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PENGHAMPIRAN CORNU SPIRAL TERITLAK DENGAN LENGKUNG 

BERTENAGA RENDAH 

 

ABSTRAK 

 

 

Pembinaan lengkung yang kelihatan cantik and licin dari segi matematik 

memerlukan usaha yang berterusan. Dalam ulasan karya awal penyelidik-penyelidik 

telah mempelajari lengkung licin melalui pendekatan fizik yang dikenali sebagai 

elastica. Elastica merujuk kepada jalur nipis yang elastik. Danial Bernoullin telah 

mencadangkan elastica sebagai masalah ketaksamaan dalam bentuk tenaga tegangan 

dan Malcom (1977) menyatakan bahawa penyataan bentuk lengkung secara 

matematik yang paling mudah ialah ia mengambil bentuk yang meminimumkan 

tenaga tegangannya.  

Dalam ulasan karya baru-baru ini, pembinaan lengkung lincin diberi tunpuan 

pada bentuk profil kelengkungan. Merujuk kepada Farin (1988), sesuatu lengkung 

dikatakan licin jika profil kelengkungannya mengandungi sikit cebisan monoton. 

Banyak pendekatan-pendekatan telah diperkenalkan untuk membina lengkung licin. 

Ia termasuk mengawal lengkung secara langsung, iaitu menguatkuasakannya supaya 

memuaskan variasi kelengkungan monoton dan yang kedua - menggunakan spiral 

yang mempunyai tarifan variasi kelangkungan monoton. Pendekatan pertama akan 

menyebabkan lengkung tersebut kehilangan keluwesan. Malakala, bagi pendekatan 

yang kedua, spiral ditakrifkan dalam bentuk bukan polinomial, menyebabkannya 

tidak sesuai untuk menyepadu dalam system CAD. Oleh sebab demikian, kita perlu 

menghampiri spiral dengan polinomial. Pelbagai jenis pendekatan mengenai 
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penghampiran spiral ditermui dalam ulasan karya, antaranya kekurangan 

perbincangan yang berkaitan dengan tenaga tegangan. Sedangkan tenaga adalah 

punca kajian bentuk lengkung, ia adalah munasabah untuk menghampiri spiral 

melalui konsep ini. 

Maklamat kajian ini ialah untuk menghampiri Cornu spiral teritlak (GCS) 

dengan menggunakan konsep tenaga tegangan. Kaedah berangka digunakan untuk 

menyelaras tenaga tegangan polinomial penghampiran. Dalam kajian ini, kita 

menggunakan lengkung quintic Hermite sebagai lengkung penghampiran. Lengkung 

ini ditakrifkan oleh lokasi, pembezaan pertama dan kedua pada titik-titk hujung. Kita 

selaraskan lengkung ini dengan mengawal magnitud-magnitud pembezaannya. Ralat 

nipis kelengkungan diguna untuk menunjuk ketepatan kaedah penghampiran yang 

dicadangkan. Hasil kerja menunjukkan bahawa lengkung yang bertenaga rendah 

boleh menghampiri lingkaran spiral dengan baik. 
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APPROXIMATING GENERALISED CORNU SPIRAL WITH LOW 

ENERGY CURVE 

 

ABSTRACT 

 

 

The computations of visual pleasing and mathematically fair curve are an ongoing 

process. In the earlier literature, researchers have been studying the smooth curve, or 

in a more technically term, the fair curve through the physical approach known as 

elastica, Elastica means a thin strip of elastic material. Daniel Bernoulli stated the 

elastica as variational problem in terms of strain energy and Malcom (1977) 

mentioned that the simplest way to characterize a spline mathematically is with the 

fact that a spline assumes a shape which minimizes its elastic strain energy.  

In the recent literature, curvature profile was the main focus of fair curve 

computation. Refer to Farin (1989), a curve is fair if it contains relatively few pieces 

of monotone curvature profile. The most used approaches in computing fair curve 

included: i. controlling the curve directly to enforce it to satisfy the monotone 

curvature variation and ii. using curve with define monotone curvature profile such 

as the spiral. The first approach will cause loss of flexibility to the curve. Whilst for 

the second approach, the spiral is non-polynomial, making it unsuitable to integrate 

with the existing computer aided design (CAD) system. Thus, we need to 

approximate the spiral with polynomial. There are various approximations 

approaches found in the literature. Among them, there is a lack of discussion about 

the strain energy of the approximating polynomial. Since strain energy is the basis of 
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curve shape study, it makes sense for us to determine the approximating curve 

through this concept. 

