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REKA BENTUK PRA SUSUN ATUR SERDES MAMPU DIKONFIGURASI 

UNTUK ISYARAT BERKELAJUAN TINGGI ANTARA BERBILANG DAI 

Abstrak 

 

Dengan kemajuan teknologi pemprosesan, saiz transistor menjadi lebih kecil dan 

lebih litar elektrik intelektual (IP) disepadukan ke dalam litar bersepadu (IC). Dalam 

usaha untuk menampung fungsi kompleks serta meningkatkan prestasi litar bersepadu, 

pereka IC telah menggalakkan integrasi pelbagai dai dalam cip tunggal. Komunikasi 

antara dai memerlukan rangkaian komunikasi pada cip yang memerlukan ruang reka 

bentuk yang intensif. Dengan meningkatkan ketumpatan transistor dan mengecilkan cip, 

rangkaian antara dai tidak mencukupi akibat trend perekaan IC yang semakin meningkat 

dalam menuntut rangkaian lebih lebar dan logam trek untuk sambungan antara dai. 

Penukaran bit data selari ke dalam aliran data siri untuk komunikasi antara dai dapat 

mengurangkan bilangan wayar diperlukan untuk disambung. Penghantaran siri segerak 

memerlukan dimensi reka bentuk yang besar dan blok tambahan yang memerlukan lebih 

kuasa untuk penyegerakan isyarat data dan isyarat jam. Ini dapat dielakkan dengan 

pelaksanaan skim pengisyarat tetapan masa sendiri yang mengelakkan penghantaran 

isyarat jam dalam wayar yang berasingan. Kajian ini bertujuan untuk membina sistem 

pengisyaratan SerDes tanpa jam yang boleh diguna semula, dapat diskalakan dan 

dikonfigurasikan sebagai rangkaian komunikasi antara berbilang dai. Reka bentuk yang 

dibina dapat mencapai kadar data 2 Gbps, mengambil ruang reka bentuk kecil dengan 

menggunakan 308 transistor, berkeluasan 38.17 µm² dalam IC dan penggunaan kuasa 

yang serendah 1.10 mW.  
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PRELAYOUT DESIGN OF CONFIGURABLE SERDES FOR HIGH SPEED 

SIGNALING IN MULTIDIE INTERCONNECT 

Abstract 

 

As the process technology advances, transistor size shrinks and more intellectual 

properties (IPs) are integrated onto chip. In order to accommodate the current complex 

functionalities as well as improving the performance of design, integrated circuit (IC) 

architecture has encouraged the integration of multiple die on a single chip. 

Communication between die requires full network-on-chip (NoC) which is area 

intensive. In deep sub-micron process nodes, high speed signaling between multiple die 

becomes one of the main challenges in multidie chip design. Methods to increase the 

routability have been proposed as the use of parallel interconnect appears to be the 

bottleneck of high speed multidie communication. Conversion of parallel data bits into 

serial data streams before transmission effectively reduced the number of wires required 

for the interconnect. Synchronous serial transmission requires large design dimension 

and power hungry auxiliary blocks for synchronization between the transmitted data and 

clock signals. This is avoided with the implementation of self-timed transmission 

scheme which eliminates the need to transmit the clock signal in a separate wire. This 

research is conducted to develop a reusable, scalable and configurable clockless version 

of SerDes system as the interconnect between multiple die. The proposed design 

achieves a data rate of 2 Gbps small area 38.71 µm² with architectural simplicity with 

308 transistor count and low power consumption of 1.10 mW.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

Integrated circuit (IC) semiconductor chips are designed to serve many functions 

such as microprocessor, transceiver or memory. The advantage of ICs is small in size as 

they are made in silicon wafer which contains up to millions of transistors. 

Programmable and application specific IC such as FPGA and application specific 

integrated circuit (ASIC) or application specific standard product (ASSP) respectively 

are great design challenges as the development of ICs is moving towards multi-die and 

higher density devices. As technology node advances, the process of fabrication shrinks 

transistor size in IC, the chip density becomes higher and higher. The chip design 

becomes more complex when more intellectual properties (IPs) are integrated on the 

same chip. In some high density IC, the multi-die approach is implemented where 

multiple cores are integrated on a single chip. The cores interact with each other and if 

the IPs are located on different die or core, the IPs require interconnection for 

communication. The network-on-chip (NoC) communication needs an efficient 

communication infrastructure to achieve lower input/output (IO) power, high speed and 

reliable passing of data from one core to another [1]. As chip design gets more complex, 

the IP’s bandwidth increase and requires greater bus width to incorporate the data 

carrying capacity. Wider interconnection needs more interconnect resources. With the 

growing number of IP and bandwidth, to achieve more efficient use of interconnect 

resources, parallel interfacing has become the bottleneck to high speed communication. 
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1.1.1 On Chip Communication 

