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Figure 4.22 FESEM images of horizontally networked MWCNT grown on 

10-nm thick Au-Fe (1:1) catalyst NP: (a) before and (b) after 

peeled-off nanotubes. The image of before peeled-off nanotubes 

was taken at an inclined angle of 15˚ 
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Figure 4.23 Schematic representation of growth mechanism for horizontally 

networked MWCNT grown on 10 nm-thick Au-Fe catalyst NP 
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by decomposition of acetylene 

 

Figure 4.24 HRTEM images of as-grown MWCNT over supported Au-Fe 

(1:1 ratios) catalyst NP: (a-b) central hollow structure for thinner 

tube-walls, (c) structural defects-induced from angular bends 

structure of nanotube, (d) amorphous carbon-capped Au clusters 

and (e) close-up view. The arrows indicate the presence of 

amorphous carbon layer on the surface of Au clusters 
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Figure 4.25 Raman spectra of horizontally networked MWCNT on Au-Fe 

(1:1 ratios) catalyst NP at different initial catalyst thickness. The 

weak peak of the Raman mode with a feature marked of ‘*’ at 

2330 cm-1 arises from ambient N2 (molecular) gas in the air 

surrounding the sample 
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Figure 4.26 FESEM images of MWCNT grown on initial 10 nm-thick Au-

Fe (1:1) catalyst NP at different NH3/C2H2 gas ratios: (a) 0 

(ammonia-free), (b) 2 and (c) 4. The flow rate of C2H2 was fixed 

at 50 sccm 
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Figure 4.27 Raman spectra of MWCNT grown on initial 10 nm thick Au-Fe 

catalyst nanoparticles at different NH3/C2H2 gas ratios. The 

weak peak of the Raman mode with a feature marked of ‘*’ at 

2330 cm-1 arises from ambient N2 (molecular) gas in the air 

surrounding the sample 
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Figure 4.28 Sheet resistance, magnetoresistance (MR) and sheet 

concentration as a function of NH3/C2H2 gas ratios 
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Figure 4.29 Optical, AFM and FESEM images of graphene prepared by 

HFTCVD. (a) Large-area as-deposited graphene films deposited 

on Cu substrate (inset shows optical image graphene on Cu 

substrate). (b) AFM image of as-deposited graphene. (c-e) 

FESEM images of graphene films deposited on Cu substrate at 

different substrate temperature. The circle indicates a graphene 

domain. The straight lines across the images represent the 

surface of Cu substrate. (f-h) Their corresponding high 

magnification images (20,000×). Wrinkles where the graphene 
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domains have presumably joined with a dark patch indicated by 

the circle representing a few layers are highlighted 

 

Figure 4.30 Optical, FESEM, and AFM images of as-transferred graphene 

on SiO2/Si (100) substrate. (a-c) Optical images of resultant as-

transferred graphene from graphene deposited on Cu foil at 

different substrate temperature. (d-f) FESEM images at high 

magnification (50,000×). The circle represents the structural 

defects from nano-dots. (g-i) the corresponding AFM images 

with x-cross section profile of 750, 850 and 1000 °C, 

respectively 
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Figure 4.31 Raman spectra of graphene ultra-thin film on: (a) Cu foil 

substrate and (b) SiO2/Si (100) substrate, as a function of 

substrate temperature 
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Figure 5.1 (a) Ratio of deflection to thickness (w0/hd) as a function of 

applied pressure for a plane diaphragm. (b) Ratio of diaphragm 

to thickness (w0/hd) as a function of applied pressure for 

reinforced diaphragm structure with IDE array. (c) Nonlinearity 

as a function of applied pressure. (d) Normalized stress as a 

function of applied pressure. (e-f) Deflection distribution of the 

plane diaphragm and the reinforced diaphragm structure with 

IDE array 
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Figure 5.2 (a) Normalized deflection and (b) normalized nonlinearity as a 

function of applied pressure at he/hd = 0.5. The total thickness of 

reinforced diaphragm with IDE array (he + hd) is fixed at 100 

µm 
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Figure 5.3 (a) Normalized resistances as a function of number of electrode 

finger. The width (we) and gap (ge) of electrode fingers are fixed 

at 600 µm and 200 µm, respectively. (b) Normalized resistance 

as a function of ratio of width to gap (we/ge). The number of 

electrode finger is fixed at 8 
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Figure 5.4 (a) Photograph of the fabricated IDE array and terminal 

electrode on flexible polyimide substrate, (b) optical image of 
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the IDE array, (c) FESEM image of the contact pads, (d) an 

electrode finger with close-up view and (e) wire bond on the 

contact pads     

 

Figure 5.5 FESEM images of the micro-patterned aligned MWCNT at 

different growth time of 5 and 15 minutes: (a-b) as-grown 

MWCNT on Co-Fe catalyst/TiN/SiO2/Si (100) substrate and (c-

d) as-transferred MWCNT onto the flexible substrate (thermal 

release tape). The inset shows the close-up view of vertically 

aligned nanotubes 
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Figure 5.6 Photograph of the transferred micro-patterned aligned MWCNT 

onto arbitrary flexible substrates: (a-b) thermal release tape, (b) 

transparent adhesive film and (c) polyimide adhesive film 
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Figure 5.7 Characterization of the device fabrication process via physical-

based transfer method: (a) Photograph image of the transferred 

MWCNT onto flexible polyimide substrate. (b) FESEM image 

of the transferred cross lines of MWCNT at low magnification 

and (c-d) top view of images of the transferred vertically aligned 

MWCNT and horizontally networked MWCNT, respectively. 