The objective of this study is to approximate the generalized Cornu spiral 

(GCS) using the concept of strain energy. Numerical method is use to adjust the 

strain energy of the approximating polynomial. Here, we adopted the quintic Hermite 

curve which is the simplest solution involving quintic polynomial. The Quintic 

Hermite curve is defined by end points position, end points first and second 

derivatives. We adjusted the curve by varying the magnitude of derivatives. The 

relative curvature error is use to demonstrate the accuracy of approximation. Result 

had shown that low energy polynomial curve can form good approximation of spiral 

segment.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

We will begin this chapter with the overview of curve study. This includes the 

motivation to improve the curve quality, followed by literature outline of elastica, 

nonlinear spline, MEC, and spiral approximation. Next we discuss the objective of 

this study in Section 2. The organization of this study in other chapters is shown in 

Section 3 and a research framework is given in Section 4. 

 

1.1 Overview  

The appearance of a product is always the most crucial consideration aspect among 

the potential buyers. Thus, there is a need to improve the visual properties of the 

product. Product design started with drawing smooth curve on the plane. The quality 

of the curve plays a significant role in affecting the product’s beauty appearance. In 

general, a curve is high quality if it is fair. Computation of a mathematically fair and 

yet eye pleasing curve is not an easy task. Throughout the century, mathematicians 

have presented various approaches to computer the fair curve. Despite the different 

kinds of computation methods and curves used, there are many different definitions 

for fair curve. In this study, we will concentrate on the fairness definition regarding 

strain energy and curvature profile. 

In the 17
th

 century, mathematicians had started the studies of curve shape 

through the physical approach known as elastica. Elastica refers to the shape 

assumed by a uniform elastic rod when it is bent under certain stress. Galileo 
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initiated the classic study of elastica. A number of researchers further developed it, 

and Euler contributed the most of it. From the study, Bernoulli pointed out that the 

elastic strain energy of bending beam assumes the beam's shape. Based on 

Bernoulli’s idea, Euler then verified the equivalence of physical approach with 

variational approach. This brings the plausible suggestion for smoothness or fairness 

as: the elastic strain energy of the curve should attain a minimum value. Class of 

curve computed using this concept included the minimum energy curve (MEC) and 

nonlinear spline. 

The paper nonlinear spline by Mehlum (1974) is a remarkable paper. Mehlum 

(1974) used the variational approach in computing the nonlinear spline. He defined 

the smooth spline as the one in which its integral of curvature square over arc length 

is as small as possible. Other studies of nonlinear spline found in the early literature 

included discussions of the existence of nonlinear spline by Jerome (1973); 

derivation of the algebraic and differential equation for open and closed nonlinear 

spline by Lee and Forstyhe (1973). Malcom (1977) presented the computation of 

nonlinear spline using finite difference method. In the modern literature, computation 

of nonlinear spline normally uses the numerical method. Both Edwars (1992) and 

Renka (2003) described the numerical methods for computing non-linear spline and 

demonstrated the finding in curve interpolation.  

For MEC, Glass (1966) and Woodford (1969) compute the discrete MEC 

using multi-boundary value method. While Horn (1983) computes the curve of least 

energy using multi-arc spline. Today, it is common to adopt the concept of minimum 

strain energy in fair curve design. Vassilev (1996) described the fair curve 

interpolation through energy minimization while Zhang and Cheng (2001) discussed 

the curve fairing process through minimizing the strain energy. Wolberg (2002) 
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presented the MEC for smooth monotonic 2C  cubic spline interpolation, and Yong 

(2004) introduced the geometrical smooth curve with minimum strain energy. 

The concept of optimizing the energy function also appeared in 3D curve 

design; Moreton and Sequin (1991) discussed the computation of minimum energy 

networks with Hermite curve. Hofer and Pottmann (2004) presented the geometric 

optimization algorithm for the quadratic function. Hofer and Pottmann applied their 

result in manifolds design, and as the motion spline for Computer Graphic design. 

Rather than optimizing the traditional strain energy function, Wesselink and 

Veltkamp (1995) minimize the total energy which is a combination of external and 

internal energy. They approximated the energy with a quadratic function, and solved 

for the optimum curves by minimizing the function. There are also researcher 

approaches the computation of MEC by simplify the energy function and express it 

in a new form; these included studies by Benoit (2010) and Ahn, Hoffmann and 

Rosen (2011). They use the new energy approximation expression or equation for 

computing the optimal curve. 

