

LOAD BALANCING USING THE CONSENSUS CONTROL

ALGORITHM FOR A NETWORK SERVER SYSTEM

By

ALAN TAN CHIN LOON

A dissertation submitted for partial fulfilment of the requirement for

the degree of Master of Science (Electronic Systems Design

Engineering)

August 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/199244138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my research supervisor, Dr.

Muhammad Nasiruddin Mahyuddin, who have provided me abundance of guidance and

advices during my research. His invaluable knowledge sharing and continual

encouragement have helped me very much in the accomplishment of this research

dissertation.

I would like to sincerely thank my career manager, Mr. Ch’ng Sheng Cheang, for

giving me this priceless opportunity to pursue my Master degree in part-time. His graceful

leniency in allowing me to manage my own work schedule has enabled me to achieve

balance between my Master degree studies and my work.

I would like to express my gratefulness to my family, my mother, Ooi Lay Leng,

and my brother, Benny Tan Chin Chiu, for all the supports they have been constantly

giving me. Their dearest loves motivated and inspired me in my pursuit of happiness.

Lastly, I would like to express my earnest appreciation to all my course-mates

from MSc. Electronic System Design Engineering (ESDE) Batch 2015/16, we have been

great comrades together in this battle for betterment. Furthermore, I would also like to

thank helpful staffs from USAINS, Ms. Ong Bee Leng and Ms. Mazlin in particular, for

providing all the necessary facilitation for the course to be smoothly conducted.

iii

ABSTRAK

Pusat data internet merupakan contoh rangkaian edaran dengan beban-beban dinamik.

Algoritma pengimbangan beban amat diperlukan dalam sebuah pusat data internet untuk

tujuan pengurusan dan pengagihan beban kepada nodus-nodus dalam rangkaian,

algoritma pengimbangan beban membawa pelbagai manfaat kepada pihak pemilik dan

pihak pengguna Cloud termasuk ia memanjangkan jangka hayat komputer pelayan dan

meningkatkan kualiti perkhidmatan Cloud. Satu algoritma konsensus purata

menggunakan kawalan PID telah dikemukakan dalam kajian ini. Algoritma yang

dikemukakan diujikan dengan rangkaian yang berbeza bilangan nodus dan keputusan

dibandingkan dengan algoritma yang sedia ada. Justerunya, alat pengimbang beban yang

direka juga diujikan dengan topografi graf yang berbeza-beza untuk kajian keupayaan

penyesuaian diri alat pengimbang tersebut. Keputusan prestasi yang diperolehi lebih baik

berbanding dengan model PI yang sedia ada.

iv

ABSTRACT

An internet datacenter is an apt example of a distributed network with dynamic loads, and

a load balancing algorithm is needed in a datacenter to manage and distribute the loading

to all server nodes appropriately. The implementation of a load balancer brings benefits

to both the datacenter owner and Cloud users as it prolongs the lifespan of servers and

improve the quality of service. An average consensus algorithm using PID control is

proposed for the implementation in a network of server nodes and the result is compared

to an existing model. The proposed algorithm is simulated with different number of nodes

and edges. Furthermore, the designed load balancer is subjected to different graph

topologies to test its adaptability. The performance results are found to be better than the

existing model using PI.

v

TABLE OF CONTENT

ACKNOWLEDGMENT ... ii

ABSTRAK ... iii

ABSTRACT ... iv

TABLE OF CONTENT .. v

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS .. xi

LIST OF SYMBOLS .. xii

CHAPTER 1 INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 The Problem Statement .. 3

