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                        0.1 mM Ni(3,5-dinitro) and H2O2. Lane 1, DNA ladder; 

lane 2, DNA alone; lane 3, DNA + 0.1 mM Ni(3,5-dinitro); 
lane 4, DNA + 0.1 mM Ni(3,5-dinitro) + H2O2. Lane 5-10 
involve reaction of Ni(3,5-dinitro) with DNA in presence of 
various scavengers; lane 5, 2 µL DMSO; lane 6, 1 mM D-
mannitol; lane 7, 2 µL tert-butanol; lane 8, 1 mM KI; lane 9, 
1 mM NaN3, and lane 10, 1.5 mM NaN3

 
. 

Figure 3.57 Effect of radical scavengers on the reaction of DNA with  
                        3.3 mM Ni(4-amino) and H2O2. Lane 1, DNA ladder; lane 

2, DNA alone; lane 3, DNA + 3.3 mM Ni(4-amino); lane 4, 
DNA + 3.3 mM Ni(4-amino) + H2O2. Lane 5-10 involve 
reaction of Ni(4-amino) with DNA in presence of various 
scavengers; lane 5, 2 µL DMSO; lane 6, 1 mM D-mannitol; 
lane 7, 2 µL tert-butanol; lane 8, 1 mM KI; lane 9, 1 mM 
NaN3, and lane 10, 1.5 mM NaN3
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Figure 3.58  Reaction scheme and proposed structure for complex  
                        Ni(pyr) 
 
Figure 3.59  Reaction scheme and proposed structure for complex  
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Figure 3.60  The appearance of the Ni(pyr) and Fe(pyr) complexes 

Figure 3.61  Infrared spectra of (a) pyrazine-2-carboxylic acid and  
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Figure 3.62  Infrared spectra of (a) pyrazine-2-carboxylic acid and  
                        (b) Fe(pyr) 
 
Figure 3.63  UV-Vis spectrum of Ni(pyr) 

Figure 3.64  UV-Vis spectrum of Fe(pyr) 

Figure 3.65  Cyclic voltammogram of Ni(pyr) 

Figure 3.66 Cyclic voltammogram of FeCl2.4H2

Figure 3.67  Cyclic voltammogram of Fe(pyr) 
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Figure 3.68      TGA curves of Ni(pyr) 

Figure 3.69      The decomposition pathway diagram of Ni(pyr) 

Figure 3.70      TGA curves of Fe(pyr) 
 

Figure 3.71      The decomposition pathway diagram of Fe(pyr) 
 
Figure 3.72  Crystal structure of diaquabis(2-pyrazinecarboxylato) 

nickel(II) [Ni(pyr)] (Ptasiewicz-Bak et al., 1995; El-Medani 
et al., 2005) 

 
Figure 3.73  Postulated structure of diaquabis(2-pyrazinecarboxylato) 

iron(II) pyrazine hemisolvate [Fe(pyr)] 
 
Figure 3.74 Electrophoresis results of incubating pBR322 with varying 

concentration of  Ni(pyr) with H2O2
lane 2, DNA alone; lane 3, DNA + H

. Lane 1, DNA Ladder;  
2O2

8 mM Ni(pyr). Lane 5-12 involve DNA + H
; lane 4, DNA +  

2O2

8 mM. 

 + different 
concentration of Ni(pyr): lane 5, 1 mM; 6, 2 mM; 7, 3 mM; 
8, 4 mM; 9, 5 mM; 10, 6 mM, 11, 7 mM; and lane 12,  

 
Figure 3.75  Electrophoresis results of incubating pBR322 with varying 

concentration of  Fe(pyr) with H2O2
lane 2, DNA alone; lane 3, DNA + H

. Lane 1, DNA Ladder;  
2O2

3 mM Fe(pyr). Lane 5-12 involve DNA + H
; lane 4, DNA +  

2O2
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 + different 
concentration of Fe(pyr): lane 5, 2.3 mM; 6, 2.4 mM; 7, 2.5 
mM; 8, 2.6 mM; 9, 2.7 mM; 10, 2.8 mM, 11, 2.9 mM; and 
lane 12, 3 mM. 
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Figure 3.76 Effect of radical scavengers on the reaction of DNA with  
                       5 mM Ni(pyr) and H2O2. Lane 1, DNA ladder; lane 2, DNA 

alone; lane 3, DNA + 5 mM Ni(pyr); lane 4, DNA + 5 mM 
Ni(pyr) + H2O2. Lane 5-10 involve reaction of Ni(pyr) with 
DNA in presence of various scavengers; lane 5, 2 µL 
DMSO; lane 6, 1 mM D-mannitol; lane 7, 2 µL tert-butanol; 
lane 8, 1 mM KI; lane 9, 1 mM NaN3, and lane 10, 1.5 mM 
NaN3

 
. 

Figure 3.77 Effect of radical scavengers on the reaction of DNA with  
                       2.8 mM Fe(pyr) and H2O2. Lane 1, DNA ladder; lane 2, 

DNA alone; lane 3, DNA + 2.8 mM Fe(pyr); lane 4, DNA + 
2.8 mM Fe(pyr) + H2O2. Lane 5-10 involve reaction of 
Fe(pyr) with DNA in presence of various scavengers; lane 5, 
2 µL DMSO; lane 6, 1 mM D-mannitol; lane 7, 2 µL tert-
butanol; lane 8, 1 mM KI; lane 9, 1 mM NaN3, and lane 10, 
1.5 mM NaN3
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Figure 3.78 Reaction scheme and proposed structure for complex   
                        Ni(mal) 
 
Figure 3.79 Reaction scheme and proposed structure for complex  
                        Fe(mal) 
 
Figure 3.80  The appearance of the Ni(mal) and Fe(mal) complexes 

Figure 3.81  Infrared spectra of (a) maleic acid and (b) Ni(mal) 

Figure 3.82  Infrared spectra of (a) maleic acid and (b) Fe(mal) 

Figure 3.83  UV-Vis spectrum of Ni(mal) 

Figure 3.84  UV-Vis spectrum of Fe(mal) 
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Figure 3.86  Cyclic voltammogram of Fe(mal) 

Figure 3.87     TGA curves of Ni(mal) 

Figure 3.88     The decomposition pathway diagram of Ni(mal) 

Figure 3.89     TGA curves of Fe(mal) 

Figure 3.90     The decomposition pathway diagram of Fe(mal) 

Figure 3.91 Crystal structure of tetraaquabis(maleato)nickel(II)  
                        [Ni(mal)] (Gupta et al., 1984; Zhou et al., 1987; 
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                        Sequeira et al., 1992) 
 
Figure 3.92  Postulated structure of tetraaquabis(maleato)iron(II)    
                        [Fe(mal)] (Gupta et al., 1977; Porollo et al., 1997;  
                        Barman et al., 2002) 
 
Figure 3.93 Electrophoresis results of incubating pBR322 with varying 

concentration of  Ni(mal) with H2O2
 lane 2, DNA alone; lane 3, DNA + H

. Lane 1, DNA Ladder;  
2O2

                       10 mM Ni(mal). Lane 5-12 involve DNA + H
; lane 4, DNA +  

2O2

                       10 mM. 

