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IMPLEMENTASI TEKNIK BANTUAN PENULISAN UNTUK MEMORI TERAGIH 

VOLTAN RENDAH 

ABSTRAK 

Dalam teknologi nod dan voltan bekalan yang diskala, keupayaan penulisan untuk SRAM 

direndahkan dan menjadi satu kebimbangan reka bentuk yang kritikal. Pelbagai teknik bantuan 

penulisan dibangunkan untuk meningkatkan keupayaan penulisan untuk SRAM. Dalam 

penyelidikan ini, satu teknik bantuan penulisan yang lebih baik mengimplementasikan idea 

voltan baris-perkataan dipertingkatkan konvensional ke atas sel Dual-VT SRAM telah 

dicadangkan. Dengan menggunakan transistor akses tulis yang mempunyai voltan ambang yang 

rendah dalam teknik yang dicadangkan, masa akses tulis yang setanding dengan teknik 

konvensional boleh dicapai dengan menggunakan voltan dipertingkatkan yang lebih rendah. 

Voltan dipertingkatkan yang lebih rendah pada pemandu baris-perkataan boleh membantu 

dalam pengurangan kuasa statik dan dinamik.Walau bagaimanapun, teknik yang dicadangkan 

mempunyai kelemahan iaitu kuasa statik yang lebih tinggi pada sel SRAM. Ini disebabkan oleh 

penggunaan transistor yang mempunyai voltan ambang yang rendah. Simulasi SPICE telah 

dijalankan untuk menilaikan dan membandingkan prestasi penulisan dan penggunaan kuasa 

teknik konvensional dan teknik dicadangkan. Keputusan simulasi menunjukkan bahawa voltan 

dipertingkatkan yang lebih rendah boleh digunakan pada transistor akses tulis yang mempunyai 

voltan ambang yang lebih rendah dengan peningkatan sebanyak 1% hingga 2% berbanding 

teknik konvensional. Voltan dipertingkatkan untuk transistor akses tulis yang menggunakan 

Std-VT, Low-VT dan Ultra-Low-VT masing-masing adalah 1.00V, 0.94V dan 0.90V. Apabila 

operasi tulis SRAM diaktifkan, terdapat purata sebanyak 6% jumlah pengurangan kuasa 

diperhatikan dengan pelaksanaan transistor akses tulis yang menggunakan Low-VT. 

Pelaksanaan transistor akses tulis yang menggunakan Ultra-Low-VT menghasilkan 10% jumlah 

pengurangan kuasa. Apabila operasi tulis SRAM adalah tidak diaktifkan, pelaksanaan transistor 

akses tulis yang menggunakan Low-VT boleh menjimatkan 7% jumlah penggunaan kuasa. 
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Walau bagaimanapun, pelaksanaan transistor akses tulis yang menggunakan Ultra-Low-VT 

menyebabkan sehingga 4% kenaikan dalam jumlah kuasa. Hasilnya, teknik bantuan menulis 

yang dicadangkan sesuai untuk memori teragih voltan rendah dalam aplikasi kelajuan yang 

tinggi dan aktiviti yang tinggi dalam operasi tulis memori. 
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IMPLEMENTATION OF WRITE ASSIST TECHNIQUE ON LOW VOLTAGE 

DISTRIBUTED MEMORY 

ABSTRACT 

In scaled technology nodes and scaled supply voltages, the SRAM write ability is being 

degraded and becomes a critical design concern. Various write assist techniques are developed 

to improve SRAM write ability. In this study, an improved write assist technique that 

implements the conventional boosted word-line voltage idea on the Dual-VT SRAM cell is 

proposed. By adopting the low threshold voltage write access transistors in the proposed 

technique, the comparable write access time as the conventional technique could be achieved 

with the lower boosted voltage. The lower boosted voltage on word-line drivers could help in 

static and dynamic power reductions. However, the proposed technique has drawback of higher 

static power on SRAM cell due to the adoption of low threshold voltage transistor. The SPICE 

simulation has been performed to evaluate the write performance and power consumption of the 

conventional and proposed techniques for comparative study. The simulation results have 

shown that a lower boosted voltage could be applied on lower threshold voltage write access 

transistor with 1% to 2% improvement as compared to the conventional technique. The boosted 

voltages for Std-VT, Low-VT and Ultra-Low-VT write access transistors are 1.00V, 0.94V and 

0.90V respectively. When SRAM write operation is activated, there is an average of 6% total 

power reduction observed with the implementation of Low-VT write access transistor. The 

implementation of Ultra-Low-VT write access transistor produces 10% of total power reduction. 