1.3 The Research Objectives .. 4

1.4 The Research Scope.. 4

1.5 The Dissertation Outline ... 5

CHAPTER 2 LITERATURE REVIEWS .. 6

2.1 Introduction .. 6

2.3 The Load Balancing Algorithms .. 10

2.4 The Comparison of Static and Dynamic Load Balancing Algorithms 14

2.5 The Mechanism of Dynamic Load Balancing .. 16

2.6 The Assessment Metrics of a Load Balancing Algorithm 21

2.7 The Existing Load Balancing Algorithms .. 22

2.8 The Basics of Graph Theory ... 25

2.9 The Average Consensus Algorithm .. 30

2.10 The Design of the PID Control Mechanism ... 33

2.11 The Integral Time Absolute Error Measurement ... 34

2.12 Summary ... 35

CHAPTER 3 METHODOLOGY... 36

3.1 Introduction .. 36

3.2 The Fundamental Average Consensus Theorem .. 36

3.3 The Existing Average Consensus Algorithm ... 38

3.4 The Proposed Average Consensus Algorithm .. 40

vi

3.5 The Mechanism of the Proposed Algorithm... 42

3.6 The Characterization of Graph Topographies .. 43

3.6.1 The Formulation of Laplacian Matrix ... 44

3.6.1 The 4-Nodes Digraph Type-A... 45

3.6.2 The 4-Nodes Digraph Type-B ... 46

3.6.3 The 4-Nodes Digraph Type-C ... 47

3.6.4 The 4-Nodes Digraph Type-D... 48

3.6.5 The 8-Nodes Digraph Type-E ... 49

3.6.6 The 8-Nodes Digraph Type-F ... 50

3.6.7 The 8-Nodes Digraph Type-G... 51

3.6.8 The 8-Nodes Digraph Type-H... 52

3.7 The Simulation Methodology ... 53

3.7.1 The Laplacian Matrix in MATLAB .. 54

3.7.2 The Laplacian-Load Coefficient, Lq ... 55

3.7.3 The Proportional, Integral, and Derivative Controller 57

3.7.4 The Loopback Control in MATLAB .. 58

3.7.5 The Load Balancer System in MATLAB ... 59

3.7.6 The Proportional Gain Coefficient .. 60

3.7.7 The Integral Gain Coefficient ... 62

3.7.8 The Derivative Gain Coefficient ... 64

3.7.9 The Discussion on the PID Coefficients ... 66

3.8 Summary ... 68

CHAPTER 4 RESULTS AND DISCUSSIONS .. 69

4.1 Introduction .. 69

4.2 The Prerequisites of Simulation ... 69

4.3 The Simulation Setting of Values ... 70

4.3 The Simulation Setting of Topologies .. 71

4.4 The Simulation Result of Proposed Algorithm with 4-Nodes 72

4.4.1 The 4-Nodes Graph Type-A .. 72

4.4.2 The 4-Nodes Graph Type-B .. 74

4.4.3 The 4-Nodes Graph Type-C .. 76

4.4.4 The 4-Nodes Graph Type-D .. 78

4.4.5 The Discussion on the Simulations of 4-Nodes Graphs 80

vii

4.5 The Comparison of Integral Absolute Error for 4-nodes Graphs 82

4.6 The Simulation Result of Proposed Algorithm with 8-Nodes 83

4.6.1 The 8-Nodes Graph Type-E .. 84

4.6.2 The 8-Nodes Graph Type-F .. 86

4.6.3 The 8-Nodes Graph Type-G .. 88

4.6.4 The 8-Nodes Graph Type-H .. 90

4.6.5 The Discussion on the Simulations of 8-Nodes Graphs 93

4.7 The Comparison of Integral Absolute Error for 8-nodes Graphs 96

4.8 The Simulation Result of Sample Network Traffic Loads 97

4.9 The Comparison of Existing and Proposed Load Balancing Models 100

4.10 Summary ... 105

CHAPTER 5 CONCLUSION ... 106

5.1 Introduction .. 106

5.2 Conclusion .. 106

5.3 Future Works .. 108

REFERENCES .. 109

APPENDIX A: The MATLAB-Simulink Implementation for 8-Nodes Network 114

viii

LIST OF FIGURES

Figure 2.1: The Cloud as a collection of parallel and distributed systems........................ 8

Figure 2.2: The categories and types of load balancing algorithms. 12

Figure 2.3: The relationship between transfer, location, and information strategies. 20