 + different 
concentration of Ni(mal): lane 5, 3 mM; 6, 4 mM; 7, 5 mM; 
8, 6 mM; 9, 7 mM; 10, 8 mM, 11, 9 mM; and lane 12,  

 
Figure 3.94 Electrophoresis results of incubating pBR322 with varying 

concentration of  Fe(mal) with H2O2
lane 2, DNA alone; lane 3, DNA + H

. Lane 1, DNA Ladder;  
2O2

4.1 mM Fe(mal). Lane 5-12 involve DNA + H
; lane 4, DNA +  

2O2

4.0 mM; and lane 12, 4.1 mM. 

 + 
different concentration of Fe(mal): lane 5, 3.4 mM; 6, 3.5 
mM; 7, 3.6 mM; 8, 3.7 mM; 9, 3.8 mM; 10, 3.9 mM, 11,  

 
Figure 3.95 Effect of radical scavengers on the reaction of DNA with  
                        6 mM Ni(mal) and H2O2. Lane 1, DNA ladder; lane 2, 

DNA alone; lane 3, DNA + 6 mM Ni(mal); lane 4, DNA + 6 
mM Ni(mal) + H2O2. Lane 5-10 involve reaction of Ni(mal) 
with DNA in presence of various scavengers; lane 5, 2 µL 
DMSO; lane 6, 1 mM D-mannitol; lane 7, 2 µL tert-butanol; 
lane 8, 1 mM KI; lane 9, 1 mM NaN3, and lane 10, 1.5 mM 
NaN3

 
. 

Figure 3.96 Effect of radical scavengers on the reaction of DNA with  
                        3.5 mM Fe(mal) and H2O2. Lane 1, DNA ladder; lane 2, 

DNA alone; lane 3, DNA + 3.5 mM Fe(mal); lane 4, DNA + 
3.5 mM Fe(mal) + H2O2. Lane 5-10 involve reaction of 
Fe(mal) with DNA in presence of various scavengers; lane 
5, 2 µL DMSO; lane 6, 1 mM D-mannitol; lane 7, 2 µL tert-
butanol; lane 8, 1 mM KI; lane 9, 1 mM NaN3, and lane 10, 
1.5 mM NaN3
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Figure 3.97 Reaction scheme and proposed structure for complex  
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Figure 3.98 Reaction scheme and proposed structure for complex    
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Figure 3.99  The appearance of the Ni(pdc) and Fe(pdc) complexes 

Figure 3.100  Infrared spectra of (a) pyridine-2,6-dicarboxylic acid and  
                         (b) Ni(pdc) 
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Figure 3.101  Infrared spectra of (a) pyridine-2,6-dicarboxylic acid and  
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Figure 3.108    The propose decomposition pathway diagram of Ni(pdc) 
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Figure 3.111  Crystal structure of dipotassium bis(pyridine-2,6- 
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Figure 3.112  Crystal structure of hydronium bis(pyridine-2,6-

dicarboxylato)iron(III) [Fe(pdc)] (Cousson et al., 1992; 
Marsh, 1993) 

 
Figure 3.113 Electrophoresis results of incubating pBR322 with varying 

concentration of Ni(pdc) with H2O2
lane 2, DNA alone; lane 3, DNA + H

. Lane 1, DNA Ladder;  
2O2

8 mM Ni(pdc). Lane 5-12 involve DNA + H
; lane 4, DNA +  

2O2

8 mM. 

 + different 
concentration of Ni(pdc): lane 5, 1 mM; 6, 2 mM; 7, 3 mM; 
8, 4 mM; 9, 5 mM; 10, 6 mM, 11, 7 mM; and lane 12,  

 
Figure 3.114  Electrophoresis results of incubating pBR322 with varying 

concentration of Fe(pdc) with H2O2
lane 2, DNA alone; lane 3, DNA + H

. Lane 1, DNA Ladder;  
2O2

1.3 mM Fe(pdc). Lane 5-12 involve DNA + H
; lane 4, DNA +  

2O2

0.7 mM; 7, 0.8 mM; 8, 0.9 mM; 9, 1.0 mM; 10, 1.1 mM, 11, 
1.2 mM; and lane 12, 1.3 mM. 

 + 
different concentration of Fe(pdc): lane 5, 0.6 mM; 6,  
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Figure 3.115 Effect of radical scavengers on the reaction of DNA with   
                        2 mM Ni(pdc) and H2O2

                        alone; lane 3, DNA + 2 mM Ni(pdc); lane 4, DNA + 2 mM  

. Lane 1, DNA ladder; lane 2, 
DNA   

                        Ni(pdc) + H2O2
                        DNA in presence of various scavengers; lane 5, 2 µL   

. Lane 5-10 involve reaction of Ni(pdc) with   

                        DMSO; lane 6, 1 mM D-mannitol; lane 7, 2 µL tert-butanol;   
                        lane 8, 1 mM KI; lane 9, 1 mM NaN3
                        NaN

, and lane 10, 1.5 mM  
3
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Figure 3.116 Effect of radical scavengers on the reaction of DNA with 

1.1 mM Fe(pdc) and H2O2. Lane 1, DNA ladder; lane 2, 
DNA alone; lane 3, DNA + 1.1 mM Fe(pdc); lane 4, DNA + 
1.1 mM Fe(pdc) + H2O2. Lane 5-10 involve reaction of 
Fe(pdc) with DNA in presence of various scavengers; lane 
5, 2 µL DMSO; lane 6, 1 mM D-mannitol; lane 7, 2 µL tert-
butanol; lane 8, 1 mM KI; lane 9, 1 mM NaN3, and lane 10, 
1.5 mM NaN3
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SINTESIS, PENCIRIAN DAN SIFAT BIOLOGI KOMPLEKS NIKEL- DAN 

FERUM- KARBOKSILAT 

 

ABSTRAK 

 

