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SPLIN UNTUK MASALAH NILAI SEMPADAN DUA
TITIK LINEAR

ABSTRAK

Masalah nilai sempadan dua titik linear berdarjah dua diselesaikan menggunakan kaedah

interpolasi Splin-B trigonometri kubik, Splin-Beta kubik dan Splin-B kubik lanjutan. Splin-

Beta kubik mempunyai dua parameter bentuk, iaitu β1 dan β2 manakala Splin-B kubik lanju-

tan mempunyai satu parameter bentuk sahaja iaitu λ . Dalam kaedah-kaedah ini, parameter-

parameter tersebut divariasikan dan penyelesaian anggaran yang diperoleh dibandingkan den-

gan penyelesaian tepat untuk mendapatkan nilai-nilai terbaik bagi β1, β2 dan λ . Empat masalah

diuji menggunakan kaedah-kaedah ini dan penyelesaian anggaran yang didapati dibandingkan

dengan penyelesaian anggaran dari kaedah interpolasi Splin-B kubik. Hasil daripada ujika-

ji tersebut, Splin-B trigonometri memberi anggaran yang lebih baik daripada Splin-B bagi

masalah-masalah berbentuk trigonometri manakala Splin-Beta dan Splin-B kubik lanjutan juga

menghasilkan anggaran yang lebih baik untuk beberapa nilai β1, β2 dan λ .

Secara keseluruhannya, Splin-B kubik lanjutan menghasilkan anggaran yang paling tepat

di antara ketiga-tiga splin. Walau bagaimanapun, kaedah yang digunakan untuk mencari ni-

lai λ sebelumnya tidak boleh diaplikasikan kepada permasalahan sebenar kerana penyelesaian

tepat tidak diketahui. Kaedah itu hanya dijalankan untuk memastikan bahawa nilai-nilai λ

yang menghasilkan penyelesaian anggaran yang lebih baik wujud. Jadi, satu pendekatan un-

tuk mencari nilai-nilai λ yang optimum dibangunkan dan kaedah Newton digunapakai dalam

pendekatan tersebut. Pendekatan ini memberi keputusan yang lebih baik berbanding kaedah

interpolasi Splin-B kubik.
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SPLINES FOR LINEAR TWO-POINT BOUNDARY
VALUE PROBLEMS

ABSTRACT

Linear two-point boundary value problems of order two are solved using cubic trigono-

metric B-spline, cubic Beta-spline and extended cubic B-spline interpolation methods. Cubic

Beta-spline has two shape parameters, β1 and β2 while extended cubic B-spline has one, λ . In

this method, the parameters were varied and the corresponding approximations were compared

to the exact solution to obtain the best values of β1, β2 and λ . The methods were tested on four

problems and the obtained approximated solutions were compared to that of cubic B-spline in-

terpolation method. Trigonometric B-spline produced better approximation for problems with

trigonometric form whereas Beta-spline and extended cubic B-spline produced more accurate

approximation for some values of β1, β2 and λ .

All in all, extended cubic B-spline interpolation produced the most accurate solution out

of the three splines. However, the method of finding λ cannot be applied in the real world

because there is no exact solution provided. That method was implemented in order to test

whether values of λ that produce better approximation do exist. Thus, an approach of finding

optimized λ is developed and Newton’s method was applied to it. This approach was found to

approximate the solution much better than cubic B-spline interpolation method.

x



CHAPTER 1

INTRODUCTION

1.1 Two-Point Boundary Value Problems

This thesis deals with two-point boundary value problems. These problems occur widely in the

fields of physics, chemistry and engineering. Therefore, it is deemed appropriate to start off

with the definition of these problems.

1.1.1 General Two-Point Boundary Value Problems

Given an ordinary differential equation,

F
(

u(x),u′(x), ...,u(k)(x)
)
= r(x), x ∈ [a,b], (1.1)

with n boundary conditions at both end points,

u(i)(a) = αi, u(i)(b) = βi, (1.2)

for some

i,k ∈ N, i ∈ [0,k], k ≥ 2,

the problem of solving for u(x) is called a two-point boundary value problem of order k. The

‘two-point’ term refers to the two end points of x where the boundary conditions are specified

[1, 15].
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The problems arise profusely from representations of physical situations by some equations

that are related to solving for position functions. Usually, the position of any matter would be

under the influence of certain forces, such as gravity and magnetic forces. These forces can be

represented as a linear combination of the acceleration or gravity, which involve the derivative

expression of the position function. From there, a differential equation can be derived using the

law of physics. Furthermore, the position dependent problems are frequently represented by

differential equations with boundary conditions specified at more than one point, as opposed to

the time dependent problems which normally have only one boundary condition [16].

