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KESAN PENGOLAHAN HIDROTERMAL KE ATAS 

KEBOLEHEKSTRAKSI DAN KEBOLEHADAMAN TERBITAN 

HEMISELULOSA PELEPAH KELAPA SAWIT (Elaeis guineensis Jacq.)  

 

ABSTRAK 

 

Pelepah kelapa sawit (Elaeis guineensis Jacq.) (OPF), hasil sampingan dalam 

industri minyak kelapa sawit merupakan salah satu sumber bahan mentah di 

Malaysia. Pengekstrakan hemiselulosa daripada OPF telah dijalankan melalui dua 

pengolahan hidrotermal; letupan stim dan pemanasan dengan autoklaf. Campuran 

kepingan OPF-air atau OPF-KOH (1:10, w/v) diletup stim pada takat musnah 2.96–

3.84 (180–210 °C selama 4 min) sebelum diekstrak dengan air pada 70 °C selama 2 

jam. Dalam pengolahan menggunakan autoklaf, campuran kepingan OPF-air (1:10, 

w/v) diautohidrolisis pada takat musnah 1.92-2.52 (121 °C selama 20-80 min). 

Peletupan stim pada takat musnah 3.84 (210 °C selama 4 min) dan takat musnah 2.40 

(121 oC selama 60 min) di dalam autoklaf menghasilkan hemiselulosa larut air OPF 

(WS-STEXw_210, WS-STEXk_210, STAH_60) sebanyak 15.75 %, 26.50 % dan 

24.77 % masing-masing. Hemiselulosa larut air ini kemudiannya dihidrolisis dengan 

pelbagai kepekatan endo 1,4-ß-xilanase untuk menghasilkan xilo-oligosakarida 

(XOS). Hidrolisis enzimatik menggunakan 8U xilanase/100 mg substrat pada 40 oC 

dan pH 5.0 selama 24 jam menghasilkan jumlah XOS sebanyak 41.63 %, 26.06 % 

dan 17.49 % masing-masing. Pertumbuhan empat spesis bakteria; L. acidophilus, L. 

bulgaricus, , L. casei dan B. animalis di dalam medium pertumbuhan mengandungi 

XOS telah dikaji. Kehadiran XOS hasil hidrolisis enzimatik WS-STEXw_210 telah 

mempengaruhi pertumbuhan  B. animalis dan L. casei yang mana pertumbuhan 

 xx



tertinggi dipamer oleh B. animalis, diikuti oleh L. casei sedangkan XOS tidak 

mempengaruhi pertumbuhan L. acidophilus dan L. bulgaricus. 
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EFFECT OF HYDROTHERMAL TREATMENT ON THE 
EXTRACTABILITY AND DIGESTIBILITY OF OIL PALM (Elaeis guineensis 

Jacq.) FRONDS DERIVED HEMICELLULOSE  
 
 

ABSTRACT 

 
 
Oil palm (Elaeis guineensis Jacq.) fronds (OPF) are produced worldwide as a by-

product of the palm oil industries and represent another abundant raw material in 

Malaysia. Extraction of hemicellulose from OPF was conducted with two 

hydrothermal treatments; steam explosion and heating with autoclave. The mixture 

of OPF chips-water or OPF-KOH (1:10, w/v) were steam exploded at severity of 

2.96-3.84 (180-210 ⁰C for 4 min) before extracted with water at 70 ⁰C for 2 h. In the 

treatment using autoclave, the mixture of OPF-water (1:10, w/v) was autohydrolysed 

in an autoclave at severity of 1.92-2.52 (121 ⁰C for 20-80 min). Steam explosion at 

severity of 3.84 (210 ⁰C for 4 min) and severity factor of 2.40 (121 ⁰C for 60 min) 

produced water-soluble hemicelluloses (WS-STEXw_210, WS-STEXk_210, 

STAH_60) of 15.75 %, 26.50 % and 24.77 %, respectively. These water-soluble 

hemicelluloses were then hydrolysed with the various concentration of endo-1,4-ß-

xylanase for production of xylo-oligosaccharides (XOS). Enzymatic hydrolysis using 

8U xylanase / 100 mg substrate at 40 ⁰C and pH 5.0 for 24 h produced XOS of 41.63 

%, 26.06 % and 17.49 %, respectively. The growth of four bacterial species; L. 

acidophilus, L. bulgaricus, L. casei, and B. animalis in the growth medium 

containing XOS were studied. The present of XOS produced from enzymatic 

hydrolysis WS-STEXw_210 has affected the growth of B. animalis and L. casei 

where the highest growth was shown by B. animalis, followed by L. casei whereas 

XOS did not affect the growth of L. acidophilus and L. bulgaricus. 
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CHAPTER 1 

 
 

