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ABSTRAK 

 

 

Pusat data internet merupakan contoh rangkaian edaran dengan beban-beban dinamik. 

Algoritma pengimbangan beban amat diperlukan dalam sebuah pusat data internet untuk 

tujuan pengurusan dan pengagihan beban kepada nodus-nodus dalam rangkaian, 

algoritma pengimbangan beban membawa pelbagai manfaat kepada pihak pemilik dan 

pihak pengguna Cloud termasuk ia memanjangkan jangka hayat komputer pelayan dan 

meningkatkan kualiti perkhidmatan Cloud. Satu algoritma konsensus purata 

menggunakan kawalan PID telah dikemukakan dalam kajian ini. Algoritma yang 

dikemukakan diujikan dengan rangkaian yang berbeza bilangan nodus dan keputusan 

dibandingkan dengan algoritma yang sedia ada. Justerunya, alat pengimbang beban yang 

direka juga diujikan dengan topografi graf yang berbeza-beza untuk kajian keupayaan 

penyesuaian diri alat pengimbang tersebut. Keputusan prestasi yang diperolehi lebih baik 

berbanding dengan model PI yang sedia ada. 
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ABSTRACT 

 

 

An internet datacenter is an apt example of a distributed network with dynamic loads, and 

a load balancing algorithm is needed in a datacenter to manage and distribute the loading 

to all server nodes appropriately. The implementation of a load balancer brings benefits 

to both the datacenter owner and Cloud users as it prolongs the lifespan of servers and 

improve the quality of service. An average consensus algorithm using PID control is 

proposed for the implementation in a network of server nodes and the result is compared 

to an existing model. The proposed algorithm is simulated with different number of nodes 

and edges. Furthermore, the designed load balancer is subjected to different graph 

topologies to test its adaptability. The performance results are found to be better than the 

existing model using PI. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

The technology of cloud computing is expanding exponentially in recent years as 

there is an increasing number of consumers boarding the bandwagon. The popularity of 

Cloud computing taps on the convenience of internet bandwidth and virtual storage space 

available today. It enables consumer to have fast and connected data sharing capability 

without owning the cumbersome facilities.  

 

The datacenters experience drastic changes in loading at different time. Without a 

good load balancing algorithm distributing the workload to servers appropriately, a 

datacenter could be overloaded or underutilized, which means wastage of energy and 

resources. Hence, a good load balancing algorithm is a critical feature in datacenter’s 

management system, it is required to increase working efficiency of a network of servers.  

 

There are many load balancing algorithms proposed by researchers and 

implemented, each with different capabilities and limitations. Every load balancing 

algorithms can be categorized into one of static, dynamic, or hybrid family. The 

application of load balancing algorithm also differs based on design, some of the 

algorithms work best for centralized network; while some are more suited for distributed 

network.  
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Furthermore, there are many considerations when designing a load balancing 

algorithm. An algorithm may focus on only one aspect or multiple aspects of the servers 

during implementation. Aspects such as network traffic, thermal condition, and CPU 

process time are commonly used as load balancing parameters, and the algorithm may 

makes adaptive changes according to changes in these aspects.  

 

The modern internet datacenters can be modelled with the graph theory, a 

mathematical theorem that studies relationship between objects. An internet datacenter 

can be seen a graph, with servers being the vertices and network as the edges. The graph 

theory originated in the 18th century as the scholars were finding solutions to the 

Königsberg Bridge Problem. Since then, the graph theory has received extensive studies 

and found its wide application in fields of electrical, telecommunication, control, etc. 

 

The graph theory provides a framework which could facilitate the research of load 

balancing algorithms. Various modern control theory, including load balancing 

algorithms, have been modelled using the graph theory. Among many load balancing 

theorems, the average consensus algorithm is the focus in this dissertation.  

 

The average consensus algorithm is the set of rules specifying how individual 

nodes in a network can reach an agreement based on a quantified amount of information. 