Two-point boundary value problem can generally be solved without difficulty if the differ-

ential equation in 1.1 can be solved analytically. Unfortunately, this is not the case for most

of the problems arising from the computational world. Therefore, numerical treatments are

needed to obtain the approximation of the solution. Some of the standard numerical methods

to solve these problems are shooting, finite difference, Rayleigh-Ritz, collocation and varia-

tional methods [7, 16].

1.1.2 Second Order Linear Problems

Linear two-point boundary value problems of order two are the simplest form of two-point

boundary value problems. The general formula of these problems can be simplified from (1.1)

and (1.2) into (1.3) [16].

u′′(x)+ p(x)u′(x)+q(x)u(x) = r(x), x ∈ [a,b], u(a) = α, u(b) = β . (1.3)

The existence and uniqueness of the solution for (1.3) have been discussed extensively in many

numerical analysis books such as [14] and [16]. Theorem 1.1 summarizes the prerequisites to

have a unique solution.

2



Theorem 1.1 [16, 24]

For x ∈ [a,b], if

(i) p(x), q(x) and r(x) are continuous, and

(ii) q(x)< 0,

then (1.3) has a unique solution. ¥

However, linear two-point boundary value problems of order two can also be formulated in

another form and the issue of existence and uniqueness is addressed in the next theorem.

Theorem 1.2 [1, 17]

Given a two-point boundary value problem of the form

− d
dx

(
p(x)

du
dx

)
= r(x), x ∈ [a,b], u(a) = u(b) = 0. (1.4)

If

(i) p(x) and r(x) are C1 continuous, and

(ii) p(x)> 0,

then (1.4) has a unique solution. ¥

As an example for linear two-point boundary value problem of order two, suppose we have

a beam of rectangular cross section that is supported in such a way that any uniform loading

placed on it would not affect the end’s positions [16]. We want to know w(x), the deflection
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function of the beam at position x. The mathematical equation governing the system is

w′(x)− S
EI(x)

w(x) =
qx

2EI(x)
(x− l) , w(0) = 0, x(l) = 0,

where

l = the length of the beam,

q = the intensity of the uniform load,

E = the modulus of elasticity

S = the stress at the endpoints,

I(x) = the moment of inertia at position x.

1.2 Motivations of Study

The notion of splines is very common in the field of Computer Aided Geometric Design

(CAGD). Splines essentially mean piecewise equations. Since 1940s, the study of splines has

advanced steadily where numerous types of splines emerged one after another. These splines

were employed as curves and surfaces generator in the designing world due to some nice prop-

erties such as continuity and convex hull properties. In 2006, Caglar et al. proposed the use

of cubic B-spline to solve two-point boundary value problems of order two [17]. B-spline is

one of the widely used splines in the literature. The results of this method were comparable to

other numerical methods available hitherto.

Since many other splines have been actively developed over the years after B-spline, the

idea of using some of these more sophisticated splines in place of cubic B-spline became the

main motivation of this study. Through some tests on many types of splines from the literature,

three of them were found suitable as the replacement splines, i.e. the splines to replace B-

spline. These splines as well as the justification of their selection are presented in Chapter 3.
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Besides, other motivation includes the vast applications of two-point boundary value problems

in the field of science that stimulate the need for better approximations of the solutions.

1.3 Problem Statement and Scopes of Study

This thesis considers the simplest form of the problem which is linear two-point boundary

value problem of order two as in (1.5) and (1.6).

u′′(x)+ p(x)u′(x)+q(x)u(x) = r(x), x ∈ [a,b], u(a) = α, u(b) = β . (1.5)

− d
dx

(
p(x)

du
dx

)
= r(x), x ∈ [a,b], u(a) = u(b) = 0. (1.6)

The reason for that is because of their simple and direct nature. Since the methods proposed

in this thesis are prototypes, it is wise to first test them on the simplest problems. Therefore,

should the methods produce relatively accurate results, they can be applied on the more com-

plicated problems such as problems of higher order or problems that are nonlinear.

