

TREATMENT OF PARTIALLY STABILIZED LANDFILL LEACHATE USING COMPOSITE COAGULANT DERIVED FROM PREHYDROLYZED IRON AND TAPIOCA STARCH

NUR SHAYLINDA BINTI MOHD ZIN

UNIVERSITI SAINS MALAYSIA

2015

TREATMENT OF PARTIALLY STABILIZED LANDFILL LEACHATE USING COMPOSITE COAGULANT DERIVED FROM PREHYDROLYZED IRON AND TAPIOCA STARCH

NUR SHAYLINDA BINTI MOHD ZIN

SCHOOL OF CIVIL ENGINEERING UNIVERSITI SAINS MALAYSIA

2015

TREATMENT OF PARTIALLY STABILIZED LANDFILL LEACHATE USING COMPOSITE COAGULANT DERIVED FROM PREHYDROLYZED IRON AND TAPIOCA STARCH

by,

NUR SHAYLINDA BINTI MOHD ZIN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)

Oktober 2015

ACKNOWLEDGEMENTS

Alhamdullillah...praise to ALLAH SWT...

InshaAllah.... This thesis marks the end of my journey in obtaining my PhD. This thesis has been seen through completion with the support and encouragement from numerous people, including my main supervisor (Prof. Dr. Hamidi Abdul Aziz), my second supervisors (Prof. Ir. Dr. Mohd Nordin Adlan and Prof. Dr. Azlan Ariffin), colleagues, family, friends and various institutions. I would like to express my deepest thanks to all of them and all of those people who made this thesis possiblemay all good things happening in your life....Thank you ...

Nur Shaylinda Mohd Zin

TABLES OF CONTENTS

ACKI	NOWLEDGEMENT	ii
LIST	OF TABLES	Х
LIST	OF FIGURES	xiii
LIST	OF ABBREVIATIONS	xxiii
ABST	TRAK	xxiv
ABST	TRACT	xxvi
CHAI	PTER 1- INTRODUCTION	1
1.1	Background of study	1
1.2	Problem statement	1
1.3	Research objective(s)	6
1.4	Scope(s) of study	7
1.5	Limitation(s) of study	7
1.6	Thesis outlined	8
CHAI	PTER 2 - LITERITURE REVIEW	10
2.1	Solid waste	10
2.2	Landfill	12
	2.2.1 Types of solid waste placement in landfill	12
	2.2.2 Classification of landfill	13
	2.2.3 Problems of landfill in Malaysia	15
2.3	Leachate	18

	2.3.1	Quantity of le	achate	18
	2.3.2	Decompositio	n process of solid waste in landfill	19
	2.3.3	Leachate char	ecteristics	22
	2.3.4	Factors affect	ing leachate characteristics	26
	2.3.5	Partially stabi	lized leachate	27
	2.3.6	Leachate treat	ment	28
	2.3.7	Legislation		31
	2.3.8	Leachate para	meters focussed for this study	36
2.4	Coagu	lation and floce	culation	38
	2.4.1	Colloids and i	nterface	39
	2.4.2	Coagulation n	nechanism	42
	2.4.3	Factors effect	ing coagulation and flocculation	44
2.5	Coagu	llant		48
	2.5.1	Chemical/inor	ganic coagulant	49
		2.5.1(a)	Prehydrolyzed iron (PHI)	54
		2.5.1(a	a)(i) Basicity ratio	57
	2.5.2	Natural/Orgar	nic coagulant (NC)	59
		2.5.2 (a)	Starch as coagulant/ coagulant aid for leachate	63
			treatment	
		2.5.2 (b)	Coagulation mechanism of natural coagulant	64
		2.5.2 (c)	Tapioca as a coagulant	64
	2.5.3	Combination	of natural and chemical coagulants	68
2.5.4	Comp	osite coagulant	S	70
	2.5.5	Coagulation a	s pre/post treatment	71
			iv	