INTRODUCTION 

 
1.1 Background 
 
Agriculture has played and will continue to play an important economic role in 

Malaysia. Malaysian agriculture is traditionally based on crop production, 

particularly rubber, palm oil, cocoa, pepper, rice and pineapple. Oil palm (Elaeis 

guineensis Jacq.) fronds (OPF) are produced world-wide as a by-product of the palm 

oil industries and represent another abundant raw material in Malaysia. The 

productive life of the oil palm tree is approximately 25 - 30 years and a tree yields 

about 120 kg fronds per tree. Therefore, the average yield per hectare (ha) of OPF is 

about 80 tonnes of dry matter (Lim, 1986). OPF are available daily throughout the 

year when the palms are pruned during harvesting of fresh fruit bunches for the 

production of oil. In Malaysia, the oil palm industry generates 36 million tonnes of 

pruned and felled fronds per year (Wan Zahari et al., 2004) and is generally 

considered as waste. For that reason OPF is used as raw material for this research 

work. 

 
OPF consist of three main components: cellulose, hemicellulose and lignin. 

Fractionation of hemicellulose into the main components could be of interest in 

obtaining separate streams useable for different product application (Kabel, 2002). 

Hydrothermal or autohydrolysis treatment performed under mild operational 

conditions has been employed in this study to extract hemicellulose from OPF. 

Hydrothermal technology covers a range of treatments; including both water and 

steam-based processes. Hydrothermal treatment is an environmental friendly process 

to fractionate hemicellulose. It allows the selective depolymerisation of the 
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hemicellulose backbone. Usually, mild operational conditions are preferred in order 

to achieve a high extent of hemicellulose solubilisation while sugar - degradation 

reactions are avoided.  

 
In this study, the OPF was subjected to hydrothermal treatment to facilitate 

separation of the water-soluble fraction (hemicelluloses) and water-insoluble fraction 

(OPF residue). The water–soluble fraction may consist of hemicellulose as a major 

product, monosaccharide sugars and other by-products, while the water-insoluble 

consist of mainly cellulose, residual hemicellulose and lignin. Two types of 

hydrothermal treatments were carried out, that were steam explosion pre-treatment 

and treatment using an autoclave. Steam explosion pre-treatment was employed in 

this study to enhance the extraction process during water extraction. Hydrothermal 

treatment using autoclave was also employed in this study to simulate the normal 

conditions applicable for sterilization of process food. Autoclaving method besides 

generally cheaper and easy in handling, it is also less severe than steam explosion 

pre-treatment to minimise the undesired by-products.  

 
Hemicellulose extracted from OPF can be hydrolysed by xylanase to produce xylo-

oligosaccharides (XOS). XOS are newly developed functional oligosaccharide, 

having beneficial properties such as low cariogenicity, non-digestibility, improving 

the effects of intestinal flora, dietary fibre like action, water retention and 

antifreezing activity (Koga & Fijikawa, 1985). The growing demand for functional 

foods and the potential for product development open promising markets for XOS in 

many fields, including pharmaceuticals, agricultural, food and feed applications. One 

of the most important features of XOS as a food ingredient is their ability to 
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stimulate the growth of intestinal Bifidobacteria and Lactobacillus strains (Moura et 

al., 2007).  

 
Several methods have been proposed to produce XOS from suitable feedstock, 

including direct enzymatic treatments, chemical fractionation followed by enzymatic 

hydrolysis of hemicellulose isolates, and hydrolytic degradation of hemicellulose to 

XOS by dilute solution of mineral acids, steam or water (autohydrolysis) (Vazquez et 

al., 2000; Nabarlatz et al., 2007; Akpinar et al., 2009). Figure 1.1 summarizes the 

approach addressed for xylo-oligosaccharides production from OPF derived 

hemicellulose in this study. If the final distribution of molecular weight is 

unfavourable for the desired application, further depolymerization of hemicellulose 

can be achieved by enzymatic treatment. Endo-1,4-β-xylanases (EC 3.2.1.8), mainly 

from Trichoderma sp. is chosen because the main backbone of hemicellulose is 

xylan. This enzyme degrades hemicellulose to short-chain XOS of varying lengths. 

 
OPF 

HEMICELLULOS

 

 

 

 

 

Figure 1.1: The approaches addressed for xylo-oligosaccharides production from oil 

palm fronds derived hemicellulose. 