Moreover, the problems are also limited to the ones conforming to Theorems 1.1 and 1.2.

Thus, for (1.5),

p,q,r ∈C0[a,b] and q(x)< 0 on [a,b],

whereas for (1.6),

p,r ∈C1[a,b] and p(x)> 0 on [a,b].

This is to ensure that the problems are well-posed problems.

According to the renowned French mathematician, Jacques Hadamard, well-posed prob-

lems possess three criteria, namely the existence of solution, the uniqueness of solution and the

continuous dependence of the solution to the data. The existence and uniqueness criteria are
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already fulfilled by Theorems 1.1 and 1.2. Both criteria confirm that we are solving problems

that have solutions and are looking for the right ones. The third criterion is also equivalent to

having solutions that are not sensitive to small changes in the coefficients of the differential

equations as well as the boundary conditions. This is fulfilled by having Dirichlet boundary

condition, which is

u(a) = α and u(b) = β .

This criterion is important because we are doing approximation of solution, which requires

stability [7].

On the other hand, three types of splines are used in this study to approximate the solution

for linear two-point boundary value problems by splines interpolation. They are cubic trigono-

metric B-spline, cubic Beta-spline and extended cubic B-spline. The details on the splines as

well as the reasons for choosing the splines are discussed in Chapter 3. Up to our knowledge,

no work has been published pertaining to using these three splines in solving two-point bound-

ary value problems. Therefore, this study is a fresh start in this direction. For that reason,

the experimental results are only compared with the results from cubic B-spline interpolation

method, but not with other methods that do not use splines interpolation.

Above all, MATLAB 7.6.0 and Mathematica 7.0 were used interchangeably to run the

experiments and produce the figures.
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1.4 Aims and Objectives of Study

The aims of this thesis are to solve linear two-point boundary value problems of order two using

three kinds of splines mentioned above and analyze the results. The results obtained from cubic

B-spline interpolation method were used as the benchmark. Moreover, the objectives of this

thesis are:

1. to solve linear two-point boundary value problems of order two using cubic trigonometric

B-spline interpolation method,

2. to analyze the results from item 1,

3. to solve linear two-point boundary value problems of order two using cubic Beta-spline

interpolation method,

4. to analyze the results from item 3,

5. to solve linear two-point boundary value problems of order two using extended cubic

B-spline interpolation method,

6. to analyze the results from item 5,

7. to compare the results of item 1, 3 and 5 and pick the best approach, and

8. to refine the best approach and analyze the results.

Upon achieving the aims and objectives, a better approximation of the solutions for linear two-

point boundary value problems can be developed.
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1.5 Methodology

In order to achieve objectives 1 to 6, that is, solving linear two-point boundary value prob-

lems using cubic trigonometric B-spline, cubic Beta-spline and extended cubic B-spline, the

approach proposed by Caglar et al. in [17] is followed closely. Briefly, each spline and its

derivatives are simplified at the collocation points. Then, the simplifications are substituted in

the problems, resulting a system of linear equations which requires solving for the unknown

constants. These constants are then substituted back in the respective splines, which are the

approximated analytical solutions for the problems. Two of the splines contain some free vari-

ables. Thus, the variables are varied to find values that produced the most accurate results.

After completing objective 7, objective 8 is achieved using minimization theory from the

calculus and Newton’s method. Since the best results are obtained from the spline having

one free variable, minimization is needed to look for its best value. Having completed all the

objectives, the aim of this study is also achieved.

1.6 Structure of Thesis

This thesis contains six chapters altogether. Chapter 1 provides an overview and key factors

of the study. Chapter 2 covers a survey of recent numerical methods and a brief history on the

application of splines interpolation for solving linear two-point boundary value problems. This

chapter also identifies an important work by Caglar et al. which is the basis of this research.

