DEVELOPMENT OF TECHNIQUES FOR THE DETECTION OF TUMOURS IN BREAST MAGNETIC RESONANCE IMAGING

ALI QUSAY ZAHROON AL-FARIS

UNIVERSITI SAINS MALAYSIA 2015

DEVELOPMENT OF TECHNIQUES FOR THE DETECTION OF TUMOURS IN BREAST MAGNETIC RESONANCE IMAGING

by

ALI QUSAY ZAHROON AL-FARIS

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

September 2015

ACKNOWLEDGMENT

Foremost, I would like to express my deepest and sincerest gratitude to God, the most Merciful for letting me through all the difficulties, and for providing me the blessings to complete this work.

It is with immense gratitude that I acknowledge the help of my supervisor Associate Professor Dr. Umi Kalthum bt Ngah for the continuous support throughout my study and research, and for her patience, motivation, enthusiasm, knowledge, and kindness. It was a great honour to work under her supervision.

I would like to express my deepest appreciation and thanks to my co-supervisor Associate Professor Dr. Nor Ashidi Mat Isa for giving invaluable help, advising support, suggestions and comments. I want to express my gratitude also to my other co-supervisor Professor Dr. Ibrahim Lutfi Shuaib (Advanced Medical and Dental Institute (AMDI)) for the inspiration and the great assistance in the medical and radiological aspects of the research. This work would not have been possible without the generous support of all my supervisors.

I would like to express my deepest appreciation to School of Electrical and Electronics Engineering, USM for providing me the necessary facilities, equipment, as well as Graduate Assistant support and the helpful staff who made this research possible. I would like also to thank my fellow PhD students in the school; Ahmed Nidhal, Khamees Khalaf Hasan, Mutasem Alkhasawneh and Hussein Samma for providing a sense of community and friendship.

I would like to extend my gratitude to the kind Malaysian people for giving me and my family all the help during our stay here in this wonderful country (Malaysia) away from our dear home (Iraq).

A special thanks and appreciation to my sisters and brother; Rafif, Rand, and Munaf for their faith, encouragement and moral support. In addition, thanks to my dear nephews and niece; Alfaysal, Alwaleed and Tanya.

Last, but not least, this work is specially dedicated to people in my heart; my father -Qusay Zahroon Al-Faris, my mother - Shurook Mubarak, my beloved wife and soul mate - Shams Auday Al-Farees and my little son – Layth for their love, unconditional support, continues prayers and for all of the sacrifices that they have made throughout my life. I cannot find words to express my gratitude, respect and appreciation for them.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	xiv
LIST OF PUBLICATIONS	xvi
ABSTRAK	xvii
ABSTRACT	xix

CHAPTER 1 : INTRODUCTION

1.1	Background	1
1.2	Breast Tumour Imaging Techniques	4
1.3	Breast MRI Tumour Segmentation	5
1.4	Problems and Motivations	5
1.5	Research Objectives	9
1.6	Scope of the Study	10
1.7	Thesis Outline	11

CHAPTER 2 : LITERATURE REVIEW

2.1	Introdu	action	13
2.2	Breast	Screening Modalities	13
	2.2.1	Mammography	14
	2.2.2	Ultrasonography	15

	2.2.3	MRI Scr	eening	16
2.3	CAD f	or Breast	MRI	17
2.4	Breast	MRI Tum	our Segmentation Approaches	17
	2.4.1	Supervis	ed Approaches	18
	2.4.2	Unsuper	vised Approaches	19
	2.4.3	Semi-Su	pervised Approaches	21
2.5	Breast	Skin-Line	Exclusion Approaches	23
2.6	Image	Processing	g Techniques	29
	2.6.1	Image T	hresholding Methods	29
		2.6.1.1	Automatic Thresholding	30
	2.6.2	Seeded H	Region Growing (SRG)	34
		2.6.2.1	SRG in Medical Images	35
		2.6.2.2	Methods of Automatic SRG	36
	2.6.3	Image C	lustering Methods	39
		2.6.3.1	Hierarchical Clustering	39
		2.6.3.2	Partitional Clustering	40
	2.6.4	Fundame	ental Morphological Operations	45
		2.6.4.1	Morphological Thinning Operation	45
		2.6.4.2	Morphological Dilation and Erosion Operations	46
		2.6.4.3	Morphological Opening Operation	48
		2.6.4.4	Connected Component Labelling	49
2.7	Summa	ary		50

