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range of 50 - 98 nm 180 
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Figure 4.27  Experimental (I-V) characteristics for various diode sizes.  It 

appears that the curves changes drastically with decreasing 

diode size, and reverse current do not experience saturation 182 

Figure 4.28  2D AFM image of nine gold nanodots deposited with 

voltage amplitude of  –26 V and pulse duration of 2 ms. It 

appears that nine gold nanodot have a uniform shape with 

average height is 4.4 nm, while the average diameter is 60 

nm 183 

Figure 4.29  The experimental semi-logarithmic current-voltage (I-V) 

characteristics of gold nanodot/n-Si Schottky diode at 

various temperatures under (a) forward bias and (b) reverse 

bias with the diameter of 60 nm 184 

Figure 4.30  Temperature dependence of the ideality factor and barrier 

height for the gold nanodot/n-Si Schottky barrier 186 

Figure 4.31  The temperature dependence of the series resistances 

obtained from Cheung and Cheung’s methods for gold 

nanodot/n-Si 188 

Figure 4.32 ln (I0/T
2
) vs 1000/T plots gold nanodot/n-Si(100) Schottky 

diodes showing non-linearity below 225 K 189 
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