EFFECT OF SHEAR STRENGTH PARAMETERS IN RESIDUAL SOILS ON SLOPE FAILURES

DAMANHURI JAMALLUDIN

UNIVERSITI SAINS MALAYSIA

2016

EFFECT OF SHEAR STRENGTH PARAMETERS IN RESIDUAL SOILS ON SLOPE FAILURES

by

DAMANHURI JAMALLUDIN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

March 2016

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to the Research Management Institute, UiTM, Shah Alam, for providing funds to conduct this study. The author also wishes to express his utmost gratitude to his main supervisor, Prof. Dr. Fauziah Ahmad (USM) and field supervisor Prof. Dr. Roslan Zainal Abidin (IUKL) for their support, encouragement and excellent supervision towards the completion of this study.

I would express my sincere gratitude to Ir. Dr. Mohd Farid Ahmad, En Badrul Nizam Ismail, En Muhammad Hafeez Osman, Dr Mohammad Nizam Ibrahim, Dr. Ahmad Zia Ui-Saufie Mohamad Japeri and Assoc. Prof. Ahmad Shukri Yahaya (USM) who have assisted and provided valuable advice to the author. The author also wishes to record his thanks to Dr. Clotida Petrus (Head of Civil Engineering Faculty, UiTM Penang) for allowing the usage of the testing equipments of the faculty in order to carry out all the required testings. The author also wishes to express his deep appreciation to En. Mohd Naim Zainol, Cik Suhana Mohd Noor, Cik Siti Fatimah Zainal, Pn. Nurul Ain Abdullah and other research assistants (RA) for carrying out all the testings required for this research. My sincere thanks also go to the final year civil engineering degree students who have collected all the soil samples for the required tests and also conducted the survey works. They include Suriati Ahmad, Mohd Siddiq Abdul Rahim, Tengku Firdaua Tuan Lah, Lokman Amir Hamzah, Wan Nuursufila Salleh and Noor Nashairie Mohd Nasir. All of them have graduated in 2008.

The author wishes to express his appreciation to Cik Farah Hariyani Haris and En Abdul Malek Ishak (technicians in UiTM Penang Geotechnical Laboratory) who have assisted the RA in conducting all the tests. The author would also like to thank the PWD Balik Pulau, Penang and PWD Baling, Kedah as well as PWD Gerik, Perak for giving the permission to the author to take soil samples and conducting JKR probe tests at all the study areas. Thanks are also due to all the faculty members and others who have directly or indirectly involved in helping the author to complete this study.

I am also grateful to Ir. Mohd Rozi Shaari and Ir. Azhari Abdullah from IKRAM Sdn. Bhd. who have provided soil investigation results within the study areas. Thanks are also due to many of the author's friends in PWD Malaysia who have assisted in one way or the other in helping to complete this study. Thanks are also due to PWD Malaysia where the author has worked for 15 years before joining UiTM. The valuable site and practical experiences gained on constructions in TLDM Lumut and geotechnical designs in IKRAM as well as in Geotechnical Section of Road Design Unit, PWD have helped the author to complete this study. These include the opportunity to design slopes and other geotechnical aspects. The books and journal papers collected while working in IKRAM and Road Design Unit, PWD later have become very useful references in this study. This work is dedicated to the author's wife, Noor Ashikin Noordin and all the 4 grown up children.