The recent IC design implementations are heading towards high density and small 

sized transistor down to sub-micron and beyond. IC with large number of transistors has 

driven the realization of multicore chip such as SoC. This makes the design not only has 

block level communication problem, but also created cross die communication issues. 

The primary element to achieve communication at high frequency and bit rate between 

die will be an on chip interconnect with low power consumption [2].  

On chip signaling can be implemented with two interconnect architectures as 

shown in Figure 1.1. The parallel link has interconnect wire count as much as the signal 

bus width. On the other hand, the serial link serializes the parallel data into a high 

frequency signal data stream before transmission. The transceiver and the transmission 

link must have a generic structure to support wide and range of blocks with different 

signal specifications.  

As chip designs come in variants which offere different design scale, the interdie 

communication interface must offer scalibility to support across design scales. 

Configurable transceiver is preferred so that it is adaptable and flexible to plug and play 

across different designs. A robust interconnect interface system can be used in the 

integration of different subsystems on different die. As IC technology moves towards 

sub-micron designs, the focus is to reduce the complexity of the transceiver circuit and 

minimize area and power consumption with high speed data transmission. 
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Figure 1.1: Block diagram of parallel multidie interconnect and serial multidie 

interconnect 

 

1.1.2 Parallel Link 

In simpler designs, the most straight forward way of data transmission was bus-

based interconnect where data and are sent with set of wires in parallel. Therefore, this 

implies more conductor needed to build the interconnect. Figure 1.2 shows parallel link 

interconnect among multiples cores. For the transmission of data to be synchronized 

between the sender core and recipient core, the clock signal is also sent in a separate 

wire in the parallel link. Timing for parallel signaling is referenced to the transmitted 

clock and is therefore synchronous. This signaling scheme has less complex transceiver 

architecture, as no serialization or encoding is required. As modern IC is running at high 

frequency, timing of the parallel transmission becomes crucial as it is hard to guarantee 

all the signals to arrive at the receiver simultaneously. A major drawback of parallel link 

is the crosstalk in the transmission lines. Higher frequency will give more pronounced 

crosstalk. Also, the trade of in parallel signaling scheme is the routing resources and 

chip area to build multiple transmission links which contributes greatly to production 

cost. Commonly used in block level and smaller scale designs, parallel communication 

are not preferred in multi-core designs for the drawbacks discussed in section 1.1.4. 

Parallel Multidie Interconnect Serial Multidie Interconnect
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Figure 1.2: Parallel link interconnect for multi-core signaling 

 

1.1.3 Serial Link 

A high speed serial link implements a serializer to convert low frequency parallel 

data and serialize it into a stream of data with a higher frequency synthesized clock. The 

serialized data is transmitted through the transmission link to the receiver and converted 

back to parallel data at the original frequency with a deserializer. This implementation of 

serial signaling is known as a SerDes [3].  

To achieve the same bit rate, an N bit serializer will transmit data with a clock N 

times faster than the N bit parallel link. Serial link requires N times fewer interconnect 

between cores and therefore reducing the requirement in routing resources and space of 

the interconnect. There are two types of serial link signaling techniques and will be 

discussed on the following section. 

 

 

die1 die2

die3

clk
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1.1.4 Serialism over Parallelism 

Serial link has gradually dominated over parallel link in multi-core high speed 

communications. As discussed in 1.1.1, while transistors scale down, high density chip 

design is moving towards the trend of multi-core implementation. This has caused the 

delay of interconnect wires to increase and the need of a robust network on chip (NoC) 

has emerged [4]. In addition, the cost of speed and high frequency in inter-core 

communication is increasing. In sub-micron designs, the global wire delay becomes a 

significant matter to timing. The complexity of the parallel interconnect wires will have 

problems with relative area, power overhead, signal degradation due to crosstalk, 

synchronization, bandwidth limitation and scalability [5, 6]. Due to possible skew 

among parallel interconnect wires, the maximum signaling speed is also limited. 

