DETECTION AND IDENTIFICATION OF STICTION IN CONTROL VALVES BASED ON FUZZY CLUSTERING METHOD

By

MUHAMMAD AMIN DANESHWAR

Thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

August 2016

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to Dr. Norlaili Mohd Noh, my supervisor for her help, for believing in me, for her invaluable guidance and supervision in making sure that I am always on the right track and making this research possible for me.

I am most grateful to my mother, Nazdar, my brothers, my sisters, my father inlaw, and my mother in-law for their support.

I don't, forget help and useful comments of my dear friend Sadegh Aminifar.

Last, but definitely not least, I am really grateful to my lovely wife, Shiva, my son, Raman, my daughter, Avan. Without their endless support and belief in me, this thesis would never have been accomplished.

I would like to thank Alexander Horch (ABB, Germany), Claudio Scali (University of Pisa, Italy), Sirish Shah and Bau Huang (University of Alberta, Canada), Shoukat Choudhury (Bangladesh University of Engineering and Technology), Jin Wang (Peking University, China), Cludio Scali (University of Pizza, Italy), Nina F. Thornhill (Imperial College London, UK), and Peter He (Tuskegee University, USA) for their permission to using their experimental and industrial data to check the performance of proposed methods of detection, diagnosis and identification.

This thesis was supported by Universiti Sains Malaysia with RU-PRGS grant number 1001/PELECT/8046015.

I would like to dedicate this thesis to my late father Muhammad Ali (who passed away three years ago). He encouraged me all the way from preschool to my postgraduate studies; I wish he was here to see his dream come true.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xxii
LIST OF ABBREVIATIONS	XXV
ABSTRAK	xxvii
ABSTRACT	xxix
CHAPTER ONE : INTRODUCTION	
1.1 The presence of static friction in control loops	1
1.2 Motivation/Problem Statement	2
1.3 Objectives	3
1.4 The scope of the study	3

1.5 Thesis Outline 4

CHAPTER TWO : LITERATURE REVIEW AND THEORETICAL BACKGROUND

2.1	Litera	ture review	6
	2.1.1	Stiction detection and diagnosis	6
		2.1.1 (a) Qualitative shape analysis	6
		2.1.1 (b) Qualitative signal-analysis	13
		2.1.1 (c) Detection of loop non-linearity	22
	2.1.2	Stiction quantification	26
		2.1.2 (a) Conventional techniques for stiction quantification	28
		2.1.2 (b) Intelligent techniques for stiction quantification	31
2.2	Theor	etical background	35
	2.2.1	Type of approaches	35
	2.2.2	Fuzzy clustering	38
	2.2.3	Fuzzy modelling	40
	2.2.4	Radial basis function neural network (RBF)	45
2.3	Summ	nary	47

CHAPTER THREE : METHODOLOGY

3.1	Detection and diagnosis of stiction	49
-----	-------------------------------------	----

	3.1.1	Proposed method for loop nonlinearity detection	51
		3.1.1(a) Proposed modification of GK clustering	57
	3.1.2	Proposed for nonlinearities diagnosis	68
	3.1.3	Investigation of the proposed methods toward noise	82
3.2	Identif	ication of control valves with stiction	84
	3.2.1	Identification with non-smart valves	85
		3.2.1 (a) Configuring of the fuzzy identifier	87
		3.2.1 (b) The Takagi–Sugeno two performance indexes for	90
		modelling	
	3.2.2	Identification with smart valves	91
		3.2.2 (a) Justification of employing RBF	94
3.3	Asses	sment of the proposed method	96
	3.3.1	Detection and diagnosis	96
	3.3.2	Identification	96
	3.3.3	Comparison	97
3.3	Sumn	nary	97