2.	6 Res	pond surface methodology (RSM)	73
2.7	7 Con	cluding remark	75
CHAPTER 3 - RESEARCH METHODOLOGY			77
3.1	Introd	luction	77
3.2	Samp	ling and storage	77
3.3	Instru	mentations, chemicals and reagents	80
3.4	Leach	ate analysis	83
3.5	Prepa	ration of PHITF composite coagulant	84
3.6	Chara	cterizations of coagulants	87
	3.6.1	Fourier Transform Infrared (FTIR)	87
	3.6.2	pH	87
	3.6.3	Zeta Potential	88
	3.6.4	Molecular weight	88
	3.6.5	Turbidity	89
	3.6.6	Field emission scanning electron microscopy (FESEM) and	89
		energydispersive X-ray (EDAX)	
	3.6.7	Isoelectric point (IEP)	90
3.7	Exper	imental design	90
371	Соая	ulation by PHI	92
270	Conc	alation by DUITE (composite consulant)	03
3.1.2	Coagi	mation by Print P (composite coaguiant)	খত
	3.7.3	Response Surface Methodology (RSM)	94

3.7.4	Comparison of	of coagulation performance	98
3.7.5	Application o	f PHITF on Kuala Sembeling landfill leachate	98
3.7.6	Comparison of	of PHITF floc and sludge	99
	3.7.6 (a)	Sludge and volume index (SVI)	99
	3.7.6 (b)	Settling velocity (SV)	100
	3.7.6 (c)	Floc size	100
	3.7.6 (d)	Field emission scanning electron microscopy	101
		(FESEM) and Energy dispersive X-ray (EDAX) for	r
		sludge	
	3.7.6 (e)	Fourier Transform Infrared (FTIR) for sludge	101
	3.7.6 (f)	Flocculation index (FI)	102
	3.7.6 (g)	Zeta potential of supernatant after coagulation	103

CHAPTER 4 - RESULTS ON CHARACTERISTICS OF LEACHATE AND 105

DEVELOPMENT OF PHITF

4.1	Introd	uction		105
4.2	Chara	cteristics of lea	chate	105
4.3	Devel	opment and cha	aracteristics of PHITF	113
	4.3.1	Optimum bas	icity of PHI	114
		4.3.1(a)	Comparison of different type of synthesis method	114
		4.3.1(b)	PHI rapid mixing	115
		4.3.1(c)	PHI slow mixing	118
		4.3.1(d)	PHI settling time	120

	4.3.1(e)	Optimum PHI basicity	121
	4.3.1(f)	PHI optimum pH	123
	4.3.1(g)	Optimum dose	126
4.3.2	Optimum PHI	TF	128
	4.3.2(a)	Selection of TF brand	129
	4.3.2(b)	Selection of composite method	131
	4.3.2(c)	Effect of TF amount on zeta potential of composite	133
		coagulant(PHITF)	
	4.3.2(d)	PHITF rapid mixing	134
	4.3.2(e)	PHITF slow mixing	137
	4.3.2(f)	PHITF settling time	139
	4.3.2(g)	Optimum amount of TF for PHITF	140
	4.3.2(h)	PHITF dose	150
	4.3.2(i)	PHITF pH	154
4.3.3	Characteristic	s of coagulants	159
	4.3.3(a)	Physico-chemical characteristics of PHI	160
	4.3.3(b)	Structure and morphological characteristics of PHI	162
	4.3.3(c)	Physico-chemical characteristic of PHITF	165
	4.3.3(d)	Structure and morphological characteristics of	167
		PHITF	
Optim	ization of PHIT	'F via RSM	170
4.4.1	Central compo	osite design of PHITF	170
4.4.2	Model equation	on development and analysis of PHITF	171
4.4.3	PHITF 3D res	ponse surface plot	174
		vii	

4.4

4.4.4	PHITF perturbation plot	176
4.4.5	Optimization of PHITF	177

CHAPTER 5 - RESULTS ON COMPARISON OF PHITF PERFORMANCE 180 5.1 Introduction 180 5.2 RSM for PHI 180 5.3 Coagulation of PHI+TF 188 5.4 Coagulation of TF 198 5.5 Coagulation of IC 207 5.6 Comparison of PHITF performance by conventional/ classic 221 Optimization method Comparison of PHITF performance at optimum condition by using 5.7 231 RSM optimization method 5.8 Comparison of PHITF removals with standard effluent 233 5.9 Application of PHITF on KSLS leachate 234 5.10 Comparison of PHITF floc and sludge 239 5.10.1 Sludge volume index (SVI) 241 5.10.2 Sludge settling velocities (SV) 243 5.10.3 Floc size 245 5.10.4 FESEM and EDAX of sludge 246 5.10.5 FTIR of dried sludge 253 5.10.6 Flocculation index (FI) 254 5.10.7 Floc and sludge formation mechanism of PHITF 257