Figure 2.4: The mechanisms of dynamic load balancing algorithms. 21

Figure 2.5: The depiction of a graph, vertices, and edges. .. 26

Figure 3.1: The flowchart of the proposed load balancing algorithm. 42

Figure 3.2: The Type-A directed graph of 4 nodes. .. 45

Figure 3.3: The Type-B directed graph of 4 nodes. .. 46

Figure 3.4: The Type-C directed graph of 4 nodes. .. 47

Figure 3.5: The Type-D directed graph of 4 nodes. .. 48

Figure 3.6: The Type-E directed graph of 8 nodes. .. 49

Figure 3.7: The Type-F directed graph of 8 nodes. ... 50

Figure 3.8: The Type-G directed graph of 8 nodes. .. 51

Figure 3.9: The Type-H directed graph of 8 nodes. .. 52

Figure 3.10: The main components of the designed load balancer. 53

Figure 3.11: The Simulink implementation of the 4x4 Laplacian matrix. 54

Figure 3.12: The Simulink implementation of the Laplacian-Load block. 56

Figure 3.13: The Simulink implementation of the PID control block. 57

Figure 3.14: The Simulink implementation of the Loopback control for 4 nodes. 58

Figure 3.15: The Simulink implementation of the Load Balancer subsystem. 59

Figure 3.16: The simulation result for Kp=0.4 (Fixed Ki=5, Kd=200). 60

Figure 3.17: The simulation result for Kp=40 (Fixed Ki=5, Kd=200). 61

Figure 3.18: The simulation result for Kp=800 (Fixed Ki=5, Kd=200). 61

Figure 3.19: The simulation result for Ki=5 (Fixed Kp=0.4, Kd=200). 62

Figure 3.20: The simulation result for Ki=5000 (Fixed Kp=0.4, Kd=200). 63

Figure 3.21: The simulation result for Ki=50000 (Fixed Kp=0.4, Kd=200). 63

Figure 3.22: The simulation result for Kd=2 (Fixed Kp=0.4, Ki=5). 64

Figure 3.23: The simulation result for Kd=200 (Fixed Kp=0.4, Ki=5). 65

Figure 3.24: The simulation result for Kd=2000 (Fixed Kp=0.4, Ki=5). 65

Figure 4.1: The 4-nodes graph Type-A. .. 72

Figure 4.2: The Closed-loop Server Load Dynamics of 4-nodes graph Type-A. 72

Figure 4.3: The magnified Y-axis of Closed-loop Server Load Dynamics of 4-nodes

graph Type-A. ... 73

Figure 4.4: The Control Effort of 4-nodes graph Type--A. .. 73

Figure 4.5: The 4-nodes graph Type-B. .. 74

Figure 4.6: The Closed-loop Server Load Dynamics of 4-nodes graph Type-B. 74

Figure 4.7: The magnified Y-axis of Closed-loop Server Load Dynamics of 4-nodes

graph Type-B... 75

Figure 4.8: The Control Effort of 4-nodes graph Type-B. .. 75

Figure 4.9: The 4-nodes graph Type-C. .. 76

Figure 4.10: The Closed-loop Server Load Dynamics of 4-nodes graph Type-C. 76

ix

Figure 4.11: The magnified Y-axis of Closed-loop Server Load Dynamics of 4-nodes

graph Type-C... 77

Figure 4.12: The Control Effort of 4-nodes graph Type-C. .. 77

Figure 4.13: The 4-nodes graph Type-D. .. 78

Figure 4.14: The Closed-loop Server Load Dynamics of 4-nodes graph Type-D. 78

Figure 4.15: The magnified Y-axis of Closed-loop Server Load Dynamics of 4-nodes

graph Type-D. ... 79

Figure 4.16: The Control Effort of 4-nodes graph Type-D. .. 79

Figure 4.17: The Integral Absolute Error for 4-nodes Graphs .. 82

Figure 4.18: The 8-nodes graph Type-E. .. 84

Figure 4.19: The Closed-loop Server Load Dynamics of 8-nodes graph Type-E........... 84

Figure 4.20: The magnified Y-axis of Closed-loop Server Load Dynamics of 8-nodes

graph Type-E. .. 85

Figure 4.21: The control effort graph of 8-nodes graph Type-E. 85

Figure 4.22: The 8-nodes graph Type-F.. 86

Figure 4.23: The Closed-loop Server Load Dynamics of 8-nodes graph Type-F. 86

Figure 4.24: The magnified Y-axis of Closed-loop Server Load Dynamics of 8-nodes

graph Type-F. .. 87

Figure 4.25: The control effort graph of 8-nodes graph Type-F. 87

Figure 4.26: The 8-nodes graph Type-G. .. 88

Figure 4.27: The Closed-loop Server Load Dynamics of 8-nodes graph Type-G. 88

Figure 4.28: The magnified Y-axis of Closed-loop Server Load Dynamics of 8-nodes

graph Type-G. ... 89

Figure 4.29: The Control Effort of 8-nodes graph Type-G. .. 89

Figure 4.30: The 4-nodes graph Type-H. .. 90

Figure 4.31: The Closed-loop Server Load Dynamics of 8-nodes graph Type-H. 90

Figure 4.32: The magnified Y-axis of Closed-loop Server Load Dynamics of 8-nodes

graph Type-H. ... 91

Figure 4.33: The Control Effort of 8-nodes graph Type-H. .. 91

Figure 4.34: The Closed-loop Server Load Dynamics of Type-F and Type-F(b). 94

Figure 4.35: The Integral Absolute Error for 8-nodes Graphs. 96

Figure 4.36: The Closed-loop Server Load Dynamics of sample network traffic loads on

the eight server nodes. ... 97

Figure 4.37: The balanced load for all eight server loads using the proposed algorithm.

 ... 98

Figure 4.38: The loads of all eight server switched between original signal and with the

proposed load balancer. ... 99

Figure 4.39: The PI-based load balancing algorithm with Ki = 5, Kp =0.4. 100

Figure 4.40: The PI-based load balancing algorithm with Ki = 5, Kp = 4. 101

Figure 4.41: The PI-based load balancing algorithm with Ki = 50, Kp = 4. 101

Figure 4.42: The PI-based load balancing algorithm with network traffic load using Ki =

5, Kp = 4. ... 102

Figure 4.43: The Integral Absolute Errors of PI-based and PID-based load balancing (Kd

= 20 for PID, Ki = 5, Kp = 4). .. 103

x

LIST OF TABLES

Table 3.1: The Comparison of the PID Gain Coefficients .. 67

Table 4.1: The Initial Loading of the Server Nodes .. 70

Table 4.2: The Comparison of the Simulation of the 4-Nodes Graphs 80

Table 4.3: The Initial Loading of the Server Nodes .. 83

Table 4.4: The Comparison of the Simulation of the 8-Nodes Graphs 93

Table 4.5: The Comparison between 4-Nodes and 8-Nodes Graphs 95

xi

LIST OF ABBREVIATIONS

CPU Central Processing Unit

Digraph Directed Graph

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

I/O Input and Output

IAE Integral Absolute Error

IDC Internet Datacenters, also as Internet Data Center

IT Information Technology

PID Proportional, Integral, Derivative

xii

LIST OF SYMBOLS

 vi Vertex of i

 V Array of vertices

 ei Edge of i, for undirected graph

 eij Edge from vi to vj, for directed graph

E Array of edges

 qi Load of server i

 𝑞�̇� Derivative of the load of server i

 L Laplacian matrix

 lij Element (i, j) of the Laplacian matrix

Ad Adjacency matrix

aij Element (i, j) of the Adjacency matrix

 Ξ Incoming request rate

 O Completed request rate

 t Time

 U(t) Control Term or Control Effort

 Kp Proportional Gain Coefficient

 Ki Integral Gain Coefficient

 Kd Derivative Gain Coefficient

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The technology of cloud computing is expanding exponentially in recent years as

there is an increasing number of consumers boarding the bandwagon. The popularity of

Cloud computing taps on the convenience of internet bandwidth and virtual storage space

available today. It enables consumer to have fast and connected data sharing capability

without owning the cumbersome facilities.