Besides that, the curve’s intrinsic equation – the curvature profile is also 

crucial for determine the shape of the curve. It defines the shape of the curve well; 

therefore, is an adequate measure of curve’s fairness. Referred to Nutbourne, 

McLellan and Kensit (1987), designers prefer to use curvature profile to determine 

the shape of the curve. Monotone curvature profile is the most used concept for fair 

curve design in the recent literature. According to Farin and Sapidis (1989), a curve 

is fair if its curvature plot consists of relatively few monotone pieces. There are 

various approaches presented for computations of the curve satisfying monotone 

curvature variation. The three main approaches are: i. fairing the curve by adjusting 

the point on the curve or the control polygon (Kjellander 1983; Farin, Sapidis and 
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Worsey 1987; Farin and Sapidis 1989; Sapidis and Farin 1990; Poliakoff, Wong and 

Thomas 1999; Mullineux and Robinson 2007) ii. defining the monotone curvature 

variation conditions (Sapidis and Fey 1992; Frey and Field 2000; Wang et al 2004)  

and iii. using the curves that have define monotone curvature profile, the spiral 

(Meek and Walton 2004; Walton and Meek 1998; 2009; 2010). For the first two 

methods, enforcing the curvature profile to vary monotonically causes the curve to 

become less flexible. For the third method, spiral is non-polynomial, hence, unable to 

apply directly in the current CAD system. It needs to approximate with a polynomial 

function. 

Spiral is a curve that turns around a centre point, either getting progressively 

closer or further from the centre point. Monotone curvature profile is the most 

striking properties of spiral. Few spirals that appeared in the literature included 

logarithmic spiral, Cornu spiral and generalised Cornu spiral (GCS). Logarithmic 

spiral, also known as equiangular spiral, possesses the self-similarity properties. 

Cornu spiral is well-known by its linear curvature profile. Highway and railway 

designs often use it as the transition curve. GCS is a family of spirals that can be 

further reduced to Cornu spiral and logarithmic spiral. GCS can generate a wide 

spectrum of the curve with the same curvature properties. Therefore, it is more 

flexible and suitable to apply as the decorative curve. 

Researchers had approximated the spiral with various approaches and 

different polynomial curves. These included the approximation of Cornu spiral using 

arc spline by Meek and Walton (2004); s-power series by Sánchez-Reyes and 

Chacón (2003) and also continued fraction by Wang et al (2001). In addition, 

Baumgarten and Farin (1997) described the approximation of logarithmic spiral 

using rational cubic Bézier. Whilst Cripps, Hussain and Zhu (2010) discussed 
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approximating GCS using quintic Bézier curve. In this study, we will discuss the 

approximation of GCS with low energy curve.  

 

1.2 Objective of study  

Objective of this study is to establish a new technique for approximation of 

generalised Cornu spiral (GCS); with emphasis on geometrical fairness specifications 

and physical strain energy concept. Up to present, there is a lack of discussion on 

strain energy of the approximating curve in literature. Looking forward for the 

possibility of fill up the gap, in this study we approximate the spiral by controlling 

the energy of the approximating polynomial. MEC is the classic strain energy curve; 

here we developed an alternative idea - the low energy curve for spiral 

approximation. The resulting curve will satisfy the given set of end point constrains 

and monotone curvature variation. Focus of this thesis is to solve the difficult 

problem of searching suitable value for the control elements of the approximating 

polynomial curve. This thesis presents in detail the method of incorporating the 

control elements into function measuring strain energy and numerical method 

adopted to regulate the elements.  

 

1.3 Organization of the Thesis 

Before we start the detailed discussion, it is essential for us to establish the 

geometrical and physical concept of curve. Chapter 2 introduces the geometric 

characteristic of the polynomial curve and its properties. Chapter 3 presents the 

development of the curve from physics approach to variational approach and 

derivation of strain energy. In Chapter 4, we start the discussion of incorporating 

control elements into function measuring strain energy and the numerical method 
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used to adjust the control elements. Chapter 5 will be mainly about the existing spiral 

in literature and verifying the proposed strain energy approach by approximating the 

clothoid using MEC. Finally in Chapter 6, we show the approximation of GCS by 

low energy curve with numbers of examples and its application in curve design. 
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It is possible to presume that 

minimum energy curve can 

form good approximation to 

Euler spiral.  

It is possible to approximate 

a spiral by controlling the 

elastic strain energy of 

approximating polynomial. 

Studies of curve shape have 

the root in elastic, thus it can 

enhance this study by 

understanding the elastica. 

1.5 Research framework 

The diagrams below indicate the framework of the research. 

 

 

                   

             

        

 

  

        

        

    

   

 

Horn’s study 

 Multi arcs spline form better 

approximate to the optimum curve 

(minimum energy curve) compared 

to Euler spiral. 

 

Mehlum’s suggestion 

 Smoothness Criteria of a curve:  

strain energy is as small as 

possible . 

 Deduce: Non-linear spline have 

linear curvature profile. 

 

Non-linear spline (minimum energy curve) 

 The special case of elastic beam 

coiled in the form of spiral. 

 Have linear curvature profile.                

Euler Spiral 

 Study of curve shape through 

bending elastic beam. 

 Shape of beam assumed by strain 

energy stored in it. 

 

Elastica 

Main topics in this study 

The strain energy of spiral is 

slightly higher than that of 

minimum energy curve. 