Therefore, serial NoC interconnect has been the solution for high speed inter-core 

communication [7] through the implementation of SerDes. The comparison between 

serial and parallel communication for NoC is summarized in Table 1.1. 

Table 1.1: Comparison between parallel link and serial link 

Specifications Parallel Link Serial Link 

Area Large Small 

Power High Low 

Crosstalk Yes No 

Frequency Low High 

 

 

1.1.5 Shortcomings of Parallel Link and Advantages of Serial Link 

An early analysis [8] shows that having a parallel link mesh interconnect of 

network on chip (NoC) takes a large interconnect area due to the necessity of large 

amount of routings and shielding. The work did a comparative analysis and relieved a 
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large increase in power efficiency with the use of serial link. Interconnect are 

extensively required in multidie designs, which are preferable to have small scale in 

power and area consumption Parallel links are also harder to route and has low 

immunity to noise [2]. 

Serial link provides more efficient and cost saving method to enable the 

communication between multiple die, as aligned to the objective of having system-on-

chip (SoC) designs, which targets to integrate complex systems in a single package. This 

is something parallel interconnect can never offer. 

A serial connection needs fewer wires in the transmission link. For an N bit 

SerDes, the required physical link for data transmission is reduced by a scale of N, and 

creates design space for better isolation of the wires. Due to lesser wires in the 

transmission link, the transceiver is less prone to crosstalk issue. Furthermore, in 

asynchronous clocking serial link, skew and jitter is not an issue. Therefore serial link is 

more preferred in modern designs with the need of NoC. 

 

1.1.6 Skew and Jitter 

In IC designs, circuits are working at a very high frequency. Due to many factors 

such as wire-interconnect length, temperature variations, material imperfections, 

capacitance and inductance, the same clock signal might arrive at different time at 

different devices or components. Clock skew is the differences in the arrival time of the 

same clock signal at the device clock pin. Figure 1.3 shows this misalignment when the 

same clock propagates through routing and arrive at different registers. At high 
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frequency, pulse width becomes short and clock skew becomes crucial in high speed 

signaling [9]. 

Clock jitter is the time deviation of a clock edge from the reference edge. It is 

observed that a presumed periodic clock signal is not ideal and the clock edge might 

arrive earlier or later than the controlled position. This introduces timing uncertainty of 

the clock pulse as the discrepancy will distort the clock pulse duty cycle. Controlling 

clock jitter is critical in signal detection at the receiving end as it may jeopardize the 

synchronicity between the transceiver pair [10]. Figure 1.4 shows the possible 

occurrences of uncertainty in the clock edge timing of a symmetrical clock pulse [9]. 

 

 

Figure 1.3: Clock skew in sequentially adjacent registers 

D Q D Q D Q

CLK2 CLK3CLK1

Clock Skew

CLK

CLK1

CLK2

CLK3
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Figure 1.4: Clock jitter in a periodic clock pulse 

 

1.2 Problem Statement 

As the process technology advances, transistor size shrinks and more IPs are 

integrated onto chip. The increasing trend in system-on-chip (SoC) and system in 

package (SiP) designs demand the integration of more bus width and metal tracks on the 

interconnection between IPs. With the increasing of transistor density and downsizing of 

chips, the current micro-bumps interconnect between die will not be sufficient. This 

causes the communication between cores to become the performance bottleneck. 

Routing congestion will occur when the bus width increases. The routing of data 

bus becomes difficult and detour will cause increase in wire length and adding delay, 

which ultimately causes difficulty to close timing. The engineering change order (ECO) 

to pass timing and improve chip performance will result in increase of power 

consumption and affect signal integrity. The consequence of conventional bus 

interconnect scheme will increase the risk of manufacturing defect as the chances of 

having open or short routings and vias are higher. Due to this high routing density, the 

average cost per device is also higher. 

Methods to increase the routability have been proposed with different serial 

clocking scheme such as the mesochronous serial transmission [11] and plesiochronous 

Possible Positions 
of the Falling Edge

Possible Positions 
of the Rising EdgeReference Edge { {
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transmission [12, 13]. Conversion of parallel data bits into serial data streams before 

transmission greatly reduced the number of wires required for the interconnect [14]. 

However, this serialization and deserialization scheme involves extensive use of 

analogue auxiliary circuits to minimize the skew and jitter of the data and clock signals 

[8]. Clock and data recovery circuits are power and design area intensive. The 

complexity of conventional high speed interconnect schemes imposes challenge on the 

system’s reusability, portability and scalability. 