CHAPTER FOUR : RESULTS AND DISSCUSION

4.1 Results of detection and diagnosis of stiction	98
--	----

4.1.1	Performa	nce of simulation case studies	98
	4.1.1 (a)	Investigation 1 on model 1	99
	4.1.1 (b)	Investigation 2 on model 2	108
	4.1.1 (c)	Investigation 3 on model 3	113
	4.1.1 (d)	Investigation 4	117
4.1.2	Performan	nce on industrial case study	118
	4.1.2 (a)	Industrial investigation 1: Evident absence of	119
		stiction in a flow control loop	
	4.1.2 (b)	Industrial investigation 2: The presence of stiction	120
		in a flow control loop from a Pulp and Paper plant	
	4.1.2 (c)	Industrial investigation 3: The presence of stiction	121
		in a flow control loop in a chemical plant for	
		varying SP	
	4.1.2 (d)	Industrial investigation 5: Presence of external	123
		disturbance in a flow control loop with fixed SPs	
	4.1.2 (e)	Industrial investigation 5: Presence of external	125
		disturbance in a flow control loop with fixed SPs	
	4.1.2 (f)	Industrial investigation 6: Presence of external	126
		disturbance in a flow control loop with changing	
		SPs	

vi

	4.1.3	Robustne	ess of the pro	posed method against noise	127
		4.1.3 (a)	Performan white noise	ce of proposed method in the presence of	127
		4.1.3 (b)		ce of the proposed method in the f coloring noise	129
	4.1.4	-	-	roposed method of with earlier works on I loops with known causes of oscillation	131
4.2	Result	s of identif	fication		138
	4.2.1		tion of the p (for non-sma	rocess with a sticky valve using the fuzzy art valves)	138
		4.2.1.2	Performanc	e of industrial case study	145
			4.2.1.2 (a)	Industrial investigation 1: Flow control with fixed set point	145
			4.2.1.2 (b)	Industrial investigation 2: Flow control with changing set point	146
			4.2.1.2 (c)	Industrial investigation 3: Concentration control	147
			4.2.1.2 (d)	Industrial investigation 4: Level control	148
			4.2.1.2 (e)	Industrial investigation 5: Pressure control	149

		4.2.1.3	The sensitivity of the model	151
		4.2.1.4	Comparison of the identification with earlier works	155
			on industrial control loops	
	4.2.2	Identifica	tion with smart valves	156
		4.2.2(a)	Identification based on proposed fuzzy identifier	156
		4.2.2(b)	Identification based on radial basis function (RBF)	156
			neural network	
		4.2.2(c)	Performance comparison between RBF and the	158
			fuzzy identifier for sticky valves	
4.3	Summ	ary		160

CHAPTER FIVE : CONCLUSIONS AND RECOMMENDATION

5.	5.1 Conclusions			162
5.	.2	Recomm	endations for future research	163
		5.2.1	Detection and diagnosis	163
		5.2.2	Identification	164
REFERENCES			166	
LIST OF PUBLICATIONS			173	

LIST OF TABLES

Page

Table 2.1	Symbolic representation of behavior of a time series	12
	in OP-MV plots	
Table 2.2	Different methods for stiction detection and	25
	diagnosis with their limitations	
Table 2.3	Different methods for stiction quantification	34
	(estimation of stiction parameters) with their	
	limitations	
Table 2.4	Summary of earlier stiction detection, diagnosis and	34
	quantification method	
Table 2.5	Parameters adjusted by different training methods	46
Table 3.1	Calculation of goodness-of-fit (R2) for different	67
	flow control loops with different amount of stiction	
	obtained from simulation and different industrial	
	control loops	
Table 4.1	Characteristics of simulated control loops for	99
	generating of data (investigation 1)	
Table 4.2	Some samples of the generated data for all cases of	105

stiction for investigation 1

- Table 4.3Obtained indexes from applying proposed method107of stiction detection and diagnosis
- Table 4.4Characteristics of simulated control loops for108generating of data (Investigation 2)
- Table 4.5Some samples of the generated data for111investigation 2
- Table 4.6Obtained indexes from applying proposed method113of stiction detection and diagnosis (investigation 2)
- Table 4.7Obtained indexes from applying proposed method116of stiction detection and diagnosis (investigation 3)
- Table 4.8Obtained indexes from applying the proposed118method to the data obtained from experimental setup (Wang, 2013) for investigation 4.
- Table 4.9Obtained indexes from applying proposed method119to data collected from an industrial flow controlloop (Thornhill, 2007) for industrial investigation 1
- Table 4.10Obtained indexes from applying proposed method121to the industrial data (Horch, 2006) for industrialinvestigation 2
- Table 4.11Obtained indexes from applying proposed method122to the industrial data (Scali and Ghelardoni, 2008)