Approximation of spiral with low energy curve 
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CHAPTER 2 

 

THE PLANAR CURVE 

 

 

Approximation of spiral with polynomial curve is useful in CAD; especially in 

design require high quality curves. This chapter discuss the important geometric 

characteristics and properties that affect a curve’s utility. Section 2.1 gives the 

introduction for planar curve in vector form. Section 2.2 to 2.4 discussed the general 

properties of planar curve. These included the arc length, tangent and curvature. In 

Section 2.5, the discussion will be on the derivation of curve using implicit form, and 

Section 2.6 presents the key properties of fair curve.  

 

2.1 Introduction 

Curve can exist in 2 dimensions (2D) or 3 dimensions (3D). In this study, we will 

concentrate on the approximation of spiral in 2D, or we called it the planar curve. 

There are three common ways of defining a curve. These include the parametric form, 

explicit from and implicit form. We will focus on the discussion of the parametric 

form. Parametric representations have the overwhelming advantage for investigating 

the aesthetic of curves (Burchard et al, 1994). With referred to Farin (2002a), 

Ferguson has introduced the idea of representing the curve segment as vector 

function using parameter in 1960. Subsequently, this approach became influential in 

computer aided design (CAD). The concept of this approach can be understood 

through considering a moving particle in the vector space. Consider a particle X  

moved from a point p  at the time t =0, and arrived at a point q  at t =1. The location 
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of X  is the displacement at the time t . It can be written in vector form as ( )X t , 

where t  is the parameter. A curve is the path passing through by X  as it moves from 

a point p  to q . 

A parametric curve is defined in vector form as 
( )

( )

f t
X

g t

 
  
  

, t  , f and 

g can be any function. For example, the f and g  function of a Bézier curve is 

defined in term of control points and Berstein polynomials, where t    0 1 . The 

natural 3D extension adds advantage to the parametric from. We will start the 

discussion of planar parametric curve by considering three general characteristic: the 

arc length, tangent and curvature.   

 

2.2 Arc length 

In literature, arc length plays a decisive role in measuring the accuracy of curve 

approximation. In this study, we will use an alternative method for the accuracy 

evaluation. However, it is essential for us to understand the arc length because it is a 

geometrical character that reflexes the curve visual properties.   

According to Burchard et al. (1994), arc length ( )s t is the distance travelled by 

the particle from a point ( )c a  of the curve to the point ( )c t . The arc length is defined 

as follows: 

 
2 2

( ) '( ) '( ) '( )

t t t

a

a a a

ds
s t s dt c t dt x t y t dt

dt
                                  (2.1) 

where '( )
ds

c t
dt

  is the parametric speed. Arc length parameterise ( )c s  indicates 

that the parametric speed equals to constant and unity. Since arc length is 

independent of xy -coordinate system used and of parameter t , arc length is an 
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intrinsic quantity. This is true as arc-length is the visual property of a curve (Buchard 

et al. 1994). 

 

2.3 Tangent 

The tangent ( )T t  of the curve ( )r t  is the direction of the curve at t . It is define by 

the first derivative of the curve, ( ) '( )T t r t . 
'( )ˆ ( )
'( )

r t
T t

r t
 is the unit tangent vector.

 

In approximating spiral with polynomial curve, it is important to compute 

polynomial curve that matches the end points tangent of corresponding spiral arc. 

However, it is not necessary for the curves to possess the same tangent magnitude. 

Normal vector ˆ ( )N t at a point t  is the vector perpendicular to the tangent vector at 

that point.  

  

2.4 Curvature 

Curvature is the centre of determining the shape of the curve. It measured how 

quickly and how much the curve is bending away from the tangent direction. It is 

defined as the rate of change of tangent angle as the particle moves along the curve.  

( )
d

k s
ds


                   (2.2) 

Osculating circle is another approach to understand the concept of curvature. 

Consider three non-collinear adjacent points on the plane, as the two points on both 

the side move closely to the middle point x  a limiting circle can be generate. The 

resulting circle is the osculating circle; it is the best circle which approximate the 

curve at the point x . The centre and radius (r ) of curvature is equal to the centre 

and radius of the osculating circle respectively. The curvature k  is defined by the 
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N

reciprocal of the radius of curvature 
1

r
k   . This implies that if the radius of 

curvature is small then the curve turns sharply at point x . The curvature sign is 

determinable by considering the convex and concave region of the curve. The sign 

depends on the orientation of the normal vector. The curvature has a positive sign, if 

the normal vector is pointing toward to the centre of the osculating circle. In this 

situation, the curve turns counter clockwise. When the normal vector is pointing in 

the opposite direction of the centre of osculating circle, the curvature has a negative 

sign, and it turns clockwise (concave).  Figure 2.1 illustrates the curvature sign and 

the orientation of the normal vector.  

 

 
 

Figure 2.1 Osculating circle and the sign of curvature.  