Dalam projek penyelidikan ini, sembilan kompleks Ni(II) telah berjaya disintesiskan 

daripada tindak balas antara nikel(II) klorida heksahidrat, NiCl2.6H2O dengan ligan 

asid amino (glisina, β-alanina dan L-histidina), ligan asid karboksilik (asid 2-

pikolinik, asid 3,5-dinitrobenzoik, asid 4-aminobenzoik dan asid pirazina-2-

karboksilik) dan ligan asid dikarboksilik (asid maleik dan asid piridina-2,6-

dikarboksilik). Selain itu, dua kompleks Fe(II) dan satu kompleks Fe(III) juga telah 

berjaya disintesis. Kompleks Fe(II) disintesis daripada tindak balas antara ferum(II) 

klorida 4-hidrat, FeCl2.4H2O dengan ligan asid pirazina-2-karboksilik dan asid 

maleik masing-masing. Manakala kompleks Fe(III) disintesis daripada tindak balas 

ferum(III) klorida dengan ligan asid piridina-2,6-dikarboksilik. Nisbah stoikiometri 

logam kepada ligan yang digunakan ialah 1:2. Kompleks-kompleks ini dicirikan 

melalui analisis takat lebur, keterlarutan, konduktiviti, Spektroskopi Inframerah (IR), 

Mikroanalisis CHN, Spektroskopi Penyerapan Atom (AAS), Spektroskopi 

Ultralembayung Ungu (UV-Vis), Analisis Siklik Voltammetrik (CV), Analisis 

Termogravimetrik (TGA) dan X-ray Kristalografi. Selain itu, interaksi antara 

kompleks logam dengan DNA pBR322 juga dikaji melalui eksperimen gel 

elektroforesis, manakala aktiviti sitotoksik kompleks logam tersebut pula dikaji 

melalui pengasaian MTT. Analysis keputusan IR menunjukkan kesemua ligan terikat 

secara monodentat kepada atom pusat Ni dan Fe melalui kumpulan COO-. Analisis 
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UV-Vis menunjukkan bahawa keadaan pengoksidaan bagi nikel dalam kompleks 

ialah +2 dan mempunyai konfigurasi d8 manakala kompleks Fe(II) dan Fe(III) 

mempunyai keadaan pengoksidaan +2 dan +3 dan konfigurasi d6 dan d5

 

 masing-

masing. Analisis CV menunjukkan bahawa semua kompleks mempunyai sifat redoks 

pembalikan yang penting dalam kegunaan biologi. Hasil kajian eksperimen gel 

elektroforesis menunjukkan kesemua kompleks logam berjaya membuat pemotongan 

plasmid DNA dimana pemotongan tersebut menghasilkan jaluran tunggal serta 

jaluran berganda DNA sebagai produk. Keberkesanan pemotongan plasmid DNA ini 

bergantung kepada kepekatan kompleks logam tersebut. Kompleks ferum 

mempamerkan keberkesanan pemotongan yang lebih efisien berbanding dengan 

kompleks nikel (II). Dalam keputusan pengasaian MTT, kesemua kompleks logam 

menunjukkan aktiviti sitotoksik terhadap sel turunan kanser HepG2. 
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SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL PROPERTIES 

OF NICKEL- AND IRON- CARBOXYLATE COMPLEXES 

 

ABSTRACT 

 

In this research, nine Ni(II) complexes were successfully synthesized using nickel(II) 

chloride hexahydrate, NiCl2.6H2O with amino acids (Glycine, β-alanine and L-

histidine), carboxylic acids (2-picolinic acid, 3,5-dinitrobenzoic acid, 4-

aminobenzoic acid and pyrazine-2-carboxylic acid) and with dicarboxylic acids 

(maleic acid and pyridine-2,6-dicarboxylic acid). Besides, two Fe(II) complexes and 

one Fe(III) complexes were also successfully synthesized. Fe(II) complexes were 

synthesized using iron(II) chloride 4-hydrate, FeCl2.4H2O with pyrazine-2-

carboxylic acid and maleic acid respectively. While Fe(III) complex was synthesized 

using ferric chloride anhydrous, FeCl3 with pyridine-2,6-dicarboxylic acid. 

Stoichiometry ratio of metal to ligand being used is 1:2. These complexes were 

characterized by determination of melting point, solubility, conductivity 

measurement, Fourier Transform Infrared Spectroscopy (FTIR), CHN microanalysis, 

Analysis of Atomic Absorption Spectroscopy (AAS), Ultraviolet-Visible 

Spectrometry (UV-Vis), Cyclic Voltammetry (CV), Thermogravimetric Analysis 

(TGA) and X-ray crystallography. Besides that, the interaction between the metal 

complexes and pBR322 DNA will be investigated by gel electrophoresis experiments, 

while the cytotoxic activity of the complexes was tested by MTT Assay. FT-IR 

analysis result shows that the carboxylate group in all of the ligand were coordinated 

to the central metal ion monodentately. The UV-Vis analysis shows that the 

oxidation state for nickel complexes is +2 and its configuration system is d8 
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meanwhile the oxidation state for Fe(II) and Fe(III) complexes are +2 and +3 and 

configuration systems are d6 and d5

 

 respectively. The CV analysis shows that all the 

complexes have reversible redox properties which are very important in biological 

uses. Gel electrophoresis experiments show that all the complexes successfully 

promote the cleavage of plasmid DNA, producing single and double DNA strand 

breaks. In MTT assay results, all of the complexes showed cytotoxic activity against 

HepG2 cancer cell lines. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Nickel 

Nickel is a transition metal with the symbol Ni and atomic number 28. It is a 

silvery white metal that takes on a high polish. It is hard, malleable, ductile, 

ferromagnetic, and a fair conductor of heat and electricity. Nickel can forms a 

number of complex compounds. Many of these nickel compounds are water soluble 

and have a characteristic green or blue color. Nickel and its compounds have no 

characteristic odor or taste. The most common oxidation state of nickel is +2, though 

0, +1, +3 and +4 Ni complexes are observed. 

 

1.1.1  Applications of Nickel 

 Properties of nickel make it very desirable for combining with other metals to 

form mixtures called alloys. Some of the metals that nickel can be alloyed with are 

iron, copper, chromium, and zinc. These alloys are used in making metal coins and 

jewellery and in industry for making items such as valves and heat exchangers. 

Nickel is mostly used to make stainless steel. There are also compounds consisting of 

nickel combined with many other elements, including chlorine, sulfur, and oxygen. 

Nickel compounds are used for nickel plating, to color ceramics, to make some 

batteries, and as catalysts to increase the rate of chemical reactions.  

Besides, nickel is required for the function of several enzymes in the human 

body. Nickel is found in factor F430, which is required for methanogenesis, a 

process used by the archaeobacteria in which the simple gases, such as H2, CO, and 

http://en.wikipedia.org/wiki/Oxidation_state�
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CO2

 

, are used to provide both energy and a carbon source (Figure 1.1) (Crabtree, 

1988; Lippard and Berg, 1994). 