 

 

XOS produced from OPF derived hemicellulose is further studied by fermentation 

with Bifidobacteria and Lactobacilli strains. There is an increasing interest in 

E 

XYLO-OLIGOSACCHARIDES 

Hydrothermal treatment 

xylanase 
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generating non-digestible oligomers, so-called prebiotics which would selectively 

promote the growth of potentially beneficial bacteria. Bifidobacteria and Lactobacilli 

are indigenous bacteria to the human intestinal tract, where their presence is 

commonly associated with several health benefits, and therefore constitute common 

targets for prebiotic action (Leahy et al., 2005). Bifidobacterium strains are largely 

decribed as capable of efficiently fermenting xylose-based oligosaccharide. The so-

called bifidogenic effect of XOS, i.e. their specific capacity to stimulate 

bifidobacterial growth, was first observed by Okazaki et al. (1990) and further 

confirmed by several other authors (Jaskari et al., 1998; Van Laere et al., 2000 & 

Crittenden et al., 2002). Members of the Lactobacillus genus are also considered 

beneficial within the intestinal microbiota, whose growth should be stimulated by 

prebiotic compounds such as XOS and others.  

 
1.2 Aim and objective of research 
 
The aim of this study is to extract hemicellulose employing hydrothermal treatment 

and digestion of OPF derived hemicelluloses for production of xylo-olisaccharides, 

and followed by studies involving the suitability of xylo-oligosaccharides as potential 

prebiotics. There are three phases in achieving this aim.The first phase is to extract 

hemicellulose from OPF by hydrothermal treatment. The second phase involves 

hydrolysation of water-soluble fraction for production of XOS using xylanase. The 

third phase is to study the suitability of the obtained XOS to enhance the growth of 

Bifidobacteria and Lactobacillus species. Thus, the specific objectives of this study 

are: 

1) To study the effects of hydrothermal treatments on water-soluble fraction 

(hemicelluloses) and water-insoluble fraction (OPF residue) of OPF. 
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2) To characterize OPF derived hemicellulose such as monosaccharides 

composition, oligosaccharides concentration, total sugar content, molecular 

weight distribution, Klason lignin, furfural and acetic acid content. 

3) To study the digestibility of OPF derived hemicellulose water-soluble 

fraction using xylanase.  

4) To assess the suitability of xylo-oligosaccharides produced from OPF derived 

hemicellulose as potential prebiotic. 

 
 
1.3 General overview of the contents 
 
The following is a brief account of the remaining chapters of this thesis. Chapter two 

reviews theories that have been proposed to describe the anatomy of wood, chemical 

components of wood, OPF structure, xylan structure, Bifidobacteria and 

Lactobacillus sp. This chapter also deals with the literature review that highlighted 

the previous work related to the hydrothermal treatment in the process of 

hemicellulose extraction. The enzyme involved in producing XOS from OPF derived 

hemicellulose and the functional properties and purification process of XOS are also 

discussed in this chapter. Chapter three describes in detail the materials and methods 

that are used in this study.  In this chapter, the research methodology is divided into 

four parts. Phase one describes the method of two hydrothermal treatments; 

autoclaving treatment uses autoclave, and steam explosion pre-treatment uses steam 

explosion equipment. Part two describe the method used for enzymatic hydrolysis by 

xylanase. Part three describes the method used to analyse the untreated OPF and 

treated OPF (OPF residue). A study of probiotics growth on XOS is described in 

phase four. This phase also describes the statistical analysis using SPSS. Chapter 

Four discusses the results obtained during the experimental work and elaborates 
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further on the findings, with comparisons and support from other researchers. 

Chapter five summarizes the work and provides a brief conclusion to the thesis. 

Finally, the recommendations for future research are given in Chapter six. 

References and appendices, followed by a list of publications and seminars, are listed 

in the last part of this thesis. 
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CHAPTER 2 

 
 

LITERATURE REVIEW  

 

2.1 Oil palm 
 
An oil palm (Elaeis guineensis Jacq.) (Figure 2.1) was brought to Malaysia in 1870 

from Africa as an ornamental plant but found its way into a commercial plantation, 

and finally grew to become one of the most important commercial crops in Malaysia 

(Husin et al., 1986). In 2006, Malaysia is the world's leading palm oil producer and 

exporter, accounting for 47 % of global production and 89 % of exports (Sumathi et 

al., 2007). The production target for palm oil is 8.5 million tonnes by 2000 and 10.5 

million tonnes by 2010. The export target for 2010 is 53 % higher than in 2000. To 

achieve those targets, 1.2 million hectares of new plantings area will be required.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Photograph of oil palm tree 
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Oil palm produces about 55 t/ha/yr of total dry matter (TDM). Currently the main 

product is the oil; palm oil and palm kernel oil which is averaging about 4.3 t/ha/yr. 

This constitutes about 8 % of the TDM whereas 92 % has not been converted into 

high value–added products. In Malaysia, the oil palm industry generates more than 

1.3 million tonnes of oil palm trunks and 2.4 million tonnes empty fruit bunches 

(Jaafar & Sukaimi, 2001) and 36 million tonnes of pruned and felled fronds (Wan 

Zahari et al., 2004). 