The intention of average consensus algorithm is to obtain an eventual common decision 

by the group of nodes. The average consensus algorithm has been widely studied and 

applied in various technologies such as multi-vehicular cooperative control and network 

load balancing. 
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1.2 The Problem Statement 

 

In an internet datacenter, a “workload” or “task” is defined as the incoming 

network traffic into the network and is waiting to be serviced by the servers’ processor. 

The workload could be a webpage HTTP request, a file transfer FTP request, or any 

computational request that need to be addressed and served. 

 

Without a controller in place, the traffic comes into the network and would goes 

to servers unregulated, thus servers which are high in service chain would have to gobble 

up most of the workload. Conversely, servers which are placed low would have little 

workload or none. Hence some systems, being physical or virtual, could be overloaded 

while some others are idle most of the time. 

 

The load balancing algorithm is designed to address the issues mentioned above. 

It works as the manager cum controller that regulates the network traffic with the purpose 

of distributing workload to all subordinate systems by an appropriate scheduling. The 

intention of the implementation is to ensure all server nodes in the network are having an 

optimal workload and throughput. The objectives are to increasing efficiency of the 

datacenter and eliminate wastage of power and resources. 

 

In this research, several existing load balancing algorithm are to be studied and 

analyzed for their advantages, disadvantages, and special features. So that an improved 

algorithm could be proposed, simulated and tested for justification. 
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1.3 The Research Objectives 

 

The objectives of this research are as follow: 

a. To propose and simulate a consensus-control-based load balancing algorithm 

which could improve the efficiency of a network of server nodes in comparison 

to the protocol proposed by M. Talavera (2014). 

 

b. To characterize the performance of the proposed load balancing algorithm 

according to different network server topology. 

 

c. To demonstrate the robustness of the load balancing algorithm against 

bounded disturbance in the network. 

 

1.4 The Research Scope 

 

The scope of research briefly covers the following: 

Field:   Control Theory 

Main branch:  Load Balancing Algorithm for Network 

Specific branch: Dynamically Distributed Load Balancing Algorithm 

Specialized branch: Average Consensus Algorithm 

 

As part of the research, relevant topics such as Graph Theories, the Diffusion 

Scheme for Static and Stochastic models, and the PID control theories will also be studied 

for in-depth comprehension. 
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1.5 The Dissertation Outline 

 

Chapter 2 is the Literature Review of the topics discussed in this dissertation. This 

chapter starts with presenting the background of datacenters and importance of load 

balancing. Followed with the review of various literature, mainly on the topics of server 

network, basics of load balancing, existing load balancing algorithms, the fundamental 

graph theories, the graph Laplacians, the concept of Averaging Consensus, and the model 

of Average Consensus Algorithm for server environment. 

 

Chapter 3 is the Methodology of this research. It covers topics such as the 

fundamental average consensus theorem and different graph topologies to be used for the 

simulations. The proposed algorithm will be introduced and explained. Furthermore, the 

methodology of the experiment will be presented, which includes the simulation design, 

simulation setting, and the simulation environment. In this research, the experiment will 

be conducted based on 4-nodes and 8-nodes digraphs. 

 

Chapter 4 is the Results from this research. The experimental results generated 

from the simulation tool are presented in this chapter. Moreover, critical analyses are 

made based on the empirical findings from the simulation results. Some comparisons and 

discussions are also produced for the purpose of evaluation and justification. 

 

Chapter 5 is the Conclusion of this research. A conclusion is drawn from the 

findings and results from previous chapters. Additionally, expectation of possible future 

works will also be included as an end note. 
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CHAPTER 2 

 

LITERATURE REVIEWS 

 

2.1 Introduction 

 

Cloud computing is a recent trend in information technology that moves digital 

data from desktops and laptops to large scale internet datacenters with greater computing 

power, better efficiency, and virtualization capability (IEEE Network Magazine, 2011). 

The trend can be classified as a new paradigm for dynamic provisioning of computing 

service supported by state-of-the-art datacenters. Today, almost a quarter of American 

companies are already using cloud-based application for virtual computing and data 

storage, and more companies are planning to join the trend.  

 

Essentially, cloud is an infrastructure which provides platform and software as 

services that are made available to consumers in a pay-as-you-go model (Anton 

Beloglazov et al., 2012). Cloud offers significant benefit to IT companies by relieving 

them from the necessity of setting up basic physical hardware and software infrastructures. 