 

Refer Farin (2002)  the curvature of parametric curve ( ) ( ) ( )r t x t y t 
 

 is given by  

3

( ) ( )
( )

( )

r t r t
k t

r t


  

where is the modulus, ( )
dr

r t
dt

  and 
2

2
( )

d r
r t

dt
 . For planar curve, the sign of 

curvature is equal to sign of z  component of ( ) ( )r t r t . The signed curvature is 

given by  

N

T

T

1

r
k  

1

r
k 

N
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( ) ( ) ( ) ( )
( )

( ) ( )

x t y t y t x t
k t

x t y t




 .  

Similar to arc length, curvature is independent of xy -coordinate system used and of 

parameter t . Thus, curvature is an intrinsic quantity describes the shape of the curve. 

Farin and Sapidis (1989) has emphasized the usefulness of curvature as a 

measurement for curve fairness and discussed the usage of curvature plot in 

analysing the shape of the curve. Curvature plot is the plot of the curvature value at 

every point of a curve along the arc length. In this study, curvature plot will be use 

widely for determining the shape of the curve.  

 

2.5 Fundamental theorem of planar curves 

Another useful way of describing a planar curve is via integrating the curvature 

function which provides the desired curvature profile. Consider the problem as 

finding the arc length parameterise curve ( ) ( ) ( )c s x s y s 
 

 described by a specific 

curvature function ( )k s . The angle of tangent at parameter s  formed with the x -axis 

is defined as  
'( )

tan( ( ))
'( )

y s
s

x s
. Following the elementary of trigonometry we have 

  '( ) cos( ( ))x s s                  (2.3) 

'( ) sin( ( ))y s s                  (2.4) 

Recall that ( )
d

k s
ds


 ; thus, we have the general definition for angle  : 

   0

0

( ) ( )

t

t k s ds                  (2.5) 
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(2.5) is the function measuring angle at the time t . Where 
0  is the initial angle at 

0t  . The function ( )x s and ( )y s can then be obtained by substituting (2.5) into (2.3) 

and (2.4) followed by integration, 


 

   
 

 0 0

0 0

( ) cos ( )

s t

x s x k s ds dt                (2.6) 

 
 

   
 

 0 0

0 0

( ) sin ( )

s t

y s y k s ds dt                (2.7) 

(2.6) and (2.7) are the explicit solutions obtained from a given curvature function. 
0x  

and 
0y in (2.6) and (2.7) indicate the starting coordinate of the curve. 

The above explanation is the fundamental theorem of planar curve. 

According to Nutbourne, McLellan and Kensit (1972) design engineers prefer to 

describe curves by using this approach because they like to specify the shape of 

curves in terms of its curvature profile. They also prefer a ready method for 

integrating the curvature profile to obtain the co-ordinates of any point along the 

curve. The generalised Cornu spiral (GCS) discussed in Section 5.1.3 is described 

using this approach.  

  

2.6 Curves properties 

There are many desired properties that make a curve the ideal one. Herein, we focus 

on those properties which are related with this thesis. The discussions were referring 

to documentation by Moreton (1992) and Levien (2009). 

 

2.6.1 Continuity 

The parametric curve can be defined by using various functions. However, 

polynomial and rational polynomial is preferred because of the ease of computation. 
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Nevertheless, a single piece of polynomial has limited descriptive power. In certain 

cases, it is insufficient to represent the desire curve’s shape by using a single piece of 

polynomial. In this circumstance, several pieces of polynomials are joined together to 

represent the complicated shape. The resulting curve is called piecewise polynomial. 

In this case, the manner in which the polynomials are joined together is important. 

Continuity is the smoothness of joints between adjacent polynomials. The choice for 

order of smoothness is application dependent. Referring to Moreton and Séquin 

(1991), for application such as architectural drawing, continuity only in position is 

fine, but for application such as design of mechanical parts, it requires first or second 

order smoothness.  

There are two types of smoothness which are particularly important in the 

current CAD application. The first type is the smoothness of speed. In other words, 

the speed of the particle must be continuous as it moves along the joining path. This 

motion is known as parametric continuity 
nC . 

nC can be obtained by requiring 

continuity of derivative vectors; such as velocity vector for first order parametric 

continuity 
1C  and acceleration vector for second order parametric continuity 

2C . 

nC  or 
thn  

order parametric continuity is defined as first n  parametric derivatives 

agree where the polynomial abut (Barsky and DeRose 1989). The second type of 

smoothness is the geometrical smoothness, know as geometric continuity 
nG . First 

order geometric continuity 1G  is defined as continuity of tangent vector. Tangent 

vector has the same direction as the velocity vector but with unit magnitude. Thus, if 

a curve satisfies 
1G  but not 

1C , it implies that the particle is moving in the same 

direction but at a different speed. Second order geometric continuity 
2G  is defined 

as continuity of curvature. Levien (2009) stated that a higher order of continuity 
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would not imply a fairer curve. In fact, for construction of fair planar curve, 
2G  

continuity is fine. Barsky and DeRose (1989) pointed out that the parametric 

continuity would disallow many parameterizations, preventing the generation of 

geometrical smooth curve. So in this study we will compute the curves satisfying 

second order parametric 
2C  and geometric continuity 

2G  which is good enough for 

smooth interpolation.  