CHAPTER 3 : METHODOLOGY

3.1 Introduction	51
------------------	----

3.2	Data A	cquisition	Phase	54
	3.2.1	The RID	ER Dataset	54
3.3	Pre-Pro	ocessing P	hase	56
3.4	Breast Metho	Skin-Line d of LSAC	Exclusion Phase using Proposed Integration C and Morphological Thinning Algorithms	59
	3.4.1	Breast S	kin-Line border Segmentation Stage	59
	3.4.2	Breast S	kin-Line Removal Stage	61
3.5	Image Maxim	Threshold	ing Phase using Proposed Mean Thresholding Method	67
	3.5.1	Mean Ma	aximum Raw Thresholding Algorithm (MMRT)	67
3.6	Breast Metho	MRI Tum ds	our Segmentation Phase Using Two Proposed	73
	3.6.1	Tumour	Segmentation Preprocessing	73
	3.6.2	Using Se	eded Region Growing	74
	3.6.3	First Pro Growing	posed Method: Modified Automatic Seeded Region (BMRI-MASRG)	76
		3.6.3.1	Automatic SRG Seed Selection of BMRI-MASRG	76
		3.6.3.2	Automatic SRG Threshold Value Selection of BMRI-MASRG	81
	3.6.4	Second I Image C	Proposed Method: Integrated method of SRG and PSO lustering (BMRI-SRGPSOC)	83
		3.6.4.1	Particle Swarm Optimization Image Clustering	83
		3.6.4.2	Automatic SRG Seed Selection of BMRI-SRGPSOC	85
		3.6.4.3	Automatic SRG Threshold Value Selection of BMRI-SRGPSOC	88
3.7	Evalua	tion Crite	ria	89
	3.7.1	Skin-line	Exclusion Phase Evaluation	90

	3.7.2	Image Thresholding Phase Evaluation	92
	3.7.3	Tumour Segmentation Phase Evaluation	93
3.8	Summ	ary	94

CHAPTER 4 : RESULTS AND DISCUSSION

4.1	Introdu	action	96
4.2	Results	s of Breast Skin-Line Exclusion	97
	4.2.1	Results of Breast Skin-Line Border Segmentation Stage	101
	4.2.2	Results of Breast Skin-Line Removal Stage	103
4.3	Results	s of Image Thresholding Using MMRT	105
4.4	Results	s of Tumour Segmentation Phase	116
	4.4.1	Results of Modified Automatic Seeded Region Growing (BMRI-MASRG)	117
	4.4.2	Results of Integrated Method of SRG and PSO Image Clustering	121
	4.4.3	Comparison of Proposed Segmentation Approaches (BMRI- MASRG and BMRI-SRGPSOC) and Other Approaches	125
4.5	Summa	ary	137