 
 

 

Figure 1.1 Metals in biological systems: nickel in factor F430 

1.2 Iron 

Iron is a chemical element with the symbol Fe and atomic number 26. Iron is 

a lustrous, ductile, malleable and silver-grey metal. It is one of the few ferromagnetic 

elements. It is known to exist in four distinct crystalline forms. Iron rusts in dump air, 

but not in dry air. It dissolves readily in dilute acids. Iron is chemically active and 

forms two major series of chemical compounds, the bivalent iron (II), or ferrous, 

compounds and the trivalent iron (III), or ferric, compounds. 

 

1.2.1 Applications of Iron 

Iron is the most widely used of all the metals, accounting for 95% of 

worldwide metal production. Its low cost and high strength make it indispensable in 

engineering applications such as the construction of machinery and machine 

tools, automobiles, the hulls of large ships, and structural components for buildings. 

Since pure iron is quite soft, it is most commonly used in the form of steel. Some of 

Factor F430 

http://en.wikipedia.org/wiki/Chemical_element�
http://en.wikipedia.org/wiki/Atomic_number�
http://en.wikipedia.org/wiki/Ferromagnet�
http://en.wikipedia.org/wiki/Automobile�
http://en.wikipedia.org/wiki/Hull_(ship)�
http://en.wikipedia.org/wiki/Ship�
http://en.wikipedia.org/wiki/Building�
http://en.wikipedia.org/wiki/Steel�


 3 

the forms in which iron is produced commercially include cast iron, wrought iron, 

carbon steel, alloy steels, iron(III) oxides. 

In biological system, iron is found in a variety of iron-sulfur clusters, which 

are necessary for nitrogen fixation, as well as in heme groups, found in hemoglobin, 

which is used for dioxygen transport and storage in the body (Figure 1.2) (Crabtree, 

1988; Lippard and Berg, 1994). 

 

 

Figure 1.2 Metals in biological systems: iron in heme, which is found in hemoglobin 

1.3 

Transition metal complexes have been the subject of thorough investigation 

because of their extensive applications in wide ranging areas from material sciences 

to biological sciences (Boerner and Zaleski, 2005). Metal complexes are well-known 

to accelerate the drug action and the efficacy of a therapeutic agent can often be 

enhanced upon coordination with a metal ion (Goldstein et al., 1986). The 

pharmacological activity has also been found to be highly dependent on the nature of 

the metal ion and the donor sequence of the ligands as different ligands exhibit 

different biological properties (Delaney et al., 2002). In recent years, the binding 

studies of transition metal complexes have become an important field in the 

Transition Metal Complexes 

Heme 
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development of DNA molecular probes and chemotherapeutics (Dardlier et al., 

1997).  

 The carboxylate group is an important class of ligand in inorganic and 

bioinorganic chemistry. 

 The chemistry of nickel (II) complexes with simple carboxylate anions has 

been widely studied (Sacconi et al., 1987; Oldham, 1968). And several examples of 

dicarboxylate complexes of this metal have also been described (Krisnamurty and 

Harris, 1961). The versatility in coordination modes exhibited by these kinds of 

ligands, together with their ability to form polymeric species make its structural 

chemistry particularly interesting. Related systems with another function besides the 

carboxylate group like pyridine-2 carboxylate, glycine and 2-aminobenzoic acid have 

also received recent attention (D'Avignon and Brown, 1982; Carmona et al., 1990; 

Zhong et al., 1994; Abbot et al., 1995). 

Metal complexes containing monocarboxylic acids are well 

known and the publication of many structurally characterised examples of this class 

of compound has demonstrated the versatility of the carboxylate group as an 

innersphere ligand (Mehrotra and Bohra, 1983). 

 

1.4 DNA 

DNA, or deoxyribonucleic acid, is the hereditary material in humans and 

almost all other organisms. Nearly every cell in a person’s body has the same DNA. 

Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small 

amount of DNA can also be found in the mitochondria (where it is 

called mitochondrial DNA or mtDNA). 

The information in DNA is stored as a code made up of four chemical bases: 

adenine(A), guanine(G), cytosine(C), and thymine(T). Human DNA consists of 

http://ghr.nlm.nih.gov/chromosome=MT�
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about 3 billion bases, and more than 99 percent of those bases are the same in all 

people. The order, or sequence, of these bases determines the information available 

for building and maintaining an organism, similar to the way in which letters of the 

alphabet appear in a certain order to form words and sentences. 

DNA bases pair up with each other, A with T and C with G, to form units 

called base pairs. Each base is also attached to a sugar molecule and a phosphate 

molecule. Together, a base, sugar, and phosphate are called a nucleotide. Nucleotides 

are arranged in two long strands that form a spiral called a double helix (Figure 1.3). 

The structure of the double helix is somewhat like a ladder, with the base pairs 

forming the ladder’s rungs and the sugar and phosphate molecules forming the 

vertical side pieces of the ladder. 

 

                     (A)          (B) 

Figure 1.3 (A) The structure of part of a DNA double helix (B) The chemical 
structure of DNA (http://schools-wikipedia.org/wp/d/DNA.htm) 
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1.5 The Interaction of Transition Metal Complexes and DNA 

Transition metal complexes have been of interest in the field of cancer 

research. They had been widely studied for their antimicrobial and anticancer 

properties. This is because they exhibit unique spectral and electrochemical 

signatures, as well as the ability of their ligands to be modulated to DNA binding and 

cleaving abilities. 

Many biological studies suggest that DNA is the primary intracellular target 

of anticancer drugs because of the interactions between small molecules and DNA 

can often cause DNA damage in cancer cells, blocking the division of cancer cells 

and resulting in cell death (Hecht, 2000). Of those studies, the interaction of 

transition metal complexes with DNA has gained much attention owing to their 

possible application as new therapeutic agents (Metcalfe and Thomas, 2003).  

A number of transition metal complexes with planar aromatic heterocyclic 

ligands have been used as probes of DNA secondary structure and therapeutic agents, 

and the biological activities of these DNA targeted complexes usually increase 

compared with those of either free ligands or metal ions alone, which may be due to 

different binding properties of these complexes to DNA (Lewandowski et al., 2005). 

The type of central metal ions, which is responsible for the geometry of complexes, 

also has significant influence on the intercalating ability of transition metal 

complexes to DNA (Chaires, 1997; Mozaffar et al., 2004). 

It is believed that the biological activity of antitumor metal complexes is 

strictly connected to their abilities to bind to DNA, damage DNA structures and 

impair DNA functions (Burrows and Rokita, 1994). Impairment of DNA function 

results in inhibition of replication and transcription process and even in cell death, if 
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eventually the DNA lesions are not rapidly and properly repaired (Sitlani et al., 1992; 

Li et al., 2005). 