The datacenters experience drastic changes in loading at different time. Without a

good load balancing algorithm distributing the workload to servers appropriately, a

datacenter could be overloaded or underutilized, which means wastage of energy and

resources. Hence, a good load balancing algorithm is a critical feature in datacenter’s

management system, it is required to increase working efficiency of a network of servers.

There are many load balancing algorithms proposed by researchers and

implemented, each with different capabilities and limitations. Every load balancing

algorithms can be categorized into one of static, dynamic, or hybrid family. The

application of load balancing algorithm also differs based on design, some of the

algorithms work best for centralized network; while some are more suited for distributed

network.

2

Furthermore, there are many considerations when designing a load balancing

algorithm. An algorithm may focus on only one aspect or multiple aspects of the servers

during implementation. Aspects such as network traffic, thermal condition, and CPU

process time are commonly used as load balancing parameters, and the algorithm may

makes adaptive changes according to changes in these aspects.

The modern internet datacenters can be modelled with the graph theory, a

mathematical theorem that studies relationship between objects. An internet datacenter

can be seen a graph, with servers being the vertices and network as the edges. The graph

theory originated in the 18th century as the scholars were finding solutions to the

Königsberg Bridge Problem. Since then, the graph theory has received extensive studies

and found its wide application in fields of electrical, telecommunication, control, etc.

The graph theory provides a framework which could facilitate the research of load

balancing algorithms. Various modern control theory, including load balancing

algorithms, have been modelled using the graph theory. Among many load balancing

theorems, the average consensus algorithm is the focus in this dissertation.

The average consensus algorithm is the set of rules specifying how individual

nodes in a network can reach an agreement based on a quantified amount of information.

The intention of average consensus algorithm is to obtain an eventual common decision

by the group of nodes. The average consensus algorithm has been widely studied and

applied in various technologies such as multi-vehicular cooperative control and network

load balancing.

3

1.2 The Problem Statement

In an internet datacenter, a “workload” or “task” is defined as the incoming

network traffic into the network and is waiting to be serviced by the servers’ processor.

The workload could be a webpage HTTP request, a file transfer FTP request, or any

computational request that need to be addressed and served.

Without a controller in place, the traffic comes into the network and would goes

to servers unregulated, thus servers which are high in service chain would have to gobble

up most of the workload. Conversely, servers which are placed low would have little

workload or none. Hence some systems, being physical or virtual, could be overloaded

while some others are idle most of the time.

The load balancing algorithm is designed to address the issues mentioned above.

It works as the manager cum controller that regulates the network traffic with the purpose

of distributing workload to all subordinate systems by an appropriate scheduling. The

intention of the implementation is to ensure all server nodes in the network are having an

optimal workload and throughput. The objectives are to increasing efficiency of the

datacenter and eliminate wastage of power and resources.

In this research, several existing load balancing algorithm are to be studied and

analyzed for their advantages, disadvantages, and special features. So that an improved

algorithm could be proposed, simulated and tested for justification.

4

1.3 The Research Objectives

The objectives of this research are as follow:

a. To propose and simulate a consensus-control-based load balancing algorithm

which could improve the efficiency of a network of server nodes in comparison

to the protocol proposed by M. Talavera (2014).

b. To characterize the performance of the proposed load balancing algorithm

according to different network server topology.

c. To demonstrate the robustness of the load balancing algorithm against

bounded disturbance in the network.

1.4 The Research Scope

The scope of research briefly covers the following:

Field: Control Theory

Main branch: Load Balancing Algorithm for Network

Specific branch: Dynamically Distributed Load Balancing Algorithm

Specialized branch: Average Consensus Algorithm

As part of the research, relevant topics such as Graph Theories, the Diffusion

Scheme for Static and Stochastic models, and the PID control theories will also be studied

for in-depth comprehension.

5

1.5 The Dissertation Outline

Chapter 2 is the Literature Review of the topics discussed in this dissertation. This

chapter starts with presenting the background of datacenters and importance of load

balancing. Followed with the review of various literature, mainly on the topics of server

network, basics of load balancing, existing load balancing algorithms, the fundamental

graph theories, the graph Laplacians, the concept of Averaging Consensus, and the model

of Average Consensus Algorithm for server environment.

Chapter 3 is the Methodology of this research. It covers topics such as the

fundamental average consensus theorem and different graph topologies to be used for the

simulations. The proposed algorithm will be introduced and explained. Furthermore, the

methodology of the experiment will be presented, which includes the simulation design,

simulation setting, and the simulation environment. In this research, the experiment will

be conducted based on 4-nodes and 8-nodes digraphs.