 
Currently more effort is directed towards the re-use of such by-products, considering 

economic values and environment. The by-products from oil palm industry such as 

fronds, empty fruit bunches mesocarp fibres, shells and trunks represent another 

abundant raw material in Malaysia. These by-products can be utilized to produce 

value-added products and make the oil palm industry a “zero-waste” industry. 

Research on the utilization of OPF should be emphasized because at least 70 % of 

the oil palm by products consists of fronds, especially pruned fronds (Husin et al., 

1985). 

 

2.1.1 Oil palm fronds  
 
Oil palm fronds are the stem part produced continuously from the oil palm plant 

(Figure 2.2). The OPF grow in tightly clustered bunches or heads. This is a readily 

available by-product of oil plantations, that are cut down during harvesting of fresh 

fruit bunches (FFB), senescence and felled palms during replanting (Dahlan, 1992). 

The productive life of the tree is about 25 - 30 years and tree yield about 120 kg 

fronds per tree. Therefore, the average yield per ha is about 80 tonnes of dry matter 

per year (Lim, 1986). Usually 2 - 3 OPF are cut to get the FFB from the oil palm 

plant because FFB are compactly packed and hidden in the leaf axils (Dahlan, 2000). 
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Figure 2.2: Photograph of oil palm fronds  

 

 

The OPF are generally considered as a waste by-product of plantation management 

practise. Currently OPF are shredded and allowed to decompose in the plantation, 

thus contributing to organic matter recycling and soil conservation. The felled OPF 

also provides an ideal shelter for snakes, rats and other pests (Dahlan, 2000). Large 

sums of money are spent for the disposal of this by - product to make way for 

replanting and to avoid insect disease and pollution problems.  

 

2.2 Wood structure  
 
In wood cell walls, different layers can be recognized and their concentric 

arrangement is caused by the differences in the chemical composition and different 

orientations of the structural elements. The components of the cell walls are divided 

into structural (i.e. cellulose) and substructural, i.e. hemicelluloses and lignin. Figure 

2.3 show a model of the construction of wood cell walls (Persson, 2000).  
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Figure 2.3: Schematic illustration of the cell wall of wood cells which generally 
applies to many cells in both softwood and hardwoods. ML = Middle lamella; P = 
Primary wall; S1, S2, S3 = Outer, Middle and Inner layers of the secondary wall, 
respectively (Persson, 2000). 
 
 

.  

Between the individual cells, there is a thin layer called the middle lamella (ML), 

which glues the cells together to form the tissue. In general, plant cell walls are 

subdivided in primary wall (P) and secondary wall (S). The distribution of cellulose, 

hemicellulose and lignin varies considerably among these layers (Fengel & Wegener, 

1989). The primary cell wall is a thin layer that is permeable and flexible in 

physiologically active tissues (sapwood) but may become highly lignified in 

heartwood cells. The primary wall can be divided into an outer and an inner surface. 

The arrangements of the microfibrils in the primary wall are increasingly disperse 
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from inner to outer surface. The secondary wall is formed by a sequence of three 

layers, outer layer (S1), middle layer (S2), and inner layer (S3). In the outer layer of 

the secondary wall S1, the microfibrils are oriented in a cross-helical structure (S 

helix). The middle layer of the secondary wall (S2), which is thickest layer, has 

relatively consistent orientation of microfibrils. In contrast, the microfibrils of in the 

inner layer of the secondary wall (S3) may arrange in two or more orientations. 

 
Pure hemicellulose is also present between the cellulose fibrils and the matrix (Kerr, 

1975). Pores in the matrix are small, and permit the transfer of water, salts and small 

organic molecules only. Although the hemicelluloses are at least partially water 

soluble, they cannot diffuse out of the cell wall due to their molecular size. 

 

2.2.1   Cell wall structure of oil palm fronds (OPF). 

OPF contain various sizes of vascular bundles. The vascular bundles are widely 

imbedded in thin-walled parenchymatous ground tissue. Each bundle is made up of a 

fibrous sheath, vessels, fibres, phloem, and parenchymatous tissues (Figure 2.4A). 

According to Abdul Khalil et al. (2006) xylem and phloem tissues are clearly 

distinguishable. Phloem is divided into two separate areas in each bundle. Some 

vascular bundles also contain several well-defined protoxylem elements. Protoxylem 

and metaxylem vessels in the bundle are separated by a layer of parenchyma cells 

(Figure 2.4B). According to previous study, within the stem and leaves, proto- and 

metaxylem vessels are separated by at least one layer of live parenchyma cells which 

form a living barrier to permit possible transfer of gas bubbles between proto- and 

metaxylem vessels (Tomlinson et al., 2001). 