 

1.3 Objective 

1. To propose a configurable clockless SerDes design with reduced power 

consumption. 

2. To implement the SerDes in a modular and configurable manner that supports 

Plug-and-Play in any digital IP with minimum modification. 

 

1.4 Project Scope 

The main objective of this research is to implement a full system achieving a high 

speed on-chip serial communication between die. The communication is through a serial 

link which includes the transmitter, the receiver, the encoder, the decoder and the 

interconnect between the two cores. Designing a robust transceiver without transmission 

of clock signal in a separate line and capable to send high speed data up to 2 Gbps with 

low power consumption is the scope of this project. 

This research will cover the design of the clockless SerDes serial link, evaluation 

of the proposed algorithm through pre-layout simulation, analysis and comparison with 

the other previously proposed method. 



10 

 

 

 

1.5 Thesis Outline 

This research aims to implement an on-chip serial link for high speed 

communication between multiple die. The scope is to design the transmitter and receiver 

pair, the encoder and decoder pair to transmit binary signal over a lossy interconnect. 

The final objective is to enable the serial communication between two cores at high 

speed and low power. 

The background of serial link is discussed in Chapter 1. It includes the shortcomings 

of parallel links and the basics of interconnect signaling schemes. Previous proposed 

work and related publications are reviewed in Chapter 2. The pros and cons of past 

works are also described and compared. 

The proposed clockless SerDes design is discussed in Chapter 3. The signaling 

scheme to achieve advantage of high speed serial communication with minimum slew 

time and jitter is described and summarized. 

Measurement results from simulation are analysed and discussed in Chapter 4. The 

system is placed on a testbench for verification on functionality and performance. 

Finally, the conclusion highlights the key findings and contributions of the work. 

Chapter 5 concludes the research and recommends potential improvements for relevent 

future works. 

  



11 

 

CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1 Overview 

In the previous chapter, the basic signaling background and the need of serial link is 

discussed. In this chapter, the types of serial transmission clocking schemes are 

reviewed. The design of conventional SerDes are also discussed and he deficiency of 

conventional SerDes will be explained. Existing works of clockless SerDes designs are 

reviewed and compared in different degree of details respectively. This chapter provides 

an introduction to serial link systems and also gives an outline of the thesis, which is 

devoted to the development of inter-die high-speed, low power serial link. 

 

2.2 Serial Transmission Clocking Schemes 

The inter die transmission of signal includes sending the clock signal to the 

recipient die. Synchronicity of the data and clock signal is the key to transmission of 

correct data. In serial transmission, there are multiple clocking schemes implementing 

different methods to achieve synchronicity. 

 

2.2.1 Mesochronous Clocking 

Serial link with mesochronous clocking requires two transmission line in the 

interconnect. Figure 2.1 depicts the mesochronous clocking where the clock requires a 

dedicated wire in the transmission, which consumes routing resource and design area on 

the chip. Both the data signal and the clock signal are transmitted separately to the 
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receiver. As the interconnect will have introduced an uncertain amount of delay, the 

transmitter (TX) and receiver (RX) clocks will have an unknown skew although they are 

the same clock of the same source. In this serial signaling scheme, additional circuits 

such as the phase detector is usually included in the RX to detect phase shift of the 

received clock signal and adjust for synchronicity [10]. Such circuit is power hungry and 

design area intensive, as well as introducing complexity and reducing reusability of the 

SerDes. 

 

Figure 2.1: Mesochronous clocking serial link 

 

2.2.2 Plesiochronous Clocking 

In order to further reduce the transmission line in serial link, plesiochronous 

clock serial link is introduced. Such signaling scheme further reduces the wire count in 

inter-core signaling where the need of transmitting the clock signal over a dedicated wire 

is removed. In IC design, wire tracks carrying clock signal usually takes up more design 

space as additional shielding and buffer is required. Figure 2.2 shows the plesiochronous 

signaling scheme where the clock is not sent in inter-core communication, but fed 

distinctly to each core. However, there will be a phase mismatch on the clock signal at 

die1 die2

die3

clk
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each core, and frequency mismatch if they are running at different frequency. Additional 

circuits are needed at the RX to synchronize the received signals, which are also power 

hungry and area intensive [11]. 