TABLE OF CONTENTS

Acknowledgements	ii
Table of Contents	iv
List of Tables	X
List of Figures	xxii
List of Plates	xxxvi
List of Abbreviations	xxxvii
List of Symbols	xxxix
Abstrak	xl
Abstract	xlii

CHAPTER 1 - INTRODUCTION

1.1	Overview of the Study	1
1.2	Problem Statements	3
1.3	Objectives of the Study	6
1.4	Limitations of the Study	6
1.5	Thesis Outline	7

CHAPTER 2 - LITERATURE REVIEW

2.1	Introduct	ion	9
2.2	Importan	t Definitions	9
2.3	Shallow S	Slope Failures	11
	2.3.1	Causes of Failures	14
2.4	Erosion S	Study	16
2.5	Factor of	Safety (FOS)	17
	2.5.1	Values of FOS Used in Slope Design	20
	2.5.2	Stability Analysis	21
	2.5.3	Slope Stability Analysis Method Using Methods of	22
		Slices	
	2.5.4	Morgenstern - Price Slope Stability Method	25
	2.5.5	Equations of Some of Other Methods of Slices	26

	2.5.6	Slope Stability Software	
		2.5.6 (a) SLOPE / W Software	
		2.5.6 (b) PLAXIS Software	
2.6	Malaysi	an Geology	29
	2.6.1	Geology of Penang	
	2.6.2	Geology of Baling	31
2.7	Residua	l Soils	33
	2.7.1	Geology and Residual Soil of Study Areas	33
2.8	Soil Cla	ssification Systems	34
	2.8.1	The British Soil Classification System (BSCS) .	35
2.9	Highly	Variable Strength of Residual Soils	
2.10	Short an	d Long Terms Stability Conditions	39
2.11	Direct S	hear Box Tests and Shear Strength Parameters	41
	2.11.1	Consolidated Drained Shear Box Tests	41
	2.11.2	Slow Shearing Rate for CD Shear Box Tests	43
	2.11.3	Shear Strength of Residual Soils	44
	2.11.4	Lower Limits of Shear Strength of Residual Soil	ls 47
2.12	Distribu	tion Fitting	50
	2.12.1	Common Types of Distributions for Shear Stren	gth 50
		Parameters	
	2.12.2	Performance Indicators (PI)	52
	2.12.3	Methods to Determine the Best Fit Distribution.	53
	2.12.4	Coefficient of Variation, t-Square and Chi-Squa	re 55
		Tests	
	2.12.5	Skewness	57
	2.12.6	Kurtosis	58
2.13	Uncertai	inty in Slope Failure Evaluations	59
2.14	Soil Inv	estigation Conducted at Slope Failures in Malaysia	ı 61
2.15	Summar	ry of Literature Review	62
2.16	Gap of I	Knowledge	63
CHAP	TER 3 -	RESEARCH METHODOLOGY	

66
6

3.2	Researc	ch Methodology Flow Chart	67		
3.3	Locations of Study Areas				
3.4	Slope L	Slope Locations and Sample Locations			
3.5	Study A	Areas in Penang	71		
3.6	Soil Sa	mplings at Slope Locations in Penang	72		
3.7	Study A	Area in Baling	74		
3.8	Soil Sa	mplings at Slope Locations in Baling	75		
3.9	Sample	s Collected for 1-D Consolidation Tests	77		
3.10	Collect	ion of Soil Samples	79		
	3.10.1	Samples Collected at Slope Failure Taken at Depth of	79		
		100mm			
	3.10.2	Samples Collected at Slope Failure Taken at Varying	80		
		Depths			
	3.10.3	Samples Collected at Stable Slopes	81		
3.11	CIU Tr	iaxial Tests in the Study Area	82		
3.12	Second	ary Data Collection	83		
3.13	Field T	esting	87		
3.14	Laborat	Laboratory Testing			
	3.14.1	Slow Shearing Rate from 1-D Consolidation Tests	89		
	3.14.2	CD shear box tests	91		
		3.14.2 (a) Normal Stresses Applied to CD Shear Box	91		
		Tests			
3.15	Data Di	istribution Analysis	92		
	3.15.1	Common Distribution Types	93		
	3.15.2	Normal Distribution	94		
		3.15.2 (a) Properties of Normal Distribution	94		
	3.15.3	Weibull Distribution	97		
	3.15.4	Gamma Distribution	97		
	3.15.5	Beta Distribution	98		
3.16	Perform	nance Indicators (PI)	98		
	3.16.1	Normalised Absolute Errors (NAE)	99		
	3.16.2	Root Mean Square Error (RMSE)	99		
	3.16.3	Index of Agreement (IA)	99		