Basically, transition metal complexes interact with double helix DNA in 

either noncovalent or covalent way. Concerning the noncovalent interactions 

between transition metal complexes and DNA, they can occur by intercalation, 

groove binding, or external electrostatic binding. Intercalation consists of the 

insertion of a flat aromatic molecule between two adjacent bases. Groove binding is 

a stronger type of interaction that takes place when a molecule of proper size enters 

one of the grooves of DNA. External electrostatic binding refers to those interactions 

that occur on the DNA surface, mainly governed by electrostatic effects. Among 

these interactions, intercalation is one of the most important DNA binding modes. It 

was reported that the intercalating ability appeared to increase with the planarity of 

ligands.  

Specifically we investigated the interaction between the metal complex and 

DNA by gel electrophoresis. When circular plasmid DNA is conducted by 

electrophoresis, the fastest migration will be observed for the supercoiled form 

(Form I). If one strand is cleaved, the supercoiled form will relax to produce a slower 

moving nicked circular form (Form II) (An et al., 2006). If both strands are cleaved, 

a linear form (Form III) will be generated that migrates in between (Masataka et al., 

1999). Hence, DNA strand breaks were quantified by measuring the transformation 

of the supercoiled form into nicked circular and linear forms (Figure 1.4). 
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Figure 1.4 Three forms of DNA that can be tracked using agarous gel electrophoresis 
 

 
1.6 Transition Metal Complexes as Anticancer Agents 

In the history of coordination complexes in cancer therapy, the first transition 

metal to be used successfully as an anticancer agent was platinum. It was used in a 

compound cis-[Pt(NH3)2Cl2

Systemic toxicity of cisplatin gives rise to a number of limitations. Serious 

side-effects such as nausea, nephrotoxicity, neurotoxicity and ototoxicity occur often 

(Reedijk, 1996). In addition, cisplatin, which is administered intravenously has 

limited solubility in aqueous solution (Wong and Giandomenico, 1999). Therefore, 

these have stimulated a search for other transition metal complexes which have 

higher activity and reduced side-effects.  

] or cisplatin (Figure 1.5). Its ability to inhibit tumors 

was discovered by Rosenberg around 1969 (Rosenberg et al., 1969 & 1970). 

Cisplatin entered clinical trials in 1971 and was approved by the FDA in 1978 

(Higby et al., 1974). It has become one of the most widely used drugs in cancer 

chemotherapy. The platinum drugs such as carboplatin, nedaplatin and oxaliplatin 

(Figure 1.6) are frequently used in combination therapy for numerous solid tumours, 

including ovarian, head and neck, testicular, bladder, colorectal, gastric, melanoma 

and small-cell lung cancer (Giaccone, 2000). 
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Figure 1.5 Structural formula of cisplatin 

 

 

Figure 1.6 Cisplatin analogues used in the clinic 

 

1.7 Mechanism of DNA Cleavage 

McCord and Fridovich were the first to discover that the enzyme superoxide 

dismutase is able to dismutate superoxide anion to form oxygen and hydrogen 

peroxide (McCord and Fridovich, 1969). Transition metal complexes were found can 

induce DNA cleavage by generating reactive oxygen species (ROS). These ROS 

have been found to interact directly with DNA or DNA components via singlet 

oxygen species (O2•) and hydroxyl radicals (∙OH). One of the methods from which 

it is produced is the Fenton reaction (Figure 1.7), where a transition metal is oxidised 

to a higher oxidised state, by donating an electron to a hydrogen peroxide species, 

resulting in the formation of a hydroxyl radical and a hydroxyl ion. ·OH is one of the 

most studied reactive biological radicals, and has been implicated in reactions with 

the nucleic acid bases of DNA. ·OH reacts preferentially with the π-bonds of DNA 

bases, but can also interact with the sugar units by hydrogen abstraction. ·OH is 

known to react with each of the four DNA bases, resulting in mutagenic lesions. 

                    carboplatin        nedaplatin         oxaliplatin 
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While, literature have shown that O2˙− radicals cannot induce DNA damage (Muller 

and Burrows, 1998). These O2˙− can react with H+ to generate H2O2 which in turn 

can react with more O2˙− 

The ·OH radical will attack the guanine moiety at the C4, C5 or the C8 

position. Guanine is the most sensitive base towards oxidative attack. Floyd et al. 

was proving that the major product formed by ∙OH and guanine was 8-

hydroxyguanine (8-OH-Gua) suggesting that ∙OH radicals are involved in the attack 

of purine bases (Floyd et al., 1986). From Figure 1.8, adduct 1 and 2 revert back to 

guanine by gaining an electron via thiols generated in the cells. Adduct 3 (8-OH-Gua) 

can be oxidised to form 8-oxo-Gua and reduced to form formamidopyrimidine 

(Fapy-G). Cadet et al. also implicated the ·OH in tandem DNA base damage (Cadet 

et al., 1999). This damage via the Fenton reaction can be mediated in vivo by labile 

transition metals, such as iron (Fe), copper (Cu) and nickel (Ni) (Lloyd and Phillips, 

1999). 

to generate more ∙OH via Harber-Weiss reactions.  

 

 

 

 

 

 
 
 

Figure 1.7 Mechanism of Fenton reaction (X represents metal) 
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Figure 1.8 Schematic representation for the reaction of guanine with hydroxyl 
                        radicals 
 
 
1.8 Biological Activity of Nickel(II) Complexes 

Nickel is a compound that occurs in the environment only at very low levels. 

However, exposure to high levels of nickel pollution has been linked to nasal and 

lung cancer and nickel is therefore considered a carcinogen (Matkar et al., 2006).   

The Occupational Safety and Health Administration (OSHA) has set an 

enforceable limit of 1.0 mg nickel/m³ for metallic nickel and nickel compounds in 

workroom air to protect workers during an 8-hour shift over a 40-hour work week. 

The Environmental Protection Agency (EPA) recommends that drinking water levels 

for nickel should not be more than 0.1 mg per liter. 

Nickel plays versatile and sometimes controversial roles in living systems 

(Lancaster, 1998). Biological effects of nickel are closely related to its chemical 

forms of existence. For example, water-insoluble crystalline Nickel sulfate, NiS and 
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Nickel(II) oxide, NiO were suspected to induce human lung and nasal cancers (IARC, 

1990), while animal studies suggested that water-soluble nickel sulfate did not cause 

a higher incidence of lung cancer statistically (Dunnick et al., 1995). 