 
 
 



                                   
C A B 

 

           
D E 

 
 
 
 
Figure 2.4: (A) Transverse section of OPF at low magnification (4x), (B) Transverse section of OPF at high magnification (20x), (C) Transverse 
section of OPF after being stained with toluidine at high magnification (40x), (D) Transmission electron micrograph of urathin section of OPF 
after being stained with uranyl acetate and lead citrate at low magnification (3400x), (E) Transverse section of multi layered structure of OPF at 
high magnification (17000x). F = Fibre; P = Parenchyma; Mx = Metaxylem; Ph = Phloem ML = Middle lamella; P= Primary Wall; S1, S2 & S3 = 
Secondary wall sublayers (Abdul Khalil et al., 2006). 
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A transmission electron microscopy (TEM) view of transverse sections of OPF is 

shown in Figure 2.4C (Abdul Khalil et al., 2006). The electron microscopic 

observation is restricted mainly to the wall of OPF fibre within the vascular bundles. 

The TEM electron micrographs have confirmed that the layered structure of OPF 

wall contains primary (P) and secondary (S1, S2 and S3) wall layer (Figure 2.4D). The 

primary wall appears as a solid boundary of the cell (Figure 2.4E). The middle 

lamella, which glues the cells together, shows a clear transition to the adjacent 

primary wall layers. The S1 layer of OPF is well-defined and could be distinguished 

from the adjoining S2 layer, as it is the brightest layer compared to other layers. The 

observation using TEM micrograph also provides evidence for the presence of 

distinct S3 layer in the cell wall of OPF. 

 
 
2.3      Chemical structure of wood 

The chemical components of wood can be divided into four major components. They 

are cellulose, hemicellulose, lignin and extractives. Generally, the first three 

components have high molecular weights and contribute a significant mass, while the 

latter component is of small molecular size, and it is available in a smaller quantity. 

Hemicellulose will be discussed further in Section 2.4. 

 

2.3.1   Cellulose 

The cellulose content of wood varies between species in the range of   40 – 50 %. 

Cellulose is a linear polymer chain which is formed by joining the anhydroglucose 

units into glucan chains. These anhydroglucose units are bound together by β-(1, 4)- 

glycosidic linkages (Sjostrom, 1993). Due to this linkage, cellobiose is established as 

the repeat unit for cellulose chains. By forming intramolecular and intermolecular 
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hydrogen bonds between OH groups within the same cellulose chain and the 

surrounding cellulose chains, the chains tend to arrange in parallel and form a 

crystalline supermolecular structure. Cellulose can appear in crystalline form, called 

crystalline cellulose (Beguin & Aubert, 1994; Huang & Chen, 1996; Perez et al., 

2002). Then, bundles of linear cellulose chains form a microfibril which is oriented 

in the cell wall structure. 

 
In addition, there are a small percentage of non-organized cellulose chains, which 

form amorphous cellulose. In this conformation, cellulose is more susceptible to 

enzymatic degradation (Beguin & Aubert, 1994). Cellulose appears in nature 

associated with other plant substances and this association may affect its 

biodegradation. Cellulose is insoluble in most solvents including strong alkali. It is 

difficult to isolate from wood in pure form because it is intimately associated with 

the lignin and hemicelluloses (Pettersen, 1984). Wood cellulose is more resistant to 

acid hydrolysis than hemicellulose. The degree of polymerization of cellulose (i.e. 

the number of glucose-units, DP) depends on the type of treatment (Nada et al., 

2007). The DP is variable and may range from 700 to 10,000 DP or more.  

 

2.3.2   Lignin 

Lignin is the most abundant polymer in nature. It is present in the cellular cell wall, 

conferring structural support, impermeability, and resistance against microbial attack 

and oxidative stress (Perez et al., 2002). Structurally, lignin is an amorphous 

heteropolymer, non water soluble and optically inactive; it consists of phenylpropane 

units joined together by different types of linkages and is very difficult if not 

impossible to isolate in a natural state (Sjostrom, 1993). Lignin gives mechanical 

strength to wood by gluing the fibres together between the cell walls (Boudet, 2000; 
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Douglas, 1996), and if it is lacking, the plant will no longer grow upright (Zhong et 

al., 1997). Lignin also serves as disposal mechanism for metabolic waste. Lignin 

comprises 18 – 30 % by weight of the dry wood, most of it concentrated in the 

compound middle lamella and the layered cell wall.  

 

2.3.3 Extractives  

Extractives are the organic substances which have low molecular weight and are 

soluble in neutral solvents. Resin, fats, waxes, fatty acids and alcohols, terpentines, 

tannins and flavanoids are categorized as extractives. The amount of extractives in 

wood varies from 5 – 20 % by weight and includes a wide variety of organic 

chemicals (Rowe, 1989). The extractive can be found mostly in resin canal and ray 

parenchyma cells and small amount in middle lamella and cell walls of tracheids. 