CHAPTER 5 : CONCLUSION AND FUTURE WORKS

5.1	Conclusions and Research Contributions	140
5.2	Suggestions and Future Works	143

REFERENCES	144
------------	-----

LIST OF TABLES

Table 2.1	Comparison of breast MRI tumour segmentation approaches	22
Table 2.2	Comparison of breast skin-line exclusion methods	28
Table 2.3	Comparison of automatic Thresholding methods	33
Table 2.4	Comparison of SRG methods	38
Table 2.5	Comparison of image clustering methods	44
Table 3.1	Breast skin-line thickness by different studies in mm and pixel units	64
Table 4.1	Summary results of skin-line segmentation for RIDER MRI breast images using evaluation measures (TPF, FNF, FPF, TNF and STVF)	101
Table 4.2	Summary results of skin-line segmentation for RIDER MRI breast images using evaluation measures (Jaccard MCR and Dice)	101
Table 4.3	Summary results of skin-line removal for RIDER MRI breast images using evaluation measures (TPF, FNF, FPF, TNF and STVF)	103
Table 4.4	Summary results of skin-line removal for RIDER MRI breast images using evaluation measures (Jaccard MCR and Dice)	103
Table 4.5	Summary results of the pixel based evaluation approach (Jaccard and Dice measures) for MMRT	105
Table 4.6	Summary results of the quality evaluation approach (PSNR and MSE measures) for MMRT	106
Table 4.7	Results of evaluating the Jaccard and Dice measures for thresholding using the proposed method and other methods (Iterative Thresholding, Grey level Histogram, Entropy based, Fuzzy Thresholding and Multilevel Thresholding)	110
Table 4.8	Results of evaluating the PSNR and MSE measures using the thresholding of the proposed method and other methods (Iterative Thresholding, Grey level Histogram, Entropy based, Fuzzy Thresholding and Multilevel Thresholding)	111

Table 4.9	Summary of the ANOVA tests analysis for the proposed approach's results compared with the results of the other approaches (Iterative Thresholding, Grey level Histogram, Entropy based, Fuzzy Thresholding and Multilevel Thresholding)	112
Table 4.10	Evaluation results of BMRI-MASRG using TPF (Sensitivity), FNF, FPF, TNF (Specificity) and STVF	117
Table 4.11	Evaluation results of BMRI-MASRG using Relative Overlap (Jaccard) and MCR	120
Table 4.12	Evaluation results of BMRI-MASRG of automatically selected initial seed pixel's coordinates compared with the manually selected pixel's coordinates	120
Table 4.13	Evaluation results of BMRI-SRGPSOC using TPF (Sensitivity), FNF, FPF, TNF (Specificity) and STVF	121
Table 4.14	Evaluation results of BMRI-SRGPSOC using Relative Overlap (Jaccard) and MCR	124
Table 4.15	Evaluation results of BMRI-SRGPSOC of automatically selected initial seed pixel's coordinates compared with the manually selected pixel's coordinates	124
Table 4.16	Segmentation results for the proposed approaches (BMRI-MASRG and BMRI-SRGPSOC) and other approaches (KNN, SVM, Bayesian, FCM and IMPST)	130
Table 4.17	Summary of the ANOVA tests analysis for BMRI-MASRG results compared with the results of the other approaches (KNN, SVM, Bayesian, FCM and IMPST)	132
Table 4.18	Summary of the ANOVA tests analysis for BMRI-SRGPSOC results compared with the results of the other approaches (KNN, SVM, Bayesian, FCM and IMPST)	132
Table 4.19	Area under the Curve for the proposed approaches (BMRI-MASRG and BMRI-SRGPSOC) compared to previous methods (KNN, SVM, Bayesian, FCM and IMPST)	137

LIST OF FIGURES

Figure 1.1	Estimated number of cancer diagnosed cases in the world based on IARC study	1
Figure 1.2	Estimated number of cancer deaths in the world based on IARC study	2
Figure 1.3	Estimated number of cancer diagnosed cases in Malaysia based on IARC study	3
Figure 1.4	Estimated number of cancer deaths in Malaysia based on IARC study	3
Figure 1.5	An example of a breast MRI image shows the similarity in the grey level intensity of skin-line and the tumour	7
Figure 1.6	An example of a breast MRI image shows tumour, skin-line and other tissues regions	8
Figure 2.1	Examples of mammogram images	14
Figure 2.2	Examples of breast ultrasound images	15
Figure 2.3	Examples of breast MRI	16
Figure 2.4	Morphological thinning operation	46
Figure 2.5	Morphological erosion operation	47
Figure 2.6	Morphological dilation operation	47
Figure 2.7	Morphological opening operation	48
Figure 2.8	Connected Component Labelling	49
Figure 3.1	Flowchart of the proposed segmentation approach for breast MRI tumour	53
Figure 3.2	Malignant breast image from RIDER dataset	55
Figure 3.3	Benign breast image from RIDER dataset	55
Figure 3.4	Results of image splitting	57
Figure 3.5	Applying Median filter	58