Chapter 4 is the Results from this research. The experimental results generated

from the simulation tool are presented in this chapter. Moreover, critical analyses are

made based on the empirical findings from the simulation results. Some comparisons and

discussions are also produced for the purpose of evaluation and justification.

Chapter 5 is the Conclusion of this research. A conclusion is drawn from the

findings and results from previous chapters. Additionally, expectation of possible future

works will also be included as an end note.

6

CHAPTER 2

LITERATURE REVIEWS

2.1 Introduction

Cloud computing is a recent trend in information technology that moves digital

data from desktops and laptops to large scale internet datacenters with greater computing

power, better efficiency, and virtualization capability (IEEE Network Magazine, 2011).

The trend can be classified as a new paradigm for dynamic provisioning of computing

service supported by state-of-the-art datacenters. Today, almost a quarter of American

companies are already using cloud-based application for virtual computing and data

storage, and more companies are planning to join the trend.

Essentially, cloud is an infrastructure which provides platform and software as

services that are made available to consumers in a pay-as-you-go model (Anton

Beloglazov et al., 2012). Cloud offers significant benefit to IT companies by relieving

them from the necessity of setting up basic physical hardware and software infrastructures.

Furthermore, consumer store and access data in the internet without the knowledge of the

physical location of the servers and storage devices. Thus, the namesake “Cloud” appears

virtually to its users.

Cloud is a collection of parallel and distributed systems (Mayanka Katyal et al.,

2013). There are three types of cloud: The private cloud, public cloud, and hybrid cloud.

7

Private clouds are owned by enterprises and business units for their own use. In a private

cloud, the data and resources are kept strictly within an internal network and typically

protected by a firewall. The client organization manages the cloud instead of the service

provider, hence they have more freedom to the customization, upgrades, and security

setting of the cloud to suit their need.

Public cloud may be owned or hosted by a service provider and is made available

to general public use, some examples of public cloud service providers are Google Cloud

and Microsoft Azure. While public cloud offers higher level of efficiency in shared

resources, it is more vulnerable in security terms (Mayanka Katyal et al., 2013). The

security and privacy of public cloud have been major concerns of Cloud service provider.

Public cloud service provider typically provide reliable access control to the user so that

user’s data are not publicly accessible. (Shiny, 2013)

Hybrid cloud is a cloud environment which an organization owns, provides and

manages a private cloud, while having some other provided externally from public cloud.

It is a combination of both private and public cloud, and carries the characteristics of

various cloud models (Shiny, 2013). The advantage of hybrid cloud is the ease of moving

data around from internal or private interface to public interface.

8

Figure 2.1: The Cloud as a collection of parallel and distributed systems.

The main component that forms the Cloud is the internet datacenter (IDC), it is

metaphorically the backbones of cloud computing. Internet Datacenter (IDC) is a physical

repository facility where a collection of servers are located, it is also known as Server

Farm or Server Center.

In an IDC’s server room, thousands of server racks line the sides of aisles, forming

a city of thousands of server systems. In every rack, the individual servers are connected

with network cables, which is further connected to larger network switches to form a huge

network of systems. Each physical server is usually booted with multiple virtual Operating

Systems to maximize the utilization of computing resource that single physical server

provides.

 The Internet

User of Cloud

The Clouds

 Hybrid Cloud
Public Cloud

Data Centers

Virtual

System

 Private Cloud

9

2.2 The Distributed Network of Servers

Distributed network is a collection of self-governing computers that are connected

via the same network. The network is facilitated with distribution middleware that

coordinate resource sharing and traffic regulation, so that user of the network can perceive

the entire network of computers as a single computing unit (Pathan A. et al., 2011).

As the servers nodes in a distributed network attain certain degree of autonomy

themselves as each system must have the capability to manage tasks with its own authority.

There is no single processing element in a distributed system that is solely responsible for

managing the entire load of an application. Instead the processing overhead is

shared/distributed among all available server nodes. The prime benefits of distributed

system are their combined elevated performance, accessibility, and flexibility (Shivaratri

et al., 1992).

The presence of a middleware, such as a load balancer, to coordinate and regulate

workload among the server nodes in a distributed network signifies that the whole network

has the ability of self-regulating/healing, fault tolerance, and an improved network

reliability. If one of the server nodes is experiencing downtime, its workload can be

quickly redirected to other available connected nodes without affecting the overall

network integrity. Other than sharing of data and I/O devices, distributed systems also

share the nodes’ computational power and processing capability among others, which

improves the performance of whole system. (Payal B. et al., 2014)

10

Another benefit of distributed network is the scalability. (Payal B. et al., 2014)

Distributed network is able to expand to meet new needs. New servers can be added to

the existing network and form new nodes without having to shut down the entire network.

Similarly, a server can be removed when required. This scalability brings remarkable

conveniences for existing IDCs to growth and cope with expanding demand, the

convenience is especially visible when an IDC is moved fully or partially from one place

to another, and when a defective server needs to be replaced without shutdown the whole

rack of servers.

 However, distributed network requires workload between interconnected servers

be managed and regulated, and this requires a load balancing algorithm. Next section will

elucidate the load balancing algorithm.