Furthermore, consumer store and access data in the internet without the knowledge of the 

physical location of the servers and storage devices. Thus, the namesake “Cloud” appears 

virtually to its users. 

 

Cloud is a collection of parallel and distributed systems (Mayanka Katyal et al., 

2013). There are three types of cloud: The private cloud, public cloud, and hybrid cloud. 
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Private clouds are owned by enterprises and business units for their own use. In a private 

cloud, the data and resources are kept strictly within an internal network and typically 

protected by a firewall. The client organization manages the cloud instead of the service 

provider, hence they have more freedom to the customization, upgrades, and security 

setting of the cloud to suit their need. 

 

Public cloud may be owned or hosted by a service provider and is made available 

to general public use, some examples of public cloud service providers are Google Cloud 

and Microsoft Azure. While public cloud offers higher level of efficiency in shared 

resources, it is more vulnerable in security terms (Mayanka Katyal et al., 2013). The 

security and privacy of public cloud have been major concerns of Cloud service provider. 

Public cloud service provider typically provide reliable access control to the user so that 

user’s data are not publicly accessible. (Shiny, 2013) 

 

Hybrid cloud is a cloud environment which an organization owns, provides and 

manages a private cloud, while having some other provided externally from public cloud. 

It is a combination of both private and public cloud, and carries the characteristics of 

various cloud models (Shiny, 2013). The advantage of hybrid cloud is the ease of moving 

data around from internal or private interface to public interface.   
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Figure 2.1: The Cloud as a collection of parallel and distributed systems. 

 

The main component that forms the Cloud is the internet datacenter (IDC), it is 

metaphorically the backbones of cloud computing. Internet Datacenter (IDC) is a physical 

repository facility where a collection of servers are located, it is also known as Server 

Farm or Server Center.  

 

In an IDC’s server room, thousands of server racks line the sides of aisles, forming 

a city of thousands of server systems. In every rack, the individual servers are connected 

with network cables, which is further connected to larger network switches to form a huge 

network of systems. Each physical server is usually booted with multiple virtual Operating 

Systems to maximize the utilization of computing resource that single physical server 

provides. 
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2.2 The Distributed Network of Servers 

 

Distributed network is a collection of self-governing computers that are connected 

via the same network. The network is facilitated with distribution middleware that 

coordinate resource sharing and traffic regulation, so that user of the network can perceive 

the entire network of computers as a single computing unit (Pathan A. et al., 2011). 

 

As the servers nodes in a distributed network attain certain degree of autonomy 

themselves as each system must have the capability to manage tasks with its own authority. 

There is no single processing element in a distributed system that is solely responsible for 

managing the entire load of an application. Instead the processing overhead is 

shared/distributed among all available server nodes. The prime benefits of distributed 

system are their combined elevated performance, accessibility, and flexibility (Shivaratri 

et al., 1992). 

 

The presence of a middleware, such as a load balancer, to coordinate and regulate 

workload among the server nodes in a distributed network signifies that the whole network 

has the ability of self-regulating/healing, fault tolerance, and an improved network 

reliability. If one of the server nodes is experiencing downtime, its workload can be 

quickly redirected to other available connected nodes without affecting the overall 

network integrity. Other than sharing of data and I/O devices, distributed systems also 

share the nodes’ computational power and processing capability among others, which 

improves the performance of whole system. (Payal B. et al., 2014) 
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Another benefit of distributed network is the scalability. (Payal B. et al., 2014) 

Distributed network is able to expand to meet new needs. New servers can be added to 

the existing network and form new nodes without having to shut down the entire network. 

Similarly, a server can be removed when required. This scalability brings remarkable 

conveniences for existing IDCs to growth and cope with expanding demand, the 

convenience is especially visible when an IDC is moved fully or partially from one place 

to another, and when a defective server needs to be replaced without shutdown the whole 

rack of servers. 

 

 However, distributed network requires workload between interconnected servers 

be managed and regulated, and this requires a load balancing algorithm. Next section will 

elucidate the load balancing algorithm. 