CHAP	CHAPTER 6 - CONCLUSIONS AND RECOMMENDATIONS		262	
6.1	Conclusions			
	6.1.1	Development and characteristics of PHITF	262	
	6.1.2	Optimization of PHITF coagulation via RSM	263	
	6.1.3	Comparison of PHITF removal ability and efficiency	263	
6.2	Recor	nmendations	266	
REFE	RENCE	ES	267	
APPE	NDIX /	A		
APPE	APPENDIX B			
APPE	APPENDIX C			
APPE	APPENDIX D			

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Solid waste category in Malaysia	11
Table 2.2	Factors that must be considered in evaluating potential landfill sites	13
Table 2.3	Landfill classification system based on decomposition process employed	14
Table 2.4	Level of landfill according to Ministry of Housing and Local Government (MHLG)	14
Table 2.5	Numbers of solid waste disposal sites in Malaysia (until September 2011)	15
Table 2.6	Leachate characteristics parameters	23
Table 2.7	Chemical composition of leachate from municipal solid waste	24
Table 2.8	Characteristics of leachate at different age	25
Table 2.9	Characteristics of partially stabilized leachate from previous study	28
Table 2.10	Landfill leachate process treatment	29
Table 2.11	Description of various methods of leachate treatment	31
Table 2.12	Maximum discharged standard for leachate in Malaysia	35
Table 2.13	Degree of coagulation according to zeta potential	42
Table 2.14	Preparation factor for PHI from previous study	61
Table 2.15	Application of natural coagulant in various wastewater	62
Table 2.16	Chemical coagulant combined with others method	72
Table 3.1	Instruments used in this study	81
Table 3.2	List of chemical and reagents used in the study	82

Table 3.3	Laboratory test parameters with reference numbers	83
Table 3.4	Ranges of operating parameters for coagulation test.	93
Table 3.5	Table of coded values of variables for optimization design	95
Table 3.6	Experimental matrix for central composite design (PHI, PHITF, PHI+TF and CI)	96
Table 3.7	Rapid and slow mixing condition for floc growth, breakage and re-growth test	104
Table 4.1	Characteristics of raw leachate at MLS and KSLS	106
Table 4.2	Optimum pH and dose of coagulant for leachate treatment	131
Table 4.3	Effect of heated temperature of TF	131
Table 4.4	Zeta potential of TF before and after composite process of PHITF	133
Table 4.5	Characteristics of PHI with different basicity value	160
Table 4.6	Main fuctional groups of PHI (B=0.1) from FTIR spectrum analysis	164
Table 4.7	Characteristics of PHITF (B=0. 1) coagulant under the influence of different TF/Fe	166
Table 4.8	Main fuctional groups of PHITF (0.7) from FTIR spectrum analysis	169
Table 4.9	PHITF range of factors for RSM based on conventional optimization method	171
Table 4.10	PHITF experimental levels of independent variables	171
Table 4.11	PHITF central composite design (CCD) for the study of two Experimental variables	172
Table 4.12	PHITF ANOVA results for the four responses	172
Table 4.13	Confirmatory experiments at optimum conditions of PHITF	179
Table 5.1	PHI range of factors for RSM	182
Table 5.2	PHI experimental levels of independent variables	182