When SRAM write operation is inactivated, the Low-VT write access transistor implementation 

could save 7% total power consumption. However, the implementation of Ultra-Low-VT write 

access transistor causes up to 4% total power increment. As a result, the proposed write assist 

technique is suitable for the low voltage distributed memory in the applications of high speed 

and high activity of memory write operation. 
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CHAPTER 1  

INTRODUCTION 

 

1.1     Background 

Two primary memory types are available in the Field Programmable Gate Array 

(FPGA). They are distributed memory (Distributed SRAM) and dedicated block memory (Block 

SRAM) (Mehta, 2010, Altera, 2016). Figure 1.1 shows the generic FPGA with its embedded 

elements. It consists of configurable logic blocks, configurable routing, embedded memories 

and embedded digital signal processing (DSP) blocks. The embedded memories shown are the 

block memories. The distributed memory is formed with the look-up table inside certain 

configurable logic blocks that normally used for logic function (Xilinx, 2005, Altera, 2016).  

 
 

Figure 1.1 Generic FPGA with its embedded elements (Lamoureux and Luk, 2008)  

 

The distributed memory can be programmed to function as Random Access Memory 

(RAM) or Read Only Memory (ROM). This type of memory is distributed throughout the 

FPGA, but block memory is located at certain area only. The distributed memory has much 
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smaller capacity compared to block memory that fixed to 10K Bits, 20K Bits or other amount of 

K Bits. Thus, it has the advantage over block memory when the full capacity of block memory 

is not needed.  Moreover, distributed memory is ideal for small memory design. For instance, 

distributed memory is crucial to many high performance applications that require relatively 

small memory blocks, such as small register files or FIFOs (First-In, First-Out) (Xilinx, 2005, 

Altera, 2016). 

As the need for low power systems increases, lowering the supply voltage (VDD) 

becomes popular and effective approach to reduce both static and dynamic power consumptions. 

However, the supply voltage scaling has been raising design challenges to SRAM as it degrades 

SRAM read stability and write ability. Read and write are the two critical operations of SRAM 

cell. The read stability issue can be eliminated by utilizing 8T-SRAM cell which has the 

structure of a dedicated read port where the memory cell storage nodes are isolated from read 

current path (Ching-Te et al., 2007, Chandra et al., 2010, Keshavarapu et al., 2012, Zimmer et 

al., 2012). On the other hand, solving the write failure issue is more challenging. With 

technology node scaling, it is difficult to perform successful write to SRAM cell even at 

nominal voltage. The design challenges become more apparent when the supply voltage is 

scaled continuously with technology node (Chandra et al., 2010). Therefore, there is a need to 

have design assists to enable robust write operation in low voltage SRAM design. 

 

1.2     Current Trend in SRAM Write Technology  

As a consequence of technology node and supply voltage scaling, the write performance 

of SRAM cell is being challenged. In order to address the challenge of writing data into the 

SRAM cell, several design techniques have been proposed from cell level to architecture level. 

The novel SRAM cell topologies such as 7T, 8T, 9T, 10T and 11T have been proposed at the 

cell level for write performance improvement (Moradi and Madsen, 2014, Farkhani et al., 2015). 
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However, they have the drawback of higher SRAM cell area due to more transistors are utilized 

to form a memory cell (Farkhani et al., 2015). The proposals at the architecture level are using 

write assist technique to strengthen the write access transistors or weaken the latch strength 

(Sinangil et al., 2016, Mann et al., 2010, Moradi and Madsen, 2014, Farkhani et al., 2015, 

Chandra et al., 2010, Goel et al., 2012, Sharma and Kumar, 2013, Kim et al., 2016). The 

architecture level of techniques has advantages of less area consumption compared to the cell 

techniques and suitable to apply in any SRAM cell type (Farkhani et al., 2015). 

 

1.3     Problem Statements 

As the technology scales in deep nanometer era, the challenges in designing a robust 

write and read SRAM cell increase substantially. Both the device variations and leakage are 

increasing with each shrinking technology node. Furthermore, the supply voltage is scaled down 

to meet the low power requirements. The robust operation of the SRAM cell at lower supply 

voltages becomes even more challenging. The read stability issue can be eliminated with SRAM 

cell topology such as 8T-SRAM cell. The more challenging part is to solve the write failure 

issue with both the technology and voltage scaling. High minimum operating voltage of SRAM 

cell will limit its applicability in low power designs. Therefore, it is a need for SRAM cell to 

implement write assist technique to enable robust write operation at lower supply voltages. The 

write assist techniques are implemented to aid the memory cell in changing the state during 

write operation. The existing write assist techniques for SRAM cell include boosted word-line 

voltage, negative bit-line voltage, reduced cell VDD and raised cell VSS. 
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1.4     Research Objectives  

The objectives of this study are: 

1. To propose an improved write assist technique for low voltage distributed memory. 

2. To compare the write performance and power consumption of the proposed write assist 

technique with the conventional write assist technique. 

 

1.5     Research Scope  

The scopes of this study are described in this section. A schematic design of memory 

architecture that consists of small memory array, write address logics and write bit-line logics is 

constructed. The memory design will be the design under test (DUT) in this study. The same 

memory architecture is used for both the conventional and the proposed techniques for equitable 

comparison. The schematic is used to generate the pre-layout netlist for write performance and 

write power consumption evaluations. Hence, the SPICE simulations that executed for SRAM 

write access time and write power consumption are pre-layout type of simulations. The SPICE 

simulation of SRAM write access time is executed to evaluate the write performance of the 

conventional and the proposed write assist techniques. Besides, the SPICE simulation of SRAM 

write power consumption is executed to evaluate the power consumed by the DUT that 

implemented with the conventional and the proposed write assist techniques. The static power, 

dynamic power and total power consumptions are evaluated. The comparative study of SRAM 

write access time and write power consumption of the proposed technique with the conventional 

technique is performed based on the SPICE simulation results. 
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1.6     Thesis Outline  

This thesis is presented with five chapters. 