2.3 The Load Balancing Algorithms

The web servers in IDCs are known to have very drastic change in service request

continually, resulting in an ungraceful profile for service load and long awaited queue of

requests. IDC without a load balancer in place would see some systems constantly

experiencing high load, while some other idle, this uneven distribution of workload lowers

the overall efficiency of IDC, increased power consumption, and could bring bad

reputation for the IDC owner of the slow service. It is crucial to have proper load balancing

algorithm for IDCs to increase the service efficiency and to lessen the energy wastage.

11

The fundamental idea of load balancing in IDCs is to introduce elasticity elements

into the server’s service policies with the objective of maintaining a feasible computing

capability with the least idle time and most utilization, thus enabling an efficient use of

computing resources in IDCs. From an example provided by Xu Cheng et al., the requests

for a messenger software service spikes and fluctuates with respect to user login volume

from time to time (2013), hence it is important for the software to have an elastic resource

management to deal with the drastic changes demands.

The IDC’s servers would have different loading if not regulated, the load refers to

CPU load, memory used, delays, or network load waiting to be serviced. The unregulated

traffic could cause some server to be heavily loaded while some too lightly. Hence, a load

balancing algorithm is required to notice this unbalanced distribution of workload and

provides a viable policy of traffic management so that one or more servers, network

interfaces, hard drives or other computing resources have optimized utilization and job

response time.

The load balancing is defined as a process of allocating the total work load to the

individual nodes of the distributed systems to improve resource utilization and response

time, also avoiding the condition in which some nodes are overloaded while others are

under loaded or server failure. (Suriya Begum et al., 2013) It is a new technique that

facilitates network and resources distribution by providing a maximum throughput with

minimum response time (Rajwinder K. et al., 2014 and Chaudhari et al., 2013).

12

The load balancer takes in requests from clients, usually other computers on the

same network, and distribute the requests across multiple servers it manages based on the

current status and loading of the servers. With the critical role of a load balancer, its

algorithm has to be designed properly to avoid data lost (Shiny, 2013).

The main goals of load balancing algorithm listed by (A. Goscinski, 1991) are as

follow:

a. To achieve greater overall improvement in system performance at a

reasonable costs.

b. To treat all workload in a system equally regardless of their origin.

c. To have fault tolerance in the system

d. To have the ability to modify itself in accordance with any changes or

expansion in the distribute system configuration. (This is applicable for

Dynamic Load Balancing only)

Figure 2.2: The categories and types of load balancing algorithms.

Load Balancing Algorithm

Static Dynamic

Distributed Centralized

Cooperative Non-Cooperative

Semi-Distributed

13

Load balancing algorithm can also be categorized according to the initiation types.

The initiation types commonly seen are:

a. Sender Initiated – The load balancing algorithm is initiated by the sender

node.

b. Receiver Initiated - The load balancing algorithm is initiated by the

receiver node.

c. Symmetric – The combination of the both initiation types above.

The initiation types are the approaches to start a load balancing algorithm. The

overloaded node initiates load balancing algorithm to distribute out its load is called

Sender initiated. In Receiver initiated, an under-loaded or lightly-loaded initiates the load

balancing algorithm to offer its willingness to accept new job.

Load balancing was identified as a crucial factor to allow Cloud computing to

scale up to increasing demands (Martin Randles et al., 2010). With the efficiency,

practicality, and expandability of load balancing algorithm on an ecosystem of systems,

the datacenters can be expanded and grow while maintaining its quality of service, cost,

and security.

14

2.4 The Comparison of Static and Dynamic Load Balancing Algorithms

In general, all load balancing algorithms that operates based on system status are

categorized into static methods and dynamic methods. Static methods make decision

based on the static information of the systems. Conversely, dynamic method make

decision based on both the current state and information of the systems.

The design of a static load balancing method is determined a priori, and the

responding behavior is predestined (Ali M. Alakeel, 2010). Behavior of this approach is

not altered with respect to the load transition or the current state of the network (Cybenko

G., 1989). Static load balancing methods are non-preemptive, which means that once the

load is allocated to a node it cannot be transferred to another node after execution

commenced (Payal Beniwal et al., 2014). Hence static load balance policy lacks the

flexibility to respond differently with respect to changes in system loads. However, these

methods requires less communication and computation, hence reduced the execution time

and run-time overhead (Payal Beniwal et al., 2014).

Conversely, dynamic load balancing method change its distribution policies with

respect to different load profile and current state of the systems. The methods are adaptive,

flexible, and require no prior knowledge of the incoming workload. Due to its nature,

dynamic load balancing is more complex than static load balancing, it is also the more

popular load balancing policy used contemporary.

15

Dynamic load balancing methods are applied in three forms: Centralized,

Distributed, and Semi-distributed.

a. Centralized – A single node in the network acts as the “Central Node” and

is responsible for all the load distribution to all other nodes.

b. Distributed – The responsibility of load balancing and job distribution is

evenly distributed to all nodes in the network.

c. Semi-distributed – The network is segmented into clusters, where each

cluster is centralized. The load balancing is achieved through the

cooperation of central nodes of all connected clusters.