Table 5.3	PHI central composite design (CCD) for the study of two experimental variables	182
Table 5.4	PHI ANOVA results for the four responses	183
Table 5.5	Confirmatory experiments at optimum conditions of PHI	187
Table 5.6	PHI+TF central composite design (CCD) for the study of two experimental variables	194
Table 5.7	PHI+TF ANOVA results for the four responses	194
Table 5.8	Confirmatory experiments at optimum conditions of PHI+TF	198
Table 5.9	PHI range of factors for RSM	215
Table 5.10	IC central composite design (CCD) for the study of two experimental variables	217
Table 5.11	IC ANOVA results for the four responses	217
Table 5.12	Confirmatory experiments at optimum conditions of IC	220
Table 5.13	Optimum value of rapid mixing speed, duration of rapid mixing, slow mixing speed, duration of slow mixing and duration of settling time	221
Table 5.14	Optimum pH of IC, PHI, PHI+TF, PHITF and TF based on classic optimization method	227
Table 5.15	Optimum dose of IC, PHI, PHITF, TF and PHI+TF based on classic optimization method	228
Table 5.16	Percentage removal at optimum condition of the coagulant by using RSM	231
Table 5.17	Comparison between final concentration of leachate after treatment by PHITF with the Control of pollution from solid waste transfer station and landfill	233
Table 5.18	Comparison of PHITF performance at optimum pH and dose.	240
Table 5.19	Coagulation condition for floc and sludge analysis according to coagulant type	243
Table 5.20	Element detected in sludge and MLS leachate by EDAX	252

Table 5.21Floc and percentage removal at optimum condition of the
coagulant252

LIST OF FIGURES

Figure 2.1	Landfill water balance	19
Figure 2.2	Factors influencing gas and leachate generation in landfills	20
Figure 2.3	Flow of the leachate treatment options	30
Figure 2.4	Electric double layer of a negatively charged colloid	42
Figure 2.5	Regions of destabilization under the effect of coagulation dose on turbidity	46
Figure 2.6	Destabilization and restabilization zones at a give pH value related to colloid concentration	47
Figure 2.7	Basic structural of (a) amylopectin (b) and amylose	66
Figure 2.8	Central Composite Design for three factors	75
Figure 3.1	Flow chart of this study	78
Figure 3.2	Location of MLS and KSLS	80
Figure 3.3	Preparation of PHI by using NaOH	85
Figure 3.4	Preparation of composite PHITF	86
Figure 3.5	Arrangement of PDA 2000 instrumentation	103
Figure 4.1	Performance of different base type on synthesis of PHI	115
Figure 4.2	Application of Pre-hydrolyzed iron (B=0.2) on MLS leachate by varying rapid mixing speed. (coagulant dose: 0.4 g/L Fe, rapidmixing duration: 3 minutes, slow mixing speed:50 rpm, slow mixing duration: 20 minutes, settling duration: 50and pH:8)	116
Figure 4.3	Application of Pre-hydrolyzed iron(B=0.2) on MLS Leachate by varying rapid mixing duration. factor (coagulant dose: 0.4 g/L Fe, rapid mixing speed: 200 rpm, slow mixing speed: 50 rpm, slow mixing duration: 20, settling duration: 50 minutes, minutes and pH:8)	117

Figure 4.4	Application of Pre-hydrolyzed iron (B=0.2) on MLS leachate by varying slow mixing duration. (coagulant dose: 0.4 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed: 50 rpm, settling duration: 50 minutes and pH:8)	119
Figure 4.5	Application of Pre-hydrolyzed iron(B=0.2) on MLS leachate by varying slow mixing speed. (coagulant dose: 0.4 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, settling duration: 50 minutes and pH:8)	120
Figure 4.6	Application of Pre-hydrolyzed iron (B=0.2) on MLS leachate by varying settling duration. coagulant dose: 0.4 g/L Fe, rapid mixing speed: 250 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, slow mixing speed: 50 rpm and pH:8)	121
Figure 4.7	Application of Pre-hydrolyzed iron on MLS leachate by varying the basicity value. (coagulant dose: 0.4 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, slow mixing speed: 50 rpm, settling duration: 30 minutes and pH:8)	122
Figure 4.8	Application of Pre-hydrolyzed iron (B=0.1) on MLS leachate by varying pH. (coagulant dose: 0.4 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, slow mixing speed: 50 rpm and settling duration: 30 minutes)	124
Figure 4.9	Application of Pre-hydrolyzed iron (B=0.1) on MLS leachate by varying dose. (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, slow mixing speed: 50 rpm, settling duration: 30 minutes and pH:5)	127
Figure 4.10	Application of Pre-hydrolyzed iron on MLS leachate by varying basicity at optimum dose and pH, (a) removal performance (b) zeta potential. (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, slow mixing speed: 50 rpm, settling duration: 30 minutes and pH:5)	130