As a platinum group metal, nickel(II) may share some similarity with 

platinum(II). In fact, several nickel complexes have been found to inhibit 

proliferation of diverse cancer cells (Ferrari et al., 2002; Liang et al., 2004; Matkar et 

al., 2006). In addition, the ability of certain nickel compounds to interact with DNA 

and RNA has been exploited for research purposes. 

One of the synthetic nickel complexes extensively studied in the past because 

of its ability to catalyze limited cleavage of nucleic acids contains a ligand known as 

CR (2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(17),2,11,13,15-

pentaene). [NiCR]2+ (Figure 1.9) has been used in the past as a structure-specific 

probe for RNA and DNA oligonucleotides in the presence of oxidizing agent but 

little is known about the biological effects of either complex. Matkar et al. show that 

[Ni(CR-2H)]2+ can damage DNA in the absence of an added oxidizing agent, oxone 

(Figure 1.10) and has an IC50 of 70 µM in human breast cancer cells whereas 

[NiCR]2+ and NiCl2 do not exhibit significant cytotoxicity (Figure 1.11). However, 

both [NiCR]2+ and [Ni(CR-2H)]2+

N

NiN N

N

H

2+

N

NiN N

N

2+

[NiCR] 2+ [NiCR-2H] 2+

 bind to the minor groove of double-stranded DNA 

(Matkar et al., 2006). 

 

Figure 1.9 The structures of [NiCR]2+ and [Ni(CR-2H)]2+ (Matkar et al., 2006) 
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Figure 1.10 [NiCR]2+ and [Ni(CR-2H)]2+ caused double-stranded DNA damage in 
vitro in the presence of oxone. The gel shows the DNA samples after piperidine 
treatment. Lane 1, linearized plasmid DNA treated with [NiCR]2+ and oxone; lane 2, 
DNA treated with [Ni(CR-2H)]2+

 

 and oxone; lane 3, DNA treated with oxone; lane 4, 
untreated control; M, marker (PstI-cut lambda DNA) (Matkar et al., 2006) 

 

Figure 1.11 Cytotoxicity of [Ni(CR-2H)]2+. MCF-7 human breast cancer cells were 
treated with 10, 25, 50, 100 or 200 µM NiCl2, [NiCR]2+ or [Ni(CR-2H)]2+ and cell 
viability was determined by MTS assay. Diamonds (♦) stand for [Ni(CR-2H)]2+, 
squares (■) for [NiCR]2+, and triangles (▲) for NiCl2 
 

(Matkar et al., 2006) 

 
Besides, Afrasiabi and partners have also done the research on the nickel(II) 

complexes of naphthaquinone thiosemicarbazone (NQTS) and semicarbazone 

(NQSC) (Afrasiabi et al., 2005). These two nickel complexes, Ni(NQTS)2 and 

Ni(NQSC)2 were screened in vitro against MCF-7 breast cancer cell lines for their 

antiproliferation activity. 
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Figure 1.12 shows the IC50

 

 values (µM) for the two ligands and their 

nickel(II) complexes. It is observed that complexation with metal ion in both NQTS 

and NQSC ligands increases the inhibitory action on MCF-7 cell proliferation. The 

enhancement of antiproliferation activity by metal complexes can be related to an 

increase in the lipophilicity so they can penetrate into the cells more easily (Petering 

et al., 1966). It has also been suggested that metal complexation may be a vehicle for 

activation of the ligand as the cytotoxic agent (Beraldo et al., 2004).  

 

Figure 1.12 Cytotoxic effects of NQTS and NQSC and their nickel(II) 
complexes on MCF-7 human breast cancer cells (Afrasiabi et al., 2005) 

 

1.9 Biological Activity of Iron Complexes 

Iron is one of the most important microelements for human health and is 

known to interact with numerous other dietary components (Lynch, 1997). Iron often 

exists in the state of complex in the body, which endows it a great deal of 

physiological function.  

Iron is essential to most life forms and to normal human physiology. It is an 

integral part of many proteins and enzymes that maintain good health. In humans, 

iron is an essential component of proteins involved in oxygen transport. It is also 
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essential for the regulation of cell growth and differentiation. A deficiency of iron 

limits oxygen delivery to cells, resulting in fatigue, poor work performance, and 

decreased immunity.  

Iron in the form of complex may take part in the process of transportation and 

exchange of the oxygen in blood and also participates in other important metabolism 

as iron enzyme. However, because Fe2+

On the other hand, excess amounts of iron can result in toxicity and even 

death (Corbett, 1995). Excessive iron can be toxic, because free ferrous iron reacts 

with 

 in food has a low biological value it may 

exchange into the insoluble compounds, which are hard to be adsorbed for its 

characteristics of being prone to be oxidized and interrupted by oxalate and 

phosphate (Goldstein and Samuni, 2005). The deficiency of iron micronutrient is one 

of the most prevalent nutritional problems of humans in developing countries. It has 

been shown that growing children and women of reproductive age are most 

vulnerable to the deficiency (Bloem, 1995; Ribaya-Mercado, 1997). Studies show 

that iron absorption in the body is influenced by several factors, including animal 

species, dietary factors, i.e. ascorbic acid (Monsen, 1988), pectin content, phytate 

(Morris and Ellis, 1982), protein sources and amino acids (Martinez-Torres et al., 

1981) and the other minerals. 

peroxides to produce free radicals, which are highly reactive and can 

damage DNA, proteins, lipids, and other cellular components. Thus, iron toxicity 

occurs when there is free iron in the cell, which generally occurs when iron levels 

exceed the capacity of transferrin to bind the iron. Humans experience iron toxicity 

above 20 milligrams of iron for every kilogram of mass, and 60 milligrams per 

kilogram is a lethal dose. The Dietary Reference Intake (DRI) lists the Tolerable 

http://en.wikipedia.org/wiki/Peroxide�
http://en.wikipedia.org/wiki/Free_radical�
http://en.wikipedia.org/wiki/DNA�
http://en.wikipedia.org/wiki/Proteins�
http://en.wikipedia.org/wiki/Lipids�
http://en.wikipedia.org/wiki/Transferrin�
http://en.wikipedia.org/wiki/Kilogram�
http://en.wikipedia.org/wiki/Lethal_dose�
http://en.wikipedia.org/wiki/Dietary_Reference_Intake�
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Upper Intake Level (UL) of iron for adults as 45 mg/day while for children under 

fourteen years old is 40 mg/day.  

El Amrani et al. have reported [Fe(3hf)2Cl(MeOH)] complex as shown in 

Figure 1.13 for their ability to cleave DNA (El Amrani et al., 2006). As shown in 

Figure 1.14, FeCl3 do not show any DNA cleavage. While at 23 µM of the 

[Fe(3hf)2

 

Cl(MeOH)] complex, a mixture of supercoiled plasmid and nicked circular 

is observed. 