The extractives contribute to wood properties such as colour, odour and decay 

resistance (Kallioinen et al., 2003; Pandey, 2005). Some extractives are toxic and 

this is an advantage for the wood to resist attack by fungi and termites (Arango et al., 

2006; Schwarze, 2007). 

 
 

2.4 Hemicellulose 
 
Hemicellulose is a complex carbohydrate polymer and make up 25 – 30 % of total 

wood dry weight. It is a polysaccharide with a lower molecular weight than cellulose. 

They are also easily hydrolysed to monomeric sugars, uronic acid and acetic acids. 

Many different hemicelluloses have been isolated from wood (Krawczyk et al., 2008; 

Gaspar et al., 2007; Jacobs et al., 2002; Bikova & Treimanis, 2002; Sun et al., 2001). 

 
The backbone of the chains of hemicellulose can be a homopolymer (generally 

consisting of single sugar repeat unit) or a heteropolymer (mixture of different 
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sugars). Formulas of the sugar component of hemicellulose are listed in Figure 2.5. 

Among the most important sugar of the hemicellulose component is xylose. 

Hemicellulose includes xylan, mannan, galactan, and arabinan as the main 

heteropolymers. The classification of these hemicellulose fractions depends on the 

types of sugar moieties present. The principal monomer present in most of the 

hemicellulose is D-xylose, D-mannose, D-galactose, and L-arabinose. The polymer 

chains of hemicellulose have short branches and are amorphous, consisting of a few 

hundred sugar residue. Hemicellulose is partially soluble in water because of the 

amorphous morphology (Coughlan & Hazlewood, 1993).  

 

Hemicellulose is plant heteropolysaccharides whose chemical nature varies from 

tissue to tissue and from species to species. These polysaccharides are formed by a 

wide variety of building blocks including pentoses (xylose and arabinose), hexoses 

(glucose, mannose and galactose) and uronic acids (4–O–methyl-glucuronic acids) 

(Fengel & Wegener, 1989).  

Generally they fall into four classes: 

(a) unbranched chains such as (1,4)-linked xylans or mannans 

(b) helical chains as (1,3)-linked xylans 

(c) branched chains such as (1,4)-linked galactoglucomannas 

(d) pectic substances such as polyrhamnogalacturonans. 

 

Hemicellulose is structurally more related to cellulose than lignin and is deposited in 

the cell wall at an earlier stage of biosynthesis. Despite the complexity of these 

polysaccharides, their structure seems to be generally rod-shaped with branches and 

side chains folded back to the main chain by means of hydrogen bonding. This rod 
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like structure facilitates their interaction with cellulose, resulting in a tight 

association that gives great stability to the aggregate (Rydholm, 1965). 

 

 

      PENTOSES                     HEXOSES             HEXURONIC              DEOXY-HEXOSES 
                            ACIDS 
 

 

 

Figure 2.5: Chemical structure of sugar units of hemicelluloses (Fengel & Wegener, 
1989) 
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The hemicellulose content of softwood and hardwood differ significantly (Fengel & 

Wegener, 1989). Some hemicelluloses particularly heteroxylans, also show a 

considerable degree of acetylation (Atalla, 1988). Hardwood hemicellulose is mostly 

composed of highly acetylated heteroxylans, generally classified as 4–O-

methylglucuronoxylans. Hexosans are also present but in very low amount as 

glucomannan. Owing to their acidic characteristics and chemical properties, 

hardwood xylans are relatively labile to acid hydrolysis and may undergo 

autohydrolysis under relatively mild conditions.  In contrast, softwoods have a higher 

proportion of partly acetylatedglucomannas and galactoglucomannas, and xylans 

correspond to only a small fraction of their total hemicellulose content (Garrote & 

Parajo, 2002). As a result, softwood hemicelluloses (mostly hexosans) are more 

resistance to acid hydrolysis than hardwood hemicelluloses (mostly pentosans).      

 
 
2.4.1    Xylan 
 
Xylan, one of the major components of hemicellulose found in cell wall is the second 

most abundant polysaccharides next to cellulose. Xylans are heteropolymers whose 

chemical nature varies from tissue to tissue and from species to species. It is 

consisting principally of D-xylose, a five carbon sugar as its monomeric unit and 

traces of L-arabinose (Bastawde, 1992). Xylan is the major hemicellulose in 

hardwood from Angiosperms, but is less abundant in softwood from gymnosperms; 

it accounts for approximately 15 – 30 % and 7 -12 % of the total dry weight, 

respectively (Whistler & Richards, 1970; Wong et al., 1988). 