In dynamic load balancing algorithm for distributed network, the algorithm is

further categorized under Cooperative and Non-cooperative forms.

a. Cooperative – Nodes work together to achieve a global objective. The

nodes cooperate with each other to meet a common system performance

goal, such as to improve system’s overall response time.

b. Non-cooperative – Each node works independently toward a local goal.

The node makes decision of job scheduling and migration based on local

status and resources independently, such as to improve a node’s response

time.

There are three types of dynamic load balancing methods: Central Queue

algorithm, Local Queue algorithm, and Least Connection algorithm.

16

2.5 The Mechanism of Dynamic Load Balancing

A dynamic load balancing algorithm makes load distribution decisions based on

the current workload information at each node in the distributed system. Hence, a

mechanism in the dynamic load balancing algorithm responsible for collecting and

managing system information is required in the algorithm. This mechanism is referred as

Information strategy.

The information strategy acts as the information center for the algorithm. It is

responsible for providing location and transfer strategies at each node with the necessary

information needed to make their load balancing decisions. There is a tradeoff between

the amount of information provided and the frequency of the provision as the more amount

of information the strategy provides, the more traffic it generates and thus the overhead is

increased. (Ali M. Alakeel, 2010)

Moreover, a mechanism to make decision of which workload is eligible for

redistribution is required for the algorithm. This mechanism which selects a workload for

transfer from a local node to a remote node. Some research further separate this

mechanism into two parts: Transfer strategy and Selection strategy.

The transfer strategy determines the condition under which a task should be

transferred. It typically includes job migration and job rescheduling, where migration

means suspending an executing job, transferring it to another processor and resumes the

17

execution from halted point. The transfer strategy determines which node becomes

eligible to act as a sender or a receiver.

The selection strategy is sometimes merged with transfer strategy as one

mechanism. Discretely, selection strategy is the strategy which decides a node as a host,

and selects a job to be transferred. This mechanism must be sophisticatedly designed as

the important parameters of a job such as execution time, size, I/O, and memory

requirements are only known at execution. A selection strategy considers the following

factors (Sachin Kumar et al., 2012) when selecting a job:

a. The overhead incurred by the transfer. The overhead should be minimal

hence smaller tasks are preferred in selection.

b. The job should be long lived. Tasks with longer processing time or with

higher priority are preferred as it is worthwhile for the overhead incurred

per transfer.

c. The number of location-dependent system call made by the selected job.

The number of location-dependent system call should be minimal as the

job uses resources which are location-dependent.

There are many different implementations of transfer strategy. The simplest

approach would be making decisions independently of the job’s parameter except

consideration of the job queue length in local node, a job is transferred only if the queue

length exceeds a certain threshold. The main drawback is the inflexibility and the

disregard of job sizes. Other approaches involves use of estimation and statistical

18

prediction, such as using Fuzzy Logic, to approximate the job’s parameters when making

decisions. (S. Chowdhury, 1990 and A. Karimi et al., 2009)

The last mechanism in a dynamic load balancing algorithm is the mechanism to

determine which location or node for a workload to be transferred to. This mechanism

selects a destination for the transferring workload is known as Location strategy. This

mechanism is the executional stage of a load balancing algorithm, where it located a

lightly-loaded node to share the load of a heavily-loaded node. The most common

consideration in the decision is the current work load status at a node, which represented

by CPU Queue Length (The total number of job waiting to be serviced by CPU and the

one in servicing). Some approaches used in the location strategy are random location,

probed location, and negotiated location (Ali M. Alakeel, 2010).

In random location strategy, the local or central node selects a remote node

randomly and transfers the job there for execution. Upon receipt of the new job, the remote

node executes the job if the job queue is below a predefined threshold. Or else, the new

job is further transferred to another node. However, to avoid the situation where a job is

constantly ping-pong around the nodes, a limitation on the number of transfer is usually

imposed, the last node at the limitation is forced to take up the new job regardless of its

job queue.

Probing location strategy identifies certain number of nodes and probe them for

their status, one node is picked from the list for the transfer of new job. The criteria of

selection include the job queue length, service time, and response time. This strategy is

19

subcategorized into different sub-strategies: Threshold, Greedy, and Shortest. (D. L.

Eager et al., 1986)

In Probe-Threshold, a random remote node selected and is probe to see if the

transferring of new job would cause it to go above its threshold. If not, the job is transfer

to it; else, another node is identified for probing. The Probe-Greedy is a variation of

threshold strategy, it uses a cyclic probing of nodes instead of random node. The Probe-

Shortest strategy select a remote node randomly, and probes it to determine the job queue

length currently at the remote node. A remote node with shortest job queue length is

selected for the job transfer. (D. L. Eager et al., 1986)

In negotiation location strategy, nodes negotiate with each other to select a suitable

node for taking up new tasks for load balancing purpose. This strategy is commonly

applied in distributed dynamic load balancing algorithm. Two subcategories are Bidding

and Drafting. (J. A. Stankovic et al., 1984 and L. Ni et al., 1985) in bidding location

strategy, an overloaded node broadcasts request message which contains its load

information to all other nodes. Only lighter-loaded nodes respond to the request and

answer it. Then the requesting node shall select the lightest-loaded node that answered

and both initiate a negotiation on the transfer of job.