Х

for industrial investigation 3

- Table 4.12Obtained indexes from applying proposed method124to the industrial control loop with short period of
data (He et al., 2007) for industrial investigation 4
- Table 4.13Obtained indexes from applying proposed method125to the industrial control loop which has beenaffected by external disterbance (Scali and
Ghelardoni, 2008) for industrial investigation 5
- Table 4.14Obtained indexes from applying proposed method127to the industrial control loop which has beenaffected by external disturbance with changing setpont (Scali and Ghelardoni, 2008) for industrialinvestigation 6
- Table 4.15Performance of the proposed method of stiction129detection and diagnosis in the presence of whitenoise with different SNRs on all cases of stiction
- Table 4.16Performance of proposed method of stiction130detection and diagnosis in the presence of coloringnoise with different alpha
- Table 4.17
 Characteristics of industrial flow control loops used
 132

 in comparison techniques
 132
- Table 4.18Obtained indexes from applying proposed method133

to all industrial flow control loops

Table 4.19	Comparison of performance of proposed method of	135
	stiction detection and diagnosis with other methods	
	on industrial data set	
Table 4.20	Percent of success of previous works along with	136
	proposed work	
Table 4.21	Amount of VAF and RMS corresponding to	139
	different number of clusters and different amount of	
	stiction obtained from simulation	
Table 4.22	Obtained consequents parameters of each rule in all	141
	three cases of stiction	
Table 4.23	Obtained performance indexes i.e. VAF and RMS	149
	and Elapsed time from different industrial control	
	loops	
Table 4.24	Obtained performance indexes i.e. VAF and RMS	153
	on undershoot case of stiction with $S=5$ and $J=1$ vs.	
	different variances of noise	
Table 4.25	Comparision of performance of proposed method	155
	with earlier works in term of elapsed time and	
	number of stiction parameters	
Table 4.26	Performance of RBF with different numbers of	157
	hidden neurons	

xii

Table 4.27Performance of RBF with assigned goal (i.e.,159MSE=0.0152)

LIST OF FIGURES

- Figure 2.1 Set of primitives in QSA algorithm (Rengaswamy et al., 7 2001)
- Figure 2.2 Relations between the controller output and the valve 9 position under valve stiction (Kano et al., 2004)
- Figure 2.3 Symbolic representations of time series: Increasing (I), 10 Steady (S) and Decreasing (D)
- Figure 2.4 Qualitative shapes found in typical sticky valves (Yamashita, 11 2006)
- Figure 2.5 A shape found in sticky valves in industrial plants (Scali and 12 Ghelardoni, 2008), but can not detected by Yamashita's approach (Yamashita, 2006)
- Figure 2.6 The dead zone (the interval between the light and the dark 14 grey bars) is appeared in method developed by Horch (1999)
- Figure 2.7 The stiction model assumed by Stenman et al. (2003) 16
- Figure 2.8 Control error signal shapes for valve stiction and aggressive 17 control (Salsbury and Singhal, 2010)

Figure 2.9	Conventional procedure for dealing with stiction problem	26
Figure 2.10	Conventional methods of stiction compensation	26
Figure 2.11	Hammerstein model (Sliwinski, 2012)	27
Figure 2.12	Modelling a process with control valve stiction using Hammerstein approach (Capaci and Scali, 2013)	28
Figure 2.13	One stage identification approach of (Farenzena and Trierweiler, 2012)	31
Figure 2.14	Two stages identification used by Jelali (2008)	32
Figure 2.15	Type of approaches and models used in the study (dark grey)	38
Figure 2.16	Structure of a single input-single output (SISO) radial basis function (RBF) neural network	46
Figure 3.1	Block diagram of the whole process of the proposed methodology for detection and diagnosis	50
Figure 3.2	Calculation of error of fitting in the presence of stiction	63
Figure 3.3	A schematic diagram for a flow control loop with pneumatic control valve	69
Figure 3.4	Typical sticky valve with relevant cluster centers	70
Figure 3.5	The slopes of the lines obtained from all four successive cluster centers in the presence of stiction	72
Figure 3.6	Typical sticky valve with relevant cluster centers (The	74

XV

moving phase is considerable in comparison with the dead band plus stick band; scenario 2)

- Figure 3.7 Flowchart of proposed method of stiction detection and 81 diagnosis
- Figure 3.8 An application of proposed method of identification in 85 compensation stage of stiction