 

Figure 2.2: Plesiochronous clocking serial link 

 

2.2.3 Asynchronous Clocking 

Figure 2.3 illustrates the block diagram of asynchronous clocking serial link. An 

encoding circuit is added to the TX to send the serialized data signal with the clock 

embedded in it. On the other hand, a decoding circuit will be added to recover the data 

and clock signal from the received signal before deserializing it. The circuitry to recover 

the embedded clock is usually a clock and data recovery (CDR), or customized light 

weight, high speed decoding circuits [11, 12, 15, 16]. Such serial signaling design is also 

known as self-timed SerDes. Since the data and clock are extracted from the same signal, 

there will be no clock skew between the two and the signal is jitter insensitive. In this 

thesis, the SerDes design will be based on this signaling scheme. Asynchronous 

transmission requires no synchronization circuit at both ends of the system and possible 

die1 die2

die3

clk 1 clk 2
clk 3
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to achieve with simple designs which can be setup very fast. This also reduces the 

design and production cost for the reduction in hardware required to build the system. 

 

 

Figure 2.3: Asynchronous clocking serial link 

 

2.3 SerDes Conventional Implementation 

There are drawbacks in conventional SerDes designs. One of the shortcomings of 

conventional SerDes is the high power consumption, as complex circuits and power 

hungry circuits are required to ensure the transmitted data and clock signals are 

synchronized between the transmitter and receiver. The additional circuits to provide 

clock and data recovery (CDR), de-skew and reduce jitter of the clock and data signal 

will also introduce complexity to the design and thus takes up more design space.  

 

2.3.1 Overview of Conventional SerDes Design 

An earlier work presented an on-chip serial link over a lossy transmission line 

[11]. The transceiver was implemented in 0.13 um CMOS process and transmits serial 

die1 die2

die3
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signal at a data rate of 9 Gbps. Figure 2.4 shows the overall block diagram of the 

conventional SerDes system. This system sends the serialized data and clock signal 

separately over the transmission line. This mesochronous SerDes will have the same 

clock at the transmitter and receiver with clock skew. The receiver will need a phase 

tuning circuit to ensure the synchronicity of the data and clock signals. 

The major drawback of this implementation is that phase adjusting circuit is 

power and area intensive [10]. The LC-oscillator-based phase locked loop (PLL) used to 

generate the 4.5 GHz clock for the transceiver and consumes 105 mW which is fairly 

large compared to other implementation of interconnect schemes. The use of analog 

module makes the design to have reduced reusability. In the following sections, the 

components in a conventional SerDes are described as a review of basic SerDes design. 

 

 

Figure 2.4: Overall block diagram of conventional SerDes system in [11] 
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2.3.2 The Transmitter  

The transmitter sends signal to the recipient core through the inter-core 

transmission line. Figure 2.5 shows a conventional SerDes transmitter implemented in 

the work [11] which implements mesochronous transmission. The 9 Gbps SerDes 

transmits at double data rate with a clock at 4.5 GHz. The clock divider provides the 

frequency for the serializer for parallel bits conversion. This transmitter deploys two 

serializers, each running at 1.125 GHz to convert the parallel 1.125 GHz into 4.5 GHz 

data signal. As interleaved drivers are implemented, and both the serializers are clocked 

at the opposite clock edge, a 9 Gbps data signal is transmitted into a single data link with 

a driver. The clock signal is not embedded in the transmitted signal, but sent together 

with the data signal in another transmission line. 

 

 

Figure 2.5: Block diagram of the conventional SerDes transmitter [11] 

 

2.3.3 The Interconnect  

The interconnect is the medium used for communication between multiple cores. 

In 2.5-dimensional (2.5D) design, it is usually a silicon bridge or silicon interposer 

connected with microbumps at the die. In [11], the interconnect is a differential pair, 
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intermediate metal layer with width of 6 μm with a spacing of 3 μm, shielded with 21 

μm ground metal tracks. The transmission lines are resistively terminated to reduce 

reflection. The physical properties of the transmission line will not be covered in this 

research, but will be modelled to simulate the performance of the proposed SerDes. 

 

2.3.4 Serializer 

The basic serializer comprises of multiplexers that switch in sequence to 

propagate the parallel data. The multiplexers are connected in the topology as shown in 

Figure 2.6 at half of the required frequency each stage. Two techniques can be used to 

generate the different frequency clock, either with a clock divider to produce the lower 

frequency clock; or a frequency multiplier to produce the higher frequency clock [17]. 