 In Chapter 1, the research background, current trend in SRAM write technology and 

problem statement are presented. The research objectives and scopes are also outlined here. 

 In Chapter 2, the memory architecture, memory organization, SRAM cell structure and 

supporting operations are discussed. The discussions on write failure and write margin are 

presented here. Review on the existing write assist techniques such as boosted word-line voltage, 

negative bit-line voltage, reduced cell VDD and raised cell VSS is also stated here. Power 

consumption includes static power and dynamic power consumptions are discussed here as well. 

 In Chapter 3, the benefit and drawback of the conventional boosted word-line voltage 

write assist technique are highlighted. The idea of the proposed write assist technique is 

presented here with theory. The methodologies that used to evaluate the SRAM write 

performance and power consumption of the proposed write assist technique are presented. The 

design simulation condition is also stated here. 

 In Chapter 4, the SPICE simulation results for SRAM write performance and power 

consumption of the conventional and the proposed write assist technique are presented. The 

simulation results for both techniques are compared and discussed in details. 

Lastly, the Chapter 5 concludes the overall findings from the study. The 

recommendations for future works on this area are stated as well. 
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CHAPTER 2  

LITERATURE REVIEW  

 

2.1     Introduction 

This chapter is mainly to discuss SRAM cell design and its challenging in support 

robust write operation at lower supply voltage. Firstly, the memory architecture and 

organization are discussed. It is then followed by discussions on SRAM cell structure, 

operations, write failure and write margin. Next, various write assist techniques to improve the 

write performance of SRAM cell at lower supply voltage are discussed. The power consumption 

of SRAM cell is discussed in the end of this chapter. 

 

2.2     Architecture of Memory design 

A memory is a storage unit. It mainly supports write and read operations. Figure 2.1 

shows a general architecture of memory design for write and read operation supports. It 

typically consists of functional blocks such as address decode logic, memory core, write column 

logic, read column logic, read control logic and write control logic. The function of row decoder 

is to select the desired word-line which corresponding to the input address and thereby activates 

the row in the memory array. Prior to read operation, the bit-lines are charged to a supply 

voltage. In read cycle, the pre-charged bit-lines are either staying charge or discharge is 

determined by the data stored in the memory cells selected by the word-line. The voltage 

changes in the bit-lines are detected by sense-amplifier in the read logic and the appropriate data 

is multiplexed to the data output. The signals to the sense-amplifier and bit-line pre-charged 

logic are controlled by the read control logic. In write cycle, the bit-line drivers drive the bit-

lines with the data to be written into memory location where corresponding to the write address. 
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At this time, the sense-amplifiers are isolated. After completion of a write or read operation, the 

bit-lines are pre-charged to supply voltage and waiting for another write or read operation in the 

next cycle. In case of there is no write or read operation being performed in a clock cycle, all the 

word-lines are de-activated and the bit-lines are stay pre-charged. This generic design 

architecture is usually common for every memory design. Typically, their differences are in 

array size and organization of the memory core that in terms of number of rows and columns 

(Mamidipaka et al., 2003). 

 
 

Figure 2.1 General architecture of memory design (Mamidipaka et al., 2003) 

 

2.3     Memory Array Organization 

The memory core consists of individual memory cells that are capable of storing one bit 

binary data information, either logic “0” or logic “1”. Figure 2.2 shows a typical memory array 

organization. Physically, the memory cells are arranged in two-dimensional array of horizontal 

rows and vertical columns. Therefore, a row select signal and a column select signal need to be 

selected in order to access a particular memory cell. All the memory cells in a row are sharing 

the same row select signal, or also called as word-line. On the other hand, all the memory cells 
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in a column are sharing the same column select signal, or also called as bit-line (Kang and 

Leblebici, 2002, Hodges et al., 2004, Shih-Lien, 2006, John, 2007). In the memory array shown 

in Figure 2.2, there are 2
N
 rows (word-lines) and 2

M
 columns (bit-lines). Thus, the total number 

of memory cells in this array is 2
M

 x 2
N
(Kang and Leblebici, 2002). Since the memory cells can 

be accessed for data writing or data reading in random order at a fixed rate and independent of 

their physical locations in the memory array, this kind of array organization is called as a 

Random Access Memory (RAM) architecture (Kang and Leblebici, 2002, Hodges et al., 2004). 