 

2.6.2 Existence 

The term existence in curve design refers to how strong a curve generation technique 

is. The technique is qualified by its ability to generate a desired curve for the given 

inputs. The curve generation technique can be improved by adding constraints in the 

algorithm or inputting more information.   

Studying the existence of MEC is a subject of interest for many researchers. 

The difficulty in computing MEC is that the curve tends to degenerate as the strain 

energy goes smaller. Refer Levien (2009), Birkhoff and deBoor pointed out that for 

the MEC to exist, the arc length must be finite. However, in most of the cases, users 

would not know the exact arc length. Existing MEC computation methods found in 

the literature have different approaches in controlling the existence of curve. We will 

present a method to control the existence of MEC in Chapter 4. The detail discussion 

on the relation between arc length and energy will be present in Section 3.3.7.  

 

2.6.3 Invariance under transformations 

A curve is invariant under transformation if its shape does not change when there is a 

change in the coordinate system in which the data is described (Moreton 1992). The 

two common types of invariance transformation included the invariance under 
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similarity transformation and the invariance under affine transformation. Similarity 

transformation is a transformation obtained by translation, rotation or dilation. The 

resulting curve is invariant under similarity transformation if it preserves the angular 

and also ratio of length. Affine transformation refers to transformation which 

preserves collinearity and ratio of distance. Refer Moreton (1992) for CAD system 

application; the curve must be invariant under similarity transformation whilst 

invariant under affine transformation is not prerequisite for CAD utility. 

 

2.6.4 Local 

A curve is local if, by moving a control point will only cause a small change around 

the neighborhood of the moved point. For curve which exhibits locality, it possessess 

local control. Local control is important for interactive design as the designer is 

allowed changing the small unsatisfied part without affecting the others well satisfied 

parts. The curve is considered as having global control if correcting one part would 

result in changing the entire shape of the curve. This will cause a lot of 

inconvenience. Example of the curve with local control is shown in Chapter 4. 

 

2.6.5 Roundness 

Roundness is another key aspect for fair curve. Circle is acknowledged as the 

smoothness or fairness curve. In curve interpolation, the resulting curve is round if it 

form an approximating circular arc when the data points are arranged in the co-

circular form. The term “approximating circular arc” is used because it is impossible 

for a polynomial to form an exact circular arc. The roundness property measure how 

close the approximating circular arc is to the exact one. Since circular arc is the 
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segment of circle, hence it is said that round curve is fair but not vice versa. MEC is 

a good example of fair curve, but it is not round. 

 

2.6.6 Monotone curvature 

Human judge how fair a curve is by its visual appearance. According to Burchard et 

al. (1994) the visual properties of a curve can be translated into mathematic 

properties by its intrinsic equation, the curvature. Human eyes are particularly 

sensitive to curvature extrema. Spiral is a good example of fair curve; it has 

monotone curvature everywhere and no curvature extrema. Unfortunately, the 

polynomial parametric curve used in CAD application has more complicated 

curvature distribution. Authors in the literature have good vibes in evaluating the 

fairness of complicated curve in term of pieces of monotone curvature or distribution 

of curvature extrema. A few of them are shown below: 

 Curvature extrema of a fair curve curve should only occur where explicitly 

desired by designer. (Farin, Sapidis and Worsey 1987) 

 A curve is fair if its curvature plot consists of relatively few monotone pieces.. 

(Farin and Sapidis 1989) 

 A curve is fair if the curvature plot is continuous and is as close as possible to 

a piecewise monotone function with as few monotone pieces as possible. 

(Poliakoff, Wong and Thomas 1999) 

 Curves with no undesirable curvature extrema are referred to as fair curves. 

(Walton and Meek 2010)  
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CHAPTER 3 

 

ELASTICA AND NONLINEAR SPLINE 

 

 

This Chapter traces the development of spline in literature, starting from the elastica, 

followed by the nonlinear spline. We will start the discussion on the relation between 

spline with elastica in Section 3.1. The brief history of elastica and the derivation 

from elastica to variational approach used today is given in Section 3.2. Section 3.3 

shows the derivation of equation measuring strain energy through understanding the 

reaction of force and moment. Section 3.4 discussed the nonlinear spline by Mehlum 

(1974) and Horn (1983). The derivation of proposed approach in this study is mainly 

derived from the classic elastica, and nonlinear spline, the derivation is presented in 

Section 3.5. 