Figure 3.6	Different results after the application of LSAC algorithm with different values of σ and N_{LS}	60
Figure 3.7	The pixel <i>p</i> and its eight neighbours pixels	62
Figure 3.8	Results after applying Morphological Thinning algorithm with three different iteration numbers on the resultant image of LSAC algorithm	66
Figure 3.9	Pseudo code of MMRT	70
Figure 3.10	The process of automatic selection of the threshold value using MMRT	71
Figure 3.11	The initial seed pixel and their eight neighbor pixels	74
Figure 3.12	Pseudo code of SRG algorithm	75
Figure 3.13	Block diagram which illustrates the processes of Automatic SRG Seed Selection of BMRI-MASRG	79
Figure 3.14	Region ranking according to their pixels' density values	80
Figure 3.15	Block diagram which illustrates the processes of Automatic SRG Threshold Value Selection of BMRI-MASRG	82
Figure 3.16	Block diagram which illustrates the processes of Automatic SRG Seed Selection of BMRI-SRGPSOC	87
Figure 3.17	Pseudo code of BMRI-SRGPSOC threshold value selection	89
Figure 3.18	Figure 3.18 Diagram showing the definitions of TPF, TNF, FPF	
	and FNF in the evaluation of segmentation results	90
Figure 4.1	Breast skin-line exclusion processes on three malignant RIDER image	99
Figure 4.2	Breast skin exclusion processes on two benign RIDER images	100
Figure 4.3	The ROC curve for MRI breast skin-line segmentation	102
Figure 4.4	The ROC curve for MRI breast skin-line removal	104
Figure 4.5	Results of applying MMRT and the standard thresholding methods on malignant test image	107
Figure 4.6	Results of applying MMRT and the standard thresholding methods on benign test image	108

Figure 4.7	Statistical ANOVA graphs for MMRT in comparison with the standard methods using results of Jaccard measure	113
Figure 4.8	Statistical ANOVA graphs for MMRT in comparison with the standard methods using results of Dice measure	113
Figure 4.9	Statistical ANOVA graphs for MMRT in comparison with the standard methods using results of PSNR measure	114
Figure 4.10	Statistical ANOVA graphs for MMRT in comparison with the standard methods using results of MSE measure	114
Figure 4.11	The proposed (BMRI-MASRG) approach processes on one of miliganant RIDER image	118
Figure 4.12	The proposed (BMRI-MASRG) approach processes on one of benign RIDER image	119
Figure 4.13	The proposed (BMRI-SRGPSOC) approach processes on one of benign RIDER image	122
Figure 4.14	The proposed (BMRI-SRGPSOC) approach processes on one of maliganant RIDER image	123
Figure 4.15	Comparison of segmented tumour using proposed approaches (BMRI-MASRG and BMRI-SRGPSOC) by testing five RIDER images with their GT	127
Figure 4.16	Results of applying BMRI-MASRG and BMRI-SRGPSOC in comparison to previous approaches malignant test image	128
Figure 4.17	Results of applying BMRI-MASRG and BMRI-SRGPSOC in comparison to previous approaches benign test image	129
Figure 4.18	Statistical ANOVA graphs for BMRI-MASRG and BMRI-SRGPSOC in comparison with the previous methods using results of TPF measure	133
Figure 4.19	Statistical ANOVA graphs for BMRI-MASRG and BMRI-SRGPSOC in comparison with the previous methods using results of TNF measure	134
Figure 4.20	Statistical ANOVA graphs for BMRI-MASRG and BMRI-SRGPSOC in comparison with the previous methods using results of STVF measure	134
Figure 4.21	Statistical ANOVA graphs for BMRI-MASRG and BMRI-SRGPSOC in comparison with the previous methods using results of Jaccard measure	135