	3.16.4	Prediction Accuracy (PA)	100
	3.16.5	Coefficient of Determination (R ²)	100
3.17	Procedu	ares to Analyse Data	101
	3.17.1	Procedures to Randomise the Shear Strength Data	101
	3.17.2	Determination of the Best Fit Distribution	102
	3.17.3	Goodness-of-Fit Test Using Kolmogorov - Smirnov	103
		Tests Method	
	3.17.4	Validating the Model Training Data	103
	3.17.5	Determination of the Lower Bound Values	104
	3.17.6	Verification of the Lower Bound Values	105
	3.17.7	Summary of the Data Analysis Procedures	105
3.18	Box Plo	ots	106
3.19	Summa	ry of Research Methodology	107

CHAPTER 4 - RESULTS AND DISCUSSIONS

4.1	Introdu	ction	tion		
4.2	Summa	ry of Data ir	of Data in This Study 1		
4.3	The Su	mmary of PV	WD Data Obtained from PWD Projects	111	
4.4	Results	of Laborato	ry and Field Tests	112	
	4.4.1	1-D Conso	lidation Test Results	112	
		4.4.1 (a)	Loose and Dense Bulk Unit Weights of Soil	112	
			Samples		
		4.4.1 (b)	The Average Displacement at Peak Shear	115	
			Strength		
		4.4.1 (c)	Results of 1-D Consolidation Tests	116	
	4.4.2	Natural and	d Submerged Moisture Content Tests	118	
	4.4.3	Particle De	ensity Tests	122	
	4.4.4	Atterberg I	Limit Tests	123	
	4.4.5	Particle Siz	ze Distributions and Soil Types	127	
		4.4.5 (a)	Particle size distributions	128	
		4.4.5 (b)	Soil Types	131	
	4.4.6	Bulk Unit	Weight	134	
	4.4.7	JKR Probe	Tests	136	

	4.4.8	Effects of S	Soil Properties on Stable Slope	137
	4.4.9	Slope Geor	netry	138
	4.4.10	Effective S	hear Strength in this Study	140
		4.4.10 (a)	Consolidation Tests Prior to Shearing in CD	140
			Shear Box Tests	
		4.4.10 (b)	Results of CD Shear Box Tests	141
		4.4.10 (c)	Cohesion in Baling is Lower Than in	144
			Penang	
		4.4.10 (d)	The t-Square Test Done on Shear Strength	148
			Data	
		4.4.10 (e)	The Extremely High Friction Angle Values	151
		4.4.10 (f)	Higher Maximum Cohesion in Granitic than	153
			Sedimentary RS	
4.5	Variati	on of Shear S	Strength With Depth	154
4.6	Repeat	able CD She	ar Box Tests	157
4.7	CD She	ear Box and	CIU Triaxial Tests in This Study	162
4.8	Shear S	Strength from	This Study and PWD Data	163
4.9	Model	Developmen	t	165
	4.9.1	Introductio	n and Objective	165
4.10	Shear S	Strength Data		166
4.11	Separat	tion of the Co	phesion and Friction Angle Data	168
4.12	Best Fi	t Distribution	1	169
4.13	Creatio	on of the Prec	licted Validation Data	175
4.14	Compa	rison Betwee	en Observed Validation and Predicted	176
	Validat	tion Data		
4.15	Box Pl	ots		178
4.16	Goodn	ess-of-Fit Te	st Using Kolmogorov - Smirnov Tests	181
	Method	<u>.</u>		
4.17	Thresh	old Values o	f Shear Strength Parameters	182
4.18	Basic C	Concept to O	btain Lower Bound, Mean and Upper Bound	184
4.19	Distrib	ution of Squa	are Root Cohesion ($\sqrt{c'}$) from Training	186
	Data			
4.20	Distrib	ution of Sine	Friction Angle (sin ø') from Training Data	187