The selector of the multiplexers are controlled by the clocks at twice the frequency at 

each stage, propagating each bit from the parallel data at both rising and falling clock 

edge and produces a single stream of high frequency data. 
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Figure 2.6: Block diagram of serializer [18] 

 

2.3.5 The Receiver  

The SerDes receiver resides in the signal recipient core and collects both the 

serialized data signal and the clock signal at the other end of the transmission link. In 

this work, the conventional CDR is used [18]. The conventional SerDes receiver 

implements a circuitry to detect the phase of the data signal and the clock signal. This 

also requires a clock generation circuit to produce a clock signal at the receiver end as a 

reference clock for the synchronization. The phase interpolator synchronizes the phase 

of the data signal at the receiver and the clock signal from the PLL. Finally, the clock 

signal clocks the internal components of the receiver to convert the serialized data to 

parallel data. The general block diagram of the receiver is illustrated in Figure 2.7. 
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Figure 2.7: Block diagram of the conventional SerDes receiver [11] 

 

2.3.6 Deserializer 

The deserializer receives the serialized signal transmitted over the interconnect 

and converts it back to parallel data. Figure 2.8 shows a conventional deserializer which 

implements a de-multiplexer for deserialization. The high frequency clock signal is 

required at the deserializer to restore the parallel data. To achieve synchronicity, the 

clock signal is usually transmitted either through a dedicated interconnect wire and skew 

removed with additional circuits. The deserializer in Figure 2.8 implements a serialized 

signal with embedded clock which requires a CDR circuit to extract the transmitted 

clock for deserialization. 
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Figure 2.8: Block diagram of deserializer [18] 

 

2.4 Challenges in Serial link 

Serial data transmission between cores achieves a routing resource efficient design. 

However, the serialized data will have a bit rate at N times higher than the parallel data 

bit rate where N is the number of bits to be serialized. This will result in higher 

switching activity and increase power dissipation in the serial link.  The work in [19]  

targets to reduce the switching activity by 40% with a new bit ordering technique. The 

involvement of the analogue circuits required to synchronize the data edge to the clock 

edge increases the complexity of the SerDes design and makes it not compatible as a 

reusable module. Clock and data recovery circuits are complex and usually includes 

analogue blocks which has the same problem. In conjunction with the growing density 

of chip design, it is desirable to construct a modular and scalable interconnect system 

that supports Plug-and-Play (PnP) is instantiable and is capable of reduce the number of 

interconnect (microbumps) by a desired factor. Due to the difficulties above, the SerDes 

is often customized as a transceiver and supports only certain critical features such as the 



21 

 

high speed signal interface (HSSI). Therefore, design resources are often being intensely 

focused on the SerDes transceiver and takes up high power consumption, high demand 

on routing resources and large physical area. 

 

2.5 Transmission with Clock Data Recovery 

Ideally, the data transmission is synchronous where the controlled clock runs the 

entire chip network. Having identical rates, no phase difference, no jitter and no skew, 

the clock at the transmitter and receiver end are perfectly aligned. In reality, this is 

impossible as there will always be mismatch. Transmitting serial signal and the clock 

signal in separate interconnect is called mesochronous transmission as described in 

section 2.2.1. Additional circuitry is required at the receiver end to restore the 

synchronicity between the data and clock. 

A plesiochronous transmission scheme as described in section 2.2.2 is used to 

eliminate the need to transmit the clock in another wire. This can be done if the attribute 

of the clock such as frequency is known. A reference clock with the same attribute is 

generated at the receiver end and fed into CDR circuits to be phase aligned to the 

received data. However, there are challenges in implementation of CDR circuits. These 

analogue circuits are usually customized or redesigned each time it is ported to support a 

different IP. The complexity of analogue circuit increases as the operating frequency 

grows to meet tight timing requirement. When circuit performance needs to be 

guaranteed, large devices are used which contributes to increase in design area. This 

leads to the increase in parasitic of the circuit components which leads to the 

degradation in switching rate of the digital logic gates in the design which affects the 

performance of the blocks [13]. 
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A CDR technique is presented in [13] which implements an enhanced CDR to 

reduce the aforementioned problems which often occur in conventional second-order 

CDR. It has relatively smaller design area and the system has low channel loss even with 

the analogue components which have large parasitic. The work achieves wider 

bandwidth and lower jitter in the clock and data recovery process and is capable of 

recovering low jitter clock from partially equalized eye. Despite having good timing 

margin, blocks used in the design such as the equalizer, the PLL, the delay locked loop 

(DLL) and phase detectors are complex analogue circuits. The system is still 

comparatively large compared to fully digital systems, and the analogue circuits attribute 

reduces the reusability. 