Chapter 3 discusses on the definition and some relevant properties of cubic B-spline, cubic

trigonometric B-spline, cubic Beta-spline and extended cubic B-spline. This chapter provides

simplifications of the spline functions and curves that are useful in Chapter 4.
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Chapter 4 continues explaining the B-spline interpolation method and applies the same

approach to the other three splines. A numerical experiment consisted of four problems were

carried out and the results are discussed. One of the three splines showed the biggest potential

to approximate the solution for the problem better than B-spline. Chapter 5 elaborates more on

the spline and another experiment was conducted. Chapter 6 concludes this study and mentions

briefly on the possible future work.
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CHAPTER 2

A SURVEY OF METHODS

2.1 Introduction

This chapter presents some of the recently developed methods of solving linear two-point

boundary value problems. From there, one work is identified to be the major reference to this

research. This work involves the use of spline interpolation method. Thus, the following sec-

tion covers a brief history of the application of spline interpolation in solving these problems.

This chapter concludes with several issues that would be addressed throughout this thesis.

2.2 Recent Methods

Some of the standard methods of solving two-point boundary value problems are shooting,

finite difference, collocation and variation methods. All these methods can be found in most of

the numerical analysis textbooks. In this section, the survey of methods is made starting with

the year of 2002 onwards.

In 2002, Fang et al. had applied Finite Difference (FD), Finite Element (FE) and Finite

Volume (FV) methods in solving linear two-point boundary problem of the form

− d
dx

(
p(x)

du
dx

)
= r(x), x ∈ [a,b], u(a) = u(b) = 0.

FD essentially replaces the differential terms in the problem with the equivalent expressions

containing just u(x). This is done by Taylor’s expansion of order two. The equation is then
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evaluated at xi for i = 1,2, ...,n resulting a linear system of order (n× n), where u(xi) can be

solved [16].

By calculus of variation, FE solves the problem implicitly by finding u(x) that minimizes

a quadratic functional constructed from the differential equation. This is done by assuming

any form of equation, say, a straight line, to be the solution of the problem and substituting

it into the functional formula. Then, partial derivatives of the functional are taken to be zero

which in the end can solve a linear system for u(xi) [9]. On the other hand, FV replaces the

differential terms in the problem with their corresponding central difference formulas. The

integral conservation law is imposed on each subintervals, resulting, again, a linear system of

order (n×n), which can be solved for u(xi) [19].

All the three methods involve solving a tridiagonal linear system. Fang et al. applied the

inversion formula of a nonsingular tridiagonal matrix to directly obtain the explicit expression

of the solution. According to them, this approach provided a unified understanding of the

method as well as the error estimates. All three methods produced almost similar results if f

was ”sufficiently smooth”. Otherwise, finite element method produced slightly better results

than the other two [19].

In the same year, Taiwo proposed the Exponential Fitting (EF) approach with cubic spline

collocation tau method. This work was a continuation of his work using perturbed tau method,

where (1.3) became

u′′(x)+ p(x)u′(x)+q(x)u(x) = r(x)+ τ1TN(x), x ∈ [x0,xN ],

where TN(x) was the shifted Chebyshev polynomial of degree N defined in (2.1). Furthermore,
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an exponential was fitted in the boundary conditions, resulting (2.2) and (2.3).

TN(x) = cos(N arccos(x)), x ∈ [a,b]. (2.1)

u(a)+ τ2ea = α, (2.2)

u(a)+ τ2eb = β . (2.3)

Using the definition and recurrence relation of cubic spline, this perturbed problem was con-

verted into a system of linear equation of order (n+4)× (n+4), and solved for

{u0,u1, ...,uN+1,τ1,τ2}.

This method was claimed to be better than the standard tau and perturbed tau methods, pro-

posed by him in the early nineties [29].

Up to this point, the methods discussed produced the approximated solution only at some

discrete points. In some cases, the approximated solution is preferred to be defined in a con-

tinuous fashion, i.e. an explicit equation of x. Some of the following methods provide just

that.

In 2005, Attili made use of Adomian Decomposition Method (ADM) developed almost

twenty years before to solve Sturm-Liouville two-point boundary value problem, which is a

linear problem. The differential equation was expressed in the operator form,

Lu = Nu+ r(x), (2.4)

where L was chosen to be the simplest form of derivative that is easily invertible whereas N

covered the rest of the expression containing u. In order to solve for u, the inverse operator,
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L−1 was applied on both sides of (2.4) resulting

u = g+L−1(Nu)+L−1 (r(x)) .

g is an added term appearing after the inversion which comes from the boundary conditions.