 
 

Figure 2.2 Typical Random Access Memory array organization (Kang and Leblebici, 2002) 

 

Static Random Access Memory (SRAM) is a static memory circuit that the memory 

content is always retained as long as the power supply is being supplied. SRAM does not 

require periodic refreshing to retain memory content, which is in contrast to Dynamic Random 

Access Memory (DRAM). In addition, SRAM is categorized as volatile memory which means 

that its content will be lost if the power supply is interrupted (Shih-Lien, 2006, John, 2007, Patel 

et al., 2013). Figure 2.3 shows an example of 256 x 256 SRAM architecture with N=M=8. The 

memory core array contains a total of 65,536 memory cells. A 16-bit address is used by the 

memory to produce a single bit data output (Hodges et al., 2004). 
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Figure 2.3 An example of 256 x 256 SRAM architecture with N=M=8 (Hodges et al., 2004) 

 

The memory array organization will impact overall SRAM effectiveness. The study in 

Zimmer et al. (2012) proves that bit-line capacitance which is determined by the number of 

memory cells on a bit-line has a significant effect on SRAM read ability. When the number of 

memory cells on a bit-line is large, this causes a large bit-line capacitance that a pull-down 

transistor must discharge and thus degrade the SRAM read ability. A SRAM content-0 read 

requires a certain amount of charge to be removed from the pre-charged bit-line. The bit-line 

with large capacitance requires more charge removed to produce the same differential voltage 

for sense-amplifier detection when compared to bit-line with smaller capacitance. It has been 

noted in Yadav et al. (2013) that the bit-line capacitance is increased with the memory capacity. 

Zimmer et al. (2012) suggests that memory array organized with small number of rows (short 

column) to keep prevent excessive bit-line capacitance. This is critical to improve low voltage 

SRAM operation. But, the drawback is area overhead increase due to the column and control 

circuitry can be amortized over less cells. Besides, SRAM read performance depends on 

effective read current. The faster SRAM data readout operation can be achieved with higher 
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effective read current. However, excessive bit-line leakage decreases the effective read current. 

The impact of bit-line leakage on effective read current can be eliminated by lowering the 

number of rows per bit-line (Ye et al., 2003). 

 

2.4     SRAM Cell Structure and Operations 

There are many SRAM cell structures being designed, but almost every SRAM cell has 

a pair of cross-coupled inverters (I1 and I2) that act as a storage element. Both the true and 

complementary value of data is stored on the two different storage nodes (Q and Q’), as shown 

in Figure 2.4. With the existence of cross-coupled inverters and power supply is supplied, any 

voltage change on a storage node is counteracted by the feedback path and tends to go back to 

the original value. For example, the storage node Q is at 0V and storage node Q’ is at VDD. Q 

is discharged through NMOS in I1 if there is any positive charge deposited on storage node Q. 

Thus, the storage bit information is retained.  

 
 

Figure 2.4 Storage element in an SRAM cell (Zimmer, 2012) 

 

The SRAM cell structures differ by the number of transistors used to provide access to 

these storage nodes. Typically, the SRAM cell is named by the total number of transistors in the 

memory cell (Yadav et al., 2011, Zimmer, 2012). Figure 2.5 shows the basic 6T-SRAM cell. 

The 6T-SRAM cell has total of six transistors in the memory cell. It composes of a pair of cross-

coupled inverters and two access transistors. The access transistors are connected to the bit-lines 

at their source or drain terminals. Bit-lines are used to transfer data for both read or write 
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operations. The word-line is connected to the gate terminal of access transistors and used to 

select the write or read intended memory cell. The stored value (q) and its complement (�̅�) are 

held internally in the memory cell. 

 
 

Figure 2.5 Basic 6T-SRAM cell (Hodges et al., 2004) 

 

 Figure 2.6 shows the voltage transfer characteristic (VTC) of cross-coupled inverters. 

The VTC delivers the key design considerations for write and read operations of SRAM cell. In 

the configuration of cross-coupled inverters, the stored values are represented by the two stable 

states in the VTC, namely Stored 0 and Stored 1. The memory cell retains its current state until 

the switching threshold, 𝑉𝑆 is crossed by one of the storage nodes. When this takes place, the 

internal state of memory cell is flipped. Therefore, current state cannot be disturbed during a 

read operation in order to show good read stability. During a write operation, the internal 

voltage is forced to swing over VS to change the state for showing good write ability. 

 
 

Figure 2.6 Voltage Transfer Characteristic of SRAM cell (Hodges et al., 2004) 

 



12 

 

The schematic for 6T-SRAM cell in CMOS technology is shown in Figure 2.7. The 6T-

SRAM cell is composes of two PMOS and four NMOS. The cross-coupled inverters, M1/ M5 

and M2/M6, function as the storage element.  The NMOS pass-gates, M3 and M4, act as the 

access transistors to the storage element. SRAM cell performs three different operations, namely 

read, write and hold operations (Prakash et al., 2012, Singh et al., 2012). It is in reading mode 

when the memory content has been requested. And, it is in writing operation when the memory 

content needs to be updated. SRAM is said to be in hold mode when the circuit is idle, no read 

or write operation is performed.  