 

 

2.3 The Load Balancing Algorithms 

 

The web servers in IDCs are known to have very drastic change in service request 

continually, resulting in an ungraceful profile for service load and long awaited queue of 

requests. IDC without a load balancer in place would see some systems constantly 

experiencing high load, while some other idle, this uneven distribution of workload lowers 

the overall efficiency of IDC, increased power consumption, and could bring bad 

reputation for the IDC owner of the slow service. It is crucial to have proper load balancing 

algorithm for IDCs to increase the service efficiency and to lessen the energy wastage. 
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The fundamental idea of load balancing in IDCs is to introduce elasticity elements 

into the server’s service policies with the objective of maintaining a feasible computing 

capability with the least idle time and most utilization, thus enabling an efficient use of 

computing resources in IDCs. From an example provided by Xu Cheng et al., the requests 

for a messenger software service spikes and fluctuates with respect to user login volume 

from time to time (2013), hence it is important for the software to have an elastic resource 

management to deal with the drastic changes demands. 

 

The IDC’s servers would have different loading if not regulated, the load refers to 

CPU load, memory used, delays, or network load waiting to be serviced. The unregulated 

traffic could cause some server to be heavily loaded while some too lightly. Hence, a load 

balancing algorithm is required to notice this unbalanced distribution of workload and 

provides a viable policy of traffic management so that one or more servers, network 

interfaces, hard drives or other computing resources have optimized utilization and job 

response time.  

 

The load balancing is defined as a process of allocating the total work load to the 

individual nodes of the distributed systems to improve resource utilization and response 

time, also avoiding the condition in which some nodes are overloaded while others are 

under loaded or server failure. (Suriya Begum et al., 2013) It is a new technique that 

facilitates network and resources distribution by providing a maximum throughput with 

minimum response time (Rajwinder K. et al., 2014 and Chaudhari et al., 2013).  
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The load balancer takes in requests from clients, usually other computers on the 

same network, and distribute the requests across multiple servers it manages based on the 

current status and loading of the servers. With the critical role of a load balancer, its 

algorithm has to be designed properly to avoid data lost (Shiny, 2013). 

 

The main goals of load balancing algorithm listed by (A. Goscinski, 1991) are as 

follow: 

a. To achieve greater overall improvement in system performance at a 

reasonable costs. 

b. To treat all workload in a system equally regardless of their origin. 

c. To have fault tolerance in the system 

d. To have the ability to modify itself in accordance with any changes or 

expansion in the distribute system configuration. (This is applicable for 

Dynamic Load Balancing only) 

 

 

Figure 2.2: The categories and types of load balancing algorithms. 

Load Balancing Algorithm 

Static Dynamic 

Distributed Centralized 

Cooperative Non-Cooperative 

Semi-Distributed 



13 
 

Load balancing algorithm can also be categorized according to the initiation types. 

The initiation types commonly seen are: 

 

a. Sender Initiated – The load balancing algorithm is initiated by the sender 

node. 

b. Receiver Initiated - The load balancing algorithm is initiated by the 

receiver node. 

c. Symmetric – The combination of the both initiation types above. 

 

The initiation types are the approaches to start a load balancing algorithm. The 

overloaded node initiates load balancing algorithm to distribute out its load is called 

Sender initiated. In Receiver initiated, an under-loaded or lightly-loaded initiates the load 

balancing algorithm to offer its willingness to accept new job. 

 

Load balancing was identified as a crucial factor to allow Cloud computing to 

scale up to increasing demands (Martin Randles et al., 2010). With the efficiency, 

practicality, and expandability of load balancing algorithm on an ecosystem of systems, 

the datacenters can be expanded and grow while maintaining its quality of service, cost, 

and security. 
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2.4 The Comparison of Static and Dynamic Load Balancing Algorithms 

 

In general, all load balancing algorithms that operates based on system status are 

categorized into static methods and dynamic methods. Static methods make decision 

based on the static information of the systems. Conversely, dynamic method make 

decision based on both the current state and information of the systems. 