 

 
 
 

Figure 1.13 ORTEP drawing of the [Fe(3hf)2
          (El Amrani et al., 2006) 

Cl(MeOH)] complex 

 

 

 

http://en.wikipedia.org/wiki/Milligram�
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Figure 1.14  Agarose gel electrophoresis of pUC18 plasmid DNA treated with 
complex, FeCl3, and a mixture FeCl3 + H3hf (1:2) in the presence of the 1 equiv 
ascorbate/H2O2 . Lane 1: λDNA/EcoR1 + HindIII Marker; lane 2: supercoiled DNA; 
lane 3: supercoiled DNA + ascorbate/H2O2; lane 4: 15 µM FeCl3; lane 5: 21 µM 
FeCl3; lane 6: 27 µM FeCl3; lane 7: 27 µM FeCl3

 

 + 54 µM H3hf; lane 8: 15 µM 
complex; lane 9: 18 µM complex; lane 10: 21 µM complex; lane 11: 23 µM complex; 
lane 12: 25 µM complex; lane 13: 26 µM complex; lane 14: 27 µM complex; lane 15: 
30 µM complex (El Amrani et al., 2006) 

 
 
 Besides, Travnicek and coworkers have tested iron complexes involving   

N6-benzyladenosine derivatives (L1–L7) of the predominant composition 

[Fe(L)Cl3]·H2O for their in vitro cytotoxicity against human cancer cell lines of 

malignant melanoma (G-361), osteogenic sarcoma (HOS), chronic myelogenous 

leukemia (K-562), and breast adenocarcinoma (MCF-7) (Travnicek et al., 2008). All 

free N6-(benzylamino)adenosine derivatives (L1–L7), used as ligands, showed 

cytotoxicity with IC50 > 50 µM, and FeCl3·6H2O even above 200 µM. The results of 

selected IC50 values is shown in Table 1.1. From the results, complex 2, 

[Fe(L2)Cl3]·H2O showed significant cytotoxicity against the HOS, K-562, and 

MCF-7 cell lines, respectively. Moreover, a considerable cytotoxicity has been found 

for the complex 6, [Fe(L6)Cl3]·H2

 

O on the MCF-7 cell line. 
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Table 1.1 Selected IC50

 

 (µM) values assessed by a calcein AM assay (Travnicek et 
al., 2008) 

Compound         IC50 (µM) 
G-361 HOS K-562 MCF-7 

[Fe(L2)Cl3] · H2 >50 O (2) 8 9 16 
L >50 2 >50 >50 >50 
[Fe(L6)Cl3] · H2 >50 O (6) >50 >50 4 
L >50 6 >50 >50 >50 
FeCl3·6H2 >200 O >200 >200 >200 

L2=N6-(4-fluorobenzyl)adenosine; L6=N6-(4-trifluoromethoxybenzyl)adenosine. 
The human cancer cell lines (G-361, malignant melanoma; HOS, osteogenic sarcoma; 
K-562, chronic myelogenous leukemia; MCF-7, breast adenocarcinoma) were treated 
with the solution of the tested compound in the 0.5-50 µM range for 72 h, except for 
FeCl3·6H2
 

O, where the concentration range of 0.5-200 µM was used. 

1.10 Objectives and Scope of Study 

The objectives of this research is to synthesize a series of complexes formed 

by the reaction of carboxylic acids with nickel(II) chloride hexahydrate, NiCl2.6H2O, 

iron(II) chloride 4-hydrate, FeCl2.4H2O and ferric chloride anhydrous, FeCl3

 

 

respectively. The acids utilised were amino acid, carboxylic acid and dicarboxylic 

acid derivatives and are listed in Table 1.2. 

Table 1.2 Carboxylic acids utilised in this study 
 

Acids  Name 
Amino acid derivatives Glycine; β-alanine; L-histidine. 

 
Carboxylic acid 
derivatives 

2-picolinic acid; 3,5-dinitrobenzoic acid; 4-aminobenzoic 
acid; pyrazine-2-carboxylic acid. 
 

Dicarboxylic acid 
derivatives  

Maleic acid; pyridine-2,6-dicarboxylic acid 
 

 

The complexes that are successfully synthesized will be characterized by 

determination of melting point, solubility, conductivity measurement, elemental 

microanalysis (C, H, N), Atomic Absorption Spectrometry (AAS), Fourier 
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Transform Infrared Spectroscopy (FTIR), Ultraviolet-Visible Spectrometry (UV-Vis), 

Cyclic Voltammetry (CV) and X-ray crystallography.  

Besides that, the interaction between the metal complexes and pBR322 DNA 

will be investigated by gel electrophoresis experiments, while the cytotoxic activity 

of the complexes will be tested against human hepatoma cell line

 

 (HepG2). 

 

 



 20 

CHAPTER 2 

MATERIALS AND METHODS 

2.1 Reagents 

Table 2.1 and Table 2.2 show the features and the suppliers for all the 

chemicals and biochemicals which were used in this research. All of these chemicals 

were used without further purification. 

 

Table 2.1 Chemicals used in this research 

Chemicals Molecular 
Weight 
(g/mol) 

Purity 
(%) 

Supplier 

Nickel(II) chloride hexahydrate 
NiCl2.6H2

237.70 
O  

97% Riedel-deHaen 

Iron(II) chloride 4-hydrate 
FeCl2.4H2

198.81 
O 

98% BDH Chemicals Ltd. 

Ferric chloride anhydrous 
FeCl

162.21 
3 

98% GCE Laboratory 
Chemicals 

Glycine 
C2H5NO

75.07 
2 

100.11% Fisher Chemicals 

β-alanine 
C3H7NO

89.09 
2 

≥ 99% Fluka Chemika 

L-histidine 
C6H9N3O

155.16 
2 

99% BDH Chemicals 

2-picolinic acid 
C6H5NO

123.11 
2 

98% Fluka Chemika 

Pyrazine-2-carboxylic acid 
C5H4N2O

124.10 
2 

99% Aldrich 

3,5-dinitrobenzoic acid 
C7H4O6N

212.12 
2 

99.5% BDH Chemicals Ltd. 