4.21	Distribution of Square Root Cohesion ($\sqrt{c'}$) from PWD Data	188
4.22	Distribution of Tangent Friction Angle (tan ø') from PWD Data	189
4.23	Confirmation of the Modelling Using SLOPE / W Analysis	191
4.24	Variations of Shear Strength Parametrs of the Same Soil Sample	196
4.25	Lower Bound are Values from This Study	201
4.26	Combining the Shear Strength of Granitic and Sedimentary	204
	Residual Soils	
4.27	Percentage of Majority of the Data	205
4.28	To Confirm the Lower Bound Values By Obtaining FOS < 1	207
4.29	Summary	209

CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS

5.1	Summary of This Study	211
5.2	Conclusions	212
5.3	Main Contribution	215
5.4	Recommendations for Future Studies	217

References	219
Appendices	
List of Publications	

LIST OF TABLES

		Page
Table 1.1	Slope failures reported to GCO Hong Kong in 1993 (Malone and Ken, 1997)	2
Table 2.1	Important definitions used in this study	10
Table 2.2	Main causes of reduction in shear strength leading to slope failures.	15
Table 2.3	ROM erosion risk scale (Zainal Abidin et al., 2013)	17
Table 2.4	Comparison of FOS using various methods (Nash 1992	22
Table 2.5	Comparison of methods and assumptions used for methods of slices	24
Table 2.6	Element of statical equilibrium satisfied by various Limit Equilibrium Methods (Fredlund and Rahardjo, 1993)	24
Table 2.7	Comparison of some of the commonly used methods of slices (Fredlund and Rahardjo, 1993)	25

- Table 2.8FOS Equations of some of other methods of slices (Nash, 261992)
- Table 2.9Rock types and alluvial soil in Malaysia (Singh and Huat, 292008)
- Table 2.10Summary of soil classification based on BS 5930 (1999)35
- Table 2. 11Summary of shear strength parameters found by earlier38researchers based on soil characteristic studies
- Table 2.12Ranges of the limits of shear strength parameters for39Malaysian and Singaporean residual soils based on the soil
characteristic studies39
- Table 2.13Typical slow shearing rate used for CD direct shear box44tests
- Table 2.14
 Ranges of shear strength parameters from earlier
 46

 researchers based on slope failures and slopes in residual soils
 46
- Table 2.15Ranges of the limits of shear strength parameter found at47slope failures and slopes in residual soils

Table 2.16	Lower limits of shear strength parameters from earlier researchers	49
Table 2.17	Common PDF used in the shear strength distribution studies	51
Table 2.18	Common Performance indicators	52
Table 2.19	Typical values of various performance indicators under various distributions types for shear strength	55
Table 2.20	SSPS output of the t-square tests applied to the independent groups	56
Table 2.21 :	The summary of the literature reviews	62
Table 3.1 :	Soil sampling conditions at slope locations	69
Table 3.2 :	Soil sampling conditions at slope locations in Penang	74
Table 3.3	Soil sampling conditions at slope locations in Baling	76
Table 3.4	Summary of shear strength tests obtained for PWD projects from various publications	84

Table 3.5	Summary of shear strength tests for PWD projects obtained from SI reports	85
Table 3.6	Typical output of SPSS software using Kolmogorov- Smirnov test	103
Table 4.1	Locations of slope failures in Northern Malaysia	109
Table 4.2	Locations of stable slopes in Northern Malaysi	110
Table 4.3	Soil samples taken at varying depths	110
Table 4.4	Shear strength data from different locations of slope failures	110
Table 4.5	Shear strength data from different locations of stable slopes	110
Table 4.6	Shear strength data at different depths	111
Table 4.7	The country where shear strength data were obtained	111
Table 4.8	Different types of shear strength tests	111