 
 

Figure 2.7 Schematic of 6T-SRAM cell (Hodges et al., 2004) 

 

For 6T-SRAM cell in read operation as shown in Figure 2.8, assuming that a data (bit 

“0”) is stored on the left side of the cell (𝑞), and its compliment (bit “1”) is stored on the right 

side (�̅�). At this time, M1 is turned on and M2 is turned off. Prior to read operation, bit-lines 

(𝑏 and �̅�) are pre-charged to a high voltage around VDD. The word-line (𝑤𝑙) that held low in 

the standby state is raised to VDD which turns on access transistors M3 and M4. The current 

(𝐼𝑐𝑒𝑙𝑙) begins to flow through M3 and M1 to ground. The capacitance on bit-line 𝑏 (𝐶𝑏𝑖𝑡) is 

slowly discharged due to the resulting cell current. Meanwhile, the voltage on bit-line �̅� remains 

high on the other side of the cell since there is no conduction path to ground through M2. The 

voltage difference between 𝑏 and �̅� (∆𝑉) is fed to a sense amplifier to convert to a logic low 
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level output. Upon completion of the read cycle, the word-line is returned to zero and the bit-

lines are pre-charged back to a high value (Hodges et al., 2004, Qazi et al., 2011). 

 
 

Figure 2.8 6T-SRAM cell in read operation (Hodges et al., 2004) 

 

In order to achieve read stability during read operation, the memory cell must be designed to 

ensure that the stored values are not disturbed and corrupted during the read cycle. The problem 

is that the voltage at storage node 𝑞 is raised when current flows through M3 and M1. This 

raised voltage could turn on M2 and bring down the voltage at storage node �̅�, as shown in 

Figure 2.8. The memory content is being altered if M2 is turned on by the raised voltage at node 

𝑞. The state altering in memory cell during read cycle is called as read disturb (Ching-Te et al., 

2007). In order to avoid read disturb, the memory cell must be designed such that the 

conductance of M1 is several times larger than M3. This is to avoid the drain voltage of M1 

does not rise above VS as mentioned in Figure 2.6. In effect, the read stability requirement 

establishes the cell ratio which is the ratio of pull down NMOS transistor to the access NMOS 

transistor in SRAM cell (Hodges et al., 2004, Keshavarapu et al., 2012, Moradi and Madsen, 

2014). The other design consideration for SRAM read is the cell current (𝐼𝑐𝑒𝑙𝑙)for bit-line 

capacitance discharge sufficiently within a specified of time. The rate of change of the bit-line 

voltage can be approximated as follows (Hodges et al., 2004): 

𝐼𝑐𝑒𝑙𝑙 = 𝐶𝑏𝑖𝑡  
𝑑𝑉

𝑑𝑡
 

(2.1) 



14 

 

𝑑𝑉

𝑑𝑡
=  

𝐼𝑐𝑒𝑙𝑙

𝐶𝑏𝑖𝑡
 (2.2) 

where 𝐼𝑐𝑒𝑙𝑙 is cell current, 𝐶𝑏𝑖𝑡 is bit-line capacitance and 
𝑑𝑉

𝑑𝑡
 is rate of change of bit-line voltage. 

It is clearly shown in Equation (2.2) that cell current and bit-line capacitance control the rate of 

bit-line discharge. Larger cell current and smaller bit-line capacitance speed up the bit-line 

discharge process.   

For 6T-SRAM cell in write operation, the operation of writing data bit “0” or bit “1” is 

accomplished by forcing one bit-line (𝑏 or �̅�) low while the other bit-line remains at about VDD. 

This also means that �̅� is forced low for write-1, and 𝑏is forced low for write-0. Figure 2.9 

shows the conditions when SRAM perform write-1. The word-line (𝑤𝑙) that held low in the 

standby state is raised to VDD which turns on access transistors M3 and M4. The current starts 

to flow through M4 and M6 causing the voltage at storage node �̅� drops from its initial voltage 

of VDD. Once the storage node �̅�  dropped below VS as mentioned in Figure 2.6, the 

regenerative effect between the two inverters is initiated and the cell is forced to switch. The 

regenerative operation is M1 turned off and its drain voltage rises to VDD due to the pull-up 

operation of M3 and M5. At the same time, M2 is turned on and helping M4 to pull storage 

node �̅� to its intended low value. When the memory cell finally flips to the new state, the world-

line can be de-asserted by returning it to the low standby level.   

 
 

Figure 2.9 6T-SRAM cell in write operation (Hodges et al., 2004) 
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SRAM write ability needs to be taken care during design phase. The regenerative action 

required for cell content switch is initiated when the drain of M2 is pulled below VS. Therefore, 

the memory cell must be designed such that the conductance of M4 is several times larger than 

M6 in order to ensure proper write operation. In effect, the write ability requirement establishes 

the pull up ratio which is the ratio of pull up PMOS transistor to the access NMOS transistor in 

SRAM cell (Hodges et al., 2004, Keshavarapu et al., 2012). 