Figure 4.22	Statistical ANOVA graphs for BMRI-MASRG and BMRI- SRGPSOC in comparison with the previous methods using results of MCR measure	135
Figure 4.23	The ROC curves for the proposed method and the previous methods	136

LIST OF ABBREVIATIONS

ANN	Artificial Neural Networks
ANOVA	Analysis of Variance
AUC	Area Under the Curve
BMRI-MASRG	Breast Magnetic Resonance Imaging Tumour using Modified Automatic Seeded Region Growing
BMRI-SRGPSOC	Breast Magnetic Resonance Imaging Tumour using Hybrid Automatic Method of Seeded Region Growing and Particle Swarm Optimization Image Clustering
CAD	Computer Aided Detection
CCL	Connected Component Labelling
EM	Expectation Maximization
FCM	Fuzzy C-Means
FNF	False Negative Fraction
FPF	False Positive Fraction
GT	Ground Truth
IARC	International Agency for Research on Cancer
ICM	Iterative Conditional Mode
IMPST	Improved Self-Training
KNN	K-Nearest Neighbours
LSAC	Level Set Active Contour
Maxp	Maximum Possible Pixel
MCET	Minimum Cross Entropy Thresholding
MCR	Misclassification Rate
MMRT	Mean Maximum Raw Thresholding

MRI	Magnetic Resonance Imaging
MSE	Mean Square Error
PSNR	Peak Signal to Noise Ratio
PSO	Particle Swarm Optimization
RIDER	Reference Image Database to Evaluate Therapy Response
ROC	Receiver Operating Characteristic
ROI	Region Of Interest
SR	Main Suspected Region
SRG	Seeded Region Growing
SRGFE	Seeded Region Growing Feature Extraction
STVF	Sum of True Volume Fraction
SVM	Support Vector Machine
SYNERACT	Synergistic Automatic Clustering Technique
TNF	True Negative Fraction
TPF	True Positive Fraction
WMMR	Window Mean Maximum Raw

LIST OF PUBLICATIONS

International Journals

- 1- Al-Faris, A. Q., Ngah, U. K., Mat Isa, N. A. & Shuaib, I. L., (2014). Computer-Aided Segmentation System for Breast MRI Tumour using Modified Automatic Seeded Region Growing (BMRI-MASRG). *Journal of Digital Imaging*. Springer: 27(1): 133-144.
- 2- Al-Faris, A. Q., Ngah, U. K., Mat Isa, N. A. & Shuaib, I. L., (2012). MRI Breast Skin-line Segmentation and Removal using Integration Method of Level Set Active Contour and Morphological Thinning Algorithms. *Journal of Medical Sciences* 12(8): 286-291.

Chapter in Book

1- Al-Faris, A. Q., Ngah, U. K., Mat Isa, N. A. & Shuaib, I. L., (2014). Breast MRI Tumour Segmentation Using Modified Automatic Seeded Region Growing Based on Particle Swarm Optimization Image Clustering. *Soft Computing in Industrial Applications*. Springer: 223(5): 49-60.

International Conferences

- 1- Al-Faris, A. Q., Ngah, U. K., Mat Isa, N. A. & Shuaib, I. L., (2012). Breast MRI Tumour Segmentation using Modified Automatic Seeded Region Growing Based on PSO Image Clustering. *17th Online World Conference on Soft Computing in Industrial Applications (WSC17)*. Technical University of Ostrava, Czech Republic.
- 2- Al-Faris, A. Q., Ngah, U. K., Mat Isa, N. A. & Shuaib, I. L., (2015). Automatic Exclusion of Skin Border Regions from Breast MRI Using Proposed Combined Approach. 2nd International Conference on Biomedical Engineering (ICoBE 2015). Penang, Malaysia (IEEE xplore).