Figure 4.11	Performance of method A, method B and PHI. (PHI=2.85 g Fe, TF=1 g (weight PHI/weight TF= 0.35), rapid mixing speed= 200 rpm, rapid mixing duration= 4 minutes, slow mixing speed= 50 rpm, slow mixing duration= 25 minutes, settling time= 30 minutes, pH= 4.94, dose= 0.24 g/L Fe)	132
Figure 4.12	Application of PHITF (TF/Fe=1.2) on MLS leachate by varying rapid mixing speed and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing duration: 4 minutes, slow mixing speed: 50 rpm, slow mixing duration: 25 minutes, settling duration: 30 and pH:4.94)	136
Figure 4.13	Application of PHITF (TF/Fe=1.2) on MLS leachate by varying rapid mixing duration and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, slow mixing speed: 50 rpm, slow mixing duration: 25, settling duration: 30 minutes, minutes and pH:4.94)	136
Figure 4.14	Application of PHITF(TF/Fe=1.2) on MLS leachate by varying slow mixing duration and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed: 30 rpm, settling duration: 30 minutes and pH:4.94)	138
Figure 4.15	Application of PHITF (TF/Fe=1.2) on MLS leachate by varying slow mixing duration and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	138
Figure 4.16	Application of PHITF (TF/Fe=1.2) on MLS leachate by varying settling duration and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, slow mixing speed: 30 rpm and pH:4.94)	140
Figure 4.17	Application of PHITF on MLS leachate by varying macro range of TF/Fe ratio and fixing the others factor (B=0.1, coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	142

Figure 4.18	Zeta potential of treated MLS leachate by varying macro range of TF/Fe ratio and fixing the others factor (B=0.1, coagulant dose: 0.2 g/L Fe, rapid mixing speed: 250 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	142
Figure 4.19	Particle size of floc for treated MLS leachate by varying macro range of TF/Fe ratio and fixing the others factor (B=0.1, coagulant dose: 0.2 g/L Fe, rapid mixing speed: 250 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	143
Figure 4.20	Application of PHITF on MLS leachate by varying micro range of TF/Fe ratio and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	145
Figure 4.21	Zeta potential of treated MLS leachate by varying micro range of TF/Fe ratio and fixing the others factor (coagulant dose: 0.2 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	146
Figure 4.22	Particle size of floc for treated MLS leachate by varying micro range of TF/Fe ratio and fixing the others factor (coagulant dose: 0.2 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	146
Figure 4.23	SS removal of PHITF 0.7 and 1.1 by varying the dose and fixing the others factor (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	148
Figure 4.24	Colour removal of PHITF 0.7 and 1.1 by varying the dose and fixing the others factor (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	148

Figure 4.25	COD removal of PHITF 0.7 and 1.1 by varying the dose and fixing the others factor (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	149
Figure 4.26	Ammonia removal of PHITF 0.7 and 1.1 by varying the dose and fixing the others factor (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing speed=30 rpm, slow mixing duration: 15 minutes, settling duration: 30 minutes and pH:4.94)	149
Figure 4.27	Application of PHITF (B=0.1, TF/Fe=0.7) on MLS leachate by varying dose and fixing the others factor (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, slow mixing speed: 30 rpm and settling time: 30 minutes and pH=4.94)	151
Figure 4.28	Zeta potential of PHITF (B=0.1, TF/Fe=0.7) on MLS leachate by varying dose and fixing the others factor (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, slow mixing speed: 30 rpm and settling time: 30 minutes and pH=4.94)	151
Figure 4.29	Particle size of leachate floc after treated with PHITF (TF/Fe=0.7) on MLS leachate by varying dose and fixing the others factor (rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, slow mixing speed: 30 rpm and settling time: 30 minutes and pH=4.94)	154
Figure 4.30	Application of PHITF (B=0.1, TF/Fe=0.7) on MLS leachate by varying pH and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, slow mixing speed: 30 rpm and settling time=30 minutes)	156
Figure 4.31	Zeta potential of treated MLS leachate by varying pH of PHITF (B=0.1, TF/Fe=0.7) and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, slow mixing speed: 30 rpm and settling time=30 minutes)	158