           During hold operation, the cell storage nodes are disconnected from the bit-lines by the 

access transistors M3 and M4 due to the de-assertion of the word-line. The two cross-coupled 

inverters will continue to reinforce each other to retain the memory content whenever there is 

sufficient power supply connected to them (Patel et al., 2013, Yadav et al., 2013). If the power 

supply becomes too low, the feedback provided by the cross-coupled inverters becomes too 

weak to retain data. The memory cell could flip and fail to perform hold characteristic if this is 

happen. The minimum voltage at which the memory cell is able to retain their voltage is known 

as the data retention voltage (DRV) (Amelifard et al., 2006, Keshavarapu et al., 2012, Zimmer, 

2012, Sinha and Samanta, 2015). 

The 6T-SRAM cell is using the same port for write and read operations. One key 

conflict requirement for read and write operations can be observed through the cell ratio and 

pull up ratio. It is desirable to have strong storage inverters and weak access transistors to 

minimize read disturb. However, it is desirable to have weak storage inverters and strong access 

transistors in order to improve write ability. The conflict between read and write requirement is 

an inevitable design constraint that needs to be considered during design phase (Ching-Te et al., 

2007, Goel et al., 2012, Keshavarapu et al., 2012, Moradi and Madsen, 2014). However, it is 

difficult to design 6T-SRAM cell which is stable for both read and write especially in the scaled 

technology nodes. This is due to the ratio requirements can be severely impacted by device 

variation (Birla et al., 2010). 
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In order to isolate the conflict requirement between SRAM write and read, 8T-SRAM 

cell becomes a promising candidate to replace 6T-SRAM cell. The 8T-SRAM cell is the 6T-

SRAM that adding with two stacked NMOS for separating the read word-line (RWL) and write 

word-line (WWL), as shown in Figure 2.10. The 8T-SRAM write operation is the same as 6T-

SRAM at which using write word-line to access to the cell storage nodes. The 8T-SRAM cell 

read operation is initiated by pre-charging the read bit-line to a high voltage. Read word-line is 

asserted to turn on transistor RPG after pre-charging read bit-line. If BLLI = 0, RPD is turned 

on and read bit-line is discharged through transistors RPG and RPD to ground. The voltage on 

read bit-line is decreased and sensed by the sense amplifier. On the other hand, if BLLI = 1, 

RPD is turned off, so there is no discharge current flow through the read path, the read bit-line 

should remain at acceptable high voltage level. At this time, only a small amount of leakage 

current flows which is called as bit-line leakage (Prakash et al., 2012). By separating the read 

word-line and write word-line and isolating the cell storage nodes from read current path, the 

read disturb is completely eliminated (Ching-Te et al., 2007, Chandra et al., 2010, Keshavarapu 

et al., 2012, Zimmer et al., 2012). However, 8T-SRAM cell does not improve write ability. 

Furthermore, the 8T-SRAM cell consumes more area overhead when compared to the 

conventional 6T-SRAM cell (Chandra et al., 2010, Keshavarapu et al., 2012). In Ching-Te et al. 

(2007), a study reports that the area of 8T-SRAM cell becomes smaller compared to 6T-SRAM 

cell at the 32nm technology node due to the 6T-SRAM need to trade the transistor area to fulfill 

the ratio requirements. 
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Figure 2.10 8T-SRAM cell (Zimmer et al., 2012) 

 

2.5     SRAM Write Failure and Write Margin 

SRAM is an important element of most VLSI systems. As the demand for low power 

systems grows, lowering the supply voltage (VDD) becomes one of the most effective 

approaches to reduce both static and dynamic power consumptions. However, the supply 

voltage scaling has been posing significant challenges to SRAM design as it degrades SRAM 

read stability and write ability. Read stability failures occur when the memory content flip 

accidentally during a read operation. Write ability failures occur when the cell storage node 

voltage does not reach the desired write data value during a write operation (Zimmer et al., 

2012). Hence, SRAM design work must be carefully carried out in order to minimize failure and 

increase yield in production. The read stability concern can be mitigated by utilizing the 8T-

SRAM cell structure as mentioned in the previous section. Thus, this indicates that solving the 

issue of write failure is more challenging and it is the area that needs more efforts to look into. 

SRAM write failure is defined as the failure to intentionally alter the content of the 

memory cell during the write operation (Chandra et al., 2010, Zimmer, 2012). Write margin is a 

metric used to evaluate the write ability of an SRAM cell in write operation (Goel et al., 2012, 
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Moradi and Madsen, 2014, Sinha and Samanta, 2015). There are static write margin and 

dynamic write margin. Static metric is traditionally used to evaluate write ability, but several 

studies have shown that static metric is poor match to silicon failures. It fails to predict the 

outliers in the critical write ability, and they could probably underestimate write failure rate 

(Toh et al., 2011, Zimmer et al., 2012). However, write margin measured using static method is 

easy and fast for simulation and testing (Wang et al., 2008). The study conducted by Wang et al. 