N(u) can be decomposed into an infinite series of Adomian polynomials, An, where

N(u) =
∞

∑
i=0

An =
1
n!

[
dn

dχ2 N

(
n

∑
i=0

uiχ i

)]

χ=0

.

In short, using this decomposition and an initial guess of u0,

ui+1 = L−1 (Nui) , i = 0,1, ...,k−1.

The approximated analytical solution of the problem in kth term is the sum of ui for all i. It

was claimed that the method was “very successful and powerful”. The only drawback of this

method is that a “wise” guess is needed at the beginning of the iteration [8, 21].

About one year later, Caglar et al. developed Cubic B-spline Interpolation Method

(CBIM). In EF, spline function is used to represent u′′(x), but here, B-spline function was

assumed to be the approximated solution itself, u(x). Then, derivatives were applied to the

B-spline function according to the differential equation and solved for the unknown constants.

Hence, the approximated solution was also defined continuously. This method was compared

to FD, FE and FV, which was concluded to be more accurate [17].

Another type of spline, Weighted-Extended B-spline (WEB) was applied in FE by Apay-

din et al. in 2007. Recall that FE needed a form of assumed solution. Thus, generated function

from WEB was taken to be the status quo. The results of this approach improved tremendously

compared to the CBIM’s results for the cubic WEB [6].
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In the same year, Lu proposed Variational Iteration Method (VIM), which use the same

operator form in (2.4). This method introduced a restricted variation to any singular term in

N. Since only linear problems are considered here, there is no restricted variation. Thus, the

corresponding recursive term was

ui+1(x) = ui(x)+
∫ x

0
λ {Lui(ξ )+Nui(ξ )+g(ξ )}dξ ,

where λ is a general Langrangian multiplier. Similar to the ADM, an arbitrary initial approx-

imation, u0(x), is needed. But, different from ADM, the k-term approximated solution for the

problem was just uk(x). This method was claimed to be superior than the ADM and many other

methods because the convergence rate was faster. Moreover, it is possible to derive the exact

solution using only one iteration, even with an arbitrary initial guess [25].

In 2008, Jang presented the Extended Adomian Decomposition Method (EADM) to

solve two-point boundary value problems. This method dealt with the drawback of ADM, the

initial approximation. For ADM,

L−1 =
∫ x

a
dx′

∫ x′

a
dx′′,

a common operator to invert the second derivative term. But this definition lead to having the

u′(a) term, which was unknown. Thus, EADM used

L−1 =
∫ x

a
dx′

∫ x′

b
dx′′,

and applied the end condition beforehand. The recursive scheme for this approach is then
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u0 = α + s(x)(β −α)+L−1r− s(x)
[
L−1r

]
x=b ,

ui+1 = L−1Ai − s(x)− s(x)
[
L−1Ai

]
x=b , i ≥ 0.

EADM was claimed to be better than ADM because the approximated solution, which was the

partial sum, already satisfies the boundary conditions [21].

Lastly, the most recent work is done by Chun and Sakthivel in 2010. They proposed the

Homotopy Perturbation Method (HPM) in solving general two-point boundary value prob-

lem. Firstly, a homotopy was constructed from the differential equation,

u′′(x)+H p(x)u′(x)+Hq(x)u(x)− r(x) = 0, (2.5)

where H ∈ [0,1] was the embedding parameter. This homotopy met certain criteria discussed

further in their literature. Then,

u = u0 +Hu1 +H2u2 + ...+Hkuk (2.6)

was assumed to be the solution of (2.5). Substituting (2.6) into (2.5), and collecting the term

according to the power of H, a list of (k+1) initial value problems can be produced, as in (2.7).

H0 : u′′0(x)− r(x) = 0, u0(0) = α, u′0(0) = γ,

H1 : u′′1(x)+ p(x)u′0(x)+q(x)u0(x) = 0, u1(0) = 0, u′1(0) = 0,

H2 : u′′2(x)+ p(x)u′1(x)+q(x)u1(x) = 0, u2(0) = 0, u′2(0) = 0, (2.7)

...