The inset shows the close-up image at high magnification 
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Figure 5.8 Characterization of the device fabrication process via chemical-

based transfer method: (a-c) Photograph of the transferred 

carbon-capped nanoparticle (0-D configuration), MWCNT (1-D 

configuration) and graphene ultra-thin film (2-D configuration) 

onto flexible polyimide substrate with integrated IDE 

microstructure and (d-f) the corresponding FESEM images of 

the transferred nanomaterials. (g-h) Photograph and optical 

image of misalignment of the as-transferred MWCNT 
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Figure 5.9 FESEM and AFM images of carbon-capped nanoparticle array 

on flexible pressure sensor device at different initial film 

thickness: (a-c) (g-i) Au-Fe@C and (d-f) (j-l) Co-Fe@C 

nanoparticle array. The AFM scanning area is 5 µm × 5 µm. For 

thinner film, the nanoparticles are small and compact. Thicker 

films lead to the formation of larger nanoparticles 
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Figure 5.10 AFM characterizations of carbon-capped nanoparticle array on 

flexible pressure sensor at different morphologies. The void 

images by post-processing software (Nova, NT-MDT) for (a-c) 

Au-Fe@C and (d-f) Co-Fe@C nanoparticle array. The scale bar 

is 1 µm. Void distribution for (g-i) Au-Fe@C and (j-l) Co-

Fe@C nanoparticle array   
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Figure 5.11 (a-b) I-V characteristics of the fabricated flexible pressure sensor 

with Au-Fe@C (A1, 4 nm; A2, 6 nm; A3, 8 nm) and Co-Fe@C 

(B1, 4 nm; B2, 6 nm; B3, 8 nm) nanoparticle array at different 

morphologies. (c-d) Relative resistance changes as a function of 

temperature for sensor devices with Au-Fe@C and Co-Fe@C 

nanoparticle array. The insets show the temperature-dependence 

of resistance (e-f). Resistance is a function of relative humidity 

for sensor devices with Au-Fe@C and Co-Fe@C nanoparticle 

array  
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Figure 5.12 Relative resistance changes as a function of the applied pressure 

for flexible pressure sensor device with (a) Au-Fe@C and (b) 

Co-Fe@C nanoparticle array at different morphologies 
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Figure 5.13 (a) Schematic representation of the flexible pressure sensor with 

carbon-capped nanoparticles as piezoresistive component. (b) 

Circuit model 
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Figure 5.14 Schematic illustration of the geometry change of the carbon-

capped nanoparticle array under applied pressure. (a) Small-

sized nanoparticles with high density of void from thinner 

nanoparticle array. (b) Large-sized nanoparticles with low 

density of void from thicker nanoparticle array. The interparticle 

distance in the unstrained nanoparticle array is d and the 

distance changes to d + ∆d while it is strained under applied 

pressure, ∆P 
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Figure 5.15 (a) Multi-cycle operations of repeated loading and unloading for 

the fabricated Au-Fe@C nanoparticle-based flexible pressure 

sensor. (b) Hysteresis characteristic of fabricated flexible 
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pressure sensor with A1 morphology. The inset shows the 

relative hysteresis as a function of applied pressure. (c) 

Resistance change as a function of applied pressure in low 

pressure regimes (< 10 kPa). (d) The response time of pressure 

loading and unloading of ~10 kPa. (e) Resolution of the 

fabricated pressure sensor as a function of pressure step  

 

Figure 5.16 (a) Photograph of carbon nanotubes-based flexible pressure 

sensor. (b-c) FESEM images of the transferred vertically aligned 

MWCNT and horizontally networked MWCNT and (d-e) their 

corresponding close-up images. (f) Raman spectra of the as-

grown and the as-transferred nanotubes. (g) I-V characteristics. 

(G1 and G2 denotes as-grown vertically aligned and 

horizontally networked MWCNT, whereas T1 and T2 denotes 

as-transferred vertically aligned and horizontally networked 

MWCNT) 
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Figure 5.17 Pressure sensing performance of carbon nanotubes-based 

flexible pressure sensor. (a-b) Relative change in resistance of 

flexible pressure sensor as a function of applied pressure 

incorporated with vertically aligned and horizontally networked 

MWNCT, respectively. (c-d) The multi-cycle operation of 

repeated loading and unloading pressure at a minimum value. 

(e-f) FESEM images of deformed nanotube network for 

vertically aligned and horizontally networked MWCNT, 

respectively 
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Figure 5.18 (a) I-V characteristics, (b) relative resistance change as a 

function of temperature and (c) humidity-dependence of 

resistance in sensor at temperature of 298 K. (a and b denotes 

vertically aligned MWCNT and horizontally networked 

MWCNT)  

 

 168 

Figure 5.19 Schematic representation of circuit model for 1-D carbon 

nanotubes based flexible pressure sensor 
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Figure 5.20 Pressure sensing performance of carbon nanotube-based flexible 

pressure sensor with IDE structure: (a-b) Relative change in 
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