Figure 3.9	Proposed procedure for sticion problem	85
------------	--	----

- Figure 3.10 Block diagram of valve positioner for smart valve 92
- Figure 3.11Applications of RBF in identification for smart valves93
- Figure 4.1Block diagram of a control loop with a sticky valve98
- Figure 4.2 Flowchart of Kano's stiction model (Kano et al., 2004) used 100 in the control loop for stiction block with nonlinear behavior for generating simulated data
- Figure 4.3 a) Typical nonlinear characteristics of a sticky valve, b) The 102 corresponding nonlinear trend of valve position with time.Desired performance or linear characteristics (dashed line)
- Figure 4.4 Simulink of Kano's stiction model implemented in 104 MATLAB for generating simulated data
- Figure 4.5 SP, OP, MV and PV trend of generated data for strong 105 stiction (S=5, J=1) from simulated control loop based on Kano's model: a) SP and PV; b) OP and MV; c) OP-PV; d)

OP-MV.

- Figure 4.6 Obtained cluster centers for strong stiction of simulated flow 107 control loop (investigation 1)
- Figure 4.7 He's stiction flowchart for representing of nonlinearity 109 caused by stiction block
- Figure 4.8 Simulink of He's stiction model implemented in MATLAB 110 for generating the simulated data
- Figure 4.9 Generated data for undershoot case of stiction (with *fs*=2, 111 *fd*=1) by using He's model for simulated control loop based:
 a) SP and PV; b) OP and MV; c) OP-PV; d) OP-MV.
- Figure 4.10 Obtained cluster centers for strong stiction of simulated flow 112 control loop (investigation 2)
- Figure 4.11 Choudhury's stiction model for representing of nonlinearity 115 caused by stiction block
- Figure 4.12 Obtained cluster centers for: (a) no stiction; (b) undershoot 116 with S=3, J=1;(c) no offset, with S=J=3; (d) overshoot with S=3 and J=5 in the case of stiction using Choudhury's model
- Figure 4.13 SP, OP and PV trends and the obtained cluster centers from 117 OP-PV in the presence of stiction for the experimental data obtained from Wang (2013) : a) SP and PV trend; b) MV trend; c) OP trend; d) OP-PV.
- Figure 4.14 Figure 1.1: a) SP and PV trend; b) OP-PV ; c) OP trend and 120

d) the obtained cluster centers from OP-PV in the presence of stiction with the varying set point obtained from a chemical plant (Industrial investigation 3).

- Figure 4.15 Figure 1.2: a) SP and PV trend; b) OP-PV ; c) OP trend and 122d) the obtained cluster centers from OP-PV in the presence of stiction with the varying set point obtained from a chemical plant (Industrial investigation 3).
- Figure 4.16 Figure 1.3: a) SP and PV trend; b) OP-PV ; c) OP trend and 124
 d) the obtained cluster centers from OP-PV in the presence of stiction for the industrial data obtained from a chemical plant (Industrial investigation 4).
- Figure 4.17 Figure 1.17 : a) SP and PV trend; b) OP-PV ; c) OP trend and 126d) the obtained cluster centers from OP-PV in the presence of an external disturbance with fixed set points obtained from a chemical plant (Industrial investigation 5).
- Figure 4.18 Figure 1.4 : a) SP and PV trend; b) OP-PV ; c) OP trend and 127d) the obtained cluster centers from OP-PV in the presence of an external disturbance for data obtained from a chemical plant (Industrial investigation 6).
- Figure 4.19 Figure 1.5 Generated colored noise with different α for 130 evaluation performance of proposed method: a) $\alpha=0$; b) $\alpha=0.5$; c) $\alpha=1$ and d) $\alpha=2$.