 

The design of a static load balancing method is determined a priori, and the 

responding behavior is predestined (Ali M. Alakeel, 2010). Behavior of this approach is 

not altered with respect to the load transition or the current state of the network (Cybenko 

G., 1989). Static load balancing methods are non-preemptive, which means that once the 

load is allocated to a node it cannot be transferred to another node after execution 

commenced (Payal Beniwal et al., 2014). Hence static load balance policy lacks the 

flexibility to respond differently with respect to changes in system loads. However, these 

methods requires less communication and computation, hence reduced the execution time 

and run-time overhead (Payal Beniwal et al., 2014). 

 

Conversely, dynamic load balancing method change its distribution policies with 

respect to different load profile and current state of the systems. The methods are adaptive, 

flexible, and require no prior knowledge of the incoming workload. Due to its nature, 

dynamic load balancing is more complex than static load balancing, it is also the more 

popular load balancing policy used contemporary. 
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Dynamic load balancing methods are applied in three forms: Centralized, 

Distributed, and Semi-distributed.  

 

a. Centralized – A single node in the network acts as the “Central Node” and 

is responsible for all the load distribution to all other nodes. 

b. Distributed – The responsibility of load balancing and job distribution is 

evenly distributed to all nodes in the network. 

c. Semi-distributed – The network is segmented into clusters, where each 

cluster is centralized. The load balancing is achieved through the 

cooperation of central nodes of all connected clusters. 

 

In dynamic load balancing algorithm for distributed network, the algorithm is 

further categorized under Cooperative and Non-cooperative forms. 

 

a. Cooperative – Nodes work together to achieve a global objective. The 

nodes cooperate with each other to meet a common system performance 

goal, such as to improve system’s overall response time. 

b. Non-cooperative – Each node works independently toward a local goal. 

The node makes decision of job scheduling and migration based on local 

status and resources independently, such as to improve a node’s response 

time. 

 

There are three types of dynamic load balancing methods: Central Queue 

algorithm, Local Queue algorithm, and Least Connection algorithm. 
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2.5 The Mechanism of Dynamic Load Balancing 

 

A dynamic load balancing algorithm makes load distribution decisions based on 

the current workload information at each node in the distributed system. Hence, a 

mechanism in the dynamic load balancing algorithm responsible for collecting and 

managing system information is required in the algorithm. This mechanism is referred as 

Information strategy.  

 

The information strategy acts as the information center for the algorithm. It is 

responsible for providing location and transfer strategies at each node with the necessary 

information needed to make their load balancing decisions. There is a tradeoff between 

the amount of information provided and the frequency of the provision as the more amount 

of information the strategy provides, the more traffic it generates and thus the overhead is 

increased. (Ali M. Alakeel, 2010) 

 

Moreover, a mechanism to make decision of which workload is eligible for 

redistribution is required for the algorithm. This mechanism which selects a workload for 

transfer from a local node to a remote node. Some research further separate this 

mechanism into two parts: Transfer strategy and Selection strategy.  

 

The transfer strategy determines the condition under which a task should be 

transferred. It typically includes job migration and job rescheduling, where migration 

means suspending an executing job, transferring it to another processor and resumes the 
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execution from halted point. The transfer strategy determines which node becomes 

eligible to act as a sender or a receiver. 

 

The selection strategy is sometimes merged with transfer strategy as one 

mechanism. Discretely, selection strategy is the strategy which decides a node as a host, 

and selects a job to be transferred. This mechanism must be sophisticatedly designed as 

the important parameters of a job such as execution time, size, I/O, and memory 

requirements are only known at execution. A selection strategy considers the following 

factors (Sachin Kumar et al., 2012) when selecting a job: 

 

a. The overhead incurred by the transfer. The overhead should be minimal 

hence smaller tasks are preferred in selection. 

b. The job should be long lived. Tasks with longer processing time or with 

higher priority are preferred as it is worthwhile for the overhead incurred 

per transfer. 

c. The number of location-dependent system call made by the selected job. 

The number of location-dependent system call should be minimal as the 

job uses resources which are location-dependent. 