 

3.1 Introduction 

Spline appeared regularly in literature and has a few different meanings. This 

included, as the draftsman mechanical spline, as the piecewise curve interpolation 

and the approximating curve for a given set of data point. Herein we refer the spline 

as the draftsman spline. Draftsman spline is a curve used for shipbuilding in the 13
th

 

to 16
th

 century. It was the day before computer modelling; architects draw a smooth 

curve through a set of points by using the wooden or metal beam. The beam is bent 

in a way that it smoothly passes through all the given points on the Euclidean plane. 

They control the shape of the beam by using metal weight or ducks. Draftsmen adjust 

the shape of the beam by moving the duck or add ducks onto the beam. The spline 
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will “try” to bend as little as possible, resulting in shapes which are both aesthetically 

pleasing and physically optimal Farin (2002a). Elastica is the theory of bending 

spline. In earlier literature, mathematicians study elastica through the physical 

approach. We will start the discussion with the early discovery of elastica followed 

by its development into the variation approach in the mathematical form used today.  

 

3.2 Brief history of elastica 

3.2.1 From elastica to variational problem 

In the 17
th

 to 18
th

 century, there is a group of researchers paying attention in elastica. 

Elastica derived from the Latin word Elasticus, meaning thin strip of elastic material. 

Elastica has long histories; here we highlighted them from studies done by Levien 

(2009). More detail description can be found in (Love 1906; Goss 2003; Levien 

2009).  

In 1638, Galileo had approached the problem of elastica by building a model 

of a beam with one side attached to the wall, and load the other side is with weight. 

The moment of force and resistant moment is the main focus of his study. Although 

Galileo did not discuss the deviation of the beam, he had established the concept of 

the moment to determine the force on an elastic material. In 1678, Hooke had 

approached the problem of elastica through spring. He had derived the Hooke’s law 

which claims that the applied force is proportional to the change in length. Hooke 

also slightly touched the problem of elastic strip by providing an illustration of 

compound elasticity. However, Hooke did not discuss the curvature of the strip as 

curvature was not fully discovered at that time.  

James Bernoulli did not accept the linear law of spring by Hooke easily and 

intend to verify it again himself. He had approached the problem of elastica by using 
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the catgut model. Bernoulli had found the significant nonlinearities of elastica and 

posed the general elastica problem which is now known as rectangular elastic. He 

had solved the problem partially by working the evolution of elastica as geometric 

construction for curvature. Based on Bernoulli’s finding, Huygens pointed out that 

James’s solution was not the general solution for elastica but was only limited to 

rectangular elastica. Responding to Huygens’s point, Bernoulli continued to work on 

the problem by giving another general solution. However, the solution did not 

receive a favourable response at that time. 

James Bernoulli’s nephew, Daniel Bernoulli, working with Euler on elastica, 

had brought the next breakthrough in it. In a letter to Euler, he had stated the elastica 

as variational problem in terms of the stored energy and also mentioned about the 

energy minimizing principle. Based on Bernoulli’s suggestion, Euler had expressed 

the problem of elastica in variational form and written it in terms of first and second 

derivatives. However, Euler was unable to solve the equation at that time because he 

was unable to solve the second derivative until he discovered the Euler-Poisson 

equation. Pleasantly surprised, the resulting elastica solution obtained by Euler was 

the same as James Bernoulli’s general solution.  

Euler Spiral is the special case of elastica. Euler comes to this important 

discovery when he studies the case of “an elastica spring freely coiled on the form of 

a spiral”. In mathematics, Euler spiral is given in integrating form. Where the 

integral are known as Fresnel integral, this is because Fresnel comes across the same 

integral in the study of light diffraction. More detail of Euler spiral will be discussed 

in Section 5.1.2. 

Euler was aware of the simple moment approach to the elastica. He had 

verified the equivalence of variational approach with moment approach by 
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manipulating the integral formulation of elastica and thus further affirmed the 

variational technique. Today, the variational problem, is equivalent to finding the 

minimal of integral of curvature square over arc length, 
2( )k s ds . 

 

3.2.2 Elliptic integral 

In the early 18
th

 century, where finding the length of ellipse was still an open 

question, James Bernoulli had approached this problem by modifying the ellipse to a 

curve called lemniscates. Bernoulli was able to find the arc length of lemniscates by 

applying the rectangular elastica. The resulting equation used to find the arc length of 

lemniscates is known as “Lemniscate integral”.  Lemniscate integral is given by 

4
0 1

x
dx

s
x




  

However, the solution was not entirely accurate. Fagnano carried on the 

problem of finding the length of lemniscates. In fact, Fagnano had achieved the 

doubling of lemniscates arc. Euler reviewed Fagnano’s work. Based on Fagnano’s 

impressive investigation, Euler discovered the elliptic integrals and also its inverse 

function, the elliptic function. Today, the elliptic integral, is useful in the study of the 

mechanism.  