(2008) shows that word-line voltage sweep static matrix is the best among the existing static 

metrics for evaluating the dynamic write behaviour of SRAM cells for lower VDD and future 

nanometer technologies. In word-line voltage sweep method, the bit-lines are connected to the 

appropriate voltages to enable cell storage node flipping when word-line is swept from 0V to 

VDD. The static write margin is calculated as the difference between VDD and word-line 

voltage when the stored data is flipped (𝑉𝐷𝐷 − 𝑉𝑊𝐿𝑓𝑙𝑖𝑝) (Mann et al., 2010, Moradi and 

Madsen, 2014). Static metric does not account for important transient effects such as write 

access time where increases exponentially in lower voltage SRAM design (Iijima et al., 2008). 

Thus, dynamic metric which derived from the SRAM under dynamic access provides a better 

estimate of SRAM write ability (Toh et al., 2011).  

The effectiveness of an SRAM write operation is typically quantified by the minimum 

(or critical) width of word-line pulse (defined as WLcrit) during which the bit cell changes state. 

The definition is important because it captures the dynamic write margin which is more accurate. 

The static approaches to measure the write margin assume that the word-line pulse width is 

infinite which could lead to erroneous conclusions. Figure 2.11 shows how the internal storage 

nodes (𝑞 and �̅�) of a memory cell change when word-line (WL) of different pulse widths are 

applied during the write operation. In Figure 2.11(a), the pulse width of WL is smaller than the 

WLcrit whereas in Figure 2.11(b), the pulse width of WL is equal to or larger than WLcrit. In 

the case of Figure 2.11(a), the nodes 𝑞and �̅� tend to move towards the other state but they return 

back to the original state in the end of operation. This indicates SRAM write failure scenario. In 

Figure 2.11(b), the nodes 𝑞and 𝑞 ̅are able to move to other stable state, indicates write success 
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scenario. Moreover, there is potential write failure happen in the marginally write-able memory 

cell. This is because the voltage value of storage node possible has not been completely written 

and considered near to the meta-stability point (Zimmer, 2012). In the other word, WL needs to 

be larger than WLcrit and long enough in order to have a robust and successful write operation. 

 
 

Figure 2.11 Memory cell storage nodes during write operation (Chandra et al., 2010)  

                    (a) Unsuccessful write operation (b) Successful write operation 

 

Toh et al. (2011) compares the fail bit count between static and dynamic conditions and 

demonstrates the optimistic of static write margins. Figure 2.12 shows the fail bit count 

dependence on VDD and word-line pulse width. The infinite word-line pulse width case is 

represented by the “Static” line. The “1ns” line represents the shorter word-line pulse width case 

while the “20ns” line represents the longer word-line pulse width case. The result shows that the 

voltage scaling has no impact on write ability (zero write failure) with using static metric that 

assuming infinite word-line pulse width. On the other hand, dynamic metric shows that the write 

fail bit increases when the supply voltage scales down and shorter word-line pulse width is used. 
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Figure 2.12 Write fail bit count dependence on VDD and word-line pulse width (Toh et al., 

2011) 

 

2.6     SRAM Write Assist Techniques 

With technology node scaling, it becomes difficult to write to SRAM cell even at 

nominal supply voltage and the challenges become more apparent at lower supply voltages. 

Figure 2.13 shows the trend of minimum (or critical) width of word-line pulse (WLcrit) with 

respect to supply voltage for a 32nm SRAM cell. It shows around 10 times increase in WLcrit 

as the voltage scales down from 1V to 0.7V. This increment trend is very alarming since supply 

voltage is frequently dynamically scaled to reduce power consumption.  

 
 

Figure 2.13 Change in WLcrit with voltage scaling at 32nm technology node (Chandra et al., 

2010) 
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The substantial increase in WLcrit increases the minimum operating voltage (Vmin) of the 

SRAM cell and limits its applicability in low power designs. Hence, the write assist techniques 

to improve the SRAM cell write performance at lower supply voltages are introduced. The 

existing write assist techniques include boosted word-line voltage, negative bit-line voltage, 

reduced cell VDD and raised cell VSS. They are now commonly used to lower the minimum 

operating voltage of SRAM cell. 

 

2.6.1    Boosted Word-line Voltage Write Assist Technique 

This technique assists the memory cell to flip during a write event by boosting the 

word-line higher than the supply voltage Vddc, as shown in Figure 2.14(a). The word-line 

boosting increases the gate-to-source voltage (Vgs) of the access transistor. Hence, it increases 

drive strength of access transistors and reduces its gate delay time. Moreover, the voltage 

overdriven of access transistors leads them stronger than the pull up transistors reside the 

memory cell and therefore helps significantly in flipping the memory cell (Mann et al., 2010, 

Iijima et al., 2008, Chandra et al., 2010, Zimmer, 2012, Zimmer et al., 2012). This is the pull up 

ratio requirement for write ability as discussed in Section 2.4. Therefore, this boosted word-line 

voltage assist technique causes the memory cell easier and faster to be written with the write 

data. Figure 2.14(b) shows the impact of word-line boosting based write assist on the WLcrit. 