Figure 4.20 Performance of VAF and RMS with different amount of 140

xviii

fuzziness in undershoot case of stiction

- Figure 4.21 Performance of VAF and RMS with different amount of 140 fuzziness in overshoot case of stiction : a)VAF; b) RMS
- Figure 4.22 Performance of VAF and RMS with different amount of 141 fuzziness in no offset case of stiction: a)VAF; b) RMS
- Figure 4.23 Performance of the fuzzy model on strong stiction 142 (undershoot): a) the set point and the control signal (OP) trends; b) the valve output (MV) trend; c) the apparent stiction in the OP-MV part of the plant; d) the control output and the process out (OP-PV); e) the process output (blue dashed) and the fuzzy model (red dotted) with VAF =98.3835 and RMS=0.0751
- Figure 4.24 Performance of the fuzzy model on strong stiction 143 (undershoot):a) set point and control signal (OP) trend, b) Valve output (MV) trend, c) apparent stiction in OP-MV part of the plant, d) control output and process output (OP-PV), e)the process output((blue dashed) and the fuzzy model (red dotted) with VAF =94.2387 and RMS=0.1016
- Figure 4.25 Performance of the fuzzy model on strong stiction (no 144 offset):a) set point and control signal (OP) trend, b) Valve output (MV) trend, c) apparent stiction in OP-MV part of the plant, d) control output and process output (OP-PV), e)the process output (blue dashed) and the fuzzy model (red

dotted) with VAF =93.8982 and RMS=0.0826

- Figure 4.26 Data from the flow control loop (industrial investigation 1): 146 a) SP and OP trends; b) PV–OP plot c) the process output (blue dashed) and the fuzzy model (Red dotted)
- Figure 4.27 Data from the flow control loop in a refinery (industrial 147 investigation 2): a) SP; b) the PV–OP plot; c) the process output (blue dashed) and the fuzzy model (red dotted)
- Figure 4.28 Data from the Concentration Control loop from the Pulp and 148 Papers plant(industrial investigation 3): a) OP; b) PV–OP plot; c) the process output (blue dashed) and the fuzzy model (red dotted)
- Figure 4.29 Data from the Level Control loop (Industrial investigation 4) 149 from the Pulp and Papers plant a) OP; b) PV–OP plot; c) the process output (blue dashed) and the fuzzy model (red dotted)
- Figure 4.30 Data from the pressure control loop from the chemical 150 plant(industrial investigation 5); a) control signal and setting point ; b) PV–OP plot; c) the process output (blue dashed) and the fuzzy model (red dotted)
- Figure 4.31 Impact of too much noise with variance=0.17 on the 153 identification With VAF=78.8153, RMS=0.9578
- Figure 4.32 Impact of too much noise with variance=0.19 on the 154

XX

identification with VAF=67.6740, RMS=1.8090

- Figure 4.33 Impact of too much noise with variance=0.21 on the 154 identification With VAF=48.4027, RMS=2.3916
- Figure 4.34 Figure 1.6 Performance of RBF neural network based 175 identification on sets of testing data: a) output vs. target, b) regression. c) Enlargement part of a, d) error histogram.

LIST OF SYMBOLS

A_i	The antecedent fuzzy set
С	Number of clusters
C _v	Valve coefficient
D_{ik}^2	Squared inner-product distance norm
e	Error
F	Volumetric flow rate
F _a	Applied force
F _f	Applied external force
F _i	Fuzzy covariance matrix
f _d	Dynamic friction
F _r	Spring force
f_s	Static friction
F _v	Viscous friction
I _{stic}	Stiction performance index
J	Slip Jump
J _m	Cost function for clustering

K	Process gain
K _c	Controller gain
m	Amount of fuzziness
MSE _{sin}	Mean-squared error for sinusoidal fitting
MSE _{tri}	Mean-squared error for triangular fitting
Ν	Length of data (Number of samples)
OPhg	Upper bond of control signal
OPlw	Lower bond of control signal
<i>R</i> ²	Goodness-of-fit
r_{xy}	Correlation coefficient
S	Stick band plus dead band
sg	Specific gravity of the fluid
stp	Moving state of the valve
T _d	Time delay
T _{fin}	Time window
T_s	Sampling time
$ au_l$	Zero-crossing for negative lags of CCF
$ au_r$	Zero-crossing for positive lags of CCF

r_0	CCF at lag zero
U	Fuzzy partition matrix
u _s	Control signal at resting state of the valve
V	Vector of cluster prototypes (centers)
X _{SS}	The value of the input signal when the valve gets stuck
z _k	Data of the <i>k</i> -th sample
¢	Valve design parameter
ΔP_{v}	Pressure drop across the valve
θ_{th}	Threshold
Ω_i	The degree of activation of the i-th rule