In 1859, Kirchhoff studied the kinetic energy of a swinging pendulum. He 

presented another significant discovery of elastica from the elliptic integral and 

elliptic function. From Kirchhoff’s study, the trajectory of a swinging pendulum is 

equivalent to the shape of elastica. The motion of the pendulum is one of the 

inspirations among many of Levien (2009) in the computations of the series of font 

called Iconsolata.   
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3.2.3 Spline interpolation 

In 1943, Schoenberg started his study in theory of splines. He was the first to use the 

word “spline” in smooth connection of piecewise polynomial approximation. 

Birkhoff and de Boor pointed out that Schoenberg’s approximation to elastica was 

not ideal because it was not invariant under rigid rotation. They had suggested 

approximating the elastica using nonlinear spline interpolation. They also discussed 

few methods on this problem, but there was no high impact. More details of the 

related work on nonlinear spline will be further discussed in section 3.4. 

 

3.3 The elastic strain energy 

Refer Section 3.1, it is easier to understand the ealstica concept through moment 

approach. Moment approach focuses on determining the relation between moment 

and curvature of the beam. This section presents the moment approach by assuming 

the linear relationship of force and the change of length of an infinitesimal solid. We 

will show that the elastic strain energy of bending beam is proportional to the 

integral of curvature square over the length of the beam. Studies of this section 

follow closely to those in Lee and Forsythe (1971) and Jou (1989). 

 

3.3.1 Applied force and moment 

According to Hooke’s law, a material is elastic if it behaves in the same way when 

being loaded and unloaded. Figure 3.1A and Figure 3.1B shown a bar of material 

being loaded and unload respectively.  
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F
 

 

 

                                   A                                                     B 

 

Figure 3.1 Force and loading: A. Material bar being loaded; B. unloaded bar. 

 

For the material under loading, stress, 
F

A
   is the average force per cross section 

area ( A ), and strain,  
L

L
 is the rate of change in length. Referred to Hooke; 

within a range of magnitude of an applied force, the displacement is proportional to 

the applied force. Thus, the relation between stress and strain can be written as 

  E  where E  is the Young’s modulus of elasticity. 

Moment is defined as the tendency of causing rotation about a point. Figure 

3.2A shows a thin beam with a rotation point in the middle. Moment vector (M ) is 

given by the cross product between applied force vector (F ) with lever arm vector 

(R ). 

M F R                    (3.1) 

From (3.1) we can see that if the applied force passes through the rotating point (o ), 

the moment vector will be zero and thus there is no rotation. Meanwhile, if the 

applied force (F ) does not pass through rotation point (o ), the rotation effectiveness 

of the applied force ( F ) will tend to increase as the magnitude of the lever arm 

vector (R ) increases. Here, the rotating effectiveness is referred to the magnitude of 

the associate moment vector. Couple is defined as two parallel forces (here 

represented by 1F  and 2F ) of equal magnitude but with opposite direction. Figure 

3.2B illustrates the couple.  

L
L L 
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                             A                                                                       B 

 

Figure 3.2 Moment and couple: A. force and moment; B. couple and moment 

 

Couple moment, also known as torque ( ), is the result of the couple force. It is 

given by the cross product of either one of the applied force with distance ( D ) 

between two corresponding forces, 
1

F D    ( or 2F D    ). 

 

3.3.2 Equilibrium condition and bending moment 

An object is in the equilibrium condition whenever there are forces acting on it, but it 

is not moving. Translation equilibrium exists when the sum of all the forces equals to 

zero. When the sum of all the moment relative to any point equals to zero, the 

rotational equilibrium condition exists. 

Consider a simple beam satisfying the equilibrium condition; external 

moment is created when an external force is applied onto the beam. Internal resisting 

moment will be created within the cross section area of the beam to counteract the 

external moment. The internal moment will act in the opposite direction of the 

external moment, and the magnitude of internal resisting moment is equal to the 

magnitude of external moment. These moments together cause the beam to bend and 

thus it is known as bending moments. 
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3.3.3 Bending beam 

 

 
 

Figure 3.3 Cross section area of bending beam 

 

Figure 3.3 shows the cross section area A  (highlighted with grey) of a bending beam. 

Refer to the figure, arc cd is under compression, arc ef is under extension and arc ab is 

the neutral axis. When the beam is bent, the strain in the fibres will vary linearly with 

respect to the distance from the neutral axis. Let h and y be the stresses occur at a 

distance h and y from the neutral axis respectively. They can be related by the ratio: 

y h

y h

 
                   (3.2) 

The external moment created by external force is resisted by the internal bending 

moment (M ) developed by the sum of all stress over the cross section area (A ) 

  yM y dA .                 (3.3) 

By substituting (3.2) into (3.3), the internal bending moment can be written as  

2hM y dA
h


  .         

 Moment of initial ( I ) is a measure of an object’s resistance to acceleration. It is 

defined as 2y over the cross section area.   