 
The xylan from hardwood is O-acetyl-(- 4-O-methylglucurono) xylan. The backbone 

of this hardwood xylan consists of β-(1, 4)-D-xylopyranose residues with, on 

average, one α-(1,2)-linked 4-O-methyl glucuronic acid substituent per 10 - 20 such 
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residues. In addition, O-acetyl groups sometime replace the OH groups in position 

C2 and C3 (Figure 2.6A). In the case of softwood plants, xylan is mainly arabino-4-

O-methyl glucuronoxylan which in addition to 4-O-methyl glucuronic acid is also 

substituted by α–arabinofuranoside units linked by α-1,3-linkage to the xylan 

backbone (Figure 2.6B) (Fengel & Wegener, 1989). 

. 

 

A - Partial xylan structure from hardwood chain 
B - Partial xylan structure from softwood chain 
 
 
Figure 2.6: Schematic illustration of xylans (Fengel & Wegener, 1989) 
 
 

Xylan appears to be a major interface between lignin and other carbohydrate 

components in plant cell walls. Physical access to xylosic linkages in xylan is 

restricted by the surrounding lignocellulosic components as well as substituents on 
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its backbone. Therefore, the raw materials are conventionally pretreated before 

enzymatic degradation (Dekker, 1985). Since the main component of the 

hemicellulose mentioned is xylan, fractionation of xylan may result in both xylose 

and a variety of xylo-oligosaccharide.  

 

2.4.2 Xylo-oligosaccharides 
 
Xylo-oligosaccharides (XOS) are sugar oligomers made up of xylose units. XOS are 

non-digestible oligosaccharides (NDOs), which are not degraded by the low-pH 

gastric fluid, nor by human and animal digestive enzymes and will therefore reach 

the large bowel intact (Okazaki et al., 1990). XOS are reported to enhance growth of 

Bifidobacteria and they are frequently defined as prebiotics (Fooks et al., 1999). 

XOS can be used as ingredients of functional foods, cosmetics, pharmaceuticals or 

agricultural products (Vazquez et al., 2000).  

 

2.4.2(a)     Properties of xylo-oligosaccharides and their effects on health  

For food applications, xylobiose (DP = 2) is considered to be a XOS, even if for 

other purposes the concept ‘oligo’ is associated with higher degree of polymerization 

(DP>5). The sweetness of xylobiose is equivalent to 30 % that of sucrose and the 

sweetness of other XOS such as xylotriose and xylotetrose is moderate and possess 

no off-taste (Vazquez et al., 2000). As food ingredients, XOS have an acceptable 

odour, and are non-cariogenic (Kazuyoshi et al., 1998) and low-calorie, allowing 

their utilization in anti-obesity diets (Taeko et al., 1998).  

 
XOS are moderately sweet, stable over a wide range of pH 2.5 – 8.0, temperatures up 

to 100 °C and have organoleptic characteristics suitable for incorporation into foods. 

XOS are advantageous over other NDOs such as fructo-oligosaccharides, particularly 
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in the acidic range, even at the relatively low pH value of the gastric juice. Water 

activity of xylobiose is reported to be higher than xylose, but almost the same as 

glucose. Antifreezing activity of xylobiose on water at temperatures higher than   

−10 °C is the same as that of xylose, but greater than that of glucose, sucrose and 

maltose (Bhat, 1998). As food ingredients, XOS have an acceptable odour, and are 

non-cariogenic (Kazumitsu et al., 1997; Kazuyoshi et al., 1998) and low-calorie, 

allowing their utilization in anti-obesity diets (Taeko et al., 1998). In food 

processing, XOS show advantages over inulin in terms of resistance to both acids 

and heat, allowing their utilization in low pH juices and carbonated drinks (Modler, 

1994).  

 

One of the most important features of XOS as food ingredients is their ability to 

stimulate the growth of intestinal Bifidobacteria (Dohnalek et al., 1998; Jeong et al., 

1998). In vitro assays proved that Bifidobacterium spp. and B. adolescentis are able 

to utilize both xylobiose and xylotriose, whereas a mixture containing xylobiose as 

the main component was utilized by B. adolescentis, B. infantis and B. longum. XOS 

are readily utilized by B. animalis, and the oral ingestion of XOS promotes the 

proliferation of B. animalis in intestines (Suwa et al., 1999). Contrarily, 

Staphylococcus, Escherichia coli and many Clostridium spp. cannot utilize XOS 

(Suwa et al., 1999; Okazaki et al., 1990). A few Lactobacillus species also can 

utilize XOS such as L. fermentum and L. brevei but not as well as Bifidobacteria. 