 

There are many different implementations of transfer strategy. The simplest 

approach would be making decisions independently of the job’s parameter except 

consideration of the job queue length in local node, a job is transferred only if the queue 

length exceeds a certain threshold. The main drawback is the inflexibility and the 

disregard of job sizes. Other approaches involves use of estimation and statistical 
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prediction, such as using Fuzzy Logic, to approximate the job’s parameters when making 

decisions. (S. Chowdhury, 1990 and A. Karimi et al., 2009) 

  

The last mechanism in a dynamic load balancing algorithm is the mechanism to 

determine which location or node for a workload to be transferred to. This mechanism 

selects a destination for the transferring workload is known as Location strategy. This 

mechanism is the executional stage of a load balancing algorithm, where it located a 

lightly-loaded node to share the load of a heavily-loaded node. The most common 

consideration in the decision is the current work load status at a node, which represented 

by CPU Queue Length (The total number of job waiting to be serviced by CPU and the 

one in servicing). Some approaches used in the location strategy are random location, 

probed location, and negotiated location (Ali M. Alakeel, 2010). 

 

In random location strategy, the local or central node selects a remote node 

randomly and transfers the job there for execution. Upon receipt of the new job, the remote 

node executes the job if the job queue is below a predefined threshold. Or else, the new 

job is further transferred to another node. However, to avoid the situation where a job is 

constantly ping-pong around the nodes, a limitation on the number of transfer is usually 

imposed, the last node at the limitation is forced to take up the new job regardless of its 

job queue. 

 

Probing location strategy identifies certain number of nodes and probe them for 

their status, one node is picked from the list for the transfer of new job. The criteria of 

selection include the job queue length, service time, and response time. This strategy is 
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subcategorized into different sub-strategies: Threshold, Greedy, and Shortest. (D. L. 

Eager et al., 1986) 

 

In Probe-Threshold, a random remote node selected and is probe to see if the 

transferring of new job would cause it to go above its threshold. If not, the job is transfer 

to it; else, another node is identified for probing. The Probe-Greedy is a variation of 

threshold strategy, it uses a cyclic probing of nodes instead of random node. The Probe-

Shortest strategy select a remote node randomly, and probes it to determine the job queue 

length currently at the remote node. A remote node with shortest job queue length is 

selected for the job transfer. (D. L. Eager et al., 1986) 

 

In negotiation location strategy, nodes negotiate with each other to select a suitable 

node for taking up new tasks for load balancing purpose. This strategy is commonly 

applied in distributed dynamic load balancing algorithm. Two subcategories are Bidding 

and Drafting. (J. A. Stankovic et al., 1984 and L. Ni et al., 1985) in bidding location 

strategy, an overloaded node broadcasts request message which contains its load 

information to all other nodes. Only lighter-loaded nodes respond to the request and 

answer it. Then the requesting node shall select the lightest-loaded node that answered 

and both initiate a negotiation on the transfer of job.  

 

The drafting location strategy is the inverse of bidding strategy, where the lightly-

loaded nodes which ready to take up more tasks broadcast their status across the network 

and initiate negotiation with other heavily-loaded nodes. Comparing the two negotiation 

strategies, drafting strategy outperforms the bidding strategy when given the same 
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environment. The major problem with the bidding strategy is that a lightly-loaded node 

might be overloaded as a result of winning many bids in a short time. But this can be 

solved with imposing a limit on number of winning bids. (L. Ni et al., 1985) 

 

Thus, a dynamic load balancing algorithm is composed of three main components: 

the Information strategy, the Transfer strategy (includes Selection strategy), and the 

Location strategy. The relationship between the three components are depicted as 

followed: 

  

Figure 2.3: The relationship between transfer, location, and information strategies. 

 

The incoming tasks are intercepted by the transfer strategy, which decides should 

the job be transferred for load balancing purposes. If the decision is made to transfer the 

job, the location strategy decides which remote node to get the job. The information 

strategy provides useful information to both transfer and location strategies to enable the 

decision making processes (Ali M. Alakeel, 2010). 

 

Transfer Strategy Location Strategy 

Information Strategy 

Is job eligible 

for transfer? 

Is remote node 

found? 

