance illustrates large values at small voltages. As the internal p/n-

striped structure starts to deplete, both the reduction of this surface and the expansion of 

the space charge layer width lead to a strongly nonlinear performance of the output 

capacitance (Lorenz et al., 1999).  

 

 
Figure 2.12:    CoolMOS offers a substantial reduction of gate-source and “Miller” 
                         capacitance, CGS and CGD respectively, as well as a very favourable            

nonlinear behavior of the drain-source capacitance CGD.( Lorenz et al., 
1999) 

 

  

2.2.3.6  Device Ruggedness  

From the customer’s viewpoint, device ruggedness is an essential criteria. 

CoolMOS  transistors propose an avalanche energy per chip area which is very close to 

the thermal limit of zener clamped devices. A self aligned spacer technology is used to 
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