Bacteroides utilize XOS, but in a lower degree compared with glucose (Okazaki et 

al., 1990). 
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The growing commercial importance of these NDOs is based on their beneficial 

health properties, particularly the prebiotic activity. The healthy effects of XOS are 

mainly related to their effects on the gastrointestinal flora. Subramaniyam & Prema 

(2002) reported that XOS favour the selective growth of Bididobacterium spp, which 

have important biological effects since they : (i) suppressing activity of entero 

putrefactive bacteria, preventing the formation of products such as toxic amines 

(Campbell et al., 1997; Fujikawa et al., 1991), (ii) repression of the proliferation of 

pathogenic bacteria (Suwa et al., 1999; Okazaki et al., 1990) due to the production of 

short-chain organic acids such as lactic acid or acetic acid (Loo et al., 1999; Wolf et 

al., 1994; Okazaki et al., 1990) leading to decreased pH in the gastro-intestinal tract 

(Wolf et al., 1994; Imaizumi et al., 1991; Okazaki et al., 1990), and (iii) promotion 

of the digestion and absorption of nutrients. These properties result in the ability to 

prevent gastrointestinal infections, to reduce the duration of diarrhoea episodes 

(Dohnalek et al., 1998) and to maintain the fecal water content within normal levels 

(Okazaki et al., 1990), with delayed gastric emptying (Ziemer & Gibson, 1998). As 

an additional favourable effect of XOS, a modest enhancement of cecal epithelial cell 

proliferation by this kind of compound has been reported (Howard et al., 1995). 

Based on the above reasons, XOS ‘affect functions in the body so as to have positive 

cellular or physiological effects’, fullfilling the requirements for prebiotics, and 

because of this, XOS are used as active ingredients of ‘functional foods’, which are 

similar in appearance to conventional foods that are consumed as part of a normal 

diet and have demostrated physiological benefits and/or reduce the risk of chronic 

disease beyond basic nutritional functions (Clydesdale, 1997). 
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2.4.2(b)     Production of xylo-oligosaccharides 

Specifically for XOS production from lignocellulosic material, three different 

approaches have been used (Pellerin et al., 1991): i) enzyme treatments of native 

lignocellulosic material containing hemicelluloses; ii) chemical fractionation of 

lignocellulosic material to isolate or solubilize hemicelluloses, with further 

enzymatic hydrolysis to XOS; iii) hydrolytic degradation of hemicelluloses to XOS 

by steam, water or dilute solutions of mineral acids or alkali.  

 

The direct production of xylo‐oligosaccharides from xylan‐containing lignocellulosic 

materials must be carried out from a susceptible feedstock. The production of 

xylo‐oligosaccharides by combined chemical‐enzymatic methods consists basically 

in two steps. In the first one, the xylan can be obtained by treatment of the 

lignocellulosic materials with alkali (i.e. solutions of NaOH, KOH, etc.), being this 

treatment favored by the pH stability of this polymer. In some cases, the raw material 

has been pretreated with oxidizing agents, salts or alcohols to remove lignin or pectic 

substances.  

 
Once the hemicellulose has been isolated or degraded to a soluble form, further DP 

reduction can be accomplished by hydrolysis with xylanases (Masayu et al., 1993). 

For enzymatic production of XOS, enzymes complexes with low exo-xylanase 

and/or β-xylosidase activity are desired, in order to avoid the production of xylose. 

The enzyme can be directly added to the reaction media (Pellerin et al., 1991), 

immobilized (Suwa et al., 1999) or produced in situ by micro-organism. With this 

approach, low-DP XOS can be produced. For food–related applications, the preferred 

DP range is 2 – 4 (Loo et al., 1999). 
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Alternatively, XOS can be produced from lignocellulosic materials in a single step 

by reaction with steam or water through hydronium catalyzed degradation of xylan, 

according to the procedure known as autohydrolysis, hydrothermolysis or water 

prehydrolysis. In the first stages of the reaction, the catalytic species are obtained 

from water autoionization, but side reactions (for example, cleavage of acetyl groups 

to give acetic acid) contribute to the generation of hydronium ions in further reaction 

stages. The hydrolytic degradation of hemicelluloses is facilitated when an acid is 

added externally (acid hydrolysis), but in this case, the oligosaccharides behave as 

reaction intermediates and the main reaction products are monosaccharides. Besides 

the degradation of xylan, several side‐processes occur in such kinds of treatment, 

including extractive removal, solubilization of acid soluble lignin, and neutralization 

of ash, which contributes to the presence of undesired compounds in the final 

product. In this case, the purification of XOS becomes important (Vazquez et al., 

2000). 

 
Usually, mild operational conditions are preferred in order to achieve high extent of 

hemicellulose solubilization to give XOS with DP typically ≤ 20 while sugar -

degradations are avoided. If the final distribution of molecular weights is 

unfavourable for the desired application, further DP reduction can be achieved by 

enzymatic treatments (Motohiro et al., 1986). XOS are naturally present in fruits, 

vegetables, bamboo, honey and milk and can be produced at industrial scale from 

hemicellulose-rich materials.  

 
Figure 2.7 summarizes the different approaches addressed for XOS production from 

hemicellulose-rich materials (Vazquez et al., 2003). Chemical and enzymes 
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