Figure 4.32	Particel size of treated MLS leachate flocs by varying pH of PHITF (TF/Fe=0.7) and fixing the others factor (coagulant dose: 0.24 g/L Fe, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, slow mixing speed: 30 rpm and settling time=30 minutes)	159
Figure 4.33	SEM image of PHI=0.1	163
Figure 4.34	FTIR spectra of PHI (B=0.1), IC and PHITF (0.7)	164
Figure 4.35	SEM image of PHITF (0.7)	168
Figure 4.36	FTIR spectra of PHITF (0.7), heated TF and non-heated TF	169
Figure 4.37	Design-expert plot; predicted vs. actual values plot for (a) SS removal, (b) color removal, (c) COD removal, and (d) NH_3 removal using PHITF	175
Figure 4.38	Design-expert plot; response surface plot for (a) SS removal, (b) color removal, (c) COD removal, and (d) NH ₃ removal using PHITF	176
Figure 4.39	PHITF perturbation plot for (a) SS, (b), color, (c) COD and (d) Ammonia	178
Figure 5.1	Design-expert plot; predicted vs. actual values plot for (a) SS removal, (b) color removal, (c) COD removal, and (d) NH_3 removal using PHI.	184
Figure 5.2	Design-expert plot; response surface plot for (a) SS removal, (b) color removal, (c) COD removal, and (d) NH ₃ removal using PHI	185
Figure 5.3	PHI perturbation plot for (a) SS, (b), color, (c) COD and (d) Ammonia	186
Figure 5.4	Effect of TF macro dose on (a) suspended solids, (b) color, (c) COD, (d) ammonia removal by PHI+TF. (rapid mixing speed: 250 rpm, rapid mixing duration: 4 minutes, slow mixing speed: 50 rpm, slow mixing duration: 25 minutes, settling duration: 30 minutes and pH:4.94, PHI dose= 0.24 g/L Fe)	189

Figure 5.5	Effect of TF micro dose on (a) suspended solids, (b) color, (c) COD, (d) ammonia removal by PHI+TF. (rapid mixing speed: 250 rpm, rapid mixing duration: 4 minutes, slow mixing speed: 50 rpm, slow mixing duration: 25 minutes, settling duration: 30 minutes and pH:4.94, PHI dose= 0.24 g/L Fe)	191
Figure 5.6	Effect of PHI dose on (a) suspended solids, (b) color, (c) COD, (d) ammonia removal by PHI+TF. (rapid mixing speed: 250 rpm, rapid mixing duration: 4 minutes, slow mixing speed: 50 rpm, slow mixing duration: 25 minutes, settling duration: 30 minutes and pH:4.94, TF dose= 200 mg/L Fe)	192
Figure 5.7	Effect of PHI+TF pH on (a) suspended solids, (b) color, (c) COD, (d) ammonia removal. (rapid mixing speed: 250 rpm, rapid mixing duration: 4 minutes, slow mixing speed: 50 rpm, slow mixing duration: 25 minutes, settling duration: 30 minutes and PHI dose: 0.24 g/L Fe and , TF dose= 200 mg/L Fe)	192
Figure 5.8	Design-expert plot; predicted vs. actual values plot for (a) SS removal, (b) color removal, (c) COD removal, and (d) NH_3 removal using PHI+TF	195
Figure 5.9	Design-expert plot; response surface plot for (a) SS removal, (b) color removal, (c) COD removal, and (d) NH ₃ removal using PHI+TF	196
Figure 5.10	PHI+TF perturbation plot for (a) SS, (b), color, (c) COD and (d) Ammonia	197
Figure 5.11	Application of TF on MLS leachate by varying rapid mixing speed and fixing the others factor (coagulant dose: 2 g/L , rapid mixing duration: 4 minutes, slow mixing speed: 50 rpm, slow mixing duration: 25 minutes, settling duration: 60 and pH:5)	199
Figure 5.12	Application of TF on MLS leachate by varying rapid mixing duration and fixing the others factor (coagulant dose: 2 g/L, rapid mixing speed: 100 rpm, slow mixing speed: 50 rpm, slow mixing duration: 25 minutes, settling duration: 60 and pH:5)	201