Table 4.9	Types of residual soils where shear strength data were obtained	111
Table 4.10	The maximum, minimum and average bulk unit weight in this study	113
Table 4.11	The ranges of dense and loose bulk unit weight found in this study	113
Table 4.12	Maximum displacements at peak shear strength when using 60 x 60mm shear box apparatus (Head, 1994)	113
Table 4.13	The average displacements at peak shear strength when using CD shear box under various conditions and locations in this study	115
Table 4.14	The typical results of 1-D consolidation test	116
Table 4.15	Summary of 1-D consolidation test results	117
Table 4.16	Distribution properties of natural and submerged moisture content tests at stable slopes and slope failures in Penang and Baling	122

Table 4.17	Distribution properties of particle density at stable slopes and slope failures in Penang and Baling	123
Table 4.18	Distribution properties of Atterberg limit tests at slope failures in Penang and Baling	127
Table 4.19	Distribution properties of Atterberg limit tests at stable slopes in Penang and Baling	127
Table 4.20	Distribution properties of percentage of gravel, sand, silt and clay at slope failures in Penang and Baling	131
Table 4.21	Distribution properties of percentage of gravel, sand, silt and clay at stable slopes in Penang and Baling	131
Table 4.22	Distribution of soil types at stable slopes and slope failures in Penang and Baling	132
Table 4.23	Distribution properties of bulk unit weight at stable slopes and slope failures	136
Table 4.24	Distribution properties of JKR probe test results at stable slopes and slope failures in Penang and Baling	137
Table 4.25	Typical results of CD shear box tests	142

Table 4.26	Results vertical displacements of CD shear box tests	142
Table 4.27	Summary of normal stresses versus peak shearing stresse	143
Table 4.28	Summary of the effective shear strength parameters	144
Table 4.29	Influence of high percentage of silt content at stable slopes and slope failures in Penang and Baling	146
Table 4.30	Typical products of rock weathering (Tan, 2004 and Ahmad et al., 2000)	146
Table 4.31	Distribution properties of shear strength at stable slopes and slope failures in Penang and Baling	149
Table 4.32	Ranges of shear strength in Penang (granitic RS) and Baling (sedimentary RS) in this study as well from earlier researchers	149
Table 4.33	Output Results of t-test for equality of means	150
Table 4.34	Ranges of effective shear strength from earlier researchers as well as all results in this study	152
Table 4.35	The outlier friction angle values found in this study	152

Table 4.36	Soil classification at maximum value of cohesions	153
Table 4.37	Shear strength from repeatable tests on SAND taken from USA (Bareither et al., 2008)	160
Table 4.38	Shear strength from repeatable tests on very silty SAND taken from Penang, Malaysia	160
Table 4.39	Shear strength from repeatable tests on sandy SILT taken from Italy (Matteo et al., 2013)	160
Table 4.40	Shear strength from repeatable tests on slightly sandy SILT taken from Baling, Malaysia	160
Table 4.41	Natural and submerged moisture contents as well as natural and submerged degree of saturations in repeatable tests	161
Table 4.42	Results of CD shear box and CIU triaxial tests for samples taken from slope failures	163
Table 4.43	Distribution properties of shear strength from PWD data and this study	165
Table 4.44	Randomised shear strength data from slope failures in this study	166

Table 4.45	The distributions properties for the various distributions for the shear strength at slope failures	170
Table 4.46	Values of various performance indicators under various distribution types for shear strength from slope failures	171
Table 4.47	Differences between data from this study and PWD data collected	172
Table 4.48	The distributions properties of Normal distribution for the observed validation, training and predicted validation data	175
Table 4.49	Comparison between observed validation and predicted validation data when tested using various performance indicators	176
Table 4.50	Distributions properties of training, validation data and PWD data	181
Table 4.51	Additional normality tests carried out on training and PWD data	182
Table 4.52	Additional normality tests carried out on observed validation and predicted validation data	182