Hk : u′′k (x)+ p(x)u′k−1(x)+q(x)uk−1(x) = 0, uk−1(0) = 0, u′k−1(0) = 0.
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ui was solved for i = 0,1, ...,k and and the k-term approximation of u(x), Sk(x), is

Sk(x) =
k

∑
i=0

ui(x).

γ can be solved by applying the end condition,

Sk(b) = β .

HPM was claimed to approximate the solution better than EADM and EF and converged faster

to the solution [18]. Thus, HPM is the best method so far for solving linear two-point boundary

value problems.

2.3 Splines Interpolation Methods

The use of cubic spline interpolation in solving linear two-point boundary problems of order

two was first proposed by Bickley in 1968. Cubic spline function, S(x), as in (2.8), was assumed

to be the approximated solution,

S(x) = c+d(x− x0)+ e(x− x0)
2 + f0(x− x0)

3

+ f1(x− x1)
3 + f2(x− x2)

3 + ...+ fn−1(x− xn−1)
3, (2.8)

where c, d, e and fi for all i are the unknown coefficients. Then, first and second derivatives

were applied to the spline function according to the differential equation. These equations were

arranged in such a way that resulted in a matrix of the coefficients of Hessenberg form, which is

an upper triangle with a single sub-diagonal. This system was solved for the unknown constants

using forward elimination and back substitution. Then, the constants were substituted back in

(2.8). The results were claimed to be encouraging [12].
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Immediately after this work, Albasiny and Hoskins modified the approach in 1969. They

made use of the properties of cubic spline, that can be reduced to three-term recurrence rela-

tionship at the collocation points. Hence, instead of a Hessenberg matrix, a tridiagonal matrix

was constructed to represent the system of equations which was much easier to solve [4]. In the

same year, Fyfe also contributed to this development by examining Bickley’s method, obtain-

ing error estimates and investigating the method if unequal intervals were used. He claimed

that Bickley’s method was more accurate than finite different method of the same knots and

asserted that very little advantage was gained by using unequal intervals [20]. Following these

development, many other analysis and improvements were made throughout the years as in

[3, 22] and the references therein. However, the methods proposed and analyzed revolved

around the use of monomial cubic spline.

In 2006, Caglar et al. proposed the use of cubic B-spline, a better representation than

monomial cubic spline, to solve the problems. The approach from Albassiny and Hoskins [4]

was adopted and thus the resulting coefficient matrix was in tridiagonal form, which can be

solved very quickly using any software such as MATLAB or Mathematica [17]. Continuing

with this work, we applied the same procedure using three types of splines. These splines are

cubic trigonometric B-spline, cubic Beta-spline and extended cubic B-spline. The discussion

on the reasons for choosing these splines as well as their definition and properties are presented

in Chapter 3.

The most recent literature in solving the problems using spline is the article of the WEB

method mentioned in the previous section. However, WEB method did not apply spline inter-

polation method directly. Instead, the method used finite element as the main algorithm and

inserted weighted extended B-spline as the approximating function. As of now, we have not

found any work similar to what we have done and are doing.
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2.4 Summary

In short, a survey of recent methods of solving linear two-point boundary value problems is

done in the beginning of this chapter. Out of all methods, HPM was claimed to be the most

accurate method. Then, CBIM is mentioned to be the main reference in this study, followed

by a short history of the spline interpolation method in solving the problems. The technique

dated back in 1968 and 1969 but became inactive for quite a long time before emerging again

in recent years. Lastly, three splines are specified to be the main part of this research to replace

the cubic B-spline.
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CHAPTER 3

SEVERAL TYPES OF CUBIC SPLINES

3.1 Introduction

This chapter covers the definition, some properties and simplifications of four types of cubic

splines, namely cubic B-spline, cubic trigonometric B-spline, cubic Beta-spline and extended

cubic B-spline. These details are pertinent to solving linear two-point boundary value problems

by spline interpolation method, which is discussed in Chapter 4. As mentioned in the previous

chapters, this research is the continuation of work by Caglar et al. [17]. In this work, cubic

B-spline was manipulated to approximate the solutions of two-point boundary value problems.