Symposium Papers

- Al-Faris, A. Q., Ngah, U. K., Mat Isa, N. A. & Shuaib, I. L., (2011). MRI Breast Tumour Segmentation and Classification using a Modified Seeded Region Growing Method, *School of Electrical and Electronic 3rd Postgraduate Colloquium (EEPC 2011)*. USM, Pahang. Malaysia.
- 2- Al-Faris, A. Q., Ngah, U. K., Mat Isa, N. A. & Shuaib, I. L., (2013). Combined Method for Skin-Line Segmentation and Removal of Breast MRI, School of Electrical and Electronic 4th Postgraduate Colloquium (EEPC 2013). USM, Perak. Malaysia.

PEMBANGUNAN TEKNIK-TEKNIK UNTUK PENGESANAN TUMOR DALAM PENGIMEJAN RESONANS MAGNETIK PAYUDARA

ABSTRAK

Kanser payudara ialah penyebab utama kematian di kalangan pesakit kanser yang melanda wanita dan kanser kedua paling lazim di seluruh dunia. Pengimejan Resonans Magnetik (MRI) adalah salah satu daripada alat-alat radiologi yang paling berkesan untuk menyaring kanser payudara. Bagaimanapun, teknik-teknik pemprosesan imej diperlukan bagi membantu pakar radiologi dalam mentafsir imej dan memisahkan wilayah tumor bagi mengurangkan jumlah positif yang palsu. Dalam kajian ini, pendekatan segmentasi dengan ciri-ciri automatik dibangunkan untuk tumor MRI payudara. Kaedah bermula dengan pemerolehan data diikuti oleh proses prapemprosesan. Ini diikuti dengan proses pengecualian garis kulit payudara menggunakan kaedah bersepadu Level Set Active Contour and Morphological Thinning. Berikutnya, kesan penting dikesan menggunakan kaedah Mean Maximum Raw Thresholding (MMRT) dicadangkan. Kemudian, pada fasa segmentasi tumor, dua kaedah diubahsuai Seeded Region Growing (SRG) dicadangkan; iaitu Breast MRI Tumour menggunakan Modified Automatic SRG (BMRI-MASRG) dan Breast MRI Tumour menggunakan SRG berdasarkan Particle Swarm Optimization Image Clustering (BMRI-SRGPSOC). Data set MRI payudara RIDER digunakan untuk penilaian dan keputusan dibandingkan dengan data set sebenar (ground truth). Daripada analisis keputusan, dapat diperhatikan bahawa pendekatan yang

dicadangkan mencatat hasil-hasil hasilan yang tinggi menerusi pelbagai langkah. Keputusan pengecualian garis kulit mencatat purata prestasi yang tinggi bagi keduadua peringkat peringkat segmentasi sempadan (kepekaan = 0.81 dan ketentuan = 0.94 dan peringkat penyingkiran kawasan kulit (kepekaan = 0.86 dan ketentuan = 0.97). Penilaian kualiti MMRT menunjuk keputusan lebih jitu dengan purata PSNR = 69.97 dan MSE = 0.01. Dalam fasa segmentasi tumor, keputusan-keputusan kepekaan untuk dua kaedah yang dicadangkan; BMRI-MASRG dan BMRI-SRGPSOC, menunjukkan hasil segmentasi yang lebih tepat dengan purata masingmasingnya 0.82 dan 0.84. Begitu juga, hasil ketentuan mencatat prestasi lebih baik berbanding dengan cara sebelumnya. Purata BMRI-MASRG dan BMRI-SRGPSOC adalah masing-masingnya 0.90 dan 0.91.