Table 4.53	Normality tests carried out on all data from this study without dividing into70 : 30 ratio	182
Table 4.54	Threshold values of cohesion and friction angle from this study	184
Table 4.55	Lower bound, mean and upper bound values of cohesion (c') from training data	187
Table 4.56	Lower bound, mean and upper bound values of friction angle (σ ') from training data	188
Table 4.57	Lower bound, mean and upper bound values of cohesion (c') from PWD data	189
Table 4.58	Lower bound, mean and upper bound values of friction angle (σ ') from PWD data	190
Table 4.59	Lower bound, mean and upper bound values of shear strength from statistical method	190
Table 4.60	Summary of lower bound mean and upper bound values of shear strength	191

- Table 4.61Lower bound of the shear strength from statistical method191and smallest threshold values of soil shear strength
- Table 4.62Results of SLOPE / W analysis based on un-failed slope192cross sections using lower bound, mean value and upper
bound values of shear strengthbound values of shear strength
- Table 4.63Lower limits of shear strength parameters from earlier195researchers in Malaysia and Hong Kong residual soils
- Table 4.64Lower bound values from statistical method, threshold196values and limit values of shear strength parameters
- Table 4.65Results of repeatable shear box test results using different201sizes and different test apparatus
- Table 4.66Results of other shear strength parameters of soil from this204study near or within the lower bound values
- Table 4.67Lower bound of the shear strength from statistical method,204threshold values and lowest limits of soil shear strength
- Table 4.68Normality tests carried out on all data from this study206without dividing into 70 : 30 rati
- Table 4.69Checking the range where the majority of the data will fall206

- Table 4.70Results of SLOPE / W analysis based on un-failed slope207cross sections using lower bound, mean value and upper
bound values of shear strength where most data fall into207
- Table 4.71FOS obtained when using un-failed cross sections at each208slope failure locations using LB, mean and UB values
- Table 4.72The lower bound values of cohesion and friction angle for209Malaysian residual soils

LIST OF FIGURES

		Page
Figure 1.1	Slope failures occurring in Malaysia from 1988 – 2009	1
Figure 2.1	Deep-seated and shallow slope failures (Md Noor, 2011)	11
Figure 2.2	Potential shallow failure occurring at the boundary between saturated and unsaturated zones (Md Noor et al., 2006)	13
Figure 2.3	Various definitions of FOS (a) shear strengths ratio	19
Figure 2.4	Fellenius's presentation in 1918 using trial and error method (Nash, 1992)	20
Figure 2.5	Sliding of a block of soil slope (Nash, 1992)	23
Figure 2.6	Typical forces acting on a free body of a slope slice	23
Figure 2.7	(a) Element with minimum nodes (b) Element with more nodes for more accurate measurements (PLAXIS 2001)	28
Figure 2.8	Deformed mesh (PLAXIS, 2004)	28

Figure 2.9	Simplified geological map of Malaysia (Simplified geological map after Komoo, 1985)	30
Figure 2.10	Detailed geological map of Penang (Ahmad et al., 2008)	31
Figure 2.11	:Detailed geological map of Baling area in Northern Malaysia. (Almayahi et al., 2012)	32
Figure 2.12	Shear strengths are scattered and increasing with depth (Brenner et al., 1997)	40
Figure 2.13	Typical Q - Q plots of beta and normal distributions for shear strength (Lumb, 1970)	54
Figure 2.14	Typical observed CDF and predicted CDF	54
Figure 2.15	Skewness (a) negatively skewed (b) normal and (c). positively skewed distributions (Doane et al., 2011)	58
Figure 2.16	Kurtosis (a) positively kurtosis (b) normal kurtosis and (c) negatively kurtosis distributions (MVPstats – Help, 2008)	59
Figure 2.17	Distribution of FOS for the proposed repair works of Shek Kip Mei slope failure in Hong Kong (Morgenstern, 2007)	60