Therefore, the definition and properties of B-spline would be the head-start of this chapter so

that the following discussions on the three splines can include some comparisons to B-spline.

Some insights on the reasons for choosing the three splines are discussed towards the end of

this chapter. These discussions are delayed in order to provide deeper understandings on the

splines first before presenting the arguments.

Generally, spline is a piecewise equation or polynomial of some degrees that are smoothly

joined at certain points called knots. A definition of spline function, a more restricted form of

spline is given in Definition 3.1.

Definition 3.1 [2, 7]

Let {xi}n
i=0 be a uniform partition of a finite interval [a,b] with n ∈ Z+ such that

a = x0 < x1 < ... < xn = b.
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A function S : [a,b]→ R is called a spline function of degree 3 and order 4 or a cubic spline

function if

(i) S is a polynomial of degree ≤ 3 on [xi,xi+1], for i = 0,1, ...,n−1, and

(ii) S is C2 on [a,b].

Furthermore, if S is a cubic spline function, then the points x0,x1, ...,xn are called knots of S. ¥

From the definition, a cubic spline function, S, may consist of several polynomials of degree

three at most, but connected to each other with at least C2 continuity. Figure 3.1 shows an

example of a spline function, S(x), with knots x = {0,1,2,3,4,5}. From the figure, S(x) is a

piecewise polynomial as shown in (3.1).
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Figure 3.1: An example of a cubic spline function
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S(x) =





S0(x), x ∈ [0,1],

S1(x), x ∈ [1,2],

S2(x), x ∈ [2,3],

S3(x), x ∈ [3,4],

S4(x), x ∈ [4,5].

(3.1)

Out of the four splines mentioned in the introduction, only cubic B-spline and extended

cubic B-spline are spline functions. On the other hand, cubic trigonometric B-spline and cubic

Beta-spline are constructed from piecewise trigonometric functions with C2 continuity and

piecewise polynomial functions with G2 continuity, respectively. Thus, cubic B-spline and

extended cubic B-spline are more restricted compared to cubic trigonometric B-spline and

cubic Beta-spline.

All the four splines are constructed from a linear combination of their respective basis. The

extension of the knots in Definition 3.1 is needed in the definition of some bases and hence can

be calculated using (3.2).

xi = x0 + ih, i =±1,±2, ... h =
b−a

n
. (3.2)

3.2 Cubic B-spline

B-spline function was first developed in 1940s and has undergone a lot of development since.

The function has been used extensively in Computer Aided Geometric Design (CAGD) field

because it has many useful properties for designing such as convex hull and continuity prop-

erties. The derivation and properties of B-spline can be found in many Curves and Surfaces

books. In this section, [2, 17, 27, 28] were used as the main references.
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3.2.1 Cubic B-spline Basis

The basis of B-spline of order 1 can be calculated using (3.3).

B1
i (x) =





1, x ∈ [xi,xi+1],

0, otherwise.
(3.3)

Subsequently, B-spline basis of order can be calculated using the following recursive equations,

Bk
i (x) =

x− xi

xi+k−1 − xi
Bk−1

i (x)+
xi+k − x

xi+k − xi+1
Bk−1

i+1 (x). (3.4)

In order to obtain the basis of cubic B-spline, (3.4) was calculated recursively up to order 4.

The resulting basis, B4
i (x), is shown in (3.5) [27].

B4
i (x) =

1
6h3





(x− xi)
3, x ∈ [xi,xi+1],

(x− xi) [(x− xi)(xi+2 − x)+(xi+3 − x)(x− xi+1)]+

(xi+4 − x)(x− xi+1)
2, x ∈ [xi+1,xi+2],

(x− xi)(xi+3 − x)2+

(xi+4 − x) [(x− xi+1)(xi+3 − x)+(xi+4 − x)(x− xi+2)] , x ∈ [xi+2,xi+3],

(xi+4 − x)3, x ∈ [xi+3,xi+4].

(3.5)

B4
i (x) is a piecewise polynomial of degree 3 with C2 continuity. A plot of B4

i (x) is shown in

Figure 3.2.
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Figure 3.2: Cubic B-spline basis, B4
i (x)

3.2.2 Cubic B-spline Function

Cubic B-spline function, SB(x), is generated from a linear combination of the cubic B-spline

basis, as in (3.6).