Figure 5.13	Application of TF on MLS leachate by varying slow mixing duration and fixing the others factor (coagulant dose: 2 g/L, rapid mixing speed: 100 rpm, rapid mixing duration: 4 minutes, slow mixing speed: 50 rpm, settling duration: 60 and pH:5)	203
Figure 5.14	Application of TF on MLS leachate by varying slow mixing speed and fixing the others factor (coagulant dose: 2 g/L, rapid mixing speed: 100 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, settling duration: 60 and pH:5)	203
Figure 5.15	Application of TF on MLS leachate by varying settling duration and fixing the others factor (coagulant dose: 2 g/L, rapid mixing speed: 100 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, slow mixing speed: 40 rpm and pH:5)	204
Figure 5.16	Application of TF on MLS leachate by varying dose and fixing the others factor (coagulant dose: 2 g/L, rapid mixing speed: 100 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, slow mixing speed: 40 rpm, settling duration: 60 minutes and pH:5)	204
Figure 5.17	Application of TF on MLS leachate by varying pH and fixing the others factor (coagulant dose: 2.5 g/L, rapid mixing speed: 100 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 25 minutes, slow mixing speed: 40 rpm, and settling duration: 60 minutes)	205
Figure 5.18	Application of IC on MLS leachate by varying rapid mixing speed and fixing the others factor (coagulant dose: 0.42 g/L Fe, rapid mixing duration: 3 minutes, slow mixing speed: 50 rpm, slow mixing duration: 20 minutes, settling duration: 60 and pH:6)	209
Figure 5.19	Application of IC on Kuala MLS leachate by varying rapid mixing duration and fixing the others factor (coagulant dose: 0.42 g/L Fe, rapid mixing speed: 250 rpm, slow mixing speed: 50 rpm, slow mixing duration: 20, settling duration: 60 minutes, minutes and pH:6)	209
Figure 5.20	Application of IC on MLS leachate by varying slow mixing speed and fixing the others factor (coagulant dose: 0.42 g/L Fe, rapid mixing duration: 3 minutes, rapid mixing speed: 250 rpm, slow mixing duration: 20 minutes, settling duration: 60 and pH: 6)	210

Figure 5.21	Application of IC on MLS leachate by varying slow mixing duration and fixing the others factor (coagulant dose: 0.42 g/L Fe, rapid mixing duration: 3 minutes, rapid mixing speed: 250 rpm, slow mixing speed: 50 rpm, settling duration: 60 and pH:6)	210
Figure 5.22	Application of IC on MLS leachate by varying settling time and fixing the others factor (coagulant dose: 0.42 g/L Fe, rapid mixing duration: 3 minutes, rapid mixing speed: 250 rpm, slow mixing speed: 50 rpm, slow mixing duration: 50 minutes and pH:6)	211
Figure 5.23	Application of IC on MLS leachate by varying pH and fixing the others factor (coagulant dose: 0.42 g/L Fe, rapid mixing duration: 3 minutes, rapid mixing speed: 250 rpm, slow mixing speed: 50 rpm, slow mixing duration: 50 minutes and settling time:30)	212
Figure 5.24	Application of IC on MLS leachate by varying dose and fixing the others factor (pH:6, rapid mixing duration: 3 minutes, rapid mixing speed: 250 rpm, slow mixing speed: 50 rpm, slow mixing duration: 50 minutes and settling time:30)	214
Figure 5.25	Design-expert plot; predicted vs. actual values plot for (a) SS removal, (b) color removal, (c) COD removal, and (d) NH_3 removal using IC	218
Figure 5.26	Design-expert plot; response surface plot for (a) Ss removal, (b) color removal, (c) COD removal, and (d) NH_3 removal using IC	219
Figure 5.27	IC perturbation plot for (a) SS, (b), color, (c) COD and (d) Ammonia	220
Figure 5.28	Effect of pH on the removal of (a) suspended solids, (b) color, (c) COD, and (d) NH_3	223
Figure 5.29	Effect of coagulant dose on (a) suspended solids, (b) color, (c) COD, (d) NH ₃	225
Figure 5.30	Application of PHITF (B=0.1, TF/Fe=0.7) on KSLS leachate by varying dose and fixing the others factor (pH: 5, rapid mixing speed: 200 rpm, rapid mixing duration: 4 minutes, slow mixing duration: 15 minutes, slow mixing speed: 30 rpm and settling time=30 minutes)	235