The drafting location strategy is the inverse of bidding strategy, where the lightly-

loaded nodes which ready to take up more tasks broadcast their status across the network

and initiate negotiation with other heavily-loaded nodes. Comparing the two negotiation

strategies, drafting strategy outperforms the bidding strategy when given the same

20

environment. The major problem with the bidding strategy is that a lightly-loaded node

might be overloaded as a result of winning many bids in a short time. But this can be

solved with imposing a limit on number of winning bids. (L. Ni et al., 1985)

Thus, a dynamic load balancing algorithm is composed of three main components:

the Information strategy, the Transfer strategy (includes Selection strategy), and the

Location strategy. The relationship between the three components are depicted as

followed:

Figure 2.3: The relationship between transfer, location, and information strategies.

The incoming tasks are intercepted by the transfer strategy, which decides should

the job be transferred for load balancing purposes. If the decision is made to transfer the

job, the location strategy decides which remote node to get the job. The information

strategy provides useful information to both transfer and location strategies to enable the

decision making processes (Ali M. Alakeel, 2010).

Transfer Strategy Location Strategy

Information Strategy

Is job eligible

for transfer?

Is remote node

found?

Execute

Locally

C
o

m
m

u
n

icatio
n

 N
etw

o
rk

In
co

m
in

g
 T

ask
s

21

 The different categories of the dynamic load balancing algorithm are depicted in

the figure below:

Figure 2.4: The mechanisms of dynamic load balancing algorithms.

2.6 The Assessment Metrics of a Load Balancing Algorithm

The performance of a dynamic load balancing algorithm is measured by several

metrics (Sachin Kumar et al., 2012), some of which are listed below:

a. Communication Overhead – The status information which every node has

to be conveyed, including communication, resource utilization, and

migration of job involved in the load balancing. It should be minimal for

system to be efficient.

Components of Load Balancing Algorithm

Information Transfer & Selection Location

Probe Random Negotiation

Threshold

Greedy

Shortest

Bidding

Drafting

22

b. Load Balancing Time – The amount of time that elapses between the job

arrival time and the time which the job is accepted by the remote node. It

should be optimally short.

c. Scalability – The ability of the algorithm to perform load balancing with

any finite number of nodes.

d. Fault Tolerance – The ability of the algorithm to perform uniform load

balancing in spite of some failure in nodes and links.

e. Reliability – The ability of the algorithm to schedule tasks in

predetermined time.

f. Stability – A characterization in terms of delays in the transfer of

information between nodes, and the gains of the algorithm.

g. Throughput – The number of tasks or tasks which have been completed. It

should be high for better performance.

2.7 The Existing Load Balancing Algorithms

There are many load balancing algorithms in existence, mainly grouped under

static and dynamic according to the algorithm’s nature. As examples, three types of static

load balancing algorithms are given by Payal Beniwal et al. (2014) as followed:

a. Round Robin Algorithm

The round robin algorithm is performed in the namesake pattern of distributing

load in a circular round robin fashion to a chain of nodes. The assignment of load

and each node are not given any priority. Equal load is simply assigned from the

23

first to the last node, then back to the first node for another cycle. This algorithm

requires little communication, simple to implement, and node starvation free.

b. Central Manager Algorithm

The central manager algorithm has a central node acting as the manager for the

network of nodes. It selects a managed node as the destination for assigning load.

The load assignment can be based on different criteria such as load priority or node

availability. Usually the node with the least workload will be selected for new load

transfer. This algorithm requires constant updates between central manager and

nodes for the best performance, hence inter-process communication level is high.

c. Randomized Algorithm

The randomized algorithm is static and the simplest in implementation. It selects

node for load receiving randomly. As the information of nodes are not required in

load assignment, the inter-process communication level is low, however, for the

same reason the algorithm is best suited for a network of nodes with equal loads.

The nodes are expected to have certain degree of variability in performance to

avoid overloading.

All the static load balancing algorithms have limitations in terms of flexibility

when dealing with different load levels and load assignment. Randomized algorithm, for

example, lacks of the knowledge of the slave nodes’ status, and could easily cause

overloading for one node if that particular node is consecutive selected randomly. To give

the flexibility to load balancing algorithms, a new family of algorithm is created –

24

Dynamic load balancing algorithms. Three of the existing dynamic load balancing

algorithms compiled by Payal Beniwal et al. (2014) are listed below:

d. Central Queue Algorithm

In the central queue algorithm, the new load are queued in a cyclic First In First

Out formation. New coming load is inserted to the last of queue. When an available

node is requesting for load, the first load is removed from the queue and

transferred to the node.

e. Local Queue Algorithm

The local queue algorithm is a process of load check-and-balance among the

network of nodes. When a node has load number falls under a predefined threshold

of minimum, it initiates the call of load transfer from other node. The remote nodes

check their list of activities and pass some of their loads to the requesting node.

f. Least Connection Algorithm

In this algorithm, the load balancer tracks a record of the number of connection

for each node. The node with the least number of connection is selected first for

new load transfer.

There are many more existing load balancing algorithms which are not covered

here. The algorithms have different nature and implementation for different requirements

and environments.