SB(x) =
n−1

∑
i=−3

CiB4
i (x), x ∈ [x0,xn], Ci ∈ R, n ≥ 1. (3.6)

Therefore, similar to B4
i (x), SB(x) is a piecewise polynomial function of degree 3 with C2

continuity. The calculation and some properties of SB(x) are illustrated in Example 3.1.

Example 3.1

Suppose we have xi = i for all i, n = 1 and {C−3,C−2,C−1,C0}= {0,5,2,10}. Using (3.6),

SB(x) =
0

∑
i=−3

CiB4
i (x), x ∈ [x0,x1],

= C−3B4
−3(x)+C−2B4

−2(x)+C−1B4
−1(x)+C0B4

0(x), x ∈ [x0,x1]. (3.7)

In order to obtain the expression for SB(x), B4
−3(x), B4

−2(x), B4
−1(x) and B4

0(x) on x ∈ [0,1] are
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needed. From (3.5),

B4
−3(x) =

1
6





(x+3)3, x ∈ [−3,−2],

(x+3) [(x+3)(−1− x)+(−x)(x+2)]+(1− x)(x+2)2, x ∈ [−2,−1],

(x+3)(−x)2 +(1− x) [(x+2)(−x)+(1− x)(x+1)] , x ∈ [−1,0],

(1− x)3, x ∈ [0,1].

B4
−2(x) =

1
6





(x+2)3, x ∈ [−2,−1],

(x+2) [(x+2)(−x)+(1− x)(x+1)]+(2− x)(x+1)2, x ∈ [−1,0],

(x+2)(1− x)2 +(2− x) [(x+1)(1− x)+(2− x)(x)] , x ∈ [0,1],

(2− x)3, x ∈ [1,2].

B4
−1(x) =

1
6





(x+1)3, x ∈ [−1,0],

(x+1) [(x+1)(1− x)+(2− x)(x)]+(3− x)(x)2, x ∈ [0,1],

(x+1)(2− x)2 +(3− x) [(x)(2− x)+(3− x)(x−1)] , x ∈ [1,2],

(3− x)3, x ∈ [2,3].

B4
0(x) =

1
6





(x)3, x ∈ [0,1],

(x) [(x)(2− x)+(3− x)(x−1)]+(4− x)(x−1)2, x ∈ [1,2],

(x)(3− x)2 +(4− x) [(x−1)(3− x)+(4− x)(x−2)] , x ∈ [2,3],

(4− x)3, x ∈ [3,4].

Substituting the bases and Ci into (3.7),

SB(x) = 0
[
(1− x)3

6

]
+5

[
(x+2)(1− x)2 +(2− x)[(x+1)(1− x)+(2− x)x]

6

]

+2
[
(x+1)[(x+1)(1− x)+(2− x)x]+ (3− x)x2

6

]

+x
[
(x+1)[(x+1)(1− x)+(2− x)x]+ (3− x)x2

6

]
+10

[
x3

6

]
,

=
11
3
+ x−4x2 +

19x3

6
, x ∈ [0,1].
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The plot of SB(x) is shown in Figure 3.3.
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Figure 3.3: Cubic B-spline function, SB(x) from Example 3.1

One nice property of B-spline function is that it satisfies convex hull property. In other words,

the range of B-spline function always lies within the convex hull of the function, which is

[min
i

Ci,max
i

Ci]. Hence, for this example, the range of SB(x) is [0,10]. ¥

The coefficient, Ci, is called the control point of the function. (3.6) is defined as a functional

equation, where x, SB(x), Ci ∈ R. On the other hand, (3.6) can also be defined as a parametric

equation, where x, SB(x), Ci ∈ R2. However, the functional form is the form of interest in this

study since it was used to solve linear two-point boundary value problems of order two in [17].

3.2.3 Simplifications of B-spline Function and Its Derivatives

The simplifications of B-spline function and its derivatives was mentioned briefly by Caglar

et al. in his paper [17]. These simplifications made degenerating linear two-point boundary

value problems into squared linear systems of equations possible. This section will elaborate

on these simplifications in details.
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