Execute 

Locally 

C
o

m
m

u
n

icatio
n

 N
etw

o
rk 

In
co

m
in

g
 T

ask
s 



21 
 

 The different categories of the dynamic load balancing algorithm are depicted in 

the figure below: 

 

Figure 2.4: The mechanisms of dynamic load balancing algorithms. 

 

2.6 The Assessment Metrics of a Load Balancing Algorithm 

 

The performance of a dynamic load balancing algorithm is measured by several 

metrics (Sachin Kumar et al., 2012), some of which are listed below: 

 

a. Communication Overhead – The status information which every node has 

to be conveyed, including communication, resource utilization, and 

migration of job involved in the load balancing. It should be minimal for 

system to be efficient. 
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b. Load Balancing Time – The amount of time that elapses between the job 

arrival time and the time which the job is accepted by the remote node. It 

should be optimally short. 

c. Scalability – The ability of the algorithm to perform load balancing with 

any finite number of nodes. 

d. Fault Tolerance – The ability of the algorithm to perform uniform load 

balancing in spite of some failure in nodes and links. 

e. Reliability – The ability of the algorithm to schedule tasks in 

predetermined time. 

f. Stability – A characterization in terms of delays in the transfer of 

information between nodes, and the gains of the algorithm. 

g. Throughput – The number of tasks or tasks which have been completed. It 

should be high for better performance. 

 

2.7 The Existing Load Balancing Algorithms 

 

There are many load balancing algorithms in existence, mainly grouped under 

static and dynamic according to the algorithm’s nature. As examples, three types of static 

load balancing algorithms are given by Payal Beniwal et al. (2014) as followed: 

 

a. Round Robin Algorithm 

The round robin algorithm is performed in the namesake pattern of distributing 

load in a circular round robin fashion to a chain of nodes. The assignment of load 

and each node are not given any priority. Equal load is simply assigned from the 
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first to the last node, then back to the first node for another cycle. This algorithm 

requires little communication, simple to implement, and node starvation free. 

 

b. Central Manager Algorithm 

The central manager algorithm has a central node acting as the manager for the 

network of nodes. It selects a managed node as the destination for assigning load. 

The load assignment can be based on different criteria such as load priority or node 

availability. Usually the node with the least workload will be selected for new load 

transfer. This algorithm requires constant updates between central manager and 

nodes for the best performance, hence inter-process communication level is high. 

 

c. Randomized Algorithm 

The randomized algorithm is static and the simplest in implementation. It selects 

node for load receiving randomly. As the information of nodes are not required in 

load assignment, the inter-process communication level is low, however, for the 

same reason the algorithm is best suited for a network of nodes with equal loads. 

The nodes are expected to have certain degree of variability in performance to 

avoid overloading. 

 

All the static load balancing algorithms have limitations in terms of flexibility 

when dealing with different load levels and load assignment. Randomized algorithm, for 

example, lacks of the knowledge of the slave nodes’ status, and could easily cause 

overloading for one node if that particular node is consecutive selected randomly. To give 

the flexibility to load balancing algorithms, a new family of algorithm is created – 
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Dynamic load balancing algorithms. Three of the existing dynamic load balancing 

algorithms compiled by Payal Beniwal et al. (2014) are listed below: 

 

d. Central Queue Algorithm 

In the central queue algorithm, the new load are queued in a cyclic First In First 

Out formation. New coming load is inserted to the last of queue. When an available 

node is requesting for load, the first load is removed from the queue and 

transferred to the node. 

  

e. Local Queue Algorithm 

The local queue algorithm is a process of load check-and-balance among the 

network of nodes. When a node has load number falls under a predefined threshold 

of minimum, it initiates the call of load transfer from other node. The remote nodes 

check their list of activities and pass some of their loads to the requesting node. 

 

f. Least Connection Algorithm 

In this algorithm, the load balancer tracks a record of the number of connection 

for each node. The node with the least number of connection is selected first for 

new load transfer. 

 

There are many more existing load balancing algorithms which are not covered 

here. The algorithms have different nature and implementation for different requirements 

and environments. 

 