The WLcrit in this case is substantially better than the nominal case with no write assist. The 

result also shows that the benefits of this write assist scheme increases significantly as the 

supply voltage is scaled down. It has been found that boosted word-line voltage scheme is one 

of the most effective write assist techniques (Chandra et al., 2010, Sharma and Kumar, 2013). 

This write assist technique requires an extra supply voltage for the voltage boosted word-line 

drivers. The boosted voltage can be generated internally by a charge pump or by capacitive 

coupling. Also, a separate power supply can be routed for its implementation (Iijima et al., 2008, 
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Chandra et al., 2010, Zimmer, 2012). Besides area overhead, energy overhead is caused by a 

larger voltage on the word-line drivers (Zimmer, 2012). 

 
 

Figure 2.14 Write assist based on boosted word-line voltage(Chandra et al., 2010) 

                        (a) Schematic and waveform (b) Impact of write assist on the WLcrit. 

 

2.6.2    Negative Bit-line Voltage Write Assist Technique 

There are two ways to create a larger gate-to-source voltage (Vgs) for the NMOS access 

transistor. It can be achieved with increasing the gate voltage or decreasing the source voltage. 

The approach of negative bit-line based write assist swings the bit-line voltage below zero volt 

during the write operation, as shown in Figure 2.15(a). The increase in Vgs causes the access 

transistor to become stronger and hence can flip the memory cell easily (Mann et al., 2010, 

Chandra et al., 2010, Goel et al., 2012, Zimmer, 2012, Zimmer et al., 2012). This is the same 

theory as in the boosted word-line voltage technique. Figure 2.15(b) shows the impact of 

negative bit-line based write assist on the WLcrit. The benefits of this write assist scheme 

increases as well when the supply voltage is scaled down. It has been found that negative bit-

line voltage scheme is one of the most effective write assist techniques (Chandra et al., 2010, 

Sharma and Kumar, 2013). But the write stability of memory cells arranged in the same column 

is decreased because a negative bit-line causes a small overdriven voltage on the un-accessed 

NMOS pass-gate transistors in the same column which supposed to remain at off state (Gate 
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terminal at 0V, source terminal at negative voltage). There is probably potential that the 

memory cell could be accidentally written if the pass-gate transistor has a low threshold voltage 

(Zimmer, 2012, Zimmer et al., 2012). Therefore, it is important to take into the consideration of 

the variation in the negative voltage during design phase. Similar to the word-line boosting 

technique, this write assist technique requires an extra supply voltage for the bit-line. The 

negative bit-line voltage can be generated on-chip by a charge pump or by capacitive coupling 

(Farkhani et al., 2015, Chandra et al., 2010, Goel et al., 2012). The energy overhead is minimal 

for negative bit-line voltage scheme (Zimmer, 2012). 

 
 

Figure 2.15 Write assist based on negative bit-line voltage(Chandra et al., 2010)                    

                           (a) Schematic and waveform (b) Impact of write assist on the WLcrit. 

 

2.6.3    Reduced Cell VDD Write Assist Technique 

This write assist technique targets on decreasing the strength of cross-coupled inverters 

in the SRAM cell. The WLcrit can be decreased by weakening the pull-up transistors with 

respect to the NMOS access transistors. It is easier to write a new data to the memory cell once 

the pull-up transistor is weakened (Chandra et al., 2010, Zimmer, 2012, Zimmer et al., 2012). 

Figure 2.16(a) shows the timing relationships using the VDD lowering write assist scheme. 

Figure 2.16(b) shows the impact of the VDD lowering based write assist on the WLcrit. The 

gain is not significant although the write assist based scheme consistently performs better than 

the nominal case. This is due to the fact that the pull-up PMOS is already very weak in the 
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SRAM cell and hence making it further weak does not help much. The lower supply voltage can 

be generated by on-chip regulator or using a second external supply voltage (Chandra et al., 

2010). The main challenge with this assist technique is to make sure the reduced cell VDD 

voltage is still higher than the data retention voltage of the SRAM cell (Chandra et al., 2010, 

Zimmer, 2012). 

 
 

Figure 2.16 Write assist based on reduced cell VDD(Chandra et al., 2010)                             

                                       (a) Schematic and waveform (b) Impact of write assist on the WLcrit. 

 

2.6.4    Raised Cell VSS Write Assist Technique 

A raised ground scheme is another way to help the write operation and decrease the 

value of WLcrit. The write assist idea is still to weaken the pull up PMOS but in this scheme it 

is implemented by weakening the PMOS through gate voltage instead of the source voltage 

(Chandra et al., 2010, Zimmer, 2012, Zimmer et al., 2012). The cell ground, Vssc as shown in 

Figure 2.17(a) is raised during the write operation. Figure 2.17(b) shows the impact of the VSS 

raising based write assist on the WLcrit. The WLcrit for the write assist case is better than the 

non write assist case but the gain is very small. The reason for this marginal increase is similar 

to that of the reduced cell VDD write assist scheme which is that the PMOS is already weak and 

hence further weakening the gate drive does not further weaken it. The extra ground voltage can 

be generated by on-chip regulator or routed as a separate ground. This kind of pull up PMOS 