4-aminobenzoic acid 
C7H7NO

137.14 
2 

99.5% G.P.R 

Maleic acid 
C4H4O

116.08 
4 

≥ 99% Fluka Chemika 

Pyridine-2,6-dicarboxylic acid 
C7H5NO

167.12 
4 

≥ 98% Fluka Chemika 

Potassium Hydroxide 
KOH 

56.11 85% Systerm 
 

Sodium Hydroxide 
NaOH 

40.00 99% Systerm 

Nitric Acid 
HNO

63.01 
3 

65% Systerm 
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Table 2.2 Biochemicals used in biology part 

Biochemicals Supplier 
pBR322 DNA Fermentas 

GeneRuler 1kb DNA Ladder Fermentas 
6X Loading Dye Solution Fermentas 

1X TAE buffer BIO-RAD Laboratories 
Tris-HCl AMRESCO 
DMSO Fluka Chemika 

Tert-butanol QReC 
D-mannitol R & M Chemicals 

Potassium Iodide, KI Fisher Scientific 
Hydrogen Peroxide, H2O Fluka Chemika 2 

Sodium Azide, NaN Fisher Scientific 3 
Ethidium Bromide, EtBr Fluka BioChemika 

HepG2  ATCC, Manassas, VA, USA 
Eagle’s Minimum Essential Medium, MEM Invitrogen (GIBCO), USA 

Fetal Bovine Serum, FBS Invitrogen (GIBCO), USA 
Phosphate Buffered Saline, PBS Invitrogen (GIBCO), USA 

Trypsin Invitrogen (GIBCO), USA 
MTT  Invitrogen (GIBCO), USA 

Penicillin Invitrogen (GIBCO), USA 
Streptomycin Invitrogen (GIBCO), USA 

 
 
2.2 Instrumentation 
 

The instrumentation used for the quantitative and qualitative characterization 

of the carboxylate complexes are listed in Table 2.3. 

 

Table 2.3 Instruments used for the quantitative and qualitative characterizations 

Instruments Model 
Melting Point Apparatus Gallenkamp Variable Heater 

Conductivity Measurement CyberScan 500 instrument 
FT-IR Spectrophotometer Perkin-Elmer System 2000 

Elemental Analyzer (CHNS/O) Perkin-Elmer Series II 2400 
Atomic Absorption Spectroscopy Perkin-Elmer AAS model 3100 

Ultraviolet-Visible (UV-Vis) Spectrometry Model Jasco V-530 
Cyclic Voltammetry (CV) BAS Epsilon EC-20 

Thermogravimetric Analysis (TGA) Mettler Toledo TGA/SDTA851e 
X-Ray Crystallography Bruker SMART APEX2 CCD 

 
 
 
 



 22 

2.3 Experimental 

Nickel(II) chloride hexahydrate was used as the starting material to prepare 

the complex. The molar ratio of starting material:ligand was in 1:2 ratio in the 

synthesis of the complexes. Nickel(II) chloride hexahydrate (1 g, 4.2070 mmol) was 

dissolved in 30 mL of distilled water. The green solution was put into a two-neck 

round flask. All the ligands were dissolved in 30 mL of distilled water before mixed 

into the two-neck round flask. Then the mixture was refluxed with constant stirring 

over an oil bath at 80 ºC for 3 hours. In alkaline condition, the pH of the mixture was 

adjusted to pH 8 with 2M KOH before heating it under reflux. After that, the solution 

was filtered while it was still hot. Then the filtrate was left to evaporate to dryness at 

room temperature. The crystals were obtained after a few days of evaporation. The 

synthesis methods for the complexes of iron(II) chloride 4-hydrate(1 g, 5.0299 mmol) 

and ferric chloride anhydrous (1 g, 6.1648 mmol) were same as the method above. 

 

2.4 Methods of Characterization 

 All the characterization analysis had been done in School of Chemical 

Sciences, Universiti Sains Malaysia. 

 

2.4.1 Determination of the melting point of complexes 

Melting point for each complex was determined using Gallenkamp Variable 

Heater in a capillary tube. The complex was observed through a window of the 

heater. The temperature was recorded when it was melted. 
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2.4.2 Conductivity Measurement 

The complexes were dissolved in warm distilled water. The measurement was 

conducted on molarity 10-3

 

 M of every complex solution by using CyberScan 500 

instrument. 

2.4.3 Analysis of Fourier Transform Infrared Spectroscopy (FT-IR) 

The infrared spectra of the complexes were obtained by using Perkin-Elmer 

System 2000 in the region of 4000-400 cm-1

Every dry analyte (complexes, ligands and salts of the ligands) was ground 

with potassium bromide (KBr) in the ratio of 1:10 to obtain fine and evenly ground 

powder. The fine powder was then pressed into pellets at 7 tonne of pressure by 

vacuum pump. Spectra were recorded from 400 to 4000 cm

 at room temperature. 

-1

 

. 

2.4.4 CHN Microanalysis 

Microanalysis for the elements of carbon, hydrogen and nitrogen were carried 

out by using CHNS/O Analyzer (Perkin-Elmer Series II 2400). 

 

2.4.5 Analysis of Atomic Absorption Spectrometry (AAS) 

This analysis was conducted to determine the nickel and iron content in each 

complex. It was carried out on a Perkin-Elmer Atomic Absorption Spectroscopy 

model 3100. The preparation of standard solution and sample solution was described 

as below: 

1) Preparation of standard solution 

The stock solution of nickel and iron were prepared from 1000 ppm of 

standard solution. While the stock solution of potassium was prepared from 10 ppm 
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of standard solution. Stock solution was pipetted to a 100 mL volumetric flask by 

using micropipette. Then the solution was diluted to 100 mL by using 2 % of nitric 

acid. 

A series of nickel, iron and potassium standard solution were prepared in the 

range of 1-5 ppm. The calibration curve for their total content was constructed based 

on the absorbances that were exhibited by a series of standard solutions as in 

Appendix. The calibration curve for nickel, iron and potassium are depicted in Figure 

2.1, Figure 2.2 and Figure 2.3 respectively. 

 

2) Preparation of sample solution 

 The stock solution of nickel complexes were prepared by dissolved 0.02 g of 

complex in 15 mL of concentrated nitric acid and diluted to 100 mL in 100 mL 

volumetric flask by using 2% of acid nitric. After that, 10 mL was pipetted from the 

volumetric flask into a 100 mL volumetric flask and diluted to 100 mL with 2% of 

nitric acid. The preparation for stock solution of iron complexes was the same as 

nickel. 

 

Absorbance vs Concentration of Nickel (ppm)
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Figure 2.1 The AAS calibration curve for nickel 
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Absorbance vs Concentration of Fe (ppm)
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Figure 2.2 The AAS calibration curve for iron 

 

 

Absorbance vs Concentration of K (ppm)
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Figure 2.3 The AAS calibration curve for potassium 

 

2.4.6 Analysis of Ultraviolet-Visible (UV-Vis) Spectrometry 

UV-Visible spectra were measured using Model Jasco V-530. Approximately 

0.03 g of sample was dissolved in distilled water. Dilution process was carried out to 

obtain clear spectra. The measurement wavelength was set in the range of            

200-1000 nm. 
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