An earlier proposed system in [5] made use of digital blocks which increase the 

scalability and reusability of the SerDes. The work achieves a better interconnect 

performance than parallel interconnect with the implementation of ring oscillators. 

However, the extensive use of sequential device causes timing to be a criteria to consider 

in the design. The system did not take advantage of both clock edges and only 

implements a single data rate (SDR) serialization. This plesiochronous design which 

involves an external clock to interact with the internal clock intensively requires 

auxiliary circuitries that involve analogue designs to support the clock synchronization. 

A third IP aside from the sender and receiver die is also present to support the inter-die 

communication. 

 

2.6 The Multi-Level Transmission Scheme 

An earlier work [12] proposed a SerDes Transceiver with multi-level transmission 

(MLT) which aims to eliminate the necessity to transmit the clock signal together with 
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the serialized data in separate lines. The clock is combined with the data signal to 

produce a signal with a third voltage level using a three level encoder circuit. The 

transmitted signal is decoded back to data and clock at the receiver side. This eliminates 

the need for equalizer circuit or edge detection circuit which is often complex. This 

technique solves the problem with clock jitter and skew as the clock and data are now 

within the same signal. However, the proposed decoder in this work uses a phase 

detector which occupies fairly a large area and is power hungry. A summary in [12] 

shows that the phase detector consumes 5 times the power of the Deserializer and 62.5% 

of the line driver power. The design will be less power efficient if used repeatedly to 

reduce the interconnect of a large signal scale design. Moreover, the serializer 

implementation is through double edge triggered flip flops which are timing crucial 

sequential devices. This is to compensate the problem in the three level encoding 

technique which represents each data logic in two clock cycles which loses half the data 

rate. 

A solution has been proposed to hinder the loss of data rate as published in [16] 

which implements the same three-level signaling scheme as [12], but is capable of 

encoding two bits of data within a clock cycle. The technique utilizes four phases of the 

clock with frequency equal to the data rate to generate the three-level signal from the 

serialized data. The three-level signal produced by the encoder will transmit at double 

data rate even though four phases of clock are used. In order to comply with this 

encoding technique, additional circuit is introduced to the encoder which involves the 

use of customized multiplexer, customized three-level inverter and sequential devices. 

Although the blocks are reusable, these sub-blocks have significantly increased the 

design area consumption which makes it not feasible for instantiation in large scale 
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designs. Flip-flops used in the encoder design are sequential devices and have high 

transistor count, and needs to meet timing so that the circuit will not have issue with 

metastability. Compared to [12], the work in [16] achieves twice the data rate but 

consumes approximately 9 times the power. Table 2.1 demonstrates the performance 

specifications of previous proposed SerDes systems. 

 

Table 2.1: Design comparison 

Reference [11] [12] [16] [5] [13]  

Technique 
Meso-

chronous 

Asyn-

chronous, 

MLT 

Asyn-

chronous, 

MLT 

Plesio-

chronous 

Plesio-

chronous 
 

Process 
0.13um 

CMOS 

65nm 

CMOS 

65nm 

CMOS 

0.18um 

UMC 

28nm 

CMOS 
 

Supply 

Voltage 
N/A N/A 1.2V 1.8V N/A  

Transistor 

Count 
N/A N/A N/A 384 N/A  

Transmission 

Bandwidth 
9Gb/s 12Gb/s 24Gb/s 2Gb/s 40Gb/s  

Internal clock 1.125GHz 24GHz 12GHz 200MHz 20GHz  

External clock 4.5GHz N/A N/A 2.54GHz N/A  

Area 4.28mm² N/A N/A 7.2mm² 0.81mm²  

Power 765mW 15.5mW 109.6mW 4.19mW 927mW  

Link 
5.8mm, 

30.6Ohm 
3mm 

L=5mm, 

W=5um 
6mm N/A  

 

 

2.7 Chapter Summary 

 In this chapter, the serial transmission clocking schemes are discussed. 

Mesochornous and plesiochronous clocking require the clock phase to be known at the 

recipient die and additional circuits to achieve synchronicity. On the contrary, 

asynchronous transmission is self clocking and does not require synchronicity 