DEVELOPMENT OF TECHNIQUES FOR THE DETECTION OF TUMOURS IN BREAST MAGNETIC RESONANCE IMAGING

ABSTRACT

Breast cancer is the leading cause of death amongst cancer patients afflicting women and the second most common cancer around the world. Magnetic Resonance Imaging (MRI) is one of the most effective radiology tools to screen breast cancer. However, image processing techniques are needed to help radiologists in interpreting the images and segmenting tumours regions to reduce the number of false-positive. In this study, a segmentation approach with automatic features is developed for breast MRI tumours. The methodology starts with data acquisition followed by preprocessing. This is then followed with breast skin-line exclusion using integrated method of Level Set Active Contour and Morphological Thinning. Next, regions of interests are detected using proposed Mean Maximum Raw Thresholding method (MMRT). In the tumour segmentation phase, two modified Seeded Region Growing (SRG) methods are proposed; i.e. Breast MRI Tumour using Modified Automatic SRG (BMRI-MASRG) and Breast MRI Tumour using SRG based on Particle Swarm Optimization Image Clustering (BMRI-SRGPSOC). The RIDER breast MRI dataset was used for evaluation and the results are compared with the ground truth of the dataset. From analysing the evaluation results, it can be noticed that the proposed approaches scored high results using various measures comparing to previous methods. The results of skin-line exclusion scored high average performance in both stages; border segmentation stage (sensitivity = 0.81 and specificity = 0.94) and removal stage (sensitivity = 0.86 and specificity = 0.97). The quality evaluation of MMRT showed improved results with average of PSNR = 69.97 and MSE = 0.01. In the tumour segmentation phase, the sensitivity results of the two proposed methods; BMRI-MASRG and BMRI-SRGPSOC showed more accurate segmentation with averages of 0.82 and 0.84 respectively. Similarly, the specificity results also scored better performance compared to previous methods. The averages of BMRI-MASRG and BMRI-SRGPSOC are 0.90 and 0.91 respectively.

CHAPTER 1

INTRODUCTION

1.1 Background

Breast cancer is the second most common cancer in the world and is the leading cancer amongst women. According to a study conducted by the International Agency for Research on Cancer (IARC) (an intergovernmental agency forming part of the World Health Organization of the United Nations), an estimation of 1.677 million new breast cancer cases have been diagnosed in 2012 (794,000 in developed countries and 883,000 cases in the third world countries), making 25.2 % of total new cancer cases in the world. Figure 1.1 shows the ten most commonly diagnosed cancers in the world, the figure estimates total number and percentage of new cases diagnosed per year. Similarly, the death rates among breast cancer patients are the most amongst cancer cases, as shown in Figure 1.2 (Ferlay *et al.*, 2013).

Figure 1.1 Estimated number of cancer diagnosed cases in the world based on IARC study (Ferlay *et al.*, 2013).

Figure 1.2 Estimated number of cancer deaths in the world based on IARC study (Ferlay *et al.*, 2013).

In Malaysia, breast cancer is the leading diagnosed cancer among women where the estimated number of this disease is around 38.74 per 100,000 populations. Close to 5,410 new cases are reported annually, making 28.0 % of total new cancer cases for women in Malaysia. Figure 1.3 shows the estimated number of cancer diagnosed cases in Malaysia based on IARC study (Ferlay *et al.*, 2013). Breast cancer is also the first common cause of death between women cancer patients with 2,572 death cases per year, making 24.7 % of total cancer death cases in Malaysia. Figure 1.4 shows estimated number of cancer deaths in Malaysia based on IARC study (Alias *et al.*, 2008).

Figure 1.3 Estimated number of cancer diagnosed cases in Malaysia based on IARC study (Ferlay *et al.*, 2013).

Figure 1.4 Estimated number of cancer deaths in Malaysia based on IARC study (Ferlay *et al.*, 2013).